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ABSTRACT
Foraging in the marine environment presents particular challenges for air-breathing
predators. Information about prey capture rates, the strategies that diving predators
use to maximise prey encounter rates and foraging success are still largely unknown
and difficult to observe. As well, with the growing awareness of potential climate
change impacts and the increasing interest in the development of renewable sources
it is unknown how the foraging activity of diving predators such as seabirds will
respond to both the presence of underwater structures and the potential corre-
sponding changes in prey distributions. Motivated by this issue we developed a
theoretical model to gain general understanding of how the foraging efficiency of
diving predators may vary according to landscape structure and foraging strategy.
Our theoretical model highlights that animal movements, intervals between prey
capture and foraging efficiency are likely to critically depend on the distribution of
the prey resource and the size and distribution of introduced underwater structures.
For multiple prey loaders, changes in prey distribution affected the searching time
necessary to catch a set amount of prey which in turn affected the foraging efficiency.
The spatial aggregation of prey around small devices (∼9 × 9 m) created a valuable
habitat for a successful foraging activity resulting in shorter intervals between prey
captures and higher foraging efficiency. The presence of large devices (∼24 × 24 m)
however represented an obstacle for predator movement, thus increasing the inter-
vals between prey captures. In contrast, for single prey loaders the introduction of
spatial aggregation of the resources did not represent an advantage suggesting that
their foraging efficiency is more strongly affected by other factors such as the timing
to find the first prey item which was found to occur faster in the presence of large
devices. The development of this theoretical model represents a useful starting point
to understand the energetic reasons for a range of potential predator responses to
spatial heterogeneity and environmental uncertainties in terms of search behaviour
and predator–prey interactions. We highlight future directions that integrated empir-
ical and modelling studies should take to improve our ability to predict how diving
predators will be impacted by the deployment of manmade structures in the marine
environment.
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INTRODUCTION
Foraging theory is well-developed and has importance for applied ecological problems

with examples including the management of large herbivores (Belovsky, 1991), the

effectiveness of biological agents in controlling pest populations (Railsback & Johnson,

2011), and most recently in the development of strategies for mitigating human-wildlife

conflicts (Baruch-Mordo et al., 2012). There is currently substantial interest in the

foraging behaviour of diving marine predators especially in the context of how this may

be influenced by the deployment of marine renewable devices. In this contribution we

develop a strategic model to represent, in a highly abstracted way, the foraging behaviour

of diving seabirds in environments that can include changes to habitat heterogeneity. Our

goal in this paper is to provide some initial theory that provides some general predictions

and that can motivate the collection of the types of data that can subsequently be used to

develop more refined models that can ultimately yield quantitative, predictive tools that

can be used in management.

The early theoretical foraging models assumed that animals make decisions according

to optimal decision rules (MacArthur & Piankar, 1966; Schoener, 1971). Animals had

full knowledge about resource distribution and could maximize their foraging efficiency

(Charnov, 1976). Later models accounted for imperfect information and assumed random

and unpredictable resource environments (Bovet & Benhamou, 1991; Bartumeus et al.,

2005; Conradt et al., 2003). Foragers used the information gained while foraging to

estimate patch quality or prey density detecting prey items only from a limited distance.

The information received determined how long a forager will stay in a particular patch

(Green, 1980; Olsson & Holmgren, 1998; Valone, 1992).

Movements are key elements in the study of behavioural ecology as they define the

interactions between individuals and their environment and their pattern may depend on

the distribution of the resources and on other species in the landscape (McKenzie, Lewisa

& Merrill, 2009). An animal’s movement decisions can be made both using information

about the surrounding habitat within the animal’s perceptual range (Palmer, Coulon &

Travis, 2011) and spatial memory (Barraquand, Inchausti & Bretagnolle, 2009). Energetic

costs associated with movement in heterogeneous landscapes have also been taken into

account (Faustino et al., 2007; Palmer, Coulon & Travis, 2011). Depending on their diet,

prey distribution and abundance, predators can show different kind of movements and

search tactics ranging from Brownian motions, through correlated random walks, to

Lévy walks (Hays, Metcalfe & Walne, 2004; Codling, Plank & Benhamou, 2008; Sims et al.,

2008; Humphries et al., 2010). The combination of animal morphology and physiology

aspects, characteristics of their food and landscape determine the movement of foraging

animals (Lima & Zollner, 1996; Morales & Ellner, 2002; McKenzie et al., 2012). Animal
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movements have often been modelled using correlated random walks, in which orientation

of successive steps is correlated, resulting in directional persistence. This leads to a local

directional bias, meaning that each step tends to point to the same direction as the previous

one (Byers, 2001; Codling, Plank & Benhamou, 2008). Studies on animal movement

patterns provide a basis for understanding their foraging decisions. Movements can be

influenced by the patchy configuration of food and can change in response of habitat

heterogeneity, and habitat changes across landscape boundaries (Crist et al., 1992; Giuggioli

& Bartumeus, 2010; Bartoń & Hovestadt, 2013).

