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Abstract

Cybersecurity information sharing (CIS) is envisioned to protect organizations more

effectively from advanced cyberattacks. However, a completely automated CIS plat-

form is not widely adopted. The major challenges are: (1) the absence of ad-

vanced data analytics capabilities and (2) the absence of a robust cyberthreat lan-

guage (CTL). This work introduces Cybersecurity Information Exchange with Privacy

(CYBEX-P), as a CIS framework, to tackle these challenges. CYBEX-P allows or-

ganizations to share heterogeneous data from various sources. It correlates the data

to automatically generate intuitive reports and defensive rules. To achieve such ver-

satility, we have developed TAHOE - a graph-based CTL. TAHOE is a structure for

storing, sharing, and analyzing threat data. It also intrinsically correlates the data.

We have further developed a universal Threat Data Query Language (TDQL). In this

work, we propose the system architecture for CYBEX-P. We then discuss its scalabil-

ity along with a protocol to correlate attributes of threat data. We further introduce

TAHOE & TDQL as better alternatives to existing CTLs and formulate ThreatRank

- an algorithm to detect new malicious events.

We have developed CYBEX-P as a complete CIS platform for not only data sharing

but also for advanced threat data analysis. To that end, we have developed two

frameworks that use CYBEX-P infrastructure as a service (IaaS). The first work is

a phishing URL detector that uses machine learning to detect new phishing URLs.

This real-time system adapts to the ever-changing landscape of phishing URLs and



ii

maintains an accuracy of 86%. The second work models attacker behavior in a botnet.

It combines heterogeneous threat data and analyses them together to predict the

behavior of an attacker in a host infected by a bot malware. We have achieved

a prediction accuracy of 85 − 97% using our methodology. These two frameworks

establish the feasibility of CYBEX-P for advanced threat data analysis for future

researchers.
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Chapter 1

Introduction

The word-wide-web plays a major role in modern life. It offers numerous functional-

ities including social networking, banking, and e-commerce. The primary reason for

the widespread adoption of the internet is the flexibility it offers. For instance, we

are presently able to perform major financial operations from the convenience of our

homes. However, such flexibility comes at a price in the form of cybercrimes.

Modern cyberspace is beleaguered with an increasing number of advanced cyber-

attacks rendering conventional cybersecurity measures practically useless. This is

evident from the tenfold increase in the number of data breaches over the past 12

years- from about 160 in 2005 to about 1600 in 2017 [1]. This is also seen in the

tenfold increase in number of breached records from about 16 millions in 2010 to

about 156 millions in 2020. Furthermore, the Center for Strategic and International

Studies estimates the current global cost of cybercrime to be $1 trillion in 2020 seeing
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an increase of more than 50% in two years from $600 billion in 2018 [2]. These

data show that traditional cybersecurity measures are failing to curb the cybercrimes

and demonstrate the need for the adoption of newer agile cybersecurity measures by

organizations.

1.1 Motivation

We begin this section with some notable cyberattacks from recent years. In October

2021 the entire code base of Twitch, a video streaming website, was breached and

posted online via a torrent link [3]. In 2014, a cyberattack on JPMorgan Chase

compromised the accounts of 76 million households and 7 million small businesses

[4]. The attack began in June and remained undiscovered until July. By the time the

bank’s security team discovered the breach, the hackers had reached more than 90

servers with complete access to dozens of servers. The same hackers also targeted 13

other financial firms Citigroup, HSBC Holdings, etc. [5]. They were able to breach

another financial institute called Fidelity Investments as part of the same campaign

[6].

In 2013, hackers breached the Target Corporation’s network to steal 40 million credit

and debit card numbers [7]. The credit unions suffered a total cost of over 200 million

dollars just to reissue those cards. The data breach was initiated by compromising

a vendor’s system through a simple phishing attack [8]. In 2013, Yahoo suffered
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from a data breach compromising data of 1bn users [9]. In 2017, Yahoo changed the

estimate to 3bn, which means every single Yahoo account was breached [10]. In 2014,

further 500 million accounts were stolen from Yahoo [11]. In 2017, a ransomware

named Wannacry crippled the United Kingdom’s National Health Service (NHS) by

exploiting a vulnerability in Microsoft Windows XP [12].

There are several noticeable takeaways from the above case studies. Firstly, all kinds

of industries including healthcare, finance, retail, etc. are susceptible to cyberattacks.

Secondly, Even the largest organization is unable to defend itself against all kinds of

cyberattacks. This claim is supported by the fact that JPMorgan spent $250 million

on cybersecurity annually, yet they could not prevent the data breach. Thirdly, the

attacks are not always isolated. As discussed earlier, the same hacker group attacked

14 financial institutes during the 2014 JP Morgan Chase breach and was able to hack

2 of them. It is apparent that all these institutes could benefit in the future with

some form of collaboration in cybersecurity. Finally, even the major attacks can be

easily prevented, as the Target breach started from a simple phishing attack.

It is evident from the above case studies that conventional cybersecurity measures are

unable to fend off modern cyberattacks. The risk is exacerbated by the emergence

of organized and state-backed cyberattack campaigns, which have left even big firms

practically defenseless [13]. Consequently, a new approach towards cybersecurity is

essential to thwart organized cyber-attack campaigns proactively, to anticipate and

mitigate large-scale exploitation, and to respond faster to emerging cyber threats.
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Cybersecuritiy Information Sharing Collaborative cybersecurity information

sharing (CIS) is envisioned to protect organizations more effectively from advanced

cyberattacks [14]. The benefits of proactive sharing are twofold — (1) new threats

are detected faster, owing to collaborative analysis (2) the corresponding signatures

are distributed faster due to real-time sharing. Widespread participation in CIS

will potentially accelerate the signature development process. Furthermore, real-

time sharing of this information via a centralized platform will play a key role in

disseminating those signatures to interested parties. Besides, a CIS will have access

to a great variety of threat data from diverse sectors. The diversity of threat data

along with the sheer volume is will make a CIS better at correlation, pattern analysis,

and threat detection. Furthermore, the US Congress proposed a number of acts

incentivizing private organizations and requiring public organizations to share threat

data [15, 16].

1.2 Challenges

Despite all the benefits, there is limited sharing in the industry. Several proprietary

CIS frameworks have emerged in the industry including ThreatConnect [17], Alien-

Vault [18], X-Force [19], ThreatStream [20], ThreatExchange [21], and EclecticIQ

[22]. However, all of them have failed to attract wide-scale participation because of

several limitations of existing platforms:
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1. The existing platforms are built for only data sharing [23] or for limited data

analysis [24], although robust data analysis is just as important [25],

2. They cannot generate actionable CTI from machine data [24, 26]; automatic

data collection is either absent [27] or limited [28, 29] in existing platforms,

although complete automation is expected [26, 30, 31],

3. There is no standard cyberthreat language for all of data sharing, storing, cor-

relation, and analysis [26, 32, 33]

4. There are no intuitive investigation tools [25], and

5. The existing platforms cannot outline a defensive course of action - e.g. au-

tomatic generation of firewall rules, although it is desired in a complete CIS

ecosystem [34].

There is not one existing CIS platform, which tackles all of the above challenges.

1.3 Functions of a CIS platform and threat models

In light of the above challenges, we have outlined several functions of a central in-

formation sharing platform (CIS). These functionalities and associated threat models

are described below:
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Data forwarding Many CIS platforms [23, 24] adopt a publisher-subscriber ar-

chitecture. In this design, the CIS platform acts as an information broker only. The

threat model in this scenario considers the CIS platform to be semi-trusted (known

also as honest-but-curious). All the subscribers and publishers are assumed to be

trusted. Under this simplified premise, the privacy problem essentially becomes hid-

ing the data from the CIS platform during sharing.

Data analysis The CIS platform can correlate and analyze. The analysis can

be anything from simple aggregation to learning a complex model. This paradigm

considers the privacy-preserving analysis of the shared data. The CIS platform should

be able to analyze the stored data and present the analysis reports without revealing

any sensitive information about the sharers.

The threat model considers all the parties including the sharing platform to be un-

trusted. Therefore, the CIS platform is only allowed to share aggregations or learned

models which do not contain any sensitive raw data. This is a much more difficult

problem to solve. The effective solution to this problem is expected to result in

widespread participation in collaborative cyber intelligence.

Dispute resolution A participant may share wrong or malicious data with the CIS

platform. Other participants should be able to dispute such data without knowing

the identity of the origin. The CIS platform should be able to resolve such disputes

without revealing any sensitive information regarding the origin of the data.
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Statistical Disclosure Controls (SDC) This threat model considers a group of

direct identifiers (name, phone number, etc.) that directly identify a person and a

group of indirect identifiers (time of activity, size of the network, etc.) which when

analyzed together may reveal the identity of the owner. Let us consider a set of

n secondary identifiers S = s1, ..., sn. In this threat model, we are concerned with

S ′ ⊆ S that may reveal a direct identity of a person or an organization.

SDC is often used by surveyors in data-driven research to hide the identities from

analysis results. SDC ensures that no person or organization can be identified from

the release of microdata. The same techniques should be applied to a CIS platform

to hide the identities of the participants from the aggregate data.

1.4 Thesis Contribution

CYBEX-P: To tackle these challenges, we introduce CYBersecurity information

EXchange with Privacy (CYBEX-P) in this research work. CYBEX-P is a cyberse-

curity information sharing (CIS) platform with robust data governance. It automat-

ically collects and correlates heterogeneous threat (e.g. malware, firewall log, etc.)

data from different organizations to generate insightful reports.

CYBEX-P sets itself apart from the existing frameworks by providing a completely

automated robust framework for data collection, data analysis, and report genera-

tion. A major contribution of CYBEX-P lies in merging multiple types of threat
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data from various organizations and analyzing them together. These features make

CYBEX-P a versatile and robust information sharing framework suitable for all types

of organizations, small or big, public or private.

TAHOE: Any CIS platform like CYBEX-P potentially handles hundreds of differ-

ent data formats. Thus, it needs a standard data format and structure to represent

threat data. A cyberthreat language (CTL) is a specification of how to format and

serialize any kind of threat data. To that end, we introduce TAHOE - a graph-

based cyberthreat language (CTL) for storing, sharing, analyzing, and intrinsically

correlating data.

TAHOE automatically correlates attributes of incoming threat events with older ones.

In contrast to traditional CTLs like STIX[35] or MISP format [36], TAHOE is built

from ground-up for faster data correlation and blind processing.It also lays the foun-

dation for ThreatRank - a novel graph-based algorithm to detect previously unseen

malicious events using correlation. CYBEX-P uses TAHOE for data storage, sharing,

and analysis.

The rest of this dissertation is organized as follows: Chapter 2 discusses previous

works related to this research. It highlights how CYBEX-P and TAHOE are different

from existing CIS frameworks and CTLs. Chapter 3 introduces the system architec-

ture of CYBEX-P and familiarizes the reader with the flow of data through different

parts of CYBEX-P. Chapter 4 introduces TAHOE as a novel structure to represent
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threat data. We compare TAHOE with traditional CTLs and show how it facilitates

data analysis and correlation. Chapter 5 presents a novel real-time phishing URL

detection framework that uses CYBEX-P infrastructure as a service (IaaS). Chapter

6 presents another novel framework that sits on top of CYBEX-P and models attacker

behavior in a botnet. Finally, Chapter 7 concludes the dissertation and puts forward

a path for future work.

Chapters 5 and 6 both introduce two novel threat analysis mechanisms. In this disser-

tation, they serve the key purpose of showing how CYBEX-P provides infrastructure

as a service (IaaS) for advanced threat data analysis. The work in chapter 5 works

with a specific type of threat data namely URLs. On the other hand, the work in

chapter 6 takes a more robust approach. It merges several types of threat data and

analyzes them together to model attacker behavior. Our experimental results in this

works show that CYBEX-P is scalable and suitable for real-time threat analysis. Thus

in this paper, we conclude that CYBEX-P can disrupt the rapid and extensive spread

of new threats.
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Chapter 2

Related Work

Having introduced the motivations and challenges, in this chapter we discuss the

previous works related to cybersecurity information sharing. We discuss works from

both academia and the industry. We focus on information sharing, and network

forensics in separate sections. Finally, we compare our research with the most popular

alternatives in terms of contribution and novelty.

2.1 Cybersecurity Information Sharing

While there are plenty of works on cybersecurity information sharing (CIS), none

of them provide a comprehensive solution to the aforementioned challenges. In this

section we discuss these works, focusing on the CIS frameworks.
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We begin our study with CIS frameworks proposed in academia. Edwards et al.

[37] presented one of the earliest frameworks for sharing vulnerability information.

Another framework was presented by Zhao et al. [38] for collaborative information

sharing. Yet another framework, called SKALD, [39] was developed by Webster et

al., for real-time sharing. However, none of these provide capabilites for advanced

analysis of heterogeneous threat data. CYBEX-P sets itself apart from these early

works by providing a robust system architecture along with different modules of for

correlating and analyzing hetegrogeneous threat data.

Gordon et al. [40] show that information sharing lowers a firm’s overall cyber invest-

ment. However, they identified the limitation of the mechanism includes the absence

of economic incentives to promote effective information sharing. Particularly it does

not address the free-riding behavior and possible malicious intent of the participants.

Gordon et al. [41] focus on an associated problem - the tendency of firms to not invest

in cybersecurity until a breach occurs. They show that information sharing reduces

the uncertainty associated with the decision to invest in cybersecurity. As a result,

it is in the best interest of the firms to make cybersecurity investments sooner than

later.

Hernandez et al. [42] formulate information sharing as a risk-based decision-making

model. The authors represent the sharing community as directed graphs, with nodes

representing participants and edges representing relationships. They argue that such
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modeling will aid in dealing with several problems associated with such a platform-

especially the cost-incentive analysis.

The [43] presents a novel mechanism to represent raw cyber threat data in Structured

Threat Information Expression (STIX) [35] format in an automated manner. This

work classifies the data into 4 levels based on sensitivity: Level 0 data is not sensitive

at all, level 1 data is highly sensitive and masked using hashing, level 2 data is masked

using encryption and can be shared on-demand, and level 3 data is shared to only

find out if anyone else received similar data from other sources. The [44] builds on

the previous work proposes a complete cybersecurity information sharing framework

called CYBersecurity information EXchange with Privacy (CYBEX-P).

Various protocols, specifications, and implementations such as TAXII, OpenIOC,

VERIS, MAEC, SCAP, and IODEF have also been developed to provide a common

platform for sharing cybersecurity information [24, 45–47].

A large number of these works [48–51] took a game-theoretic approach by modeling

the cybersecurity information sharing as a 3-player game. Figure 2.1 depicts cyber-

security information sharing as a 3-player game.

While the 3-player modeling is more popular in literature, some authors [52] have

considered a fourth player: data analyst. Data analyst or data researcher in a broad

sense analyzes the data to come up with meaningful insights. The figure 2.2 shows

such a model.
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Figure 2.1: Cybersecurity information sharing as a 3-player game

Figure 2.2: Cybersecurity information sharing as a 4-player game

Tosh et al. [48] propose an incentive model that enforces the firms to share information

truthfully. They perform theoretical analysis to find the conditions when a firm’s

utility is maximized concerning its investment. The numerical results in their work

show that firms are benefited from sharing cybersecurity information in general.

