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Abstract. 

With the development of intelligent information technology, we have entered an era of 5G 
and AI. Mobile robots embody both of these technologies, and as such play an important role 
in future developments. However, the development of perception vision in consumer-grade 
low-cost mobile robots is still in its infancies. With the popularity of edge computing 
technology in the future, high-performance vision perception algorithms are expected to be 
deployed on low-power edge computing chips. Within the context of low-cost mobile robotic 
solutions, a robot intelligent vision system is studied and developed in this thesis. 

The thesis proposes and designs the overall framework of the higher-level intelligent vision 
system. The core system includes automatic robot navigation and obstacle object detection. 
The core algorithm deployments are implemented through a low-power embedded platform. 

The thesis analyzes and investigates deep learning neural network algorithms for obstacle 
object detection in intelligent vision systems. By comparing a variety of open source object 
detection neural networks on high performance hardware platforms, combining the 
constraints of hardware platform, a suitable neural network algorithm is selected. 

The thesis combines the characteristics and constraints of the low-power hardware platform to 
further optimize the selected neural network. It introduces the minimize mean square error 
(MMSE) and the moving average minmax algorithms in the quantization process to reduce 
the accuracy loss of the quantized model. The results show that the optimized neural network 
achieves a 20-fold improvement in inference performance on the RK3399PRO hardware 
platform compared to the original network. 

The thesis concludes with the application of the above modules and systems to a higher-level 
intelligent vision system for a low-cost disinfection robot, and further optimization is done for 
the hardware platform. The test results show that while achieving the basic service functions, 
the robot can accurately identify the obstacles ahead and locate and navigate in real time, 
which greatly enhances the perception function of the low-cost mobile robot. 

Keywords: mobile robot; intelligent vison; object detection; deep learning. 
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1 Introduction 

1.1 Background 

With the rapid development of science and technology, after the advent of 5G and the 

development of Artificial Intelligence (AI) in recent years, we have entered a 

technological era of 5G and AI, and our lives are full of smart devices equipped with 

5G and AI. Mobile robots embody both of these technologies, and as such play an 

important role in future developments. There are many application scenarios in the 

development of robots, from wheeled mobile robots on the ground to flying robots in 

the air and robots on the water. These robots can efficiently complete the established 

tasks. There are industrial robots in various factory floors, bionic robots in the medical 

field and anthropomorphic robots or smart dogs in research fields which are developed 

by companies such as Boston Dynamics. In addition, there are some robots that are 

targeting the consumer level, which are very popular in recent years. These robots are 

mainly service-type, and they account for more and more proportions in the market, 

including sweeping robots, disinfection robots, food delivery robots, etc. A selection of 

popular mobile robotic platforms are shown in Figure 1-1. These robots can perform 

tasks including logistics, transportation, sanitation and entertainment[1]. They can 

autonomously complete service work which is beneficial to humans without too much 

intervention, and the field of service types is too wide, making them become extremely 

important in the future. At the same time, with the continuous research and development 

of Internet of Things (IoT) technology and smart lives, a large number of AI 

technologies have been deployed on IoT devices. Mobile robots with intelligent 

interactive features are entering the consumer market, and they are becoming more and 

more extensive in people’s daily lives[2]. 

The core technology of mobile robots revolves around the three aspects of perception, 

decision-making and execution. These three architectural pillars include more detailed 

aspects such as path planning, control, environmental perception, mechanical structure 

design and other fields. The perception is mainly the robot's understanding of the 

unknown environment. About how to feel surroundings around the robot, including the 

depth information and feature information of the target object. This aspect is mainly 

realized by the sensors and the algorithm which processes the back-end data[3]. 



6 

 

 

Decision-making means that after the robot perceives external information, through 

internal program settings and algorithms, the robot itself makes a decision on how to 

act in the next step. Next step is execution. Execution is to control the robot itself 

according to the results of the decision-making. It mainly includes two types, one is 

motion control, which is the speed, and the other one is dynamic control, which is the 

driving torque[4]. In these three aspects, perception is the most core technology. 

Decision-making and execution are firmly dependent on the robot's perception. 

Perception mainly relies on the robot's vision system. Therefore, the development of 

robot vision system has become particularly important[5]. 

