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Abstract

Industrial tuna fisheries operate in the Indian, Atlantic and Pacific Oceans, but

concerns over sustainability and environmental impacts of these fisheries have

resulted in increased scrutiny of how they are managed. An important but often

overlooked factor in the success or failure of tuna fisheries management is the

behaviour of fishers and fishing fleets. Uncertainty in how a fishing fleet will respond

to management or other influences can be reduced by anticipating fleet behaviour,

although to date there has been little research directed at understanding and

anticipating the human dimension of tuna fisheries. The aim of this study was to

address gaps in knowledge of the behaviour of tuna fleets, using the Indian Ocean

tropical tuna purse seine fishery as a case study. We use statistical modelling to

examine the factors that influence the spatial behaviour of the purse seine fleet at

broad spatiotemporal scales. This analysis reveals very high consistency between

years in the use of seasonal fishing grounds by the fleet, as well as a forcing

influence of biophysical ocean conditions on the distribution of fishing effort. These

findings suggest strong inertia in the spatial behaviour of the fleet, which has

important implications for predicting the response of the fleet to natural events or

management measures (e.g., spatial closures).

Introduction

Fisheries for tropical and temperate tunas operate on an industrial scale in the

Indian, Atlantic and Pacific Oceans, landing more than 4.2 million tonnes in 2011.

Of the 23 commercially exploited tuna stocks worldwide, 9 are currently

considered to be in an overfished state [1]. Overcapacity in tuna fleets, both in

terms of the number of vessels and their ability to catch and store fish, is a serious

concern in the conservation and management of tuna stocks, resulting in

overfishing and significant economic waste [2]. These concerns over sustainability
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and impact have prompted a critical look at the way in which tuna fisheries

exploit the resource, in particular the techniques used and the design of fishing

gears employed to catch tunas [3, 4]. There has also been increasing scrutiny of

how fisheries are managed, with many tuna regional fisheries management

organisation (tRFMOs) criticised for a notable absence of ‘modern’ philosophies

such as the precautionary and ecosystem-based approaches to management [5, 6].

Failures in fisheries management can result not only from insufficient

understanding of the biological dynamics of an exploited resource, but also from

uncertainty in the actions of fishers [7–10]. The ability to anticipate fishers’

behaviour has become an increasingly important focus of research in fisheries

science [10–12], although to date there has been little research directed at

understanding behavioural dynamics in tuna fisheries. As a result, there remain

many uncertainties that have the potential to undermine management. For

instance, how will a fleet respond to the implementation of a management

measure, such as a spatial closure or a gear restriction; or a change in political and

economic conditions, such as an increase in piracy or fuel costs; or perturbations

in environmental conditions, such as anomalous climatic events: and how will the

response ultimately affect management outcomes? An improved understanding of

fishers’ behaviour is a necessary first step in answering these questions.

The spatial behaviour of fishers can be considered at many different scales. In

the short term, the behaviour of fishers might be considered at a fine scale, for

example the day-to-day movement of an individual between reefs or banks. These

fine scale behaviours are usually directed at meeting an immediate challenge, such

as maximising the day’s catch, and might be influenced primarily by personal

experience and the information available [13, 14]. In the longer term, it may be

more relevant to consider aggregate behaviours at a broad scale, such as the

seasonal movement of a fishing fleet (Table 1). These fleet-level behaviours are the

product of common strategies or coordinated behaviours that are determined by

broad environmental or company-level influences [7, 9]. Furthermore, some

aggregate behaviours may not necessarily be the result of short term planning by

individuals or firms but instead emerge through cooperation or competitive

interactions within the fleet [7–9].