The foraging ecology of top marine predators has been the subject of intensive research

in the past decades. Thanks to the recent development of miniaturised data-loggers and

survey-based studies, types of movements, important feeding areas and the type of prey

that predators are targeting have been identified (Block et al., 2011; Camphuysen et al.,

2012). However, information about prey capture rates, the strategies that predators use

to maximise prey encounter rates, the detailed interactions between predators and their

prey are elusive in the marine environment (Thaxter et al., 2013). Also the behavioural

response to changes of both habitat quality and characteristics due to human activities are

difficult to observe. It is vital that we gain an understanding of how anthropogenic impacts

on the marine environment influence diving species foraging efficiency and, subsequently,

how this leads to impacts of population demography, population persistence and species’

distributions.

Among marine top predators, for diving seabirds it is a major challenge to examine

movements, search strategies, predator–prey interactions, and how they relate to the

surrounding habitat due to the fact that they use the water column only for foraging

and for a limited amount of time (Elliott et al., 2008; Doniol-Valcroze et al., 2011). Being

air-breathing vertebrates, seabirds need to go back to the surface after a given diving time.

Their physiological and morphological adaptations are a response to the constraints of

moving in a liquid environment and diving with a limited store of oxygen (Monaghan

et al., 1994; Butler & Jones, 1997; Cook et al., 2008). Under these limitations individuals

try to maximise their foraging efficiency. Shape, maximum depth and duration of dives as

well as recovery periods on the surface can be different among species, meaning that each

species can allocate its time in different ways depending on the foraging behaviour (Schreer,

Kovacs & O’Hara Hines, 2001; Tremblay et al., 2003; Elliott et al., 2008; Wilson, Quintana &

Hobson, 2012).

Notably, because the cost of buoyancy changes with depth (Lovvorn & Jones, 1991;

Wilson et al., 1992; Lovvorn et al., 2001; Quintana, Wilson & Yorio, 2007; Wilson, Quintana

& Hobson, 2012), a diving seabird naturally goes through a vertical “heterogeneous

landscape” that leads to different costs of movement during its diving cycle. To optimise the

efficiency of movement or food acquisition during the foraging activity, the animal receives

information about the surrounding habitat and makes movement decisions. Marine prey

resources are variable in space and time and are a reflection of the interactions between

ocean currents, bathymetry and other physical and biological processes (Embling et al.,

2012; Scott et al., 2010; Hamer et al., 2009). Holling (1959) studied the functional responses
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between predators’ foraging success and prey density. Seabirds’ foraging success increases

with prey density, performing a hyperbolic shaped curve similar to the type II curve of

Holling’s model (Wood & Hand, 1985; Draulans, 1987; Ulenaers, van Vessem & Dhondt,

1992). At high prey densities, the benefit gained by the predator might depend on its ability

to handle and digest prey. At low prey densities the predator can spend a longer time and

more energy to find and capture its prey (Enstipp, Grémillet & Jones, 2007).

In the last decade the growing awareness of potential climate change impacts and

the rapid depletion of fossil fuel reserves led to an increased interest in renewable

sources (Rourke, Boyle & Reynolds, 2010; Kadiri et al., 2012). In particular, tidal energy

is considered a promising form of renewable source, as it is an abundant and predictable

supply (Kadiri et al., 2012; IEA, 2012). The arrangement of arrays of tidal devices is a

developing area of research; the size and structure of the devices depend both on the

specific device and the location under consideration (Shields et al., 2009). As sources of

disturbance caused by human activities, their presence in the water can lead to alterations

in ecosystem functions, a bottom-up trophic effect, and changes in food availability (Gill

& Kimber, 2005; Gill, 2005). The indirect impacts on the structure of the communities in

space and time can affect higher trophic levels as well as recruitment and distributions

of marine populations. More direct effects are that fish can be attracted by any physical

anomaly and a tidal energy device can be responsible for the aggregation and attraction

of fish schools around the structures (Gill & Kimber, 2005; Girard, Benhamou & Dragon,

2004). Moreover, the possible overlap between the areas for the development of tidal

devices and the foraging areas of top marine predators can have potentially substantial

ecological impacts (Scott et al., 2014).

Most diving seabirds reach depths at which moving parts of tidal turbines can be located

(Langton, Davies & Scott, 2011) and very few data are currently available concerning

changes in behaviour through avoidance of the devices, changes in prey distributions

and habitat characteristics. This current lack of data for making quantitative predictions

and lack of general foraging theory that can inform the development of models motivated

us to develop a general model about diving predators foraging underwater. Our aim is to

gain theoretical understanding of the foraging efficiency of diving predators characterised

by different foraging strategies in complex marine landscapes (hereafter seascape). In this

study, we seek to develop some generic theory to provide insights on how diving predators

such as seabirds, with different foraging strategies, are likely to be impacted by the presence

of tidal turbines in the water column as source of disturbance and habitat modification.