At present, robots have a wide range of applications in all walks of life, especially 

consumer-level robots appear more and more frequently. Therefore, further application 

research based on robots has become extremely important. In all aspects of robots, 

perception is particularly important. In view of this, based on a general low-cost 

consumer-grade mobile robot platform, the thesis has developed an upper-level 

intelligent visual system, combined with deep learning technology in AI, Simultaneous 

Localization and Mapping (SLAM) technology and edge computing platforms. With 

this intelligent vision system, traditional vision system which rely on infrared and 

Figure 1-1 Application of Robots (a) Proscenic’s sweeper robot (b) iRobot’s sweeper robot 

(c) Xiaomi’s CyberDog (d) AIST’s HRP-5P 

(a) (b) 

(c) (d) 
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ultrasonic sensors has become more intelligent. Mobile robots can realize real-time 

obstacle detection, localization and automatic navigation function while finishing basic 

service functions efficiently. 

1.2 Review of Current Research 

1.2.1 Mobile Robot Applications 

Many researchers and engineers are currently working in the field of mobile robots. 

The proportion of robots in the market is increasing because there are variety of 

application scenarios. In industrial-level scenario, mobile robots can be used to perform 

automatic operations and intelligent transportation in the factory floor. The position and 

navigation of the robot is a key point in this application[6-7]. While the robot not only 

position itself, it also needs to coordinate with other robots. This function has higher 

requirements on the robot's vision perception and decision-making system[8]. When 

transporting goods autonomously, mobile robots will simulate human hands to carry 

out the function of grabbing goods. Some mobile robots will adopt a feature of rigid 

hands. B.Fang et al. designed a mobile robot that uses soft hands to do it, so that the 

robot’s execution can be better integrated with vision perception[9]. For the application 

scenarios of flying robots in the air, A. Sánchez-Orta used a monitoring flying robot to 

obtain better visual perception to assist the decision-making of the autonomous  

vehicle[10]. W. Tabib used autonomous flying robots to perform cave detection. These 

robots are equipped with depth cameras so they can obtain both image and distance 

information. This robot vision perception performs better detection function and reduce 

the risk of people working in such dangerous situations[11]. 

In the medical field, Z.LI et al. used brain-computer interfaces to assist some patients 

suffering from certain diseases or nerve loss. They developed an exoskeleton robot that 

can be controlled through the patient's own thoughts[12]. The bionic robot designed by 

G.FICHT can coexist with humans in this society. This kind of humanoid robot can 

replace humans to complete tasks in many dangerous scenarios[13]. There are also 

application scenarios different with mechanical work. M. Langen et al. designed a 

bionic robots which can be used as a companion for many lonely people for they have 

AI-based emotional processing capabilities[14]. 

In daily life scenarios, people may be more concerned about the interaction between 
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robots and humans[15]. L. Pang et al. used mobile robots to perform automatic following 

job for human beings. There are many potential applications for following robots, 

including auto-following suitcases, shopping carts and assistance for the elderly and 

disabled people[16]. J. Chen et al. developed one type of following robots which can 

recognize different human gestures and have different interactions based on these 

gestures. This type of following robot mainly considers three aspects. Perceptual 

detection of human interaction, positioning of unfamiliar environment and own 

decision-making[17-18]. 

At present, because of the global epidemic of covid-19 virus which began in 2020, 

almost all countries on all continents in the world have been severely affected, and 

people’s daily lives have undergone great changes[19]. The application of disinfection 

robots has emerged on the market. Since the process of using a large amount of 

chemicals to disinfect the environment will seriously threaten human health and safety 

if it is done manually, the solution of using mobile disinfection robots is a very effective 

tool against viruses[20-21]. Ackerman et al. developed large-scale disinfection robots 

deployed in hospitals[22], and Guettari et al. designed small household disinfection 

robots which use UVC light as disinfection tools[23]. With the emergence of these 

disinfection robots, people's health has been further guaranteed in today's epidemic 

situation. 

Although there is a lot of research on the application of robots at home and abroad, 

most of the researchers and engineers mainly focus on large-scale industrial scenes. The 

research on consumer-grade mobile robots in daily lives is relatively small and the 

development of robots mainly revolve around the decision-making and execution 

aspects. Further work is needed for the development of robot visual perception. 

 

Figure 1-2 Disinfection Robots (a) UBTech’s Adibot (b) CloudMinds’s CCLE-GA-2-50 

(a) (b) 
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1.2.2 AI on Robotics 

AI has experienced rapid development in this era, which has penetrated into all walks 

of life in modern society, from industry to medical care, to humanities education, and 

even to government departments. AI-based systems currently have excellent perception, 

learning, inference and generalization capabilities. Our daily lives are full of AI[24]. At 

the same time, the development of deep learning has witnessed a climax in the field of 

machine learning, brought about a vigorous development of AI applications. Deep 

learning has had a great impact on many fields, including robotics and smart phones. 