Tosh et al. [49] introduce an evolutionary game-theoretic framework for cybersecu-

rity information sharing called CYBersecuriy information EXchange (CYBEX). They
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show how CYBEX can vary its cost of participation to motivate sharing and at the

same time increase its revenue.

Kamhuoa et al. [50] also take a game-theoretic approach to model cybersecurity

information sharing between two parties. The key finding of their work is showing

that a Nash equilibrium exists and deriving it. The model is however based on several

simple assumptions including, two participating users, homogeneous vulnerabilities,

and complete information.

Vakilinia et al. [51] take a coalitional game-theoretic approach to calculate rewards

and participation fees. They formulate a coalitional game between organizations and

analyze the well-known Shapley value and Nucleolus solution concepts in a cyberse-

curity information sharing system.

Meanwhile, several proprietary frameworks have emerged in the industry including

ThreatConnect [17], AlienVault [18], X-Force [19], ThreatStream [20], ThreatEx-

change [21], and EclecticIQ [22]. All of these suffer from one or more of three major

limitations: (1) the data are inputted by humans not automated (2) they do not

support advanced threat data analysis (3) they have limited scope in participant or

type of data. For example, ThreatExchange does not allow educational institutions,

X-Force data are written by humans, and so on. CYBEX-P, on the other hand, is

built from the ground up keeping these challenges in mind.



15

2.2 Network Forensics

Plenty of research has been conducted on network forensics in the past. Corey et

al. [53] established the 3 requirements of a network forensics analysis tool (NFAT).

Yasinsac et al. [54] outlined the policies which would enable an organization to

perform effective network forensics.

Pilli et al. [55] put forward a generic framework for network forensics. Shanmuga-

sundaram et al. [56] introduced ForNet as a distributed NFAT. They outlined the

challenges faced during designing an NFAT and the general structure of an NFAT in

their work. Cohen [57] introduces yet another forensics tool called PyFlag. PyFlag

merges disc, memory network forensics in an open-source tool. However, most of the

analysis in PyFlag lives in the upper layers of the OSI model [58] only.

Wang and Daniels [59] were the first to consider a graph-based model for network

forensics. A survey of network forensics models and corresponding challenges was

conducted by Pilli et al. [60]. Another survey into tools and techniques for network

forensics was done by Meghanathan et al. [61]. Khan et al. [62] summarized the

taxonomy and open challenges in network forensics in their review paper. Almulhem

[63] further clarified the notions and challenges relating to network forensics in his

work.

Mukkamala and Sung [64] introduced the use of machine learning in the realm of

network forensics to identify significant features. Liao et al. [65] proposed using
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fuzzy logic and expert systems for network forensics.

While numerous works have considered different aspects of network forensics, a com-

plete tool for network forensics is yet to be seen. Our present work intends to bridge

that gap between research and industry by presenting a user-friendly NFAT.

2.3 Contributions of this ResearchWork Compared

to Previous Works

Now, we move on to the most prominent CIS systems in use today. The primary

requisite of any CIS platform is a standardized format or a cyberthreat language

(CTL). Presently, the most popular CTL is Structured Threat Information Expression

(STIX) [35] developed by the MITRE Corporation. While STIX is suitable for mutual

data sharing, in this dissertation we discuss how it is unscalable for any kind of data

analysis. We further explain how STIX-based systems are prone to store duplicate

data. To overcome these shortcomings, chapter 4 introduces TAHOE - a graph-based

CTL for both data sharing and data analysis.

In parallel to STIX, MITRE also developed the Trusted Automated eXchange of

Indicator Information (TAXII) [23] protocol to facilitate peer-to-peer data sharing

between trusted parties. However, what TAXII gains in data sharing, it lacks in

data analysis. Since, TAXII only supports STIX format, it is unsuitable for even the
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simplest data analysis. For example, TAXII does not provide any API endpoint to

lookup an IP address in its database.

Meanwhile, Wagner et al. developed MISP [24] as a collaborative CTI sharing plat-

form with group-based access control and their own data format. Although database

lookups are fast in a MISP server, the open data structure of MISP core format

[36] defeats that purpose, because different users structure the same data in different

ways. Moreover, MISP structures data in only two levels (Events and Attributes); so

representing complex data in MISP format is non-intuitive. A few other limitations of

MISP are: it relies heavily on manual human input rather than automating machine

data, and it does not provide a robust data governance framework.

In summary, after extensive study, we were primarily inspired by both STIX and

MISP data structures while developing TAHOE. However, we have built TAHOE

from the ground up with advanced data analytics and speed in mind. Similarly,

we were inspired by both TAXII and MISP while designing CYBEX-P. However,

CYBEX-P is a complete ecosystem with actionable data rather than a cumbersome

tool. As a result, we present TAHOE and CYBEX-P as a perfect marriage between

versatility and performance in this dissertation.
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Chapter 3

Proposed System - CYBEX-P

Having discussed the existing platforms, in this chapter, we propose CYbersecurity

information Exchange with Privacy (CYBEX-P). CYBEX-P is a robust cybersecurity

information sharing platform. It collects heterogeneous threat data from different

types of organizations and correlates them to generate insightful reports. This chapter

familiarizes the readers with the system architecture of CYBEX-P and sets the basis

for the novel contributions in subsequent chapters.

3.1 Overview of CYBEX-P

We begin our discussion with a functional overview of CYBEX-P. Fig. 3.1 shows the

four major functions of CYBEX-P.
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Figure 3.1: Overview of the 4 major functions of CYBEX-P.

3.1.1 Data Collection

CYBEX-P is essentially a cloud-based platform for organizations to share heteroge-

neous cyberthreat data. CYBEX-P accepts all kinds of human or machine-generated

data including firewall logs, emails, malware signatures, and handwritten cyberthreat

intelligence (CTI).

3.1.2 Data Analysis

In addition to data sharing, CYBEX-P allows the users to correlate and analyze the

data. This key feature sets CYBEX-P apart from other cybersecurity information

sharing systems.
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3.1.3 Privacy Preservation

The second key feature of CYBEX-P is that, the owner/sharer controls, who see

which part of the data. We achieve such a granular control by separately encrypting

each attribute of the data. This privacy-preservation feature is briefly mentioned in

this thesis to make the discussion comprehensive and for the better understanding of

the CYBEX-P framework. However, this thesis does not detail the mechanism.

3.1.4 Report/Alert Generation

Finally, users can generate insightful reports or alerts from the data. CYBEX-P also

provides a feed of automatically generated defensive (e.g. firewall) rules, as we will

discuss in 3.2.5.4. This particular feature reflects our philosophy of making the entire

process completely automated.

3.2 System Architecture of CYBEX-P

Now that we have introduced a brief overview of CYBEX-P, in this section, we move

deeper into its system architecture. To accommodate the four major functions, we

have built CYBEX-P with 6 independent software modules – (1) Frontend, (2) Input,

(3) API, (4) Archive, (5) Analytics, and (6) Report. These modules share various

components as shown in Fig. 3.2. In addition, we have built a library to manipulate
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TAHOE content. TAHOE is a CTL, that CYBEX-P uses, to store, analyze and

share data. In this section we explain how this modular architecture provides better

manageability of the system as well as better security of the data.

Figure 3.2: System architecture of CYBEX-P along with the Data Flow.

3.2.1 Frontend Module

The frontend module ( , in Fig. 3.2) is a webapp for users to interact with

CYBEX-P. This module allows users
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1. to register with and login to CYBEX-P,

2. to manually upload threat data as text files,

3. to configure machines (e.g. firewalls) to automatically share data with CYBEX-

P (explained in 3.2.2),

4. to control the access of their data,

5. to generate and view reports (explained in 3.2.6), and

6. to investigate an incident using our incident investigation tool (explained be-

low).

3.2.1.1 CYBEX-P Threat Intelligence – An Incident Investigation Tool

Fig. 3.3 shows a novel contribution of this project – CYBEX-P Threat Intelligence.

This tool, powered by CYBEX-P analytics, allows a user to investigate an incident.

This tool uses the CYBEX-P database to get the related attributes. Related at-

tributes are discussed in section 4.1.

Thirdly, CYBEX-P sends a malicious score for all the attributes on the graph. Section

4.2 explains ThreatRank – the algorithm used to calculate these malicious scores.

Finally, the investigation tool colors each attribute blue (unknown), green (benign),

yellow (suspicious), or red (malicious) based on the score. A big cluster of red at-

tributes denotes that the original attribute is malicious.
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Figure 3.3: Graphical Incident Investigation Tool.

3.2.2 Input module

The scope of CYBEX-P spans all kinds of machine-generated threat data. It needs to

automatically collect data from various types of devices like firewalls, honeypots, web

and email servers, etc. These devices share data in different formats and communicate

using a diverse variety of protocols. Example protocols for automatic data collection

are: (i) by calling an API, (ii) via a pre-configured websocket, (iii) by reading from a

text file, (iv) by reading from a database, (v) using Linux Syslog protocol, etc.

To interface with all these devices, We have developed a robust input module ( , ,

, , in Fig. 3.2). Users can manually upload threat data via a web client ( )

or automatically send machine data via a connector ( ) to the collector ( ).
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Afterward, the collector posts the raw data to our API ( ) endpoint. To ensure

privacy, it uses the transport layer security (TLS) protocol [66] during collection and

posting.

3.2.3 API module

The API module ( , in Fig. 3.2) consists of the API server ( ) and the cache

data lake ( ). It acts as the gateway for all data into and out of CYBEX-P. It has

two sub-modules –

It serves two primary purposes:

1. The input module (subsection 3.2.2) puts raw data into CYBEX-P via the API.

2. The report module (subsection 3.2.6) sends reports back to users via the API.

3.2.3.1 Data Input sub-module

The input module posts the raw data to the API ( ) endpoint. The API encrypts

the data with the public key of the archive server ( ) and stores the encrypted data

in the cache data lake ( ).

We have placed the API in the demilitarized zone (DMZ) of our firewall because it

faces the internet. However, storing data in the DMZ is somewhat risky. So, we

encrypt the cache data lake with the public key of the archive server. The archive
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server is in the inside zone. This design protects that data even if the DMZ is

compromised.

We have also placed the cache data lake in the DMZ so that the API does not initiate

a connection from the DMZ to the inside zone. This design – (1) protects the data

even if the DMZ is compromised (2) does not require any connection initiation from

the DMZ to the inside zone.

3.2.3.2 Report Publishing sub-module

A user can request different reports via the API. The API gets those reports from

the report DB ( ) and presents them to the user. Thus, the API module acts as an

interface for all data.

3.2.4 Archive module

A major goal of CYBEX-P is the correlation of heterogeneous threat data. The

archive module ( , in Fig. 3.2) resides in the archive cluster and consists primarily

of a set of parsing scripts. As mentioned earlier, the cache data lake ( ) is encrypted

with the public key of the archive server ( ). The archive server – (1) gets the

encrypted data from the cache data lake (2) decrypts the data using its own private

key (3) parses the data into TAHOE, and (4) stores the data in the archive DB ( ).
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3.2.4.1 Performance Challenge

The archive module potentially handles hundreds of different data formats from thou-

sands of sources. It is reconfigured every time CYBEX-P connects to a new data

source. Moreover, it checks each piece of new data against the entire database to

determine if it’s a duplicate (explained in subsubsection 4.1.6.2).

Although data parsing is a trivial task, we have the made archive module separate

because the archive module potentially handles hundreds of different data formats

from thousands of different sources.

Moreover, CYBEX-P checks each piece of data for a duplicate against all other data

in the database. For example, if CYBEX-P sees an IP in a piece of new data, it checks

if the IP exists in another piece of data. The reason for such a design is explained in

detail in section 4.1.

However, this design choice, along with the data volume and variety, poses a signifi-

cant performance challenge for the archive cluster.

3.2.4.2 Design Choices

To tackle this, we have made the archive module separate. This lets us optimize

the software or scale the hardware of the archive module without affecting the other

modules.
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The second design choice that makes the archive module robust actually reflects a

key design philosophy of CYBEX-P. The recurrent theme in Fig. 3.2 is placing a

database between two software modules. This allows us to modify the data in small

atomic transactions. In this case, we have the cache data lake and the archive DB on

either side of the archive module.

Since the archive module does not share data with other modules over the system

memory, we do not risk losing any data by shutting it down. So, we can shut down

the archive module, or any other module for that matter, for maintenance without

hampering the overall system.

Finally, we have employed parallel computing to archive the numerous pieces of het-

erogeneous data. This is a significant contribution to the archive cluster design.

3.2.5 Analytics module

The analytics module ( , in Fig. 3.2) works on the archived data to transform,

enrich, analyze or correlate them. It has various sub-modules, some of which are

described here.

3.2.5.1 Filter sub-module

An analytics filter parses a specific event from raw user data. Multiple filters can

act on the same raw data and vice-versa. For example, one filter can extract a file
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download event from a piece of data while another filter can extract a DNS query

event from the same data. Filters are discussed in detail in subsection 3.3.5.

3.2.5.2 Enrich sub-module

A particular enrich sub-module can enrich an attribute with related data. For exam-

ple, we can enrich an URL with the host address. As before, multiple enrichment can

be done on the same piece of data.

3.2.5.3 Malicious Scoring sub-module

This is a specialized sub-module that assigns a malicious score to each piece of data

and periodically updates the scores. The novel scoring scheme is discussed in section

4.2.

3.2.5.4 Automated Defensive Rule Generation sub-module

This sub-module automatically generates defensive rules (e.g. firewall or intrusion

detection system rules) based on the malicious score of the attributes. The rules are

published as a feed for users to subscribe. The rules are published as one feed per

device model. Users can subscribe according to the devices they own.
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3.2.5.5 Phishing URL Detection sub-module

This is another specialized sub-module that automatically detects phishing URLs.

We have trained a machine learning classifier with features of many labeled URLs.

This sub-module is further described in chapter 5.

3.2.6 Report Module

CYBEX-P is unique in storing cyberthreat data as graphs where the vertices are

attributes (e.g. an IP) or events (e.g. an email). This allows CYBEX-P to correlate

the data and generate insightful reports. Here, we briefly introduce the report module

( , , , , , , in Fig. 3.2).

Users request reports via the frontend client ( , ). The API ( ) stores the requests

in the cache data lake ( ). The report server ( ) handles those requests by getting

relevant data from the archive DB ( ) and aggregating them into reports. It then

stores the reports in the report DB ( ). Users can access the reports on demand.

The incident investigation tool, described in subsubsection 3.2.1.1, is also part of the

report module. It provides an interactive graph to explore relationships between dif-

ferent attributes and events. To investigate any attribute or event, one has to log

in to our investigation tool (3.2.1.1) via any web browser. This tool shows relation-

ships between different attributes and events as an interactive graph. Investigators

primarily interact with CYBEX-P through this tool.
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Some reports are real-time and can be created upon user request. Some others,

however, take up to a couple of minutes to generate. So, we store the reports in

the report database ( ) and serve them on user demand. The report module also

publishes feeds of automatically generated firewall rules. All reports are served via

the API server ( ).