METHODS
The model represents a seabird performing a dive cycle in a vertical cross section of the

water column. The duration of the underwater search for prey is restricted due to the

predator’s limited air supply. We conducted a set of simulations to evaluate the efficiency

of a predator foraging in an environment affected by spatial disturbance caused by the

presence of abstracted tidal devices, which could also impact the prey distribution. The

model was implemented in the R language (R Development Core Team, 2013).
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Figure 1 Virtual seascapes built in the model representing a cross section of the water column. In red
on the top of the seascapes: high cost section, orange: medium cost section, cyan: low cost section, objects:
dark blue in the low cost section, black dots: prey, black line: example of the predator movement. (A)
undisturbed seascapes with random prey distribution; (B) undisturbed seascapes with aggregated prey
distribution; (C) seascapes with low level of disturbance and random prey distribution; (D) seascapes
with low level of disturbance spatial aggregation of prey around the devices; (E) seascapes with high level
of disturbance and random prey distribution; (F) seascapes with high level of disturbance and spatial
aggregation of prey around the devices.

The seascape
The seascape was representing a 2-dimensional cross-section of the water column and was

a matrix of 100 × 700 cells (depth × horizontal dimension, representing approximately

60 m × 420 m). The energetic costs to counteract the buoyancy decrease with depth as the

increase in pressure leads to the compression of the seabirds lungs (Butler & Jones, 1997;

Wilson et al., 2011). Therefore, in our model, cost of movement, being the energy that a

diving predator has to expend, was an increasing function of water depth (d). Here, for

simplicity, we took it to be a step function yielding three values of high, medium, and low

cost for depths in ranges 0 ≤ d < 2 m, 2 ≤ d < 12 m, d ≥ 12 m, respectively (Fig. 1A).

Disturbance
To simulate the presence of the tidal devices, impenetrable rectangular regions have been

added to the deepest (low-cost) area of the water column (Figs. 1C–1F). These areas

formed a barrier both for predator movement and perception. In order to observe the

effect of different disturbance levels, we varied the size of the objects from either ‘small’ or
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‘large’. The relative size of the small and large devices and the distance between them were

realistic with regard to the size of the seabirds. In the ‘low disturbance’ scenario, 10 small

objects of size 15 × 15 cells (≈9 × 9 m) were placed, comprising a 3.2% of coverage (Figs.

1E and 1F). The ‘high disturbance’ was achieved by placing 10 large objects of size 40 × 40

cells (≈24 × 24 m), comprising a 35% of coverage.

Prey distribution
Assuming that the predators only catch and handle prey in those parts of the water

column where the effort to counteract the buoyancy is reduced, available prey items were

distributed only in the low cost section of the seascapes (Fig. 1A). Each prey item occupied

a single matrix cell (and only one prey per cell was allowed) and was assigned a relative

“benefit” value B = 1,000 energetic units. The number of prey items was fixed (n = 700,

1% of the total cells) in all scenarios, but the presence of the objects in the water could

affect the distribution and spatial density of prey.

Two undisturbed (i.e., without devices) vertical seascapes were simulated, one where

all prey items were each distributed randomly with equal probability anywhere within the

low cost section so to simulate completely randomly spaced and dispersed prey items. The

second scenario without devices has the prey items aggregated in randomly distributed

clusters of random size (keeping a total of 700 prey, see R code in the Data S1 for more

details). The contrasting outputs from these two scenarios allow the quantification of the

difference between completely random prey and aggregated prey patches, the more likely

normal situation (Fréon et al., 2005).

The presence of objects slightly affected the overall local density of prey, as they

effectively concentrate the 700 individuals into a smaller area (Fig. 1). The average prey

density comprised 0.034, 0.035, 0.037 fish/m2 of the searching area in the none, low-

(small devices), and high-disturbance (large devices) scenarios without attraction to the

devices, respectively. Note that we have also run simulations where we controlled for

density (rather than controlling for abundance as in the presented results) and we find the

effect to be very small and certainly does not account for the different results obtained with

the introduction of disturbances. (See Fig. S1 for details.)

Within the “attracting” scenarios, where the devices attract fish, the prey aggregated

around each object. The probability of there being prey decreases outwards from the

prey cluster centre. Locational x and y coordinates, of each n prey locations around

each device (the same n for each device for all simulations), followed a bivariate normal

distribution. Note that a random draw was repeated if the prey fell within the device area,

so that a prey item never overlapped the devices. With the low level of disturbance the

prey were aggregated around each object within an area of 1350 cells (≈500 m2) with

a local prey density of 0.139 fish/m2. With the high level of disturbance the prey were

aggregated around each object within an area of 1764 cells (≈650 m2) with a prey density

of 0.108 fish/m2 (Figs. 1B–1F) (see R code in the Data S1 for more details).
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Predator’s searching behaviour
The search for prey started once the predator reached the ‘low cost’ section of the water

column (Fig. 1), and was limited only to the low cost section, as we assumed that the

movement costs (i.e., counteracting the buoyancy) in the remaining sections were too

high to be advantageous for the predator to search for prey there (Lovvorn et al., 2004;

Morales & Ellner, 2002). The predator perceptual range was 2 units (1.2 m) around the

predator position. If a prey item fell within this range, the predator directed toward the

prey. Otherwise, movement decision was affected by the eight neighbouring cells. The

movement direction was affected by both the directional persistence, and a drive to go

downwards. Trajectories generated in this way resembled the shape of general diving

profiles performed by diving seabirds as shown in Lescroël & Bost (2005). Next position

was one of the eight cells adjoining the current position, selected randomly with relative

preference value λ. If the selected cell fell outside the landscape or in the device region, the

draw was repeated until it fell within an unoccupied cell.