Among the deep learning in the field of robotics, computer vision and natural language 

processing are the most popular research areas[25-26]. The application of computer vision 

and natural language processing based on AI are shown in the Figure 1-3 and 1-4. 

Figure 1-3 Computer Vision in AI 

Figure 1-4 Natural Language Processing in AI 



10 

 

 

The application of deep learning on mobile robots is becoming an increasingly hot topic. 

Some researchers have combined the technology of deep learning and reinforcement 

learning, applied Deep Reinforcement Learning (DRL) to the robot to improve the 

accuracy of the robot’s visual perception and decision-making[27-28]. H. Jiang et al. used 

DRL to solve the problems encountered by robots in dynamic environment navigation, 

because generally mobile robots perform positioning and navigation tasks in a 

relatively static environment, while the dynamic environment is full of uncertainties, 

utilization of DRL is better to solve this problem[29]. T. Hiejima et al. also applied 

reinforcement learning to cluster robots, letting clusters to make better decisions when 

they collaborate efficiently[30]. P. Kirsanov et al. combined deep learning and SLAM 

technology, using neural network based semantic segmentation and panoramic 

segmentation to improve the accuracy of visual SLAM mapping[31]. 

Although the development of AI in mobile robots is becoming more and more popular, 

most of the researchers focus on the decision-making aspect of robots. There are not 

many studies on the perception system of robot. While perception has a very important 

influence on the entire operation of robots. Therefore, the development of intelligent 

vision system based on machine learning on mobile robots is one of the current research 

directions. 

1.2.3 Era of Edge Computing 

With the rapid growth of the consumer electronics industry and continuous 

development of Information Communication Technology (ICT), from cloud servers to 

personal computers and smart mobile phones, we are in an era full of information 

computing. More and more smart devices are developing in the direction of wearable 

devices and IoT. It is estimated that by 2030, there will be about 500 billion devices 

connected to IoT. With the emergence of these devices, the demand for computing and 

storage is also increasing. The traditional server-dependent computing solutions need 

to undergo a process of transformation and new computing methods need to be 

proposed[32-34]. Therefore, edge computing has emerged. Edge computing is a new form 

of computing and different from traditional data processing. In the past, developer 

always considered uploading the data to a cloud server, processing and storing the data 

in the cloud, and then sending some required results back to the edge terminal[35-36]. 

Edge computing refers to data processing and computing directly on the appropriate 
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device on the edge terminal, without uploading to the cloud. All operations are run 

locally[37-38].  

At the same time, with the application of AI technologies on IoT scenarios, machine 

learning brings more data processing needs. How to introduce AI into edge computing 

field has become a hot topic. Edge AI computing is different from traditional machine 

learning computing. Traditional technology relies on large servers with strong 

computing power[39]. While neural network inference on IoT devices has many 

constraints, including the computing power, memory, and input and output throughput 

limitations of the hardware platform. These all make it difficult to deploy AI neural 

networks on the edge devices. However, the IoT devices have the advantages of real-

time, strong distribution, positioning information, high mobility, etc. Also due to too 

many IoT devices, it is impossible to upload all edge data to the cloud. Therefore, it is 

necessary to develop edge AI computing with real-time and high mobility[40-41]. 

In some edge computing scenarios with small data volumes, it is generally possible to 

rely on tiny single-chip processors and Real-Time Operating System (RTOS). While 

this kind of hardware is not enough when AI algorithms need to be deployed on the 

edge devices, neural networks have computing power requirements for the hardware 

platform. So, the hardware platform requires a specific architecture design. At present, 

the hardware for edge AI acceleration is mainly divided into three categories, utilizing 

CPU, GPU or ASIC for neural network inference. Based on general-purpose CPUs and 

GPUs, many companies and researchers have developed software acceleration 

optimizations, including intel’s OPENVINO, NVIDIA’s cuDNN and TensorRT. For 

ASICs, there are a variety of hardware structures, including DSP, Neural Processing 

Unit (NPU), Tensor Processing Unit (TPU), and other hardware acceleration units 

specifically for neural network algorithms. With the support of these hardware 

structures, the deployment of AI algorithms on IoT and mobile terminals will become 

simpler, more feasible and efficient. 