Several modelling approaches have been developed to explain and predict the

spatial behaviour of fishers, with discrete choice models being particularly popular

in the fisheries economics literature [12]. An attractive feature of some discrete

choice models (e.g. mixed logit models) is that they do not assume homogeneity

in the decision making of individuals, which is particularly useful when predicting

behaviour in fisheries where the incentives and constraints that determine

behaviour vary markedly between fishers [15, 16]. However, a potential

shortcoming of this modelling approach is that large panel datasets are required to

describe the range of choices faced by individuals, which can become huge and

therefore computationally demanding when fine spatial scales are considered. In

an alternative approach, a number of conceptual models have been developed to

examine the drivers of fleet-level spatial behaviour, which by definition do not

consider discrete choices, and consequently may be more appropriate for
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modelling the general movement of a fleet in space. However, these models, which

move effort between locations according to some index of suitability, necessarily

require preconceptions as to what constitutes an ‘attractive’ location, for example

the availability of the resource or competition from other vessels in the fleet [17–

19].

An alternative modelling approach is found in the ecology and conservation

science literature, where a number of statistical modelling approaches have been

developed for investigating the spatiotemporal distribution of a species in a

landscape [20]. Within the field of species distribution modelling, a subset of

regression-based models have been used to characterise the distribution of a

species or activity, explain the functional relationship between an organism and

the environment, and to generate insight into a species’ behavioural ecology or

evolutionary history (see [21] for a review).

The aim of this study was to improve understanding of the spatial behaviour of

tropical tuna fleets, using the Indian Ocean tuna purse seine fishery as a case

study. Our analysis was informed by two a priori hypotheses of the factors that

influence the distribution of fishing effort, based on practical knowledge of the

fishery and the wider literature on fisher behaviour. Firstly, the distribution of

tropical tunas is influenced by the biophysical ocean environment [22–24], and

purse seine skippers use satellite-derived information on a number of key

environmental conditions to identify promising fishing locations in the short term

(J. J. Areso, Spanish fleet representative, pers. comm., June 2011). We therefore

asked whether environmental conditions influence the distribution of fishing

effort at broad spatiotemporal scales. Secondly, many previous studies of decision

making by fishers have demonstrated a strong link between past and future

behaviour, termed variously as habit, tradition or inertia [15, 16, 25–27]. We

therefore also examined the relationship between the past and future behaviour of

the fleet, and discuss the implications of this in anticipating the behavioural

response of the fleet. Focus was placed on the behaviour of the fleet at broad

spatiotemporal scales, rather than on the behaviour of individual vessels, as, from

a management perspective, this was considered to be the relevant scale in regards

to anticipating broad changes in fleet dynamics.

Table 1. Varying units and spatiotemporal scales at which the behaviours of fishers may be observed.

Scale Short term, fine scale Long term, broad scale

Decision unit Individual fisher Fishing fleet

Movements e.g., tactical fishing manoeuvres, moving between local
grounds

e.g., seasonal movement, fishing along closed area boundaries

Influences e.g., skill and experience, vessel characteristics, fishing
preferences

e.g., seasonal environmental processes, company strategy, intra-fleet
interactions

doi:10.1371/journal.pone.0114037.t001
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Methods

Description of the fishery

The tropical tuna purse seine fishery targets three main tuna species (skipjack

Katsuwonus pelamis, yellowfin Thunnus albacares, and bigeye tuna T. obesus)

across the majority of the western Indian Ocean throughout the year [28]. Tunas

are targeted as free-swimming schools (free schools) or in association with

floating objects, such as natural debris or purpose-built drifting fish aggregating

devices (FADs) [29]. Purse seine vessels are equipped with sophisticated

navigation and fish-finding technology, and although capable of extended fishing

trips lasting several weeks, vessels must return to port regularly to land or tranship

catch and resupply. The size of the active fleet fluctuates with the perceived

availability of fishing opportunities in the Indian Ocean and 34–52 vessels per year

have operated in the fishery since 2000. The fleet is dominated by Spanish and

French owned-and-operated vessels.. The port of Victoria, Seychelles, is the main

port used by the fleet as its position in the geographic centre of the region allows

skippers to minimise steaming time and maximise fishing days [30].