The preference λx,y for cell at relative coordinates x and y, was a result of two

components, the directional persistence (direction of the preceding step) and downward

draw, and was calculated as:

λx,y = [κCNorm(diff(αt−1,βx,y),1) + τ(diff(δ,βx,y))]dist(x,y)−1 (1)

where: κ is the strength of directional persistence; CNorm(µ,σ ) is a wrapped normal

probability density function, with mean direction µ and standard deviation σ ; diff(α,β)

represents angular difference between α and β; αt−1 is the movement direction of the

previous step; βx,y is the direction to cell located at x and y; and δ is the direction

downwards (to the cell beneath current position, so δ = β0,1). The strength of the

directional persistence, κ , is a function of the number of steps since the last prey encounter,

m, defined as κ = min(κmin + log(m),κmax), where κ is bound between κmin = 0.5 and

κmax = 3.0, so the resulting movement followed an area-concentrated search (Fauchald

& Tveraa, 2003). τ(α) is a strength of the downward draw, and yields 1 when α is 0, and

0 otherwise. To adjust for the square grid, sum of the two components was weighted by

distance to the cell center (1/dist(x,y)).

Predator’s complete diving cycle
We simulated single dive cycles, in which the trajectory started and ended at the surface

and was divided into 3 phases: descent, search and ascent. We assumed that during descent,

seabirds might have to stroke or paddle continuously in order to maintain speed against

profile drag and buoyancy (Lovvorn, Croll & Liggins, 1999) so the descent lasted until the

predator reached the low cost section of the seascape (Fig. 1A, black line). Next, assuming

that during the search seabirds alternated gliding with bouts of stroking/paddling while

swimming (Watanuki et al., 2003), the predator moved in search of prey until it captured

Nprey (see below) or reached the maximum duration of the searching phase, whichever

occurred first, and subsequently it returned to the surface.
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Table 1 Summary of the model parameters used for the simulations. See Data S1 fo more details.

Parameters used in the simulations Values (s)

Seascape size (unit = cells) 100 × 700

Total number of food items in the seascape 700

Number of clusters simulated 30

Number of food items per cluster Random selected from 1 to 50, with total = 700

Foraging strategies simulated: PN , P3, P1 PN : able to catch unlimited prey items

P3: able to catch a maximum of 3 prey items

P1: able to catch a maximum of 1 prey items

Energy content of the prey item 1,000

Number of devices simulated 10

Sequence of searching time simulated (unit = time step) From 10 to 300 every 10

Maximum dive time sequence simulated (unit = time step) From 210 to 500 every 10

At each step, the predator expended an amount of energy depending on the depth it

was in (see above) and the diving phase. During the descending and searching phases the

per step energy expenditure corresponded to the movement cost Cs associated with each

section s of the seascapes. During the ascending phase, because of the opposite effect of

the hydrostatic pressure, the per step energy expenditure corresponded to a constant cost

Casc. If the predator encountered a prey (i.e., if prey was in the same cell as the predator),

it gained B energy units, and that prey was removed. During the ascending phase the

predator moved directly to the surface. Movement speed was constant in all phases, one

unit (≈0.6 m) per time step.

We examined three strategies differing in the maximum number of prey items that the

predator was able to catch during the searching phase: one, three, and unlimited (denoted

as P1, P3 and PN respectively, Table 1).

Simulations
The simulations were run in a full factorial design of the three disturbance levels (none,

small and large devices), and two types of prey distribution: uniform and aggregated,

with aggregation specific to devices when they were present. For each combination of

parameter values (summarized in Table 1) we ran 500 replicates of an individual dive cycle.

The starting point of each dive was a randomly selected cell of the surface (top row of the

landscape grid). Prey locations were different in each run, meaning that in both uniform

and aggregated distribution the location of the prey was randomly selected respectively

within the whole foraging area and within the area chosen for the aggregation.

In order to estimate the impact of the devices on the efficiency of the searching strategy,

we calculated the time taken to find first prey, as well as prey encounter intervals, up to

3rd prey. For this purpose we used trajectories of the searching phase only (i.e., within the

lowest part of the water column).

Then, to assess the effect of the devices on different foraging strategies, we introduced

a full diving cycle, including the descent and ascent phase. In the six environmental
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conditions described above, three types of predators were tested (P1,P3,PN), with 20

different Maximum Dive Durations allowed (MDT, ranging from 218 to 408 time steps

to represent the range of dive durations across multiple species). The predator’s vertical

position (y) at each time step, and the number of prey encountered (Nprey) was recorded.