Figure 1-5 shows several edge computing platforms which have optimization and 

acceleration for neural networks inference. The mobile robot intelligent vision system 

in this thesis also selects the edge AI computing solution, and the selected RK3399PRO 

platform has an NPU for neural network acceleration. 
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1.3 Thesis Work and Contributions 

In this era, as the application of robots in all walks of life becomes more and more 

widespread, especially consumer-level mobile robots occupy more and more shares in 

the market, including sweeping robots, guidance robots. And because of the global 

popularity of Covid-19 virus, disinfection robots are also popular in the market now. 

The main technology of this kind of robots are three parts: perception, decision-making, 

and execution. Among these three parts, perception is a particularly important aspect. 

The latter two depend on the robot's perception of the environment, obstacles and 

unknown areas. However, most of the existing consumer-grade mobile robots on the 

market rely on simple infrared and ultrasonic sensors for their perception. They are not 

as powerful as industrial-grade and bionic robots in terms of perception. This part is 

still need for development. For this reason, this thesis mainly focuses on the research 

and design of perceptive function on consumer-level mobile robots, which is the 

development of the mobile robot's intelligent vision system.  

The main work and contributions of this thesis include: 

Intelligent vision system frame design: The visual development of mobile robots is 

the most critical part of the entire system. Only mobile robots with a perfect vision 

system can successfully complete the tasks set out at the beginning. Based on this, an 

intelligent vision system is designed and developed on the existing disinfection robot 

platform. From the construction of sensors to the selection of perception technology, 

the development of algorithms, the allocation of hardware resources and the 

communication between different modules. Finally, the architecture design of an upper-

Figure 1-5 Different Edge Computing Platform (a) Intel’s Neural Compute Stick (b) Google’s 

Edge TPU Platform (c) Nvidia’s Jetson Nano 

(a) (b) (c) 
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level vision system is completed, and this vision system innovatively introduces SLAM 

and deep learning neural network technologies. 

Development of deep learning neural network algorithm: This is an era of 5G and 

AI, so the application of AI has penetrated into all walks of life, and the development 

of deep learning is particularly prominent in AI. Therefore, the obstacle object detection 

vision module based on deep learning is applied to mobile robots in this thesis. The 

thesis compares the structure of different object detection neural network algorithms 

and analyzes the advantages and disadvantages of various tricks. Through construction 

of own dataset, different algorithms are trained and tested on a high-performance 

hardware platform. Also, they are deployed to low-power hardware platform for 

inference verification. The degree of adaptation of these neural networks in the mobile 

robots and the possibility of further optimization are analyzed according to the training 

and inference results. Finally, the state-of-the-art object detection neural network 

YOLOV4, which is not adopted by most developers, is innovatively selected as the 

main idea of the obstacle detection module in the intelligent vision system. 

Neural network optimization for edge deployment: As a smart device of the IoT, a 

mobile robot will have many restrictions if data processing and neural network 

inference are uploaded to the cloud server. Meanwhile the application scenario of 

mobile robot determines its high requirements for real-time performance. In view of 

this, this thesis uses the edge computing solution to deploy the neural network algorithm 

and chooses RK3399PRO edge AI platform. Based on the features of the hardware, a 

series of optimization processes have been done on the neural network structure, 

including splitting, replacement, and fusion of different operators, conversion of data 

layout and optimization of activation function and pooling layer. At the same time, the 

model is quantized and compressed. The main innovations are the utilization of 

asymmetric affine and dynamic fixed point algorithms for quantization and the 

minimize mean square error (MMSE) and Moving Average Min Max algorithms are 

introduced in this process to update the quantization parameters to reduce the accuracy 

loss of the quantized model. All of these optimizations are completed on ARM platform. 

At last, the inference performance of the neural network on the RK3399PRO hardware 

can approach that on the high-performance server. 

Finally, an upper-level intelligent vision system with deep learning object detection 

function and SLAM navigation planning is developed on the mobile robot platform. 

The optimized object detection neural network can detect and visualize real-time 
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obstacles in the 1080p60fps video stream captured by the monocular camera, whose 

inference performance has a 20 times improvement compared to the original YOLOV4 

network. The robot's vision system can process data up to 15 frames each second and 

the detection accuracy for obstacles can reach more than 90%. With this intelligent 

vision system, the mobile robot can realize real-time obstacle detection, localization 

and navigation while finishing basic service functions in unfamiliar environments, 

which significantly enhances the robot’s perception. 