3.3 Data Flow through Entire Lifecycle

Having discussed the different components and modules of CYBEX-P, in this section

we move onto the flow of threat data through those modules. Fig. 3.1 shows the

four major functions of CYBEX-P: (1) Data collection, (2) Data analysis, (3) Privacy

Preservation, and (4) Reporting. This section demonstrates how CYBEX-P achieves

these functionalities by following the entire flow of cyberthreat data through it.

3.3.1 Data Input

A user interacts with CYBEX-P using the frontend webapp client. Users can manually

upload threat data, like a spam email, through the frontend webapp ( , ). Users

can also configure the collector ( ) to automatically collect data from machines

like firewalls. Manually uploaded data are directly posted to the API ( ) whereas

automatically-collected data are handled by the collector.
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3.3.2 Privacy Configuration of Data

The frontend further allows the user to attach an ACL to each piece of data. The

ACL dictates which attributes are encrypted. The encryption is done at the connector

( ) or the webapp client ( ) both of which are at the client premises.

Although CYBEX-P cannot access the encrypted attributes, it can still correlate them

to generate reports. Users can also share the encryption keys with trusted people.

This thesis does not discuss this privacy preservation mechanism. However, it is

mentioned here briefly so that the readers get a better understanding of CYBEX-P

and can follow through accordingly.

3.3.3 Data Collection

Figure 3.4: Data Collection in CYBEX-P.

Automatically collected data is forwarded to the collector ( ) over an encrypted

channel (TLS). Afterward, it posts the data to the API ( ). The API encrypts the

data with the public key of the archive cluster ( ) and stores the encrypted data in

the cache data lake ( ).
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The cache data lake acts as a queue or buffer for all incoming data. It also increases

security by removing the need for the API and the archive cluster to communicate

directly.

We encrypt the cache data lake with the public key of the archive cluster as the cache

data lake is in the demilitarized zone (DMZ). So, the data remains secure even if all

the servers in DMZ get compromised.

3.3.4 Data Archiving

Figure 3.5: Data Archiving in CYBEX-P.

The archive cluster ( ), then pulls the data from the cache data lake ( ), decrypts

the data using its private key, converts them to TAHOE format and stores them in the

archive database ( ). All further analyses are performed on TAHOE data. TAHOE

is discussed in detail in 4.1.

3.3.5 Data Analytics

The analytics cluster ( ) transforms, analyzes and correlates data. It achieves that

by reading data from the archive database ( ), processing the data in the analytics

cluster ( ) and writing the processed the data back in the archive database.



33

Figure 3.6: Data Analytics in CYBEX-P.

This is a continuous process as highlighted by a pair of circular arrows between

and in Fig. 3.6. It also is the basis for data correlation in CYBEX-P.

For example, consider Fig. 3.7 where 3 filters F1, F2, F3 act on a data D0 to produce

D1, D2, D3. An example of such filtering is extracting the source IP, destination IP,

and destination port from a firewall log.

Figure 3.7: Data Filtering as a continuous process.

Now, D2 is further filtered by F5 to create D5. On the other hand, D00 passes

through F4 and F5 to produce the same attribute D5. As a direct consequence of

how TAHOE works, D0 and D00 are now connected to each other in a graph via D5.

This is a very powerful notion in TAHOE, and we use this to assign malicious scores

to new events in 4.2.
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Figure 3.8: Data Reporting in CYBEX-P.

3.3.6 Data Reporting

The data pipeline for requesting a report to CYBEX-P is: User ⇒ Frontend client

( ) ⇒ frontend server ( ) ⇒ API ( ) ⇒ Cache data lake ( ) ⇒ Report cluster

( ).

A report can be as simple as counting the occurrence of a particular IP address within

a specific time range; on the other hand, a report can be as complex as analyzing

the attributes of an URL to determine if it is malicious or benign. Nevertheless, the

report cluster stores all the reports in the report database. The user can access the

reports as follows: User ⇒ frontend ( , ) ⇒ API ( ) ⇒ Report database ( ).

Note that, the overall process of requesting and getting a report is asynchronous.
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Chapter 4

TAHOE – A Cyberthreat

Language

Now that we have introduced CYBEX-P, in this chapter, we introduce TAHOE the

CTL used by CYBEX-P. As discussed in chapter 1, any CIS platform like CYBEX-P

potentially handles hundreds of different data formats. Thus, it needs a standard

data format and structure to represent threat data. A cyberthreat language (CTL)

is a specification of how to format and serialize any kind of threat data. CYBEX-P

uses TAHOE instead of other CTLs like STIX[35] or MISP core format [36].

Presently, the most popular CTL is Structured Threat Information Expression (STIX)

[35] developed by the MITRE Corporation. While STIX is suitable for mutual data

sharing, in subsection 4.1.4 we discuss how it is unscalable for any kind of data

analysis. We further explain how STIX-based systems are prone to store duplicate
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data. On the other hand of the spectrum, we have MISP core format another very

popular CTL. While database queries are fast for MISP, the open data structure of

MISP core format defeats that purpose, because different users structure the same

data in different ways. Moreover, MISP structures data in only two levels (Events

and Attributes); so representing complex data in MISP format is non-intuitive. We

discuss the limitations of MISP in subsection 4.1.3.

In contrast to traditional CTLs TAHOE is built from the ground up for faster data

correlation while retaining the complexity of machine data. It automatically correlates

attributes of incoming threat events with older ones. Finally, lays the foundation for

ThreatRank - a novel graph-based algorithm to detect previously unseen malicious

events using correlation. In this chapter, we introduce TAHOE as a better alternative

to other CTLs and directly compare TAHOE with STIX and MISP. CYBEX-P uses

TAHOE for data storage, sharing, and analysis. The complete TAHOE specification

is available on GitHub [67].

4.1 Overview of TAHOE

This section outlines a brief overview of how TAHOE structures threat data and also

presents the benefits of adopting a graph-based structure with empirical evidence.
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4.1.1 TAHOE Data Instance

A piece of TAHOE data is called an instance and there are 5 types of TAHOE

instances —

1. Raw A raw data instance stores unprocessed user data.

2. Attribute The most basic datatype that holds a single piece of information,

like an IP address. Fig. 4.1a shows an email address attribute .

3. Object Groups several attributes together, e.g., a file object may have a

filename and a file-size attribute . Fig. 4.1f shows a TAHOE object with two

attributes .

4. Event An event consists of one or more attributes or objects along with

a timestamp . Events structure attributes or objects into complete threat

data. Fig. 4.1h shows and email event .

5. Session A session groups arbitrarily related events (e.g. events when a user

visits a website).

4.1.2 Data Structured as Graphs

TAHOE structures data as graphs, where each TAHOE instance is a graph node.

Fig. 4.1 shows an email structured in TAHOE format. Fig. 4.2a visualizes the email

as a TAHOE graph with 8 nodes and 11 edges.
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{"itype": "attribute",

"sub_type": "email_addr",

"data": "jdoe@example.com",

"_hash": "5f07..."}

(a) Attribute ‘from-
email-addr’

{"itype": "attribute",

"sub_type": "name",

"data": "John Doe",

"_hash": "22af..."}

(b) Attribute ‘from-
name’

{"itype": "attribute",

"sub_type": "email_addr",

"data": "mary@example.com",

"_hash": "b591..."}

(c) Attribute ‘to-email-
addr’.

{"itype": "attribute",

"sub_type": "name",

"data": "Mary Smith",

"_hash": "4c90..."}

(d) Attribute ‘to-name’.

{"itype": "attribute",

"sub_type": "subject",

"data": "Saying Hello",

"_hash": "50f2..."}

(e) Attribute ‘email-
subject’.

{"itype": "object",

"sub_type": "from",

"_cref": ["5f07..","22af.."],

"_ref": ["5f07..","22af.."],

"_hash": "d722..."}

(f) Object ‘from’.

{"itype": "object",

"sub_type": "to",

"_cref": ["4c90..","b591.."],

"_ref": ["4c90..","b591.."],

"_hash": "da09..."}

(g) Object ‘to’.

{"itype": "event",

"sub_type": "email",

"orgid": "test_org",

"timestamp": 880127706.0

"_cref": ["50f2..","da09..","d722.."],

"_ref": ["4c90..","d722..","5f07..",

"22af..","da09..","b591..","50f2.."],

"_hash": "f70b..."}

(h) Event ‘email’.

Figure 4.1: An email event in TAHOE Format. The complete representation of
the email consists of 8 JSON documents. Each document is a node in the TAHOE
graph. hash is the globally reproducible and unique ID of a document. cref

stores the edges from objects and events to their children. ref stores the edges to
both children and grandchildren and so on. The graph is visualized in Fig. 4.2a.

As seen from Fig. 4.1, attributes store actual value or data. Objects and events, on

the other hand, do not store any actual data. So, the complete representation of the

object in Fig. 4.1f must include the attributes in figures 4.1a and 4.1b. Similarly, the

complete representation of the email event in Fig. 4.1h must also include the other 7

documents.

As shown in Fig. 4.1 all TAHOE documents have a field called " hash" . The value

of this field is derived from the SHA256 hash of the document and serves as a unique

identifier for this document. For example, the string ‘attributesubject"Saying

Hello" ’ is a unique representation of the subject attribute in Fig. 4.1e. We can

calculate the SHA256 checksum of this string to be ‘50f2... ’. This checksum is the
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(a) The email event as a graph with 8 nodes
and 11 edges. (b) The email event as

a nested document.

"email": {

"from": [{

"email_addr": [

"jdoe@example.com"],

"name": ["John Doe"]

}],

"to": [{

"email_addr": [

"mary@example.com"],

"name": ["Mary Smith"]

}],

"subject": [

"Saying Hello"]

}

(c) The email event as a
nested JSON document.

Figure 4.2: The email event (green) from Fig. 4.1 as a TAHOE graph and a
nested document of objects (red) and attributes (yellow).

unique identifier of the attribute subject="Saying Hello" in any TAHOE database.

Ojects and events have an array field called " cref" . The " cref" field stores graph

edges. For example, the "object-from" in Fig. 4.1f has " cref"= ["5f07..","22af.."]

. This indicates, the object is connected to the attributes in Fig. 4.1a and in Fig.

4.1b. Similarly, the event in Fig. 4.1h is connected to two objects in Figures 4.1f and

4.1g and also the attribute in Fig. 4.1e. Fig. 4.2a shows these edges as blue arrows.

The array " ref" stores graph edges to all subsequent nodes including children and

grandchildren. This field is used for making queries faster and explained in subsection

4.1.4. Both the blue and purple edges from Fig. 4.2a are stored in " ref" . Note,

how the event contains complete information about the email just by referring to the

other objects and attributes.

Benefits of this graphical structure are justified in subsection 4.1.5. Also, note that
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we draw the edges as arrows because of how edge data is stored in ref . However,

in a TAHOE database, a graph can be traversed from both ends, as explained in

subsection 4.1.6.6. Objects can also refer to other objects if required.

Figure 4.3: Events grouped by arbitrary session parameter.

Finally, A TAHOE session is an arbitrary grouping of related events. This allows

us to group events based on any condition the user desires. The session in Fig. 4.3

groups 3 events, recorded while user1 was logged in.

Events Viewed as Nested Documents Although, TAHOE structures events as

graphs, they can be viewed as nested documents. Fig. 4.2b shows the email event from

Fig. 4.1 as a nested document. Furthermore, Fig. 4.2c shows the JSON representation

of the nested document. This JSON document is obtained by traversing the graph

starting from the event node. The graph edges are stored in the cref arrays.

Analysts can choose to view an event as a document or as a graph depending on their

need. For all kinds of machine analysis (e.g query), however, the graphical structure

of Fig. 4.2a is more suitable.
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(a) The email in Fig. 4.1 as
MISP format. MISP struggles to
structure complex data and speci-
fies non-intuitive attribute types.

{

"0": {

"type": "email-addr",

"value": "jdoe@example.com",

"display_name": "John Doe"

},

"1": {

"type": "email-addr",

"value": "mary@example.com",

"display_name": "Mary Smith"

},

"2": {

"type": "email-message",

"from_ref": "0",

"to_refs": ["1"],

"date": "1997-11-21T15:55:06Z",

"subject": "Saying Hello"

}

}

(b) The email in Fig. 4.1 as
STIX format.

{

"0": {

"type": "ipv4-addr",

"value": "1.2.3.4",

"belongs_to_refs": ["3"]

},

"1": {

"type": "ipv4-addr",

"value": "2.3.4.5"

},

"2": {

"type": "network-traffic",

"src_ref": "0",

"dst_ref": "1",

}

"3": {

"type": "as"

"number": 42

}

}

(c) A network packet in STIX
format.

Figure 4.4: The email event from figures 4.1 and 4.2 in MISP and STIX format
and a network packet in STIX format.

4.1.3 Representing Complex Data – TAHOE vs. MISP

Traditional CTLs like MISP often struggle to represent complex data. For example,

Fig. 4.4a shows the email event from Fig. 4.1 in MISP [36] format.

The key problem is, email-src and email-dst are two different attribute-types.

So, to fetch all emails to and from jdoe@example.com , one has to perform 2 queries

– email-src = jdoe@example.com and email-dst = jdoe@example.com . Moreover,

MISP represents a lot of information in the attribute-type. So MISP data structure

includes cumbersome attribute-types like passenger-name-record-locator-number or

non-intuitive attribute-types like filename|md5, filename|sha224, filename|sha256

etc.
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Firstly, TAHOE can store arbitrarily complex data because TAHOE objects can be

infinitely nested and can refer to other objects. As seen if Fig. 4.1, TAHOE has

simple attribute types like, email addr or subject . Secondly, a TAHOE event is

connected to all of its attributes via the ref array. So, to fetch all emails to and from

jdoe@example.com , TAHOE requires only 1 query – email addr = jdoe@example.com

.

4.1.4 Indexing & Scalability – TAHOE vs. STIX

Earlier in chapter 2, we claimed that “While STIX is perfect for mutual data sharing,

it is unscalable for any kind of data analysis.” This subsection provides a detailed

explanation in support of our claim. Since, both STIX and TAHOE use JSON doc-

uments we will have to store them in a NoSQL database. For this discussion, we

consider the most popular NoSQL database - MongoDB [68].

Consider, the STIX document in Fig. 4.4b. It has 3 keys - "0" , "1" , "2" . Here,

"0" and "1 are JSON objects with 3 keys each whereas "2" is a JSON object with

5 keys. Assume, we want to fetch all emails from jdoe@example.com. The MongoDB

syntax for that query is, find({"0.value":"jdoe@example.com"}) .1 This query will

get all JSON documents in the database which have "0.value"="jdoe@example.com"

1The actual query is find({"0.type":"email-addr", "2.type":"email-message",

"0.value": "jdoe@example.com"}). We have shortened the queries in the example for
clarity.
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. Similarly, if we want to fetch all emails with subject=”Saying Hello” the query is

find({"2.subject": "Saying Hello"}) .

Now, these queries will take forever in a decent sized database unless we index the

keys "0.value" and "2.subject" . Similarly, in Fig. 4.4c, to efficiently lookup all the

network traffic events of "type"="as" , we must index the "3.type" key. Eventually,

for these two event types, we must index a total of 16 keys – "0.type", "0.value",

"0.display name", "1.type", "1.value", "1.display name", "2.type", "2.from ref",

"2.to refs", "2.date", "2.subject", "0.belongs to refs", "2.src ref", "2.dst ref",

"3.type", "3.number" . Indexing in this manner creates 3 problems for us:

1. Not all documents have all the keys. For instance, the network traffic event in

Fig. 4.4c does not have the "2.subject" key. So, the indexing will be inefficient.