At broad spatiotemporal scales the spatial behaviour of the fleet is characterised

by seasonality in the use of fishing grounds, and the clustering of fishing effort in

space. Throughout the year the fleet transitions between three main fishing

grounds: the northwest grounds (associated with the practice of fishing around

floating objects), the central equatorial grounds (associated with the practice of

fishing on free schools) and the southwest grounds (associated with a mixture of

both fishing practices). The timing of the movement between these grounds

coincides approximately with the southwest (boreal summer) and northeast

(boreal winter) monsoons (Fig. 1). Whilst the use of these seasonal grounds is

similar between the French and Spanish fleet components, the latter tends to fish

in the northwest grounds for a greater part of the year due to the FAD-centric

fishing strategies employed by some Spanish fishing companies [28]. The

clustering of fishing effort is partly due to the aggregated nature of the fisheries

data, as during the course of month, a single vessel is likely to report effort in

adjacent grid cells. This clustering is further amplified by the high levels of

cooperation and information sharing in the fishery, which results in skippers

fishing in close vicinity to others. However, as cooperation occurs mainly between

vessels allied by fishing company or flag nationalities, this clustering of effort is

mainly observed in the allocation of effort of the respective fleet components (see

Fig. 1).

Data

The behaviour of the fleet was considered at the spatial resolution of 1˚ latitude/

longitude grid cells and the temporal resolution of one month. Purse seine fishing

data were available from the Indian Ocean Tuna Commission (IOTC; www.iotc.

org, downloaded Sept 2012). Data were disaggregated by flag nationality to

distinguish between the French, including vessels flagged to French Territories
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(33.7% registered vessels), and Spanish, including Spanish-owned vessels flagged

to Seychelles (53.1% registered vessels), components of the fleet as these had a

consistent presence in the western Indian Ocean during the period analysed

(2007–2011).

Data were obtained for four aspects of the biophysical ocean environment

relevant to purse seine fishing; sea surface chlorophyll-a (SSC; mg/m3), sea surface

temperature (SST; C̊), sea level anomaly (SLA; cm) and wind speed (m/s). All

environmental variables were downloaded in 8-day intervals but averaged by

month to correspond with fisheries data. This averaging inevitably smoothed over

short term oceanographic features that may influence the fine scale allocation of

effort, although basin scale environmental gradients were preserved. Data for SSC

Figure 1. Seasonal patterns of fishing effort by the Spanish (red) and French (blue) flagged vessels in the western Indian Ocean in each of four
fishing seasons: November-January and February-April (northeast monsoon), and May-July and August-October (southwest monsoon). Circle
size shows the total log fishing days allocated into each grid cell (1˚61 )̊ in each season during 2007–2011.

doi:10.1371/journal.pone.0114037.g001
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and SST were obtained from measurements produced by the MODIS sensor,

made available for download by the Distributed Active Archive Centre of the

Goddard Space Flight Centre/NASA (available at http://disc.sci.gsfc.nasa.gov,

downloaded August 2012). SSC was log transformed to improve the spread of

skewed values. SLA data were obtained from information collected by the TOPEX

and Poseidon altimeters, made available for download by Aviso (available at

http://www.aviso.oceanobs.com, downloaded August 2012). Data on wind speed

were collected by Envisat and made available for download by MyOcean (available

at http://www. myocean.eu, downloaded August 2012).

Statistical modelling

A series of models was fitted to the data. The response variable was binary,

indicating whether or not fishing effort was observed in a location in a given

month. Nine explanatory variables were chosen to construct models, based on an

understanding of the tools, techniques and fishing practices used by skippers to

find tunas, although only variables that were relevant in explaining the behaviour

of the fleet at a broad spatiotemporal scale considered (Table 2).

Four variables described the biophysical characteristics of the location;

oceanographic conditions (SST, sea surface temperature; SSC, sea surface

chlorophyll-a concentration; SLA, height of sea level anomaly) and meteorological

conditions (wind, wind speed over the sea surface). In most studies of fleet

dynamics, expected revenue (e.g. estimated by past catch rates or value) is an

expected driver of behavior. In this case, given high spatial variability in catches

from one year to the next, environmental conditions were instead used as an

approximate proxy for expected revenue (i.e. the expected distribution of tunas).