1.4 Thesis Structure 

Chapter 1 contains introduction to the whole thesis, including current research and 

development of robots, daily life applications, core technologies of mobile robots and 

combination AI and edge computing technologies. It summarizes the main work and 

contributions to the development of mobile robot vision system. 

Chapter 2 focus on the framework design of the robot intelligent vision system. It 

analyzes and introduces the two key technologies, describes the construction of sensors 

of the vision system, the allocation of hardware resources, the selection of perception 

algorithms and the communication between different modules. Finally, it introduces the 

architecture diagram of the intelligent vision system. 

Chapter 3 covers the research and development of deep learning algorithms on robots. 

It introduces the principle of object detection algorithms based on deep learning, 

analyzes its application on mobile robots and compares different object detection neural 

networks. These networks are trained on high-performance platform and deployed on 

low-power platforms to compare their pros and cons. Finally, the state-of-the-art 

YOLOV4 neural network is selected as the main idea of the obstacle object detection 

module in the intelligent vision system. 

Chapter 4 focus on the optimization of neural network on the hardware. It introduces 

the structure of the RK3399PRO hardware and the basic idea of the deep learning neural 

network acceleration. Then it introduces operator splitting, replacement and fusion, 

conversion of model data layout and the development of activation function and pooling 

layer. This chapter also introduces the quantization process and how to improve 

quantization accuracy. Finally, the optimized neural network has a much lower resource 

usage and better inference performance on hardware platform. 

Chapter 5 includes the results and data analysis. It shows the construction of dataset, 
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training and testing results of different object detection neural networks on high-

performance platform and the inference results on low-power platform. According to 

the accuracy and performance, it is proved that the optimized neural network has the 

best inference performance with acceptable accuracy. 

Chapter 6 concludes the whole thesis and discusses future research directions. It 

summarizes the work and contributions to the intelligent vision system, analyzes some 

deficiencies in the software algorithm level and the hardware structure level and 

provides some reference ideas for future vision system development.
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2 Robot Vision System Design 

This chapter introduces architecture design of intelligent vision system on mobile robot. 

It describes the principles of mobile robot’s vision and analyzes two key perception 

technologies, including their principles and research status. The chapter also introduces 

sensor construction, communication of different modules and allocation of hardware 

resources of the whole system. Finally, this chapter shows the whole architecture 

diagram of the vision system. 

2.1 Mobile Robot Vision Principle 

The visual development of mobile robots is to develop how the robot perceives the 

surroundings. Traditional robot vision system is mainly divided into monocular vision, 

binocular stereo vision, multi-eye vision, panoramic vision and mixed fusion solutions. 

The classification is based on different sensors. Monocular vision uses only one vision 

sensor. During the imaging process, it is projected from the three-dimensional objective 

world onto the two-dimensional image. However, monocular vision system cannot 

obtain depth information. It can only be roughly estimated by some algorithms. This is 

the main disadvantage of this type of vision system[42]. But monocular vision is the 

basis of other types of vision systems, which are realized by adding other means and 

measures. Binocular stereo vision is composed of two cameras. It uses the principle of 

triangulation to calculate the depth information of the object. And it can reconstruct the 

three-dimensional shape and position of the surrounding scenery, drawing on the 

principle of the human eye. While the difficulty of the binocular vision is the matching 

of left and right vision at a same point. The multi-eye vision and others solve the 

ambiguity of binocular vision system matching. They use multiple sensors to carry out 

a vision fusion solution, which highly improves the robot’s visual positioning 

accuracy[43]. The higher level vision system requires more complicated processing 

algorithm, which needs more time and hardware resource.  

At present, there are many research developments in the field of robot vision. But most 

of them are aimed at industrial-level robots and some advanced bionic robots. There is 

not much development of vision applications on consumer-level mobile robots. On this 

kind of robots, such as sweeping robots and disinfection robots, vision systems only 
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rely on conventional infrared or ultrasonic sensors to perform some obstacle avoidance 

functions. This vision system is greatly affected by environmental interference and data 

errors occur from time to time. And it does not include automatic localization, automatic 

navigation, object detection, target tracking and other intelligent functions. While the 

perception of environment and the path planning are core technology of whether the 

mobile robot can successfully perform tasks[44]. Therefore, research on vision 

development on such mobile robots, combined with AI and SLAM algorithms to 

achieve high-precision vision systems, can enable these robots to work more efficiently. 

And in this intelligent vision systems, high-precision positioning and as much 

surrounding information as possible are required. So, this thesis designs a multi-sensor 

fusion system. 