For each combination of parameters, predator’s foraging success was estimated. The

foraging trip was considered successful when the predator caught at least 1 prey. Foraging

efficiency index was calculated as the ratio of the benefit gained in a diving cycle, and the

total energy expended during the dive cycle:

ϕ = Npreyb/


c(y) (2)

where Nprey is the number of prey caught during the dive cycle, b is the benefit of a single

prey, and the last term is the total expended energy, being a sum of the energy spent in

making each step of the dive cycle of m steps. c is the function of movement cost (see above)

at depth yi, at which the predator was present at step i.

The mean foraging efficiency for each predator strategy (PN,P1, and P3) was plotted

against the maximum dive time. This was done to observe how the foraging efficiency was

related to varying maximum dive times.

RESULTS AND DISCUSSION
Particularly in the marine environment, the circumstances surrounding prey capture are

largely unknown. Vertical movements (diving) of top marine predators are considered one

of the 4 phases that characterise the foraging behaviour of diving marine predators: vertical

movement (diving), horizontal movement, habitat use, and resultant prey capture (Austin

et al., 2006). In this model we started to develop and test the foraging events only occurring

during this phase. We focused on the vertical movements in order to understand at a finer

scale the dynamics of a diving predator encountering its prey and the effects of different

prey distributions and habitat heterogeneity characteristics.

When foraging in the seascapes, all simulated predators experienced the same physio-

logical constraints and had access to the same information from the surrounding habitat.

Despite this, distinct movement patterns emerged in different seascapes highlighting the

effect of the prey distribution and the presence of the devices (Fig. 1).

Searching efficiency
For all the predators simulated, the searching efficiency depended on both the distribution

of the prey and the device encounter rate (Fig. 2). Both low and high disturbance affected

the prey encounter intervals. In general, locating the first prey item was the most time

consuming in all examined landscapes except in those characterised by high disturbance.

Searching was most efficient where prey were aggregated (Fig. 2, 0 + Agg, Low + Agg,

Hi + Agg). In the undisturbed seascape (Fig. 2, 0 + Agg), the longer time needed to find

the first prey item corresponded to the time taken to find the first prey cluster. Once a

cluster was found, the probability of finding subsequent prey was higher due to spatial

autocorrelation of the prey and hence increased local prey density. The spatial aggregation
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Figure 2 Intervals between prey catches in a general predator. 0, Undisturbed seascapes; 0 +

Agg, Undisturbed seascapes with aggregated prey distribution; Low, Low disturbance without impact
on the prey distribution; Low + Agg, Low disturbance with impact on the prey distribution; Hi, High
disturbance without impact on the prey distribution; Hi + Agg, High disturbance with impact on the
prey distribution.

of prey around small devices led to a higher prey encounter rate compared with the other

scenarios (Fig. 2, Low + Agg).

The presence of high disturbance (Fig. 2, Hi, Hi + Agg), allowed the predator to find

its first prey sooner due to the higher local density of the prey and the higher possibility

for the predator to encounter the device and change its movement direction. At the same

time, this scenario inhibited its ability to find the subsequent prey, especially when the prey

was randomly distributed (Fig. 2, Hi). This suggests it is primarily the prey aggregation

that is influencing the search success (Bartoń & Hovestadt, 2013), followed by the type of

disturbance and its impact on the prey distribution.

Habitat heterogeneity vs. foraging strategies
The impact of the differences in habitat heterogeneity on the foraging efficiency of the

diving predators depended on their foraging strategy (‘n-prey loader’), on the searching

efficiency and on the time spent underwater. In general, the increase in Maximum Dive

Chimienti et al. (2014), PeerJ, DOI 10.7717/peerj.544 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.544


Figure 3 General predator in the undisturbed seascapes with random prey distribution. Proportion
of successful predators per maximum dive time (blue line), foraging efficiency (purple line) and average
prey depth (average depth where prey were caught) (green line).

Time (MDT) resulted in an increase in the foraging success of the predator (Fig. 3, blue

line). During longer dives, the longer searching time available gave the opportunity to the

predator to cover a greater diving distance, increasing the probability for the predator to

succeed during the foraging event. At the same time, the combination of the directional

persistence and the downward draw led the predator to dive deeper. This increased the

probability for the predator to catch prey deeper in the seascapes (Fig. 3, green line),

but it caused a longer ascending phase. So the success of the foraging event, the average

depth where the predator caught the prey and the length of both searching and ascending

phase contributed to the variation of the foraging efficiency. After reaching a maximum

threshold, the resulted decrease of the foraging efficiency was due to the predator spending

more time underwater and catching its prey mainly in the deeper part of the seascapes

(Fig. 3, purple line). The foraging efficiency was assessed for each of the 3 foraging

strategies (P1,P3,PN) and for different dive times (Table 1) and was expressed as the benefit

to cost ratio (number of prey caught per energy expended, see ‘Methods’ for details).