The past behaviour of the fleet was described as the frequency that fishing effort

reported by vessels of the same flag nationality was observed in the location in the

same month in the previous five years, thus taking into account seasonality in the

use of fishing grounds. The variable distance described the position of the location

relative to the port of Victoria, which for simplicity was taken to be the main port

used by the fleet. In addition to the main effects, the variables year, month and flag

were included to account for possible temporal variation in the spatial footprint of

the fleet.

One factor that was expected to have an important influence on fleet behaviour,

but was not included in this analysis, was the location of FADs. Fishing using

FADs has become the dominant fishing practice in tuna purse seine fisheries

worldwide, and in the Indian Ocean the use of FADs has been important in

shaping spatiotemporal fishing patterns (see [28] for a review). The position and

density of FADs is known to the fishing industry, but unfortunately it was not

possible in this study to access these data.
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Autocorrelation

In this study there was a strong possibility of both temporal and spatial

autocorrelation in the model residuals. Temporal autocorrelation was expected

due to the strong seasonal patterns observed in the movement of the fleet, and

spatial autocorrelation was expected due to the clustering of reported fishing

effort in space. Such autocorrelation violates one of the key assumptions of the

statistical model used here: that residuals are independently and identically

distributed (i.i.d.). The violation of this assumption may bias parameter estimates

and can increase type I error rates (e.g. wrongly rejecting a null hypothesis of no

effect).

Correlation plots were used to visually test for the presence of spatial and

temporal autocorrelation in the residuals of a model fitted with all predictor

variables. Autocorrelation function plots showed no significant temporal

autocorrelation, and so no further action was taken. However, correlograms

indicated moderate spatial autocorrelation to a lag distance of up to ,5 degrees. A

number of approach have been described to deal with spatial autocorrelation in

regression modelling, including the use of autocovariates or spatial eigenvector

mapping [31], both of which were trialled in this study. However, these

approaches introduced additional non-trivial issues that affected the fitting or

interpretation of model results, and eventually a decision was made to proceed

without attempting to address spatial autocorrelation.

Model structure

A candidate set of generalised additive models (GAMs) was chosen a priori and

fitted to the data using R 2.15 (R Development Core Team 2012) using the

package mgcv [32]. GAMs were chosen over generalised linear models due to their

Table 2. Summary of the explanatory variables considered in the models, their predicted effect on effort allocation into an area and data sources.

Variable Description Range/units Data source

Categorical variables

Year Calendar year 2007–2011 -

Season Quarterly period; February-April, May-July, August-October, November-January 1-4 -

Flag Flag nationality of reported effort France/Spain IOTC

Past use Frequency with which the location was fished in the same month in the
previous five years by vessels of the same flag nationality

0–5 IOTC

Continuous variables

SSC Log-transformed sea surface chlorophyll-a; proxy for primary productivity 0.02–25.8 mg/m3 MODIS

SST Sea surface temperature 22–32˚C MODIS

SLA Sea level anomaly; proxy for thermocline depth 236–50 cm Topex/Poseidon

Wind speed Wind speed at 10 m above the sea surface 0–15 m/s Envisat

Distance Distance from the port of Victoria, Seychelles (calculated using the
Spherical Law of Cosines)

0–3,000 km -

All variables were aggregated at monthly intervals and at a spatial resolution of 1˚ latitude/longitude.

doi:10.1371/journal.pone.0114037.t002
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ability to deal with non-linear relationships between the response and explanatory

variables, which was useful for examining the potentially complicated effect of the

environmental variables. Smooth functions were used to fit to the variables SSC,

SST, SLA, wind and distance. Penalized cubic regression splines were used for

computing efficiency due to the very large number of observation in the data. The

degrees of freedom (or ‘wiggliness’) of the smooth functions was determined for

each explanatory variable as part of the model fitting process, removing the

subjectivity of manually determining knot locations [32]. The Akaike information

criterion (AIC) was used to rank and assign support for the competing candidate

models. This selection criterion uses maximum likelihood scores as a measure of

how well the model fits the data, taking into account model parsimony.

