Applications of Intelligent Vision in Low-Cost Mobile Robots

Abstract

With the development of intelligent information technology, we have entered an era of 5G and AI. Mobile robots embody both of these technologies, and as such play an important role in future developments. However, the development of perception vision in consumer-grade low-cost mobile robots is still in its infancies. With the popularity of edge computing technology in the future, high-performance vision perception algorithms are expected to be deployed on low-power edge computing chips. Within the context of low-cost mobile robotic solutions, a robot intelligent vision system is studied and developed in this thesis. The thesis proposes and designs the overall framework of the higher-level intelligent vision system. The core system includes automatic robot navigation and obstacle object detection. The core algorithm deployments are implemented through a low-power embedded platform. The thesis analyzes and investigates deep learning neural network algorithms for obstacle object detection in intelligent vision systems. By comparing a variety of open source object detection neural networks on high performance hardware platforms, combining the constraints of hardware platform, a suitable neural network algorithm is selected. The thesis combines the characteristics and constraints of the low-power hardware platform to further optimize the selected neural network. It introduces the minimize mean square error (MMSE) and the moving average minmax algorithms in the quantization process to reduce the accuracy loss of the quantized model. The results show that the optimized neural network achieves a 20-fold improvement in inference performance on the RK3399PRO hardware platform compared to the original network. The thesis concludes with the application of the above modules and systems to a higher-level intelligent vision system for a low-cost disinfection robot, and further optimization is done for the hardware platform. The test results show that while achieving the basic service functions, the robot can accurately identify the obstacles ahead and locate and navigate in real time, which greatly enhances the perception function of the low-cost mobile robot

    Similar works