2. MongoDB only allows 64 keys to be indexed in a database collection. As dis-

cussed earlier, we have 16 keys only for two types of events. As we encounter,

more event types with arbitrary structures, we will have hundreds of keys that

need indexing. Indexing so many keys is not feasible.

3. Some, fields have large values. For example, RFC2322 states that the email

subject has no length restrictions. Which means the "2.subject" field in Fig.

4.4b can be larger than 1024 bytes. However, MongoDB cannot index a field

larger than 1024 bytes. So, large fields in a STIX document can never be

indexed.
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Going back to our earlier discussion queries like find({"0.value": "jdoe@example.com"})

will be too slow in a database if the fields are not indexed. That is why we claim that

STIX is unscalable for data analytics.

TAHOE incorporates a novel solution to these challenges. Consider the query fetch

all emails with subject=”Saying Hello”. This is a two-step process in TAHOE –

1. We create the string ‘attributesubject"Saying Hello" ’. This string is an

unique representation of this subject attribute. We then calculate the SHA256

checksum of this string to be ‘50f2... ’. This checksum is the unique identifier

of the attribute subject="Saying Hello" in any TAHOE database.

2. In the second step, we perform the following MongoDB query - find({" ref":

"50f2..."}) . 2 3

These two steps will return all the emails which have subject="Saying Hello" . In

terms of TAHOE graph, we are essentially querying all events which are connected

to the TAHOE attribute subject="Saying Hello" .

Now, in TAHOE, we only query one key - " ref" ; so, we only index this one key.

Therefore, we will never pass the 64 keys limit of MongoDB. Also, all events have

the " ref" field, so the indexing will be efficient. Finally, each element in the " ref"

array is a SHA256 checksum, which means each of them is 256 bits long. So, we will

2The actual query is find({"itype":"event", "sub type":"email", " ref": "50f2..."}).
3We have made a TAHOE backend library that interfaces with MongoDB to automate the whole

query process. So, users will not actually have to calculate the checksums and then query the
MongoDB. The library is available at https://github.com/cybex-p/tahoe
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not violate the 1024 bytes limit on indexed fields. Thus TAHOE takes care of all the

3 problems mentioned earlier for STIX.

Figure 4.5: Scalability of STIX vs TAHOE. The x-axis is the total number
of email events in the database. The y-axis is the total time taken for 1000
queries in the databases. The query for the STIX database is find({"0.value":
"jdoe@example.com"}). The query for the TAHOE database is find({" ref":

"50f2..."}).

Fig. 4.5 compares the scalability STIX 2.0 and TAHOE. The graph compares the time

take for the find({"0.value": "jdoe@example.com"}) query for the STIX database

with the find({" ref": "50f2..."}) query for the TAHOE database. The x-axis is

the total number of email events in the database. The y-axis is the total time taken

for 100 queries in the databases. The plot clearly shows that the time-required grows

linearly with the database size for STIX. This is because the key "0.value" is not

indexed and every query becomes a linear search in the database. The time required

for the TAHOE database, however, stays constant as the number of emails grows in

the database. This is because the key " ref" is indexed in the database. And since
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indexed keys are stored as hash tables in the RAM, every lookup takes roughly the

same time despite the size of the database.

4.1.5 Intrinsic Correlation of Graphical Data

(a) Two events as separate doc-
uments.

(b) Two events as TAHOE
graph.

(c) A time-varying attribute.

Figure 4.6: Fig. 4.6b shows how TAHOE intrinsically correlates the two separate
events from Fig. 4.6a based on their common attribute. Fig. 4.6c shows an example

TAHOE graph for a time-varying attribute.

Traditional CTLs, store threat data as separate documents like shown in Fig. 4.6a.

These data are difficult to analyze because the events lack any direct correlation

with their attributes. TAHOE, on the other hand, represents data as graphs like in

Fig. 4.6b. Here, two separate events are automatically connected by their common

attribute (1.1.1.1 ) in TAHOE. Such ‘intrinsic correlation’ is a powerful feature

of TAHOE, because if someone looks up example.com she will immediately see that

virus.exe is related to it. This is a major strength of our investigation tool (sub-

subsection 3.2.1.1). Moreover, we leverage this feature to formulate a novel malicious

event detection mechanism in section 4.2.
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Furthermore, TAHOE can correlate time-varying attributes. As shown in Fig. 4.6c,

lets assume the Tahoe database records two events - Event 1 at time t and Event 2 at

time t + 10. Also assume, During event 1, at time t, the domain example.com resolves

to 1.1.1.1 and during event 2, at time t + 10, the domain example.com resolves to

10.10.3.4 . Now, the TAHOE database will connect both the IP addresses to the

domain in a graph like that shown in Fig. 4.6c.

Please note that, both IP addresses are associated with example.com after Event

2 is recorded. Also note that, the IPs are not directly connected to example.com ,

rather connected via their respective events. For example, 1.1.1.1 is connected to

example.com via Event 1 (time t) and 10.10.3.4 is connected to example.com via

Event 2 (time t + 10).

So, if someone queries example.com , they will be able to see the complete graph in

Fig. 4.6c including the timestamps. From, the graph any person or machine can

deduce that example.com was associated with 1.1.1.1 at time t and was associated

with 10.10.3.4 at time t + 10. Thus, the time aspect of the relationship is preserved.

Moreover, users can specify time ranges when querying the TAHOE database to filter

out one of these events. For example, if any user or machine queries events related

to example.com between t + 5 and t + 15, they will only see Event 2 in the graph.
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4.1.6 Features of TAHOE

4.1.6.1 Data Normalization

TAHOE normalizes different formats of same type of data. Consider two firewalls from

two different vendors. Their log data will be formatted differently despite having the

same type of data. TAHOE normalizes such differences by converting them into the

same structure.

4.1.6.2 Data De-duplication

TAHOE prohibits duplicate data. For example, there can only be one instance of

the IP 1.1.1.1 in a TAHOE database. This saves CYBEX-P a lot of storage by not

storing the same IP in different events . TAHOE achieves this de-duplication of data

by creating a globally reproducible hash of the data.

4.1.6.3 Database Independence

Although TAHOE is a graph-based CTL we did not use a graph database as a con-

tainer for TAHOE. In other words, all the information, including the edge data, of a

TAHOE graph is stored in the JSON documents of the TAHOE instances , as shown

in Fig. 4.1.
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Furthermore, as described in 4.1.7 we have developed a universal threat data query

language (TDQL) to communicate with any TAHOE storage. These two contribu-

tions make TAHOE a database-independent CTL.

4.1.6.4 Optimized for Indexing

Subsection 4.1.4 discusses how TAHOE is optimized for indexing in databases and

compares the query performance of a STIX database with that of a TAHOE database.

The ability to query related data is a novel feature of TAHOE and enables CYBEX-P

to perform advanced analytics on TAHOE data.

4.1.6.5 Globally Unique & Reproducible Data for Conflict-free Sharing

Figure 4.7: TAHOE id and edges are globally unique and reproducible, making
them collision free.

TAHOE data are globally unique and reproducible. As shown, in Fig. 4.7, the IP

1.1.1.1 has the same unique id (its hash) in two different organizations. Consider,

Org 1 shares Event 1 with Org 2 . If Org 2 had a different id for 1.1.1.1 it would

have to update the ref array of Event 1 . But, as hashes are reproducible yet

unique, this is not required. Note that, event hashes include a timestamp (not shown
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in figure). Hence, two separate events will have different hashes even if they have the

same attributes.

4.1.6.6 Bidirectional Edges for Versatile Queries

TAHOE edges are bidirectional. As seen in Fig. 4.7, edge data is stored in the event

only. This is because an IP like 8.8.8.8 (public DNS) can potentially get connected

to millions of events . If we store the hash of all these events in the IP attribute ,

it would result in an unbounded growth of its edge array. So, we store the edge info

in the events . However, it takes only one pass over the database, to get all events

that have a particular hash in their edge array. So, the edges are bidirectional for all

intents and purposes.

4.1.7 Threat Data Query Language (TDQL)

TAHOE aims to standardize the structuring of threat data in terms of attributes,

objects, events and sessions . This would allow users to query threat data us-

ing those terms. An example query could be fetch all events which include the

attribute 1.1.1.1 . At present this is not possible because event or attribute are

not standardized terms for any existing database. For example, if a person queries

an SQL database for events it would not know what to return, because event is not

a standard term for SQL.
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To that end, we have developed a universal threat data query language (TDQL) for

TAHOE. TDQL acts as a layer between a database and a user. Additionally, TDQL

is tailor-made for threat data and addresses their nuances. While SQL depends on

the structure of database tables, TDQL speaks in terms of attributes, objects,

events etc. So, irrespective of the data storage or delivery protocol, a user can

always fetch any threat data from any database. Additionally, having a dedicated

TDQL makes TAHOE, database-independent. However, detailed documentation of

TDQL is beyond the scope of this research work.

In summary, CYBEX-P uses TAHOE which stores data as graphs. TAHOE leverages

existing graph algorithms and basic graph operations to generate deep insights into

seemingly unrelated cyberthreat data. To the best of our knowledge, such correlations

have not been studied in the cybersecurity industry making CYBEX-P and TAHOE

a novel endeavor.

4.2 ThreatRank to Detect Malicious Events

Earlier in subsection 4.1.5 we introduced how TAHOE intrinsically correlates data.

Here, we extend upon it by formulating an algorithm, called ThreatRank, to assign

a malicious score to each event in a TAHOE database. The score essentially sorts

the events from most malicious to least malicious. In 4.3.5 we justify this algorithm

with real data.



52

It helps out the security administrator because it is impossible to manually analyze all

events (e.g. all firewall logs) in a regular network. Because of the assigned score, the

security administrator can start from the event that is most likely to be malicious.

In this section, we discuss how we assign the score to each event.

4.2.1 Attributes in a Malicious Context

While a malicious event (e.g. a spam email) stays malicious for eternity, the same is

not true for attributes. For example, a website can be hacked and used to distribute

malware for a week; after which it is restored by the website admin. Here, the website

URL attribute is malicious for a week and becomes benign afterward.

Similarly, not all attributes of a malicious event are malicious. For example, if X

receives a spam email from Y, only Y is a malicious attribute not X. X is the victim

and a benign attribute in this event.

For these reasons, TAHOE never classifies an attribute (e.g. an IP) as malicious.

Rather TAHOE maintains a special edge, called a mal ref between an event and an

attribute. For example, if an IP 1.1.1.1 is seen in a malicious context in a firewall

log event, the IP is connected by a mal ref with the log event.

As a result, TAHOE can count the number of times a particular attribute has been

seen in a malicious context vs in a benign context. Furthermore, we utilize this notion

to formulate the ThreatRank algorithm below.
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4.2.2 ThreatRank Algorithm

Consider, A = {a1, a2, ..., am} is the set of all attributes and E = e1, e2, ..., en is

the set of all events. Emal ⊆ E is the set of known malicious events. We define

Imal = {k | ek ∈ Emal}. We want to determine the ThreatRank (TR) of a new event

ep.

We define wi,j = {ei, ..., ax, ey, az..., ep} as the jth path from ei to ep. Note that, the

path encounters attributes and events in an alternating fashion and has distinct

nodes.

Then the contribution of wi,j to the ThreatRank of ep is calculated using the recur-

rence equation—

TRwi,j
[k] = 0.998dk−1 ×

TRwi,j
[k − 1]

L(wi,j[k − 1])
(4.1)

where, TRwi,j
[1] = −1; dk = 0 for an attribute and for an event, dk is the number

of days passed since the event ek was recorded; L(x) is the degree of node x.

Assume, there are ti paths from ei to ep. We define the set W = {wi,j | i ∈ Imal; j ∈

[1, ti]}. W basically includes all the paths from all known malicious events to the

new event. The total ThreatRank of ep is then calculated as —

TR(ep) =
∑
w∈W

TRw[ti] (4.2)
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Algorithm 1 lists the pseudocode for ThreatRank. The code is written using TAHOE

terminology.

4.2.3 Why 0.998?

We multiply the ThreatRank of each event by 0.998dk . Here, dk is the number of days

passed since the event ek was recorded. The value 0.998 is chosen such that after 1

year an event is half as significant (0.998365 = 0.48) as a recent event (0.9980 = 1).

The same event is only one-fourth as significant (0.998730 = 0.23) after two years.

4.2.4 Who Classifies Malicious Events & Edges?

Malicious events or edges can be classified in three ways — (1) manually by CYBEX-

P admin after analysis (2) by user voting (3) automatically for some data. For

example, an IP that tries to connect to a honeypot is automatically classified as a

malicious IP in this context.

4.2.5 ThreatRank vs Degree Distribution

The malicious score of an event can be calculated as the number of malicious edges

connected to it; which is equivalent to its degree in the graph. However, an attribute

that is seen in malicious context in an event may show up in benign context in thou-

sands of other events. Such, an attribute should contribute less to the malicious
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Algorithm 1: ThreatRank

Input: E, Emal

1 Function getRelated(node)
2 if node.type = “event” then
3 return node. ref
4 end
5 related ← [] ;
6 for event in E do
7 if node in event. ref then
8 related.append(node)
9 end

10 end
11 return related ;

12 end
13 Function findPaths(src, dest, currentPath)
14 if src = dest then
15 return currentPath
16 end
17 related ← getRelated(src) ;
18 paths ← [] ;
19 for r in related do
20 if r in currentPath then
21 continue
22 end
23 paths.append(findPaths(r, dest, currentPath+[r])) ;

24 end
25 return paths ;

26 end
27 Function threatRankPath(path)
28 tr ← −1 ;
29 for node in path do
30 L ← degree(node) ;
31 d ← 0 ;
32 if node.type = “event” then
33 d ← node.daysOld
34 end
35 tr ← tr × 0.998**d / L ;

36 end
37 return tr ;

38 end
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39 Function threatRank(newEvent)
40 allPaths ← [], TR ← 0 ;
41 for event in Emal do
42 allPaths.append(findPaths(event, newEvent, []))
43 end
44 for path in allPaths do
45 TR ← TR + threatRankPath(path) ;
46 end
47 return TR ;

48 end

score than another attribute which is present in malicious context in all events.

ThreatRank takes this into consideration.

4.3 Implementation and Experimental Evaluation

We have implemented CYBEX-P for experimental evaluation, with 5 data sources,

along with 4 instances of MongoDB and 4 servers to house the different modules. We

have collected about 314 billion events from several sources. As of now, we have a

fully functional prototype of CYBEX-P with the complete data flow. Fig. 4.8 shows

the network diagram of our current CYBEX-P implementation.

4.3.1 Sources

The sources we used for our demonstration are:
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Figure 4.8: Network Diagram of CYBEX-P

1. Cyberthreat intelligence (CTI) from University of Nevada, Reno’s MISP [24]

instance.

2. SSH login attempts collected by four different instances of ‘cowrie’ honeypot

[69].

