447 research outputs found

    Outbound SPIT Filter with Optimal Performance Guarantees

    Full text link
    This paper presents a formal framework for identifying and filtering SPIT calls (SPam in Internet Telephony) in an outbound scenario with provable optimal performance. In so doing, our work is largely different from related previous work: our goal is to rigorously formalize the problem in terms of mathematical decision theory, find the optimal solution to the problem, and derive concrete bounds for its expected loss (number of mistakes the SPIT filter will make in the worst case). This goal is achieved by considering an abstracted scenario amenable to theoretical analysis, namely SPIT detection in an outbound scenario with pure sources. Our methodology is to first define the cost of making an error (false positive and false negative), apply Wald's sequential probability ratio test to the individual sources, and then determine analytically error probabilities such that the resulting expected loss is minimized. The benefits of our approach are: (1) the method is optimal (in a sense defined in the paper); (2) the method does not rely on manual tuning and tweaking of parameters but is completely self-contained and mathematically justified; (3) the method is computationally simple and scalable. These are desirable features that would make our method a component of choice in larger, autonomic frameworks.Comment: in submissio

    Outbound SPIT Filter with Optimal Performance Guarantees

    Full text link
    This paper presents a formal framework for identifying and filtering SPIT calls (SPam in Internet Telephony) in an outbound scenario with provable optimal performance. In so doing, our work is largely different from related previous work: our goal is to rigorously formalize the problem in terms of mathematical decision theory, find the optimal solution to the problem, and derive concrete bounds for its expected loss (number of mistakes the SPIT filter will make in the worst case). This goal is achieved by considering an abstracted scenario amenable to theoretical analysis, namely SPIT detection in an outbound scenario with pure sources. Our methodology is to first define the cost of making an error (false positive and false negative), apply Wald’s sequential probability ratio test to the individual sources, and then determine analytically error probabilities such that the resulting expected loss is minimized. The benefits of our approach are: (1) the method is optimal (in a sense defined in the paper); (2) the method does not rely on manual tuning and tweaking of parameters but is completely self-contained and mathematically justified; (3) the method is computationally simple and scalable. These are desirable features that would make our method a component of choice in larger, autonomic frameworks

    Efficient detection of spam over internet telephony by machine learning algorithms

    Get PDF
    Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.Web of Science1013342613341

    INSTANT MESSAGING SPAM DETECTION IN LONG TERM EVOLUTION NETWORKS

    Get PDF
    The lack of efficient spam detection modules for packet data communication is resulting to increased threat exposure for the telecommunication network users and the service providers. In this thesis, we propose a novel approach to classify spam at the server side by intercepting packet-data communication among instant messaging applications. Spam detection is performed using machine learning techniques on packet headers and contents (if unencrypted) in two different phases: offline training and online classification. The contribution of this study is threefold. First, it identifies the scope of deploying a spam detection module in a state-of-the-art telecommunication architecture. Secondly, it compares the usefulness of various existing machine learning algorithms in order to intercept and classify data packets in near real-time communication of the instant messengers. Finally, it evaluates the accuracy and classification time of spam detection using our approach in a simulated environment of continuous packet data communication. Our research results are mainly generated by executing instances of a peer-to-peer instant messaging application prototype within a simulated Long Term Evolution (LTE) telecommunication network environment. This prototype is modeled and executed using OPNET network modeling and simulation tools. The research produces considerable knowledge on addressing unsolicited packet monitoring in instant messaging and similar applications

    Applications of Intelligent Vision in Low-Cost Mobile Robots

    Get PDF
    With the development of intelligent information technology, we have entered an era of 5G and AI. Mobile robots embody both of these technologies, and as such play an important role in future developments. However, the development of perception vision in consumer-grade low-cost mobile robots is still in its infancies. With the popularity of edge computing technology in the future, high-performance vision perception algorithms are expected to be deployed on low-power edge computing chips. Within the context of low-cost mobile robotic solutions, a robot intelligent vision system is studied and developed in this thesis. The thesis proposes and designs the overall framework of the higher-level intelligent vision system. The core system includes automatic robot navigation and obstacle object detection. The core algorithm deployments are implemented through a low-power embedded platform. The thesis analyzes and investigates deep learning neural network algorithms for obstacle object detection in intelligent vision systems. By comparing a variety of open source object detection neural networks on high performance hardware platforms, combining the constraints of hardware platform, a suitable neural network algorithm is selected. The thesis combines the characteristics and constraints of the low-power hardware platform to further optimize the selected neural network. It introduces the minimize mean square error (MMSE) and the moving average minmax algorithms in the quantization process to reduce the accuracy loss of the quantized model. The results show that the optimized neural network achieves a 20-fold improvement in inference performance on the RK3399PRO hardware platform compared to the original network. The thesis concludes with the application of the above modules and systems to a higher-level intelligent vision system for a low-cost disinfection robot, and further optimization is done for the hardware platform. The test results show that while achieving the basic service functions, the robot can accurately identify the obstacles ahead and locate and navigate in real time, which greatly enhances the perception function of the low-cost mobile robot