The data were split randomly into a training dataset (90%) and a validation

dataset (10%), with the latter used to evaluate the predictive accuracy of the

models using the area under the Receiver Operating Characteristic curve (AUC),

where a score of 0.5 indicates that model accuracy is no better than random and a

score of 1 indicates perfect discrimination [33]. Average predictive comparisons

were used to examine the effect size of the explanatory variables. These were

calculated by comparing the mean predicted response from two modified datasets

in which a focal variable was fixed at its alternative values, with all other

explanatory variables left unaltered [34].

Results

Model selection resulted in a single model containing 100% of the AIC weight,

indicating a high degree of model selection certainty [35]. This AIC-best model

contained all nine explanatory variables. Predictions from the best model

corresponded well with the observed distribution of effort in the validation dataset

(AUC 50.868), indicating that the model could predict the spatial behaviour of

the fleet with reasonable accuracy.

Average predictive comparisons illustrating the magnitude of effect of each of

the predictor variables on the response are shown in Fig. 2. The variable past use

had the largest effect on the probability of observing fishing effort in a location,

indicating that fishing was increasingly more likely to be observed in locations

that had been visited more frequently in the same month in previous years by

vessels of the same flag nationality. Taking into account the influence of all other

variables, there was only a 5.4% mean chance of observing fishing in a location

that had never been visited in the recent past, whereas fishing effort was on

average 36.9% more likely to be observed in a location that had been visited

consistently in the previous five years.

The distance of a location from the port of Victoria also had an important effect

on the spatial behaviour of the fleet, with fishing 13.9% less likely to be observed

in a location 2,500 km from port than a location 500 km from port. This

relationship between distance and the response was negatively exponential, with
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the positive influence of distance initially deteriorating gradually but becoming

increasingly negative beyond 1,500 km from Victoria (Fig. 3).

The variables SSC and SST had positive effects on the probability of fishing

being observed in a location, indicating that in general the fleet was more likely to

fish in warmer, more biologically productive waters. For both variables the

functional relationship with the response was linear throughout low and mid-

range values, but at high values the positive influence either flattened out or, in

Figure 2. Average predicted comparison from the AIC-best model illustrating the effect of the categorical explanatory variables on the probability
of observing effort in a location. The dashed vertical line indicates the predicted overall mean probability. Heavy horizontal lines through each point
indicate approximate 95% confidence intervals. Note the truncated x-axis. See Table 2 for descriptions of the explanatory variables.

doi:10.1371/journal.pone.0114037.g002
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Figure 3. Additive components of the GAM showing the influence of the environmental variables on the probability of effort being observed in a
location. The dashed lines show the standard errors. To improve interpretation, the x-axis of each panel is trimmed to show only the middle 90% of the
observation. See Table 2 for a description of the explanatory variables.

doi:10.1371/journal.pone.0114037.g003

Figure 4. Deterioration in the accuracy of model predictions for each of the four fishing seasons when the environmental variables (SSC, SST,
SLA, wind) were removed from the AIC-best model (alternative 1 model). The size of the circle shows the relative magnitude of the difference in
predictions and is comparable between plots. The colour indicates a more (red) or less accurate (blue) prediction.

doi:10.1371/journal.pone.0114037.g004
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the case of SST, diminished (Fig. 3). Average predictive comparisons indicated

that for both variables the magnitude of effect on the response was reasonably

small (Fig. 2). For example, fishing was, on average, just 3.3% more likely to be

observed in a location with a mid-level SSC concentration (0.11 mg m3, global

mean) than in a location with very a low SSC concentration (0.08 mg m3, 1st

quartile). Similarly, fishing was only 2.8% more likely to be observed in a location

with a mid-level SST (28.1 C̊, global mean) than in a location with a relatively low

SST (26.6 C̊, 1st quartile).

The variables SLA and wind had negative effects on the probability of fishing

being observed in a location, although in both cases the magnitude of this effect

was very small (Fig. 2). The functional relationship between SLA and the response

was slightly curvilinear and suggested that fishing was less likely to be observed in

locations with either very high positive or very low negative sea surface anomalies.

Similarly, the smooth for wind speed indicated that fishing was less likely to be

observed in areas with either very low or very high wind speeds (Fig. 3).