2.2 Sensor Construction  

The visual development of the robot mainly includes two parts. One is the positioning 

in an unfamiliar environment, which is related to the functions of automatic positioning, 

mapping and navigation. The other one is the cognition of unknown things, which 

involves an object detection function for obstacles, and face detection on robots is also 

belongs to this part. 

In the mobile robot platform, in order to realize these two visual development parts, the 

construction of sensors is required to collect data. This thesis uses a multi-sensor fusion 

vision frame, including a monocular camera and a 2D LiDAR for intelligent vision 

system, which is shown in Figure 2-1. 

The monocular camera is mainly used for object detection function based on deep 

learning. It uses the USB interface to transmit video stream information to the 

RK3399PRO board. The 2D LiDAR is mainly used for robot's SLAM algorithm and 

Figure 2-1 Sensors of Vision System (a)Monocular camera (b)2D LiDAR 

(a) (b) 
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automatic navigation function. It uses network interface is used to transmit the point 

cloud information which is reflected by laser. With the construction of these two sensors, 

mobile robots can complete tasks more efficiently and intelligently in unknown 

environments. The control panel of the mobile robot still uses infrared and ultrasonic 

sensors as an auxiliary obstacle avoidance. 

2.3 SLAM on Mobile Robot 

SLAM is mainly about solving the problem of positioning, navigation and mapping 

when the robot is running in an unknown environment. Construct and update the map 

of the unknown environment through the LiDAR sensor carried by the robot[45]. When 

the robot is working in an unfamiliar environment, it first needs to locate its own 

position and it needs to construct a map based on the surrounding environment 

information, so the robot can perform synchronize positioning in the map. Then it can 

lead to the next step of the navigation function, the robot decides which direction to go 

through its own decision-making. This process can be divided into four parts: 

perception, positioning, mapping and navigation. Among these four parts, positioning 

is the most critical aspect. High-precision positioning is a prerequisite for high-

precision mapping and accurate navigation[46]. At present, there are visual SLAM based 

on traditional images and laser SLAM based on point cloud information. The 

development of laser SLAM started earlier than visual SLAM, and it is more mature 

than visual SLAM in all aspects. However, laser SLAM strongly relies on the accuracy 

of the sensor, and it will be time-consuming to construct and update maps. Visual 

SLAM cost less and obtain more information, but the reliability and accuracy are not 

as good as laser SLAM[47]. On mobile robots, these two SLAM technologies have been 

researched and developed. Laser SLAM is mainly used in indoor areas. Visual SLAM 

can be used both indoors and outdoors, but the dependence on light is relatively high 

and it cannot work in dark places or areas with few texture features. The process of 

SLAM is shown in Figure 2-2. 

The mobile robot intelligent vision system in this thesis utilizes a 2D LiDAR to perform 

a SLAM mapping and navigation. The research and design of the SLAM algorithm part 

is in charge of my partner Zihan Liu. I am responsible for the data post-processing and 

fusion of the SLAM algorithm results. 
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2.4 Object Detection on Mobile Robot 

Object detection is the core technology of computer vision and image processing. It 

plays a key role in applications such as robot navigation, intelligent monitoring and face 

recognition. It is a hot topic in the field of robotics research and application. Object 

detection is to enable the robot to detect and recognize each object that can be perceived 

by the sensor. On the mobile robot, the object of interest in the image obtained by 

sensors can be found through object detection. The category and location information 

of the object can be marked, so that the robot has a better cognitive function for 

unknown surrounding obstacles. Based on this function, a more intelligent robot can be 

further developed to achieve better service functions. Many researchers and engineers 

have studied object detection algorithms and applied them to robot's vision system. 

Object detection algorithm is mainly divided into two categories, one is a traditional 

image recognition algorithm based on conventional image segmentation and feature 

extraction. The classification and recognition are based on edge texture features of 

image. The other one utilizes deep learning technology. Neural network is used to 

extract the features of the image, and then perform the detection and classification at 

the backend. Recent years, the development of AI is extremely hot, and deep learning 

is the most popular part of the research, especially in the field of computer vision. There 

are a large number of neural network algorithms for image segmentation, classification, 

object detection and other functions. These algorithms have excellent achievements. At 

present, there are many developers researching in academia and industry. 

The process of object detection based on deep learning is shown in Figure 2-3. 