Foraging pattern PN (multiple loader)
In the foraging strategy of the predator PN , the number of prey caught was limited only

by the maximum dive time. It is the only considered strategy where the maximum time

was always equal to the effective/actual dive time. In all scenarios, longer searching time

for the prey allowed PN to capture an increasing number of prey (Fig. 5, bar plots). Despite

this, the increasing time spent underwater (Fig. 4C, PN) led to a decrease of the foraging

efficiency after a given MDT. Both low and high disturbance affected the pattern of the

foraging efficiency depending on the effect on the prey distribution and these effects are

explained separately next.

The spatial aggregation of the prey created a valuable area for successful foraging activity

(Bartoń & Hovestadt, 2013). In the undisturbed seascape with aggregated prey distribution
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Figure 4 Predator PN , P3 and P1. Foraging time (A), ascending time (b) and time spent underwater (C).
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Figure 5 Foraging efficiency (black line), and Number of Prey Captured (bar plot) of the multiple
loader PN among different dive times in response of the low and high level of disturbance. (A) basic
seascapes and random prey distribution, (B) basic seascapes and aggregated prey distribution, (C) low
level of disturbance and random prey distribution; (D) low level of disturbance and spatial aggregation
of prey around the devices; (E) high level of disturbance and random prey distribution; (F) low level of
disturbance and spatial aggregation of prey around the devices.

(Fig. 5B) PN could get the advantage of catching a larger number of prey once it found

the prey cluster. Despite this, the longer time spent underwater and the possibility that PN

could not detect other clusters within its perceptual range negatively affected the overall

foraging efficiency of the whole dive cycle. The aggregation of the resources around small

devices forced PN to stay mainly in the upper part of the seascapes. Performing a shorter

diving cycle and spending less energy in its ascending phase, PN achieved a higher foraging

efficiency (Fig. 5D). With a longer MDT, PN could also reach the deeper part of the water

column. So during both search and ascent, it could encounter the devices and spend more

time and energy, which negatively affected the foraging efficiency (Fig. 5D). The foraging

efficiency of PN was positively affected by the presence of high disturbance, especially in

short dives (Figs. 5E and 5F).

Foraging pattern P1 (single loader) and P3 (triple loader)
The foraging strategies P3 and P1 involved the limit for number of prey items per single

dive cycle. Different to PN , the time necessary to catch the required number of prey was

shorter than the MDT allowed within the simulation. Consequently, increase of MDT

beyond the point when the prey capture limit was reached had no effect on the dive nor its
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Figure 6 Foraging efficiency of the three predators P1 (A and B), P3 (C and D), and PN (E and F)
among different maximum dive times. Undisturbed seascape (red solid line) and response in presence
of the low (dotted blue line) and high level (dashed cyan line) of disturbance.

efficiency that levels off at certain MDT (Fig. 4). Shorter foraging and ascending phases,

resulted in consequently shorter time spent underwater (Figs. 4A–4C). Highest foraging

efficiency of both P3 and P1 occurred when prey was distributed randomly.

The spatial aggregation of prey in the undisturbed seascape (Figs. 6B–6D) did not

represent an advantage for both P3 and P1, due to the ‘loading limitation’, unlike in PN

(Fig. 6F). Their foraging efficiency was indeed lower with aggregated than with random

prey distribution (Figs. 6A–6D, dotted line). However, relative to the foraging efficiency

in the undisturbed landscape the increase of the local prey density when prey aggregated

around the small objects was beneficial especially for P3 (Fig. 6D, dotted line).

The spatial aggregation of the prey around the big devices combined with device size

allowed both P3 and P1 to reach a similar higher level of foraging efficiencies obtained

with random prey distribution (Figs. 6B and 6D, dashed line). However in P1, foraging

efficiency is strongly affected by the time to find the first prey item (the only one needed)

which can occur sooner in the presence of both large devices and subsequently higher local

prey density (Figs. 6A and 6B).
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Comparisons with species specific behaviours
Quantification of prey capture rates and direct observations of feeding events is

challenging for diving seabirds that catch their prey underwater. Underwater behaviour

and prey capture rates have been observed only in few seabird species using animal borne

video camera (Poganis et al., 2000; Takahashi et al., 2004; Watanuki et al., 2008), stationary

underwater video cameras (Crook & Davoren, 2014) and data storage loggers that record

prey ingestion (Enstipp et al., 2006; Watanabe & Takahashi, 2013). Moreover, bioenergetics

models have been developed to estimate also how prey capture rates vary with different

prey availability, prey distribution, prey size and patch quality (Grémillet et al., 2003;

Enstipp, Grémillet & Jones, 2007; Harding et al., 2009; Thaxter et al., 2013). Our study

considers how an increasing complexity in a foraging environment can affect the time

required to catch prey underwater and as consequence the foraging efficiency. As shown

in our model, a simple change in prey distribution can affect the predator’s searching time

necessary to catch a set amount of prey items, affecting its foraging efficiency (Figs. 6A

and 6B). Seabirds such as the Little auk (Alle alle) feed mainly on copepods (Harding et

al., 2009) and can be considered similar to the multiple loader PN simulated in this model.