The effects of the variables year, season and flag were small but nevertheless

suggested that the mean probability of fishing being observed in a location varied

through time, and between the flag nationalities. Annual variation was probably

explained by the differences in areas fished between years, with fishing activity

most constrained in space in 2009–2010 probably due to a combination of a

reduced fleet size and the influence of piracy activity on the search behaviour of

vessels. Seasonal variation was probably due to differences in the geography of

seasonal fishing grounds, with fishing on average more likely to be observed in any

given area during the northeast monsoon months (November-April) when the

fleet allocated effort over more expansive fishing grounds. Variation between flag

nationalities was probably due to differences in the size of the French and Spanish

fleet components, and hence the geographical dispersal of fishing activity by each

respective flag in a given month.

To gain further insight into the effects of the environmental and past use

variables on the spatial behaviour of the fleet their contribution to model accuracy

was mapped in space. This was achieved by comparing for each location the

accuracy of predictions generated using the AIC-best model with predictions from

alternative models in which the focal variables were omitted.

Predictions from the alternative 1 model, which was specified by dropping the

four environmental variables (SSC, SST, SLA, wind) from the AIC-best model,

showed both slight improvement and deterioration in accuracy in several regions.

These changes in prediction accuracy tended to be correlated in space,

corresponding with basin-scale gradients in environmental conditions. In all four

seasons, prediction accuracy deteriorated in southern regions of the fishery,

particularly below 10˚S (Fig. 4). When predicting from the AIC-best model,

fishing had a reasonably high probability of being observed in these areas due to

the close proximity to the port of Victoria. However, these southern grounds,

which are situated along the boundary of the Indian and Southern Oceans, are

characterised by biologically unproductive waters, deep thermoclines and high

winds, making them unsuitable fishing grounds for tropical tunas. In some
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seasons, particularly November-January and May-June, the omission of the

environment variables in the alternative 1 model resulted in improvements to

prediction accuracy in the central and northern regions. The AIC-best model

predicted a higher probability of observing fishing in these regions probably due

to the relatively high levels of SSC observed. However, in actuality these regions

received little fishing activity, despite having apparently suitable tuna habitat.

Figure 5. Deterioration in the accuracy of model predictions for each of the four fishing seasons when the variable past use was removed from
the AIC-best model (alternative 2 model). The size of the circle shows the relative magnitude of the difference in predictions and is comparable between
plots. The colour indicates a more (red) or less accurate (blue) prediction.

doi:10.1371/journal.pone.0114037.g005
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Thus, the patterns of deterioration and improvement in prediction accuracy in the

alternative 1 model suggests that whilst environmental conditions are important

in explaining the absence of fishing activity in certain areas, they are poor at

predicting with certainty the presence of fishing effort.

Predictions from the alternative 2 model, which was specified by dropping the

past use variable from the AIC-best model, showed large deteriorations in

accuracy throughout the fishery region, reiterating the importance of this variable

in explaining the spatial behaviour of the fleet. Particularly large deteriorations in

accuracy were evident in the Seychelles region (50–60˚E) during May-July, and in

the Somali Basin region (0–10˚N) during August-October, which suggest habitual

allocation of fishing effort into these seasonal grounds (Fig. 5). During May-July,

free-swimming tuna schools are seasonally abundant in the western equatorial

fishing grounds, and their surface schooling behaviour makes them especially

vulnerable to purse seine gear. It is not clear to what extent this seasonal

availability in the resource is coupled to environmental processes, but it appears

that the location and timing of this event is well known to skippers, and this

knowledge has an important influence on the spatial behaviour of the fleet.

During August-October, a combination of enhanced primary productivity

(reflected by high SSC concentrations) and strong ocean gyres in the Somali Basin

region creates optimal conditions for fishing around floating objects (tunas tend

to associate more closely with floating objects in biologically rich areas with

increased forage availability; R. Bargain, skipper, pers. comm., October 2011).

Whilst these fishing opportunities are more closely linked to environmental

conditions, the very strong influence of the past use variable in explaining the

presence of fishing in these relatively small grounds again implies habitual fleet

behaviour.