3. Firewall log data from our honeypot system.

4. Feed of phishing URLS from Phishtank [70].

5. Feed of phishing URLS from OpenPhish [71].

4.3.2 Network Architecture

As seen Fig. 4.8 there are 4 physical servers in the CYBEX-P network. Furthermore,

there is a switch and a firewall in the network. We also maintain a family of honeypots
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around the world which are not shown in Fig. 4.8. These honeypots are connected

to the CYBEX-P premises by public internet.

The API server in our network houses the input module and the API module including

the cache data lake. The two database servers Mongo 1 and Mongo 2 store the

TAHOE DB. Both of these databases store the same data for higher availability by

forming a MongoDB replicaset. The processing server is the brain of CYBEX-P.

It does all kinds of processing and data analytics. The archive and the analytics

software modules live here. The firewall plays a crucial role in our threat model and

security design. It keeps the API server separate from the inside network as discussed

in subsection 3.2.3.

4.3.3 Complexity & Scalability

To test the scalability of CYBEX-P, we have fed 300000 lines of iptables firewall log

into it. Then we have recorded the time taken to process N log messages. We have

measured the time taken from input to storing in the archive DB as TAHOE events.

A line of best fit is drawn among the data points. The result is shown in figure 4.9.

The test was done with a run-of-the-mill computer, to show the complexity of our

mechanism and hence forecast the scaling and growth of the system. For this reason,

the processing was done using a single core and the absolute times are of less interest

here.
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Figure 4.9: Evaluation of Complexity

It can be inferred from the test that the overall complexity is linear. Furthermore,

each log message can be processed independently of the other. This makes the sys-

tem suitable for horizontal scaling using distributed computing paradigms because

the processing time grows linearly with the input size. This is desirable in a system

like this which handles a large volume of data. This makes the system suitable for

horizontal scaling using distributed computing systems. Furthermore, each log mes-

sage is processed independently of each other making the process ideal for distributed

computing.

4.3.4 Data Compression by TAHOE

As discussed in 4.1.6.2, TAHOE de-duplicates data, meaning there is only one instance

of the IP 1.1.1.1 in our TAHOE database. Furthermore, events never store the

actual value of an attribute, only a reference to it. The reference is the SHA256

hash of the attribute and only takes 32 bytes of storage. So, if an attribute is
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repeated in another event, TAHOE takes only 32 bytes of extra storage. As a result,

TAHOE automatically achieves significant data compression as shown in Fig. 4.10.

Figure 4.10: Data Compression in TAHOE

As seen in Fig. 4.10, initially the compression gain is below 100%. However, as the

percentage of repeated attributes grows so does the compression gain. Here, TAHOE

achieves a compression gain of 10.7% for only about 11 thousand pieces of raw threat

data, collected from our Cowrie honeypots.

4.3.5 ThreatRank Verification by Case Study

In section 4.2 we have formulated an algorithm called ThreatRank (TR) to detect

malicious events. Here, we verify this algorithm. using the ‘Intrusion Kill Chain’

[72] dataset from Lockheed Martin.

4.3.5.1 Intrusion Kill Chain and Correlation

Authors of [72] formulated the 7 phases of an intrusion kill chain (also known as cyber

kill chain) – (1) Reconnaissance, (2) Weaponization, (3) Delivery, (4) Exploitation,
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(5) Installation, (6) Command and Control, (7) Actions. It is desirable to detect an

attack in an early phase.

In their case study, there are 3 related intrusion attempts. The first attempt delivered

a malicious file via email. Although at first, the email looked benign, it was later

flagged as malicious because it had a malicious attachment. Note that, by that time

the attack has already passed phase 3 undetected.

The next two intrusion attempts also delivered malicious files via emails. However,

both these emails had similarities with the first email. As a result, the defenders

could detect the attack even before analyzing the malicious files.

In other words, the defenders detected these two attempts in phase 3, not later,

because the emails are correlated. Fig. 4.11 shows the common attributes in these

emails as a TAHOE graph.

Figure 4.11: Three emails from three separate intrusion attempts are intrinsically
correlated in TAHOE because of common attributes.

4.3.5.2 Automatic Intrinsic Correlation by TAHOE

While the correlations in Fig. 4.11 are trivial, it is impossible for defenders to man-

ually analyze all emails. TAHOE automates the process by intrinsically correlating
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the 3 emails based on their common attributes as shown in Fig. 4.11.

However, correlating them is only half the battle. The correlation must be quantified

before alerting the analysts. That is where ThreatRank steps in.

4.3.5.3 ThreatRank to Quantify Correlations

We assume that email 1 has already been flagged as malicious in the TAHOE

database. So, we assign a fixed ThreatRank (TR) of 1 to email 1 and mark the

two edges in Fig. 4.11 as malicious. Then we simulate ThreatRank on the graph to

get the results in Table 4.1. We have also added a benign email called email 4 to

the TAHOE database. email 4 shares no common attribute with any of the emails

1,2,3.

Table 4.1: ThreatRank of 4 emails calculated on 3 dates

Email arrival2 arrival3 arrival1 + 365

email 1 −1 −1 −1

email 2 −0.18 −0.15 −0.07

email 3 N/A −0.08 −0.03

email 4 0 0 0

Here, arrival1 is the date of arrival of email 1 and arrival1 + 365 is one year later.

Note that, email 1 has fixed ThreatRank of −1 because it is already analyzed by

an analyst. ThreatRank is calculated for unknown events only. Also, in the dataset

email 2 arrives 1 day after email 1 and email 3 arrives 20 days after email 1.
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email 2 has a TR of−0.18 while email 3 has a TR of−0.08 on respective arrival day.

email 3 has a lower TR because email 2 is directly connected to email 1, whereas

email 3 is one hop away from email 1. Also, as expected their TR becomes almost

half after a year. For all the simulations, TR of email 4 remains 0 because it shares

no common attributes with the other emails.
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Chapter 5

CYBEX-P for Phishing URL

Detection

As described in chapters 1 and 2, existing information sharing platforms have limited

or zero support for data analysis. In this paper, we have introduced CYBEX-P

as a complete CIS platform to tackle that limitation. Our vision for CYBEX-P is

to provide Infrastructure as a Service (IaaS) for all kinds of threat analysis. Now

that we have discussed CYBEX-P in detail, we are ready to present a use-case of how

CYBEX-P can be used for advanced data analysis. To that end, this chapter presents

Phishly - a real-time phishing URL detector [73] using CYBEX-P infrastructure.

The key goal of a phishing attack is collecting valuable information like passwords or

credit card numbers from unsuspecting visitors. Phishing is a plague of the internet
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that equally affects people and organizations. A report from Ponemon Institute esti-

mates that phishing costs US companies $14.8 million on average in 2021 [74]. This

is a striking rise from $3.8 million in 2015. Therefore, it is evident that traditional

defense mechanisms are failing to detect phishing URLs.

This calls for an approach to detect new phishing URLs based on the older ones on

zero-day. Such a system needs to be automated and real-time. It should automatically

analyze the current landscape of phishing URLs and generate a model from those

URLs. It should further provide an automated mechanism for humans and machines

to check if an URL is benign or malicious. Building a framework like this is a major

undertaking faced with many challenges.

Fortunately, CYBEX-P already provides an interface for automating all of these tasks.

In the subsequent sections of this chapter, we will discuss how CYBEX-P infrastruc-

ture can be used as a service (IaaS) to build this new framework. Providing such a

robust interface for all kinds of threat data analysis to future researchers is one of the

major achievements of CYBEX-P.

5.1 Introduction

A major type of cyberattack, that affects people and businesses alike, is phishing

[75]. The attacker of a phishing attack tries to gather sensitive information of a

user by disguising as a trustworthy third party. Such an attack usually consists of
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directing users to a fake website that resembles another legitimate website. The URL

of the fake, phishing website is typically distributed via emails or instant messages.

Oftentimes it is very difficult or impossible for a user to detect such fake websites

just by looking at the content of the web page. Phishing attacks cost a mid-sized

company about 1.5 million US dollars on average[76].

It should be noted here that phishing URLs are part of a broader set called malicious

URLs. Other types of malicious URLs include drive-by-download URLs, spam URLs,

etc. Even though the rest of the work discusses detecting phishing URLs only, the

generalized procedure can easily be tweaked for detecting all kinds of malicious URLs.

The most popular technique used to detect phishing URLs is the use of blacklists [77].

A blacklist is simply a list of malicious URLs, periodically updated by community

users or cybersecurity experts. However, the Webroot Threat Report estimates [78]

that nearly 1.5 million phishing websites are created every month. As a result, it

is not possible to blacklist all phishing websites and corresponding URLs on time.

So, an automated framework to detect new phishing URLs is required. Such a sys-

tem should detect previously unseen phishing URLs with high accuracy without any

human interaction.

Many approaches have been explored towards such an end including machine learning

[79–83]. A machine learning approach begins with the collection of a dataset. The

dataset includes different features and labels (benign vs. malicious) of a large number

of URLs. A classifier is then trained with the collected dataset.
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The underlying assumption is that a malicious URL has a significantly different fea-

ture distribution than a benign URL. As a result, a good machine learning approach

should be able to differentiate between benign and malicious URLs based on those

features. This hypothesis has been verified in numerous previous works [77, 84–88]

using diverse datasets and state-of-the-art machine learning algorithms.

While many of the previous works show promising results, adoption of such a mecha-

nism in the industry is yet to be seen. This is because it is prohibitively slow to detect

malicious URLs using machine learning algorithms in a real-time setup. Moreover,

the URL space is highly unbalanced with many more benign URLs than phishing

URLs. Furthermore, the URL space is dynamic and changes over time, meaning the

classifier must be updated periodically. Additionally, the growth of the URL space is

unbounded, which means we cannot use traditional batch learning methods to train

on all URLs. Due to these challenges, a complete, standard framework for detecting

malicious URLs has not been proposed.

This work aims to tackle these challenges by introducing a complete automated frame-

work for phishing URL detection. While the framework is built for detecting phishing

URLs only, the general approach applies to identifying all types of malicious URLs.

The primary contribution of this part of the work is introducing a complete, auto-

mated, real-time framework to detect phishing URLs. The framework is completely

automated from data collection to analysis to detection. In this work, We have used

an online or incremental learning method to tackle the unbounded growth of the URL
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space. We further propose a delayed feature collection algorithm and a selective sam-

pling algorithm to increase the performance of our framework. We have tested our

system’s accuracy and performance with a very diverse and unbiased dataset. Our

system can label an URL with 86% accuracy without suffering from any performance

bottleneck.

The table 5.1 shows how this system uses CYBEX-P.

Table 5.1: How CYBEX-P provides Infrastructure as a Service (IaaS) for the
Phishing URL Detection System

Module How it is used

Frontend (1) Get user request to check an URL

Input (1) Fetch training URLs from Phishtank using collector

API (1) To interface with collector

(2) To store training URLS in Cache datalake

Archive (1) To parse PhishTank and user data into TAHOE

(2) To store parsed data in Archive DB

Analytics (1) To generate training model from PhishTank data

(2) To store training model in Archive DB

(3) To classify input URL using training model

Report (1) To store result in Report DB

(2) To show result to user

5.2 System Architecture

Having introduced the framework, in this section, we dive into the system architecture

of the proposed system. Fig. 5.1 shows the system architecture of this system. As
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Figure 5.1: System Architecture of the Phishing URL Detection system

it uses CYBEX-P’s infrastructure, it is explained using CYBEX-P components from

Fig. 3.2.

Here, Phishtank.com stores raw URLs ( in Fig. 3.2). It provides an API ( )

to share the URLs. Note that Phishtank’s API is the connector from CYBEX-P’s

perspective. CYBEX-P collector ( ) calls that API periodically to get new URLs

and post them to the CYBEX-P API ( ). CYBEX-P API puts them in the cache

datalake ( ). The archive cluster ( ) parses the raw URLs into TAHOE events and

stores them in the archive DB ( ). The analytics cluster ( ) enriches the URLs

with 5 sets of features. The feature sets are described in 5.4. The analytics cluster

also trains a classifier model.

On the other hand, a user can input an URL via the frontend ( , ) webapp.

The analytics cluster classifies this URL, as benign or phishing, using the previously

trained model. The report cluster ( ) creates a report out of the classification label,

and stores it in the report DB ( ). The report is shown to the user via the frontend.
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5.3 Dataset

We have collected about 36, 000 phishing URLs from Phishtank. We have also col-

lected approximately 60, 000 benign URLs from Phishtank which were previously

reported as suspicious but later analyzed to be benign. On the other hand, several

previous works [89, 90] used web crawling to generate benign URLs out of highly

ranked websites only. This approach often results in a biased dataset. Our benign

URL dataset is better aligned with the real world.

5.4 Features

We extract five types of features from each URL: lexical, host, GeoIP, domain WHOIS,

and n-gram. Each feature set is described below:

5.4.1 Lexical Features:

Lexical features are based on the URL string itself. Several examples of typical lexical

features are the number of characters in the URL, the number of dots in the URL,

and the number of symbols in the URL. They can be related to not only the whole

URL but specific parts of it also like the domain, the filename, or the query. We

collect several such features from the URL string itself.
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5.4.2 Host Based Features:

Host based features are based on the server that hosts the webpage pointed by the

URL. The simplest such feature is the IP address that the URL resolves to.

5.4.3 Domain WHOIS Based Features:

Any Regional Internet Registry (RIR) like ARIN or APNIC maintains its domain

WHOIS database that contains information on the domain registrant. In addition to

general information like the registrant name, the database also includes the creation

and expiration dates of the domain registration. These data can be queried using

the RDAP [91] protocol. We analyze these data to parse a great number of features.

Examples are ‘number of days before the domain registration expires’ and ‘number

of days passed after creation of the domain’.

5.4.4 GeoIP Based Features:

GeoIP features are obtained from the IP address of the host. We used the GeoLite2

[92] IP geolocation databases from MAXMIND to collect various GeoIP features of

the host IP address. GeoIP features include autonomous system number (ASN),

country, city, latitude, longitude, etc.
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5.4.5 N-gram Features

An n-gram is a contiguous sequence of n characters from the URL. Phishing URLs

often contain common brand names (like Microsoft, Paypal) to confuse the visitor.

We catch those names using the URLs n-gram.

5.5 Online Classification

Phishing URL detection is a dynamic problem. This means we need to update our

classifier model periodically. However, since the URL space grows without bound we

cannot train a batch learning classifier indefinitely. In contrast, an online/incremental

learning [93] classifier can be updated iteratively.

If, wtn−1 is a prediction model trained with n−1 instances of data, an online learning

algorithm can update it for the nth data instance with features xtn and label ytn as

follows:

wtn = wtn−1 + fo(xtn, ytn), where fo is some update function. On the other hand,

a batch learning algorithm achieves the same as follows:

wtn = fb({xt1, xt2, ... xtn}, {yt1, yt2, ... ytn}), which is computationally infeasible

because n grows without bound.

For this work, we have chosen the Second Order Perceptron (SOP) online classifier

from the package LIBSOL [94]. We have chosen an online classifier because we collect
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new training URLs every day. It is impossible to retrain our entire model with the

total dataset because the dataset grows in an unbounded manner. The training model

of the online classifier can be updated with only the new URLs without retraining it

from the beginning. We have also compared the accuracy of SOP with batch random

forest (RF) classifier from the package scikit-learn [95].