    Second law of thermodynamics and urban green infrastructure – A knowledge synthesis to address spatial planning strategies

    Get PDF
    Planning strategies driven by the second law of thermodynamics (SLT) are innovative approaches to sustainability but they are still in seminal phase. In this article, a coupled review of SLT within spatial planning is accomplished looking at the main applications in urban green infrastructure (UGI) planning. In particular, a systemic review of UGI planning and thermodynamics has been carried out to identify all the occurrences to date in the scientific literature. Secondly, a scoping review of SLT-related concepts of exergy, entropy and urban metabolism is presented in order to investigate the main applications of, and gaps in, urban spatial planning. Results indicate that UGI and ecosystem service planning based on SLT is a relatively new field of research. Moreover, some general indications are derived for the development of spatial UGI planning strategies based on SLT. The work then aims to contribute to the improvement and/or development of even more solid planning strategies supporting a SLTconscious green transition of cities

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Workshop on disruptive information and communication technologies for innovation and digital transformation

    Get PDF
    The workshop on Disruptive Information and Communication Technologies for Innovation and Digital transformation, organized under the scope of the DISRUPTIVE project (disruptive.usal.es) and held on December 20, 2019 in Bragança, aims to discuss problems, challenges and benefits of using disruptive digital technologies, namely Internet of Things, Big data, cloud computing, multi-agent systems, machine learning, virtual and augmented reality, and collaborative robotics, to support the on-going digital transformation in society. The main topics included: • Intelligent Manufacturing Systems • Industry 4.0 and digital transformation • Internet of Things • Cyber-security • Collaborative and intelligent robotics • Multi-Agent Systems • Industrial Cyber-Physical Systems • Virtualization and digital twins • Predictive maintenance • Virtual and augmented reality • Big Data and advanced data analytics • Edge and cloud computing • Digital Transformation The workshop program included 16 accepted technical papers, 2 invited talks and 1 technical demonstration of use cases. This volume contains six of the papers presented at the Workshop on Disruptive Information and Communication Technologies for Innovation and Digital Transformation.info:eu-repo/semantics/publishedVersio

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Cybersecurity Information Exchange with Privacy (CYBEX-P) and TAHOE – A Cyberthreat Language

    Get PDF
    Cybersecurity information sharing (CIS) is envisioned to protect organizations more effectively from advanced cyberattacks. However, a completely automated CIS platform is not widely adopted. The major challenges are: (1) the absence of advanced data analytics capabilities and (2) the absence of a robust cyberthreat language (CTL). This work introduces Cybersecurity Information Exchange with Privacy (CYBEX-P), as a CIS framework, to tackle these challenges. CYBEX-P allows organizations to share heterogeneous data from various sources. It correlates the data to automatically generate intuitive reports and defensive rules. To achieve such versatility, we have developed TAHOE - a graph-based CTL. TAHOE is a structure for storing, sharing, and analyzing threat data. It also intrinsically correlates the data. We have further developed a universal Threat Data Query Language (TDQL). In this work, we propose the system architecture for CYBEX-P. We then discuss its scalability along with a protocol to correlate attributes of threat data. We further introduce TAHOE & TDQL as better alternatives to existing CTLs and formulate ThreatRank - an algorithm to detect new malicious events.We have developed CYBEX-P as a complete CIS platform for not only data sharing but also for advanced threat data analysis. To that end, we have developed two frameworks that use CYBEX-P infrastructure as a service (IaaS). The first work is a phishing URL detector that uses machine learning to detect new phishing URLs. This real-time system adapts to the ever-changing landscape of phishing URLs and maintains an accuracy of 86%. The second work models attacker behavior in a botnet. It combines heterogeneous threat data and analyses them together to predict the behavior of an attacker in a host infected by a bot malware. We have achieved a prediction accuracy of 85-97% using our methodology. These two frameworks establish the feasibility of CYBEX-P for advanced threat data analysis for future researchers
    corecore