Discussion

The ability to anticipate the spatial behaviour of fishing fleets is of increasing

importance in fishery science. On the premise that an improved understanding of

effort allocation will facilitate better anticipation of fleet spatial behaviour, the aim

of this study was to develop a better understanding of the factors that drive the

spatial behaviour of the Indian Ocean tuna purse seine fleet.

A key finding of this study was the strong inertia observed in the spatial

behaviour of the purse seine fleet, characterised by consistency in the use of

seasonal fishing grounds. Patterns of effort allocation were not adequately

explained by biophysical ocean conditions alone but corresponded well with past

fleet behaviour, suggesting that purse seine skippers tended to fish in familiar

areas in which they had some previous personal or second-hand experience (i.e.

learnt from others). Also, high levels of cooperation and communication between

vessels, and the long careers of many skippers (e.g..10 years; ), have probably

homogenised seasonal knowledge and experience in the fishery, which may

explain the consistency in spatial behaviour at the fleet level. The indication of
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experience-based decision making is supported by research in the human

psychology literature, which has shown that when faced with incomplete

information people may not strive to make optimal decisions, but instead rely on

simple heuristics (i.e. decision rules conditioned on past experience) to make

decisions that achieve a satisfactory result [37, 38]. Moreover, this finding echoes

those from previous studies of fisher decision making that have shown

uncertainty, and associated risk, to be an important influence on fishers’

expectations of catch or revenue in a location, and that familiarity can lead to

habitual patterns in behaviour [25, 39–41].

A second important finding from this study was the bounding influence of

biophysical ocean conditions on the spatial behaviour of the fleet, with certain

regions characterised by unfavourable fishing conditions at any point in time and

consequently not visited by the fleet. The influence of the physical environment

has rarely been considered in studies of fisher behaviour, perhaps because most

previous research has focused on fisheries in which the resource is associated with

the sea floor (e.g. demersal trawl fisheries; [12]). By contrast, in the open ocean,

the distribution of tunas and other pelagic species is influenced by biophysical

conditions near the ocean surface, which can be highly dynamic in space and time

[42, 43]. However, whilst these results showed that conditions associated with

poor fishing conditions (e.g. cool sea surface temperatures, biologically

unproductive waters) were relatively good predictors of the absence of fishing,

apparently promising environmental conditions for fishing were relatively poor

predictors of the presence of fishing. This result probably reflects a limitation of

using biophysical ocean conditions as a proxy for the distribution of purse seine

fishing opportunities, which in reality are influenced by a variety of factors. For

instance, the detectability of a tuna school is influenced by the vertical distribution

of a school in the water column (which can vary by species, season and region;

[44]), and also the density of floating objects around which schools often associate

(which can also vary by region; see [28]).

The results presented here have important management implications for

anticipating the response of the purse seine fleet to events that would disrupt

access to traditional fishing grounds, for example climatic anomalies, pirate

activity or the implementation of spatial closures. The prediction of fleet spatial

behaviour under stable fishing conditions is possible with a reasonably good level

of accuracy, on the basis that strong inertia in fleet behaviour means that the

distribution of effort in the past is a good predictor of where it will be allocated in

the future. However, under novel conditions, such a following the closure of a

significant area of fishing ground, there are likely to be considerable challenges in

predicting the reallocation of fishing effort. In these situations, the past behaviour

of the fleet is unlikely to be a suitable portent of where effort will be allocated, and

an accurate prediction of behaviour would probably require the same near real-

time information that is available to skippers themselves. Although not available

in this study, information on the number and location of FADs would probably be

beneficial here, particularly as skippers appear to rely on use of FADs to ‘buffer’

catches when fishing conditions are poor or when fishing grounds are closed [28].
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Furthermore, the prediction of behaviour would probably need to account for the

influence of group-level dynamics that emerge through knowledge sharing

between skippers. The influence of processes such as teamwork and competition

on the distribution of fishing effort were not sufficiently considered in this study,

and neither in other similar studies, which highlights a drawback of the statistical

approach used, and hence a better understanding of cooperation and competition

dynamics and their influence on fleet-level behaviour are recommended as

priority topics for future research.
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