5.6 Result

Fig. 5.2 shows the change in the accuracy and the ‘receiver operating characteristic

- area under the curve’ (ROC AUC) with a growing sample size, for our system. As

seen in the figure, for a sample size of 57 thousand, batch RF achieves an accuracy of

0.91 or 91% with a ROC AUC of 90%. Online SOP, on the other hand, achieves an

accuracy of 86% for a sample size of about 96 thousand. However, we still choose the

online SOP because batch RF cannot deal with the unbounded growth of the URL

dataset.

It can also be interpreted from the figure that the accuracy of our classifier will

increase in the future, as we get new data because the curve has not become parallel

to the x-axis yet.
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Figure 5.2: Accuracy & ROC AUC vs Sample Size

5.6.1 Feature Importance Analysis

We started experimentation with 142 features in total (except for N-gram features).

Then we used the ‘drop column’ method to calculate the importance of each feature.

In this method, we calculate the importance of a particular feature, by noting the

change in accuracy score after removing that feature from the dataset.

The 20 most important features in our dataset are shown in figure 5.3. It is inter-

esting to note that entropy of the URL string is the most important feature with a

contribution of 2.75% in figure 5.3. This is because malicious URLs often have ran-

dom characters instead of dictionary words. As a result, the entropy of those strings

is higher.

The second most important feature, that we found, is the number of days since the

domain registration has been updated. As malicious websites are often newer than
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Figure 5.3: Top 20 Important Features

benign websites, the recently updated domains tend to be malicious. The third most

important feature is the maximum number of consecutive digits in the URL path.

The argument behind this is the same as the one for URL entropy. A random URL

string usually has more digits than a regular string made up of words.

A key takeaway from figure 5.3 is that half of the top 20 features are lexical fea-

tures. Lexical features are much less expensive to collect, making our delayed feature

collection algorithm successful.
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Figure 5.4: Linear Complexity of System

5.6.2 Cross Validation

To cross-validate our findings we have used another dataset of phishing URLs down-

loaded from OpenPhish.com [71]. We removed our training URLs from that dataset

and ended up with 2664 URLs previously not seen by our classifier. Our classifier

achieved an accuracy of 88.6% validating that our training set was not biased.

5.6.3 Complexity and Scalability

Figure 5.4 shows that the complexity of our URL classification system is linear. The

jumps in the graph are attributed to offline URLs. Some of the feature collection
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modules wait for timeout when an URL is offline. We can see two such timeouts at

around 200s and 500s. Despite the noises, the graph is linear on average.

5.7 Conclusion

In this chapter, we have outlined a robust framework for the automated detection of

phishing URLs. We have used online learning to deal with the unbounded growth

of URL space. We have also incorporated selective sampling and delayed feature

collection to significantly improve the system performance. Our system can detect

previously unseen URLs with 86% accuracy. Moreover, we have used CYBEX-P

infrastructure as a service (IaaS) to develop and deploy this system. This proves the

viability of CYBEX-P for advanced threat data analysis.
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Chapter 6

CYBEX-P for Modelling Attacker

Behavior in Botnet

Now that we have presented an example of using CYBEX-P for advanced threat

data analysis, in this chapter, we move on to a more robust approach to analyzing

threat data. A major motivation behind CYBEX-P is merging heterogeneous threat

data and analyzing them together. This chapter realizes that goal by developing a

framework for modeling attacker behavior in a botnet.

In this discussion, we dive deep into the framework discussing the dataset which

contains four different types of events including file downloads, SSH logins, network

traffic, and command input into the shell. We then discuss why and how the dataset

is parsed into TAHOE and the advantages of using TAHOE. Finally, we validate the
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framework with extensive experimentation. This framework is a novel contribution

that proves the feasibility of CYBEX-P for robust threat data analysis.

6.1 Introduction

A key component in many types of cyberattacks is a bot [96] – a malicious program

that allows an attacker to remotely control the infected host. Some notable examples

of bot malware are Mirai [97], Torpig [98], Conficker [99] etc. A bot also connects

the infected host to a botnet [100, 101] - a network of such hosts. Botnets make up

a large portion of the cybersecurity market.

Attackers use various techniques to infect a host with bot malware. For example,

they can send the malware as an email attachment, post the download link on online

forums and social networks, or host it on a website for drive-by downloads. They can

also directly perform a brute-force attack to crack the password of a host.

Irrespective of how the host is infected, the attackers usually gain access to the ‘shell’

of the compromised hosts. Therefore, they can use the botnet for a variety of cy-

berattacks such as adware distribution, DDoS attacks, hosting phishing websites,

ransomware distribution, sending spam emails, spamming search engines, stealing

credit card info, etc. Thus, it is desirable for any person or any organization to detect

and block a botnet in their network.
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The increasing adoption of the Internet of Things (IoT) has made IoT devices a

major target of bots [102]. The most prominent example is the Mirai botnet [97]

which compromises IoT devices using brute-force attacks on the login credentials. It

was first discovered in late 2016 and is still the most widespread botnet plaguing the

IoT network.

IoT botnets, like Mirai, were able to take the internet by storm because of the pro-

liferation of weakly configured IoT devices. A large number of IoT devices like re-

frigerators and CCTV cameras are configured with easily guessable usernames and

passwords. Bot malware exploits that to perform a dictionary attack on the user-

name/password pairs to gain access to the shell.

The simplest defense against IoT botnets is manually blacklisting the IP addresses

of the infected hosts. However, numerous hosts are compromised every day. At the

same time, many compromised hosts become benign every day, as the owner regains

control. Consequently, it is impossible to list all of their IPs. Moreover, blacklisting

is a reactive approach because honeynets can. An IP shows up on a blacklist only

after the host has done some harm. As a result, the industry would greatly benefit

from a proactive defense mechanism against botnets. An intelligent system should

detect a zero-day bot-host from its behavior, not the IP. If a bot-host is detected in

an early phase of the kill chain, it cannot do any harm to anybody.

Meanwhile, Intrusion detection systems (IDS) [103] use network signatures to detect
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bots. While they work well for known patterns they cannot adapt to the new at-

tacks. It also takes a long time to detect an attack pattern, analyze it and create

its signature before adding it to an IDS [104]. Another popular approach is using

anomalies in network traffic [105–107] to detect bots. Some works take it further to

detect anomalies in DNS traffic [108–111].

The final approach is detecting anomalies in the infected hosts [112–114]. The pa-

rameters used by these works are system calls, system API calls, syslogs, event logs,

etc. However, to the best of our knowledge, no previous work has considered hetero-

geneous threat data to do behavior modeling. In particular, no previous work has

considered correlating network traffic data, file download data and commands input

into the shell to model attacker behavior. In addition, we have identified the following

challenges in modeling attacker behavior in a botnet:

1. The phrase ‘attacker behavior’ is not well defined.

2. There is no standard process or structure for modeling attacker behavior in a

botnet.

3. There is little automation in attacker behavior analysis, from data collection to

data analysis.

4. No previous work has considered multiple heterogeneous sources of threat data

in modeling attacker behavior.
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5. Limited number of works have considered commands input into a compromised

shell for modeling attackers.

This work considers heterogeneous threats for attacker behavior modeling, including

network traffic, commands input into a compromised shell, and files downloaded into

the host. To the best of our knowledge, no previous work has considered hetero-

geneous data for attacker behavior modeling. This is the novel contribution of this

work. The contributions of this work are summarized below:

1. We have collected a large dataset of heterogeneous threat data from bot-infected

hosts.

2. We have clearly defined ‘attacker behavior’ in this paper as a 4 element vector.

3. We have automated the whole process from data collection to analysis using

CYbersecurity information Exchange (CYBEX) [44, 115].

4. We have integrated multiple sources of threat data including network traffic,

file downloads, and shell commands.

5. We have shown the efficacy of Temporal Convolutional Network (TCN) [116] in

predicting attacker behavior and compared it with Long Short-Term Memory

(LSTM), and Gated Recurrent Unit (GRU).

6. We have demonstrated the validity of our data model and TCN by predicting

attacker behavior with an accuracy between 85− 97%.
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6.2 Background

6.2.1 Honeypot

A honeypot is a decoy system. The Honeynet project [117] defines a honeypot as

A security resource whose value lies in being probed, attacked, or compromised. As

honeypots have no production value, any activity logged in a honeypot can be deemed

malicious.

Honeypots can be classified into two categories based on their purpose:

1. Production honeypot: Production honeypots are used in campus networks to

lure attackers away from production machines. They can also be used to detect

attacker IP addresses or email addresses. They protect production servers by

posing themselves as easy targets for attackers.

2. Research honeypot: Research honeypots are used to collect information. This

information is further analyzed to detect new tools and techniques, to under-

stand the behavior of attackers, and to detect attack patterns. Finally, the

analyzed data can lead to newer defense techniques.

Honeypots can be further classified into three categories on their level of interaction

with the attacker:
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1. High Interaction Honeypots: Simulates all aspects of a real operating system

(OS) completely. These honeypots can collect more information. However, they

are riskier to maintain, because the attacker can launch further attacks from

these.

2. Medium Interaction Honeypots: Simulates the aspects of an OS that cannot be

used to launch further attacks.

3. Low Interaction Honeypots: Simulates very basic aspects of an OS. They can

collect very limited information and are low risk.

6.2.2 Cowrie Honeypot

Cowrie [118] is a medium to high interaction SSH and Telnet honeypot designed to log

brute force attacks and the shell interaction performed by the attacker. In medium

interaction mode (shell) it emulates a UNIX system in Python, in high interaction

mode (proxy) it functions as an SSH and telnet proxy to observe attacker behavior

to another system. In this work, we use Cowrie in the medium interaction mode.

In our setup, cowrie only allows SSH logins into our honeypot. An attacker can log

in to the system using any username and password combination. Cowrie logs all the

interactions including the source IP address of the attacker, the SSH parameters, and

the commands input while the attacker is logged in.
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6.3 Dataset

6.3.1 Data Source – Cowrie Honeypot

Cowrie [118] is a medium to high interaction SSH and Telnet honeypot designed to log

brute force attacks and the shell interaction performed by the attacker. In medium

interaction mode (shell) it emulates a UNIX system in Python, in high interaction

mode (proxy) it functions as an SSH and telnet proxy to observe attacker behavior

to another system. In this work, we use Cowrie in the medium interaction mode.

We have set up 5 instances of Cowrie around the world – Amsterdam, Bangalore,

London, Singapore, Toronto. The honeypots are configured to allow only SSH logins

into the system. An attacker can log in to the system using any username and

password. Cowrie logs all the interactions including the source IP of the attacker,

the login credentials, the SSH parameters, the downloaded files, and the commands

input into the shell.

6.3.2 Cowrie Data as Events

{

"eventid": "cowrie.session.file_download",

"timestamp": "2020-04-28T00:00:22.134604Z",

"src_ip": "5.188.87.49",

"session": "d151a9c7",

"sensor": "london",

...

}

Figure 6.1: Common attributes of all Cowrie events.
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Cowrie structures collected data into events. Fig. 6.1 shows the common attributes

of a Cowrie event. These attributes are explained below –

1. eventid: Denotes the type of the event. The ‘eventid’ cowrie.session.file download

in Fig. 6.1 means, it was generated when the attacker downloaded a file into

the compromised machine.

2. timestamp: The time when the event was recorded by the honeypot.

3. src ip: Source IP address of the attacker.

4. session: A session is a sequence of events generated during one login ses-

sion. Cowrie maintains a unique ‘session’ for each session and assigns the same

session-ID to the events of a session.

5. sensor: Hostname of the honeypot server.

6.3.3 Cowrie Event Types

Cowrie generates about 20 different ‘eventid’s. Many of these event types are related

to the SSH session, key exchange, and logging and do not carry valuable information.

For this work, we are interested in the following ‘eventid’s –

• cowrie.login: Generated when the attacker tries to SSH into the host. Contains

the username and the password of the SSH request. Fig. 6.2 shows a cowrie.login
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event. Here the suffix .success means that the login attempt was successful.

Note that the common attributes shown in Fig. 6.1 are omitted from Fig. 6.2.

{

"eventid": "cowrie.login.success",

"password": "asdasdasd",

"username": "root",

...

}

Figure 6.2: Attributes of cowrie.login event.

• cowrie.direct-tcpip: Generated when the attacker tries to communicate over the

internet through the TCP-IP protocol. Contains the destination IP, destination

port and the data (if present). The suffic .data means that this communication

contains data. Fig. 6.3 shows a cowrie.direct.tcp-ip event. Note that the ‘data’

field is truncated. Also, the common attributes from Fig. 6.1 are omitted.

{

"data": "\\x03\\x00\\xa6...",

"dst_ip": "www.walmart.com",

"dst_port": 443,

"eventid": "cowrie.direct-tcpip.data",

...

}

Figure 6.3: Attributes of cowrie.direct.tcp-ip event.

• cowrie.session.file download : Generated when the attacker downloads a file into

the compromised host. Contains the download URL, the file hash and the actual

binary of the file. Fig. 6.4 shows a cowrie.session.file download event.

• cowrie.command : Generated when the attacker inputs a command into the

shell of the compromised host. It contains the exact command. The suffix

.success means the command was simulated successfully. Fig. 6.5 shows a
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{

"eventid": "cowrie.session.file_download",

"outfile": "dl/6e223babfbd3e...",

"shasum": "6e223babfbd3eef8...",

"url": "http://192.210.236.38/bins.sh"

...

}

Figure 6.4: Attributes of cowrie.session.file download event.

cowrie.command event. The input attribute contains the exact command input

by the attacker in the shell.

{

"eventid": "cowrie.command.success",

"input": "cat /proc/cpuinfo",

...

}

Figure 6.5: Attributes of cowrie.command event.

6.3.4 Command, Parameter & Type

After logging in, the attackers often execute different commands in the honeypot

shell. These commands are documented by Cowrie in the cowrie.command events. An

example command is wget NasaPaul.com/v.py. Here wget is the actual command

and NasaPaul.com/v.py is its parameter.

In our database, we have seen about 40 unique commands. However, many of these

commands, like wget take parameters and there are more than 300 unique command-

parameter combinations. We have further classified these commands into 7 types

based on the intention of the attacker. These types are:

1. System Info – Check software, hardware, or system configuration.
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2. Cover Track – Hide evidence of intrusion and malicious activity.

3. Install – Install a software in the system that was not previously in there.

4. Download – Download a remote file into the honeypot system.

5. Run – Run or execute a program or a script.

6. Escalate privilege – Change password or gain root access to the system.

7. Change config – Change system configuration including hostname, network, and

firewall configuration.

Figure 6.6: Representation of Cowrie sessions as a finite state machine of the
command types.

Fig. 6.6 shows the Cowrie sessions as a state machine of these command types. The

edges are the probabilities of transition from one state to the next. The state None
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means the event is not of the type shell command. Table 6.1 shows the different

command types and corresponding commands. The classification of commands into

command types is further visualized in Fig. 6.7.

Table 6.1: Classification of commands into different types.