The zooplankton community composition is closely linked to oceanographic conditions,

and the availability of the different species will directly affect the number of prey items that

the species will need to consume to balance their energy budget (Piatt & Harding, 2007;

Harding et al., 2009).

Common guillemots (Uria aalge) can be considered close to a single prey loader or triple

prey loaders in terms of prey capture rates per dive (Thaxter et al., 2013). Needing only a

limited number of prey (from 1 to 3) , the predators P1 and P3 do not gain an advantage

in locating a prey patch as the multiple prey loader does. Our current model does not

simulate prey response to the presence of the predator, however, the fact that Common

guillemots might prefer solitary prey or prey in low density schools, as suggested in Crook

& Davoren (2014), might be due to the combination of confusion effect, i.e., the difficulty

in attacking a prey within a fish school and their foraging strategy.

It has been shown that seabirds might show different foraging strategies while

performing self-feeding and chick provisioning dives (Ydenberg et al., 1994; Davoren

& Burger, 1999). Individual predators might therefore be affected in different ways,

depending on their current foraging strategy.

Future research directions
Species respond differently to fluctuations in the composition and availability of prey

depending on their ecology, physiology, and life history traits. Data on the predator

response to different prey distribution and composition is also limited by the potential

variability of the response both at an individual and species level and requires an

understanding of the functional relationship between each prey preference and availability

(Einoder, 2009). The flexibility of the foraging strategies, in terms of prey preference, is

a factor that might affect the foraging efficiency of these diving predators, increasing the

complexity of a scenario where the presence of a increased heterogeneity might change the
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density, the distribution and the composition of each prey type. In response to poor food

quality Common guillemots are able to change both the type of prey caught and increase

the amount of time spent foraging, expressed as time spent in the whole foraging trip

(Uttley et al., 1994; Barret, 2002; Harding et al., 2007). As single prey loaders as the predator

P1, their foraging efficiency might then be particularly affected by the energy content of

the food items (Wanless et al., 2005). These aspects, as well as the possibility to associate

single dives to a foraging bout and multiple foraging bouts to a foraging trip were not

implemented in the current model but they need to be considered in future developments.

Seabirds can possibly make use of experience, memory and local enhancement when

foraging (Irons, 1998; Davoren, Montevecchi & Anderson, 2003). They can associate the

surroundings of devices with more profitable places to forage, increasing their foraging

success (Grünbaum & Veit, 2003) and number of prey located and captured in these areas

(Nevitt, Losekoot & Weimerskirch, 2008). Tidal turbines and their support structures have

been shown to have the potential to act as fish aggregation devices (Viehman & Zydlewski,

2014) as have other anthropogenic structures such as the foundations of offshore wave

power devices (Langhamer & Wilhelmsson, 2009), offshore wind farms (Willhelmsson,

Malm & Öhman, 2006), and decommissioned oil platforms (Soldal et al., 2002). Large

devices may be more visible from longer distances, perhaps also from water surface, which

can further decrease potential search area and improve search success. It was beyond the

scope of our current simple model to implement such complex behaviours, but such

behaviours should be considered when assessing the impact of tidal turbines on diving

predators foraging success. In order to fully understand the effect that the increase in

heterogeneity from renewable tidal devices can have on seabirds’ foraging characteristics

and the vulnerability of the species, the potential alterations on the foraging areas and

the prey distributions need to be taken into account (Furness & Wade, 2012). This model

represents a valuable starting point for major modelling explorations concerning energetic

budgets during foraging tasks, how animals deal with environmental uncertainties and

complexity during their search behaviour and how their foraging efficiency is likely

to be affected (Bartoń & Hovestadt, 2013). Behavioural necessities of a diving seabird

such as limitations of diving depth and the spatial distribution of resources can affect

the spatial interaction between predators and prey and hence the foraging efficiency

(Sih, 1998; Fauchald, 2009).

Identifying factors that lead to successful foraging in predators is important (Austin et

al., 2006) and the combination of empirical data and new modelling protocol will lead to

both a better understanding of the mechanistic factors associated with successful foraging.

Future modelling will be able to take advantage of understanding gained from data from

real animal movements from tagging data in order to develop a more refined strategic

understanding of how diving predators of different foraging behaviours are likely to be

impacted by distrubances. Additionally, details on animal movements available with the

GPS technology, telemetry data, and data storage tags, allow quantification of modes of

movements (i.e., Morales et al., 2005; Miramontes, Boyer & Bartumeus, 2012; Regular, Hedd

& Montevecchi, 2013) will facilitate the development of parameter rich models capable
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of making quantitative predictions of how particular species are likely to respond to

the introduction of disturbances in particular environments. We believe that there is

a need for the dual development of strategic models (such as that we have presented)

and tactical models in this area. It will be important that both begin to incorporate

increasing complexity. One particularly important consideration is increasing the spatial

and temporal extent of the model such that birds can undertake many more dives over

a period of days, are able to move between different foraging areas and are able to base

the decisions that they make on memory of past foraging success. Also, understanding

motivations of movements and how different observed patterns may depend upon the

distribution of resources and other species in the seascapes are key factors in order to clarify

the predator–prey interaction in complex and variable habitats.