Figure 2-2 Main Idea of SLAM 
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However, a lot of research is still in the theoretical algorithm stage. Most of the neural 

network algorithms for object detection are implemented on powerful processors. In 

the IoT application scenarios, there is still a lack of research when mobile robots are 

equipped with low-power chips. Few developers have done a deep learning algorithm 

performance optimization for the hardware platform, which is lacking in the current 

academic research field and the market. How to implement a very computationally 

expensive and complex neural network algorithm on a chip with lower computing 

power and memory requires further research and development. This is a difficult point 

in this thesis, and it is the main research direction. 

2.5 Whole System Architecture 

The mobile robot platform used in this thesis is a disinfection robot, and the intelligent 

vision system is a multi-sensor fusion vision solution. The object detection function is 

based on the deep learning neural network algorithm. The neural network processes the 

real-time video stream data obtained by monocular camera. The synchronous 

Figure 2-3 Main Idea of Object Detection based on Deep Learning 
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positioning and automatic navigation function is based on laser SLAM algorithm. This 

algorithm processes the point cloud data obtained by 2D LiDAR. In addition, this 

mobile robot includes obstacle avoidance functions based on the infrared and ultrasonic 

sensors. The whole system design involves hardware construction, allocation of chip 

resource, message communication between different modules and algorithm 

implementation. The entire intelligent vision system is deployed to the low-power edge 

computing IoT platform. The RK3399PRO is the core processing chip. The specific 

system architecture is shown in the Figure 2-4. 

Inside the RK3399PRO platform, GPU and VPU are responsible for video stream 

encoding and decoding, image enhancement, noise reduction and other preprocessing, 

NPU is responsible for the inference of the object detection neural network algorithm, 

and the dual-core Cortex-A72 of CPU is responsible for the 2D LiDAR data processing 

and SLAM algorithm implementation , the quad-core Cortex-A53 is responsible for the 

post-processing and data fusion of neural network and SLAM algorithm. The idle core 

of Cortex-A53 implements the communication function with STM32F series control 

panel. The mobile robot’s motor drive, data processing of obstacle avoidance sensors 

and the realization of service functions like disinfection or sweeping are all controlled 

by the STM32F series chip. The STM32F control panel is connected to the 

RK3399PRO chip of the upper intelligent system for communication. The RK3399PRO 

chip is responsible for the algorithm implementation of the intelligent vision part, 

Figure 2-4 Whole Vision System Architecture 
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navigation control command issuance and data visualization. 

The whole mobile robot platform uses a hardware architecture of RK3399PRO 

processing chip and the STM32F series control chip. The RK3399PRO is the core of 

the intelligent vision system. 

2.6 Summary 

This chapter describes the architecture design of the intelligent vision system on mobile 

robots, including the SLAM algorithm for positioning and navigation in unknown 

environments and the deep learning neural network for obstacle object detection. It also 

introduces the construction of sensors, the allocation of chip resource and 

communication between different modules. Finally, this chapter shows an overall 

intelligent vision system architecture.
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3 Deep Learning Object Detection on Robot 

With the development of the IoT technology and AI algorithm, Artificial Intelligence 

and Internet of Things (AIoT) has become a popular research area in recent years and 

there are more and more AIoT applications on mobile robots. Among the development 

of AI and machine learning, deep learning neural network has achieved a breakthrough. 

It has been a hot topic of research and development in recent years. Convolutional 

Neural Network (CNN) based on deep learning has a significant achievement in both 

computer vision and natural language processing[48]. On mobile robots, both of them 

have applications and research, but they are mainly in early stages. In the intelligent 

vision system on mobile robot, this thesis mainly focuses on the development of the 

object detection function based on the deep learning. This chapter researches the deep 

learning neural network algorithms on the mobile robot, compares several open source 

object detection neural networks and analyzes their advantages and disadvantages. 

These neural network algorithms are trained and tested on a high-performance server 

and a low-power IoT platform. According to the accuracy and performance of different 

neural networks, the YOLOV4 network is selected as the main idea of the algorithm for 

the obstacle object detection module in the intelligent vision system. 

3.1 Traditional Object Detection Neural Network 

Object detection refers to identifying the target in the image and locating it. This 

function extracts the location feature information on the basis of the conventional image 

classification algorithm and outputs the coordinate information in pixels of each 

category’s object. However, the size of the object varies widely, the angle and posture 

of the object are not fixed, and the object can appear anywhere in the image. Generally, 

one image includes a variety of categories. So, it is difficult to achieve extremely 

accurate object detection and there are a variety of different algorithms. With the 

success of deep learning in these years, most of the research directions have turned to 

deep learning based object detection. There are many successful classic algorithms 

which have proved that applying deep learning to object detection can greatly improve 

the accuracy and performance[49]. 