Command Type Commands
System Info cat, echo, free, help, history, last, ls, ps, w, grep, lscpu, nproc,

uname, wl
Cover track export, reboot, rm, touch, unset

Install apt, apt-get, install, yum
Download scp, wget

Run nohup, perl, python, /tmp/*, /usr/*
Escalate privilege ln, mkdir, mv, passwd, su, sudo

Change config hostname, ifconfig, /ip, kill, susefirewall2, service

6.3.5 Dataset at a Glance

1. Total number of events = 3567

2. Total number of sessions (sequences) = 393

3. From date = April 4, 2020

4. To date = May 8, 2020

5. Number of Cowrie honeypots = 5

6. Location of honeypots = Amsterdam, Bangalore, London, Singapore, Toronto
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Figure 6.7: Map of commands to command types.

6.4 Data Processing

As discussed in section 6.3, cowrie generates heterogeneous data with different at-

tributes. For example, a cowrie.direct-tcpip event has the dst ip and dst port at-

tributes, which other event types do not have. In this section, we extract features
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from such heterogeneous and group them into a single feature table so that they can

be fed into a learning model.

Along with CYBEX, we have further developed TAHOE a graph-based cyberthreat

language (CTL). In this section, we discuss the modeling of Cowrie data in TAHOE

format. TAHOE offers several advantages over traditional CTLs – Firstly, TAHOE

can store all types of structured data. Secondly, queries in TAHOE format are faster

than in other CTLs. Thirdly, TAHOE intrinsically correlates the heterogeneous data

with itself. Finally, TAHOE is scalable for all kinds of data analysis - a major limi-

tation of other CTLs.

In this section, we further discuss how to featurize such heterogeneous data to use

them for machine learning. We start by explaining the complete lifecycle of the data

in CYBEX from data generation.

6.4.1 Data Flow in CYBEX

6.4.1.1 Data Generation

Each Cowrie honeypot ( in Fig. 3.2) simulates a generic IoT device. They generate

data in the format of Fig. 6.1. The honeypots log these data pieces into a file in the

respective server. We call each such log message a raw document.
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6.4.1.2 Data Input

Each of our honeypot installations have a connector agent ( in Fig. 3.2). The

connector is a script that reads the raw data from log files and sends them to the

CYBEX collector ( ) via a real-time websocket. The data in transport are encrypted

via TLS.

6.4.1.3 Data Collection

The collector then posts the data to the API ( ). The API encrypts the data with

the public key of the archive cluster ( ) and stores the encrypted data in the cache

data lake ( ).

6.4.1.4 Data Archiving

{

"itype": "raw",

"data": {

"eventid": "cowrie.session.file_download",

"timestamp": "2020-04-28T00:00:22.134604Z",

"src_ip": "5.188.87.49",

"session": "d151a9c7",

"sensor": "london",

...

},

"sub_type": "cowrie_honeypot",

"timezone": "US/Pacific",

"_hash": "3d5792b...",

...

}

Figure 6.8: A Cowrie event encapsulated in a TAHOE raw document.
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The archive cluster ( ), then pulls the data from the cache data lake ( ), decrypts

the data using its private key, converts the cowrie events into TAHOE raw format

and stores them in the archive database ( ). TAHOE raw puts a wrapper around

the Cowrie event.

Fig. 6.8 shows a TAHOE raw document. The hash (truncated in figure) is the

unique ID of the document and generated as the SHA256 checksum of the data

field. CYBEX collects different types of data; so TAHOE uses the sub type field to

distinguish between them.

6.4.1.5 Data Filtering

Data filtering in CYBEX means parsing a TAHOE raw document into TAHOE

events. Each sub type of a TAHOE raw document represents a different type of

data; and has its own filter scripts. The filter basically extracts different attributes

from the raw document and restructures them into TAHOE events.

This parsing is done by the analytics cluster ( ). It reads the raw data from the

archive database ( ), parses the data, and writes the results back in the archive

database. Fig. 6.9 shows the structure of a TAHOE event.

The sub type of a TAHOE event depends on the eventid of the original raw document.

For example a cowrie.login event is parsed into a TAHOE ssh event. The mapping

is – cowrie.command ⇒ shell command, cowrie.direct.tcp-ip ⇒ network traffic,
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{

"itype" : "event",

"timestamp" : 1588093536.969,

"category" : "unknown",

"data" : {

"success" : [false],

"shell_command" : ["cat /proc/cpuinfo"],

"attacker" : [{

"ipv4" : ["134.122.20.113"]

}]

},

"_cref" : [

"e7dc7351c504da69f7a43421...,

"966fca3ed576e47e9d2ae2a7...,

"a58a2e656c004f01b38dc77c...

],

"sub_type" : "shell_command",

"_hash" : "b3da61a6313307f739...",

...

}

Figure 6.9: A TAHOE event document.

cowrie.session.file-download ⇒ file download, cowrie.login ⇒ ssh. So, TAHOE

basically normalizes the Cowrie events into the standardized format - TAHOE.

Notice that, the Cowrie session ID is not stored in TAHOE events. For that, we use

a separate TAHOE structure called a session. Fig. 6.10 shows the structure of a

TAHOE session. The field ref stores the ID of all the events that belong to this

session. So, basically it forms a directed graph with the session node as the root

and the events as leaves.

This concludes the default flow of any threat data through CYBEX. We have now

converted Cowrie events into TAHOE events without any loss of information. Next,

we begin processing the data for this particular task of attacker behavior modeling.
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{

"itype" : "session",

"data" : {

"hostname" : ["london"],

"sessionid" : ["5a0facf9"]

},

"_cref" : [

"53df245bcefb3f2a558349c37...",

"39885eec34b95fa2acdfffd14..."

], ..."

"_ref" : [ ..."

"b3da61a6313307f7394510146...",

"1e31784145b52a42d964f5a5c...",

"cb3be781b29297571cc20cbf8...",

... ..."

], ..."

"sub_type" : "cowrie_session",..."

"_hash" : "98601c106789882a4ee...",

"start_time" : 1588924147.615,

"duration" : 3.29502511024475,

"end_time" : 1588924147.616

}

Figure 6.10: A TAHOE session document.

6.4.2 Advantages of using CYBEX & TAHOE

The data collected from Cowrie honeypot is used as an example to validate our

methodology in this work. However, we want to propose this methodology for all

types of threat data collected from heterogeneous sources. This is particularly prob-

lematic because different sources store or log data in their format. For example,

two firewalls from two different vendors will collect network traffic logs in different

formats. CYBEX automatically recognizes the sources and normalizes those seem-

ingly different data into TAHOE. TAHOE acts as the standardized format here while

CYBEX acts as the automated parser.

Each event has a different set of attributes or properties. This makes them unsuitable

for storing as a row in a relational database. TAHOE uses a JSON structure to store
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such arbitrarily structured events. Moreover, there could be any number of edges

or connections between the attributes, objects, events, and sessions. Such arbitrary

length of the edges array is again unsuitable to be stored in a cell in a relational

database. However, the JSON structure poses no such limitation on TAHOE. Finally,

TAHOE differs from other JSON based CTI (e.g. STIX) by being indexable. As a

result, we can query events connected to an attribute or a group of events connected

to a session fast. To the best of our knowledge, there is no such CTI available in the

industry right now.

6.4.3 Sequence of Events

In subsection 6.4.1 we saw how CYBEX parses any threat data into TAHOE events.

Now, we further curate these TAHOE events for the task at hand - attacker behavior

modeling. In this work, we do not consider each event independent. Rather we are

interested in modeling attacker behavior as a sequence of events.

Figure 6.11: A TAHOE session with 6 events as a directed graph.

As stated in subsection 6.3.2, Cowrie generates a unique session ID whenever an

attacker logs into the honeypot. Cowrie stores this ID in all events generated during
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this login session. We can use that ID to group the events in a session. We can then

sort these events by their timestamps to form a sequence.

Fig. 6.11 shows an example sequence of events. Here the attacker logs into the

honeypot, executes a command in the shell, downloads a file, sends some data over

TCP/IP, executes another command, and then logs out. There are 6 events in this

example session. However, there can be any number of events in a session. In our

dataset, we have seen a minimum of 2 events and a maximum of 47 events in some

sessions.

At this point, we group all events into event sequences like that of Fig. 6.11. We

then end up with several sequences, each with an arbitrary number of events. We

then move on to extracting features for each of these events.

6.4.4 Feature Extraction

Now, for each event in a session we extract the following features:

Time related

1. Hour (integer): Hour of day.

2. Date (integer): Date of month.

3. Month (categorical): January, February etc.
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4. Day (categorical): Sunday, Monday etc.

Session Related

5. Session start (boolean): Is this event at the beginning of a session?

6. Session end (boolean): Is this event at the end of a session?

7. Event order (integer): How many events have been recorded in this session?

Other common features

8. Event type (categorical): Valid event types are ssh, network traffic, shell com-

mand, and file download as described in subsubsection 6.4.1.5.

9. Sensor (categorical): Location of the honeypot server - Amsterdam, Bangalore,

London, Singapore, or Toronto.

10. Attacker IP (categorical): IP address of the attacker.

Only for cowrie.direct.tcp-ip events

11. Destination IP (categorical): Destination IP address of the TCP-IP packet/s.

12. Destination Port (integer): Destination port of the TCP-IP packet/s.
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Only for cowrie.command events

13. Command + parameter (categorical): The shell command with parameter.

14. Command (categorical): This feature is derived from ‘command + parameter’

and lists the actual shell command without parameter.

15. Command type (categorical): This is another derived feature and lists the type

of command as described in subsection 6.3.4.

16. Command success (boolean): Was the command successfully simulated?

Only for cowrie.login events :

17. Login success (boolean): Was the attacker successful to log in?

For example, if we extract the features of the event in Fig. 6.9, we get the feature

vector shown in Fig. 6.12. Note that, it does not have any valid value for the features

‘Dest IP’ and ‘Dest Port’, because these two features are defined for ‘network traffic’

events only. Similarly, ‘login success’ is defined for ‘ssh’ events only. Also note that

the ‘session start’, ‘session end’, ‘event order’, and ‘sensor’ features are not directly

extracted from the event data in Fig. 6.9. Rather these are extracted from the session

data in Fig. 6.10. We can look this up in our database, because the session in Fig.

6.10 contains the hash of this event in its ref field.
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Common features:

================

Hour Date Month Day Session Session Event Event Sensor Attacker

Start End Order Type IP

---- ---- ----- --- ------- -------- ----- ------- ------ --------------

17 28 Apr Tue True False 1 Shell London 134.122.20.113

Command

Features related to a particular event type:

===========================================

Dest Dest Command + Command Command Command Login

IP Port Parameter Type Success Success

---- ---- ----------------- ------- ------- ------- -------

None None cat /proc/cpuinfo cat System False None

Info

Figure 6.12: Feature vector of the event in Fig. 6.9.

At this point, we have several sequences like that of Fig. 6.11. Each sequence has an

arbitrary number of events and each of those events is represented by a 17 parameter

vector-like Fig. 6.12. With this dataset, we are ready to define the problem statement

of our analysis methodology.

6.5 Analysis Methodology

So far we have modeled attacker behavior as a sequence of events. We have also

represented each of those events as a 17 element vector. In this section, we assess the

validity of our model with real data. We do this by predicting future attacker behavior

based on past events. If we can successfully predict the next step an attacker takes,

we can simultaneously infer that attacker behavior is predictable and our model is

valid.
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To show this, we have chosen to predict the following targets – (1) event type (4

different values), (2) shell command with parameter (300+ different values), (3) shell

command (40+ different values) and (4) shell command type (7 different values). We

call this set of targets the ‘attacker behavior’ for a particular event.

This is a sequence modeling problem because an event in a sequence depends on the

previous events. Recurrent neural networks (RNN), like Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU), are better suited for sequence modeling

[119]. However, a recent publication [116] has shown the viability of a convolutional

neural network called a temporal convolutional network (TCN) as well. So, in this

section, we compare three neural networks to predict attacker behavior – (1) TCN,

(2) LSTM, and (3) GRU.

6.5.1 Problem Statement

Here, the set of predictors is P = {hour, date, month, day, session start, session end,

event order, event type, sensor, attacker IP, dest IP, dest port, command + parameter,

command, command type, command success, login success}. And, the set of targets

is T = {event type, command + parameter, command, command type}

Now, let us assume, S = S1, S2, ..., SN is a set of N sequences. Here, Si =< E1, E2, ...

, EMi
> is the ith sequence with Mi events in it.
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Then, Pi,j =< x1i,j, x2i,j, ..., x17i,j > is the vector of the 17 features in P for the jth

event in the ith sequence. This vector contains our predictors.

Also, the target vector Ti,j =< z1i,j, z2i,j, ..., z4i,j > is the vector of the 4 targets in

T for the jth event in the ith sequence. Ti,j represents attacker behavior in our work.

We want to find the function f which minimizes some expected loss between the

targets and the predicted values L(T, f(P)).

6.5.2 Temporal Convolutional Network (TCN)

Figure 6.13: Dilated causal convolutional layers of a typical TCN.

Convolutional neural networks (CNNs) are commonly associated with image classifi-

cation tasks. However, Bai et al. [116] outlined the general structure for a temporal

convolutional network (TCN) which can be used to create a robust prediction model

for sequences. They have also empirically shown how TCN matches or even out-

performs traditional recurrent neural networks (RNNs) in sequence modeling and

prediction.
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The principal building block of TCN is a dilated causal convolution layer. Here,

‘causal’ means the output for the current step does not depend on future steps. Also,

dilated convolutions are used to increase the receptive field of the layers. Multiple

such layers can be stacked to form a deeper network. The dilation factor is increased

exponentially as shown in Fig. 6.13.

Figure 6.14: A TCN Residual Block.

The architecture of a general TCN described in [116] contains multiple residual blocks.

Each residual block consists of two dilation causal convolution layers with the same

dilation factor along with normalization, ReLU activation, and dropout layers. The

input to each residual block is also added to the output when the number of channels

between the input and the output is different. A general residual block is shown in

Fig. 6.14.
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Figure 6.15: General architecture of a TCN Classifier.

We can then put one or more such residual blocks into a general sequence classifier

to get the architecture of a TCN classifier as shown in Fig. 6.15. The network begins

with a sequence input layer followed by one or more residual blocks. The residual

blocks are then followed by a fully connected layer, a softmax layer, and a classification

output layer.

6.5.3 Long Short-Term Memory (LSTM)

LSTM [120] is an artificial recurrent neural network (RNN) architecture [121] used by

deep learning practitioners for sequence modeling. LSTM has feedback connections

in contrast to traditional feed-forward neural networks. As a result, LSTMs can learn

long-term dependencies. This property makes LSTM suitable for sequence modeling

and predictions.

Figure 6.16: An LSTM Block.
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The core component of an LSTM network is an LSTM block as shown in Fig. 6.16.

Here, ct is the cell state at time-step (sequence step) t whereas ht is the hidden state

also called the cell output. The forget gate, f , determines which values to remove

from the cell state, whereas the input gate, i, controls which value to update. The

actual update values are determined by the memory gate, g. Finally, the output gate,

o controls which value to output.

Each element of a sequence passes through the LSTM block and updates it, forming an

LSTM layer. Just like TCN, we can place this LSTM layer inside a general sequence

classifier to get the architecture of an LSTM classifier as shown in Fig. 6.17. We have

added a dropout layer after the LSTM block in Fig. 6.17 to avoid overfitting in the

network.

Figure 6.17: A general LSTM Classifier.