Importantly, we emphasise the need for development of 3-Dimensional models,

involving more complex and realistic searching strategies. Such a development will be

somewhat more challenging and computationally expensive but it can provide further

insights for the development of new theoretical models, providing a better understanding

of the mechanisms and consequences of animal movements in 3 dimensions under

different habitat and prey availability scenarios and enabling exploration of predator

foraging theory and predator response to environmental uncertainties and spatial

heterogeneity caused by human activities. Additionally, by developing 3-D models it

will be more straightforward to directly link models to tagging oriented data and begin

the challenging task of moving from strategic theoretical models to tactical species based

models directly useful for application.

CONCLUSIONS
Because of the natural variability of the marine resources and both physiological and

morphological adaptations of diving seabirds, different seabird species perform different

foraging strategies in order to maximise their foraging efficiency. Due to the difficulty in

observing foraging birds and prey behaviours simultaneously there is a current lack of data

on the possible relationships between prey abundance, spatial distribution and predator

foraging efficiency. The future addition of large developments of man-made structures to

the marine environment increases the need to ask detailed ecological questions about how

these predators behave and what their reactions may be to a changing level of heterogeneity

in the environment. The theoretical foraging model presented in this work provides

an important tool to begin to explore predator responses to spatial heterogeneity and

differences in prey behaviour. The results of this initial 2 dimensional model suggests

that the introduction of increased heterogeneity via man-made structures such as tidal

turbines will have differing effects on the foraging efficiency of species with different

foraging strategies (i.e., single vs multiple loaders). Foraging efficiencies and foraging

behaviours will also be influenced by the reaction of prey to the level of heterogeneity

suggesting changes in search behaviour and predator–prey interactions due to changes

in prey behaviour around structures. This modelling framework along with new detailed

movement data of diving seabirds can provide new insights to the foraging theory and
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directions for the implementation of the ecosystem-based management strategies in those

areas where human activities are likely to have ecological impact.
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Bartoń KA, Hovestadt T. 2013. Prey density, value, and spatial distribution affect the efficiency of
area-concentrated search. Journal of Theoretical Biology 316:61–69
DOI 10.1016/j.jtbi.2012.09.002.

Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J. 2005. Animal search strategies: a
quantitative random-walk analysis. Ecology 86:3078–3087 DOI 10.1890/04-1806.

Baruch-Mordo S, Webb CT, Breck SW, Wilson KR. 2012. Use of patch selection models as a
decision support tool to evaluate mitigation-strategies of human-wildlife conflicts. Biological
Conservation 160:263–271 DOI 10.1016/j.biocon.2013.02.002.

Belovsky GE. 1991. Insights for caribou/reindeer management using optimal foraging theory.
Rangifer 7:7–23 DOI 10.7557/2.11.4.987.

Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG,
Breed GA, Harrison AL, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR,
Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP. 2011. Tracking apex
marine predator movements in a dynamic ocean. Nature 475:86–90 DOI 10.1038/nature10082.

Bovet P, Benhamou S. 1991. Optimal sinuosity in central place foraging movements. Animal
Behaviour 42:57–62 DOI 10.1016/S0003-3472(05)80605-0.

Butler PJ, Jones DR. 1997. The physiology of diving of birds and mammals. Physiological Reviews
77:837–899.

Byers JA. 2001. Correlated random walk equations of animal dispersal resolved by simulation.
Ecology 82:1680–1690 DOI 10.1890/0012-9658(2001)082[1680:CRWEOA]2.0.CO;2.

Camphuysen KCJ, Shamoun-Baranes J, Bouten W, Garthe S. 2012. Identifying ecologically
important marine areas for seabirds using behavioural information in combination with
distribution patterns. Biological Conservation 156:22–29 DOI 10.1016/j.biocon.2011.12.024.

Charnov EL. 1976. Optimal foraging, the arginal value theorem. Theoretical Population Biology
9:129–136 DOI 10.1016/0040-5809(76)90040-X.

Codling EA, Plank MJ, Benhamou S. 2008. Random walk models in biology. Journal of the Royal
Society Interface 5:813–834 DOI 10.1098/rsif.2008.0014.

Conradt L, Zollner PA, Roper TJ, Frank K, Thomaset CD. 2003. Foray search: an effective
systematic dispersal strategy in fragmented landscapes. The American Naturalist 161:905–915
DOI 10.1086/375298.
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Grünbaum D, Veit RR. 2003. Black-browed albatrosses foraging on Antarctic krill:
density-dependence through local enhancement? Ecology 84:3265–3275
DOI 10.1890/01-4098.
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