6.5.4 Gated Recurrent Unit (GRU)

A GRU [122] is constructed exactly like an LSTM network, except for the output

gate. A comparable GRU typically has fewer trainable parameters because it lacks

the output gates. It also converges faster for the same reason. GRU has comparable

performance to LSTM for a majority of sequence modeling tasks and sometimes

outperforms LSTM for less repetitive sequences. The general architecture of a GRU
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classifier is the same as that of an LSTM classifier except it has a GRU block in place

of the LSTM block.

6.6 Result & Validation

In this section, we validate our model by predicting attacker behavior. As mentioned

in section 6.5, we predict the 4 features event type (4 class labels), shell command with

parameter (300+ class labels), shell command (40+ class labels), and shell command

type (7 class labels) for the next event in a session. We call this set of targets the

‘attacker behavior’. We compare the accuracy and performance of 3 neural networks

– TCN, LSTM, and GRU in this section. The design, simulation, and testing of the

neural networks are done in Matlab [123].

As listed in subsection 6.3.5, for this simulation, we have collected a robust dataset

of 3567 ‘cowrie’ events. These events belong to 393 ‘cowrie’ sessions and span over a

duration of 1 month from 4 April 2020 to 8 May 2020. We have collected the dataset

from 5 different ‘cowrie‘ honeypots placed all over the world. The locations of the

honeypots are – Amsterdam, Bangalore, London, Singapore, and Toronto.

To optimize the parameters of the neural networks, we have used a simple grid search.

The results of the grid search for TCN are shown in subsection 6.6.1.

For the first test, we have randomly split the 393 sessions in a ratio of 80 : 20 into

training and test subsets. Note that, each session is considered one sequence in our
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Table 6.2: TCN v LSTM v GRU.
# training sequences = 315; # test sequences = 78.

Accuracy (%)
Target TCN LSTM GRU

Event type 98.45 96.26 96.51
Command + paramter 85.58 80.55 81.79
Command 94.64 88.87 87.75
Command type 96.37 91.63 90.93

model and they have a variable number of events in them. So, we ended up with 315

sequences (2839 events) in the training dataset and 78 (728 events) sequences in the

test dataset. Then, we have trained our models on the training dataset. Finally, we

have tested the accuracy of TCN, LSTM, and GRU in predicting the 4 targets for

the next event in the sequence. The prediction accuracy-values are listed in Table

6.2. It’s seen that LSTM and GRU have comparable performance, while TCN largely

outperforms the other two in all 4 cases.

While at first glance the accuracy for ‘command + parameter’ seems low, at 85%;

it should be noted that this label assumes a different value for a different parameter

supplied to the same command. For example, mkdir temp1 and mkdir temp2 will be

registered as different classes for this target event though they are the same commands

and serve the same purpose.

Next, we have tested the change of accuracy with the size of the training set. We have

done this for all of the four targets and the results are shown in Fig. 6.18. In general,

the training accuracy increases with the number of training samples in all cases for

all the algorithms. And just like before, LSTM and GRU perform comparably while
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(a) Target = Event type. (b) Target = Command + parameter.

(c) Target = Command. (d) Target = Command Type.

Figure 6.18: Accuracy vs Number of Sequences for TCN, LSTM and GRU

TCN outperforms both of them by a large margin.

Finally, we have tested how fast each algorithm converges to the final accuracy. We

have again done this for all four targets. We have also compared the results for two

different numbers of training sequences – 315 and 252. The results are shown in

figures 6.19 and 6.20. These results show that TCN converges perfectly to the final

accuracy well before the maximum 30 epochs in all cases. LSTM and GRU, however,
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(a) Event type (b) Command+param (c) Command (d) Command Type

Figure 6.19: Accuracy vs Epochs for TCN, LSTM and GRU. # of training
sequences = 315.

(a) Event type (b) Command+param (c) Command (d) Command Type

Figure 6.20: Accuracy vs Epochs for TCN, LSTM and GRU. # of training
sequences = 252.

perform significantly worse than TCN.

6.6.1 Optimization of TCN Parameters

This subsection includes the results of the grid search that we used to optimize the

TCN parameters. The number of filters per block, the number of residual blocks, and

the filter size are the three major parameters of a TCN which in turn determine the

number of learnable parameters of the network. Fig. 6.21a shows the accuracy of our

network, as a heatmap, for different combinations number of blocks and filter size.

As evident from Fig. 6.21a the model performs best for 2 residual blocks with 100

filters in each residual block. Furthermore, we plotted the accuracy of the network
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(a) Heatmap of accuracy for different values of
numBlock and numFilt.

(b) Accuracy vs number of filters for varying
filter size.

for varying filter sizes in Fig. 6.21b. Fig. 6.21b shows that filter size 2 is the optimal

choice for this problem irrespective of the number of filters in each residual block.

6.7 Parameters of Models

.

TCN Parameters
Number of residual blocks 2

Number of filters in each residual block 100
Filter size 2

Dropout factor 0.02
Maximum epochs 30

Minibatch size 1
Initial learn-rate 0.001

Learn-rate drop factor 0.1
Learn-rate drop period 12 epochs

Gradient threshold 1



112

LSTM Parameters
Number of hidden units 600

Dropout factor 0.05
Maximum epochs 30

Minibatch size 1
Initial learn-rate 0.001

Learn-rate drop factor 0.1
Learn-rate drop period 12 epochs

Gradient threshold 1

GRU Parameters
Number of hidden units 600

Dropout factor 0.05
Maximum epochs 30

Minibatch size 1
Initial learn-rate 0.001

Learn-rate drop factor 0.1
Learn-rate drop period 12 epochs

Gradient threshold 1
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Chapter 7

Conclusion & Future Work

In this work, we have proposed CYBEX-P, as a completely automated cybersecurity

information sharing (CIS) platform. We have also introduced TAHOE – a graph-

based cyberthreat language (CTL), to overcome the limitations of existing CTLs.

Moreover, we have introduced a universal Threat Data Query Language (TDQL)

to facilitate sharing. Furthermore, we have formulated a novel algorithm called

ThreatRank to detect malicious events. We have also tested the scalability and

feasibility of CYBEX-P in a real-world setup. Finally, we have shown how to use

CYBEX-P infrastructure as a service (IaaS) with two different frameworks. The first

one is a phishing URL detection module that uses only one type of threat data namely

URLs. The second one is a framework to model attacker behavior in a botnet using

heterogeneous threat data. This chapter draws the conclusion for this dissertation,

summarises the accomplishments, and discusses possible future works.
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7.1 CYBEX-P

Chapter 3 introduces the first contribution of this dissertation: CYbersecurity in-

formation Exchange with Privacy (CYBEX-P). CYBEX-P is a robust cybersecurity

information sharing (CIS) platform. We have not only designed CYBEX-P but also

implemented it in our servers and have tested it with a large amount of threat data.

CYBEX-P can collect threat data from both machines and humans using different

channels and protocols. There are numerous sources of threat data with varying

network and storage capabilities. We have designed CYBEX-P to interface with all

these types of sources. Furthermore, our design ensures that the entire process of data

input is completely automated. We have tested our design by setting up five SSH

honeypots all over the world. The honeypot locations are Amsterdam, Bangalore,

London, Singapore, and Toronto. By continuously collecting a substantial amount

of data from these honeypots, we have validated the scalability and reliability of the

input module of CYBEX-P. Our implementation and testing show that the CYBEX-P

input module can handle a massive influx of data from a variety of sources.

Meanwhile, CYBEX-P uses various standard and custom protocols to communicate

with a diverse array of data sources. Therefore, we must ensure a reliable protocol that

does not lose data on transit during network or machine failures. We have studied the

reliability of the CYEBX-P data collector under various failure and disaster conditions

and found it to be highly resilient. Finally, CYBEX-P is developed to potentially

handle data streams from thousands of sources. We have optimized all the software
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modules, including the input and the API modules, to handle such a large quantity

of data. We have achieved this using optimized code, suitable data structures, and

well-configured infrastructure. This is tested using heterogeneous data types received

from our honeypot sources. Our implementation shows that CYBEX-P can smoothly

collect and correlate heterogeneous data from multiple sources.

Concerning correlation, we have developed CYBEX-P not only for mutual data shar-

ing but also for data analysis and advanced correlation. It collects heterogeneous

threat data from different types of organizations and correlates them to generate in-

sightful reports. In fact, one of the major strengths of CYBEX-P, which makes it

different from previous works, lies in its ability to correlate heterogeneous threat data.

Chapter 4 explains the graph-based correlation mechanism facilitated by TAHOE,

while chapters 5 and 6 explains the machine learning aspect of it. In particular,

chapter 5 describes the framework for a system that uses machine learning to detect

phishing URLs. Our system uses CYBEX-P infrastructure as a service (IaaS) to

detect previously unseen phishing URLs with an accuracy of 86%. This is a novel

contribution of this dissertation which not only explores the horizon of advanced

threat data analytics but also demonstrates the capabilities of CYBEX-P for the

same. CYBEX-P can facilitate future researchers by automating the data analysis

pipeline and making the overall process faster and easier for them.

Another framework that sits on top of CYBEX-P is described in chapter 6. This

framework takes a more robust approach towards threat data analysis. A key goal
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for CYBEX-P was to correlate heterogeneous threat data and analyze them together.

This framework achieves that by modeling attacker behavior in a botnet using four

different types of events. The four event types are file downloads, SSH logins, network

traffic, and command input into the shell. To the best of our knowledge, no previous

work has combined such a diverse dataset to predict one set of targets. We have

successfully merged the heterogeneous event types to predict attacker behavior with

an accuracy of 85 − 97%. Additionally, we have merged datasets from five different

locations (Amsterdam, Bangalore, London, Singapore, and Toronto). This framework

is a novel contribution that proves the feasibility of CYBEX-P for the correlation and

analysis of heterogeneous threat data.

7.2 TAHOE

Chapter 4 introduces the second major contribution of this dissertation: TAHOE a

graph-based cyberthreat language (CTL). As previously discussed, any CIS platform

like CYBEX-P potentially handles hundreds of different data formats. Thus, it needs

a standard data format and structure to represent threat data. A cyberthreat lan-

guage (CTL) is a specification of how to format and serialize any kind of threat data.

CYBEX-P uses TAHOE instead of other CTLs like STIX[35] or MISP core format

[36].
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Chapter 4 begins with a brief introduction of the TAHOE structure. We have de-

scribed the data types and corresponding specifications along with the graphical

structure that makes TAHOE unique. The core strength of TAHOE lies in the said

graphical structure. This structure allows us to intrinsically correlate attributes of

different types of events. None of the previous CTLs have that feature rendering

them unsuitable for both complex data sharing and advanced data analysis.

We have proven our claim by comparing TAHOE with the two most popular CTLs

at present time. Firstly, we have compared TAHOE with STIX in terms of query

performance. We have analytically shown that STIX documents are not suitable

for indexing in databases. This makes them slow even for simple queries. We have

validated this claim using empirical results. Secondly, we have compared TAHOE

with the MISP core format. MISP is recently gaining a lot of popularity in the

industry for its simple structure and fast queries. The simple structure of MISP is

suitable for sharing human-generated reports and observations but fails for complex

machine-generated data. We have explained the limitations of the MISP structure

using examples in subsection 4.1.3. Furthermore, we have analytically shown how

MISP is unsuitable for event simple queries like “fetch all emails from and to a certain

email address”.

TAHOE on the other hand was built from the ground up with both complex data for-

matting and data analysis in mind. TAHOE ob jets can be infinitely nested; in other

words, TAHOE can represent arbitrarily complex threat data. Moreover, TAHOE
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is optimized for indexing in databases. This makes TAHOE a better alternative to

traditional CTLs like STIX or MISP. In addition to these, TAHOE offers several

more benefits than traditional CTLs. Firstly, TAHOE normalizes threat data into

the same format. Secondly, it is database-independent meaning all the relevant meta-

data are stored in a single JSON document. And any container that can store JSON

documents can store TAHOE documents. Thirdly, TAHOE de-duplicates data. For

example, there can only be one instance of the IP 1.1.1.1 in a TAHOE database.

This saves CYBEX-P a lot of storage by not storing the same IP in different events.

Fourthly, TAHOE data are globally unique and reproducible. For example, the IP

1.1.1.1 has the same ID in two different TAHOE databases. This ensures TAHOE

documents can easily be shared between organizations without any conflict or con-

version. Finally, TAHOE edges are bi-directional. This allows us to look up events

using attributes or vice-versa. This makes TAHOE robust for complex queries which

in turn makes it preferable for complex data analysis.

Another very important contribution of this dissertation is ThreatRank and algorithm

that sorts evens based on their maliciousness in a TAHOE database. It does so by

correlating newer events with older ones. In simple words, if a new event is assigned

a higher ThreatRank it is more likely to be malicious. It should be noted here that

the graphical structure of TAHOE enabled us to develop and implement ThreatRank.

We have tested the validity of ThreatRank using the famous cyber kill-chain dataset

from Lockheed Martin. Our experimental results show that ThreatRank can play a

major role in detecting previously unseen malicious events and stopping an attack
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before it can cause any damage. We have optimized further optimized ThreatRank

algorithm to achieve the best possible complexity performance. Since CYBEX-P will

potentially receive an unbounded number of events from numerous data sources,

ThreatRank needs to be scalable for a large number of events. We have validated

the performance of this algorithm on a very large dataset with billions of events.

In addition to developing specifications for TAHOE, we have also developed Threat

Data Query Language or TDQL. While TAHOE is a specification for how to structure

any kind of threat data, TDQL is a specification for how to query any kind of threat

data. It standardizes all possible queries in terms of TAHOE instances like events,

attributes, objects, and sessions. This would make all kinds of threat data sharing

easier for both machines and humans alike.

7.3 Future Work

While we have achieved major goals in this research, plenty of pathways remain for

future researchers to extend upon the current endeavors. Firstly, future researchers

might be inclined to explore distributed computing paradigms concerning CYBEX-

P infrastructure. CYBEX-P will potentially handle a large amount of data with

numerous events. As a result, it is not possible to handle all the data with one

single database. Thus, CYBEX-P is built with a distributed architecture in mind. In

turn, ThreatRank also needs to support a distributed architecture to simultaneously
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traverse all the parallel databases using distributed computing paradigms like queuing

and scheduling.

Secondly, the CYBEX-P system can be used to build more advanced threat data

analysis frameworks especially ones that involve neural networks and machine learn-

ing. CYBEX-P is particularly suitable for such tasks and made to facilitate such

researches. One particular work that is a natural extension of what we have done so

far involves labeling or classifying heterogeneous events as benign or malicious. In

other words, the methodology developed by us for merging heterogeneous threat data

can be applied to all kinds of threat data for classification and anomaly detection.

So far we have used only malicious data in the experiments because all of the data

obtained from our honeypots are malicious. However, the general procedure still ap-

plies for classification tasks involving both benign and malicious data. We will let

future researchers explore such a pathway using what we have built so far.

Finally, further research is required on different privacy-preserving queries in CYBEX-

P. We believe the more privacy-preserving queries we have the more people will be

inclined to adopt CYBEX-P. This is one of the key strengths of CYBEX-P and

subsequent research on such queries will make CYBEX-P appealing to a wide range

of organizations.
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