General structure of object detection neural network is shown in Figure 3-1. 
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This kind of neural network mainly includes four parts: the input preprocessing part, 

the backbone network, the neck and the output head. The input part is generally 

preprocessing such as splicing and enhancement of a batch of pictures. The backbone 

network is generally divided into ResNet, Cross Stage Partial Network (CSPNet) or 

MobileNet according to the different hardware of neural network deployment, using 

GPU or CPU. The neck network is generally composed of several top-down paths and 

bottom-up paths to extract and fuse features. The output head part is usually divided 

into two categories, one-stage and two-stage. The difference is that the one-stage 

algorithm directly outputs the probability and coordinate of each object category. The 

two-stage algorithm has two steps: the first step is to generate candidate regions through 

Region Proposal Network (RPN), and the second step is to classify and regress each 

proposal region to obtain the final result. The one-stage algorithms usually have faster 

inference speed while two-stage algorithms have higher accuracy. The rest of this 

chapter overviews the basic concepts behind popular one-stage (SSD, YOLO) and two-

stage detectors (R-CNN). 

3.1.1 R-CNN 

R-CNN is a classic two-stage computer vision neural network algorithm. Two-stage 

must first filter out proposal regions and then perform feature extraction and 

segmentation. R-CNN has developed from the initial neural network structure to current 

neural network of R-CNN, Fast -RCNN, Faster-RCNN and mask-RCNN. The main 

application scenarios of R-CNN include image classification, object detection, face 

detection and image segmentation, many subsequent computer vision neural networks 

have borrowed ideas from R-CNN[50]. 

The main idea of the R-CNN neural network algorithm is to first extract about 2000 

region proposal from the input image through the selective search algorithm, and then 

input each proposal region into CNN for feature extraction. The original R-CNN 

Figure 3-1 General Structure of Object Detection Neural Network 
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network scales each proposed area to 227x227, while Fast-RCNN and Faster-RCNN 

directly input the entire image into CNN for feature extraction so that the features of 

the entire image are extracted at one time. Compared with the original R-CNN network, 

there is no need to put each proposed region into CNN to extract feature, which greatly 

reduces the amount of calculation. The final step is to classify the extracted features. 

Original R-CNN network transfer these features into Support Vector Machine (SVM) 

for classification and positioning, but the speed of final window coordinate prediction 

through SVM regression is too slow, and the features are not updated. In the following 

Fast-RCNN and Faster-RCNN, this structure is cancelled, and the Pooling layer of 

Region of Interest (ROI) is used to generate fixed-size feature maps. Then SoftMax and 

Smooth L1 Loss function are connected to calculate probability of classification and 

bounding box regression is used to generate prediction window. 

The latest Faster-RCNN network structure in the development of R-CNN is shown in 

Figure 3-2. 

In Faster-RCNN, when generating the suggestion window, the RPN is used instead of 

the original selective search algorithm to generate the proposal region. At the same time, 

the concept of anchor box is utilized to deal with the diversification of object shape and 

size. The area extracted by these anchor boxes is used to determine whether it is in the 

foreground or the background, and then suggestion window is generated. This structure 

will greatly improve the efficiency. 

Figure 3-2 Neural Network Structure of Faster-RCNN 
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From R-CNN, Fast R-CNN, Faster R-CNN along the way, the detection process is 

becoming more streamlined, the accuracy is getting higher and higher, and the inference 

speed is getting faster and faster. R-CNN is the most important branch in the 

development of the field of deep learning object detection. However, when applied to 

a mobile robot platform, the computing power and memory resources of the hardware 

are limited, the two-stage object detection neural network is not very suitable, which 

will first extract the anchor box from the feature map based on the proposal region, then 

map the anchor box to the feature map, and finally perform a classification and 

regression on this whole feature map area. There is a neural network layer for proposal 

region generation in the middle, which greatly increases the requirements of neural 

network for hardware platform resources. Even on faster-R-CNN, which requires the 

minimal resources, the memory used for training on the server will be 50% higher than 

that of other neural networks. When the model is deployed on the RK3399PRO 

platform, the inference time is several times that of the one-stage neural networks. Of 

course, the performance also related to the hardware platform's support for different 

network structures and different operators. Therefore, when deploying edge AI 

computing solution on mobile robots, the R-CNN is not applicable. In view of this, the 

object detection neural network selected for the intelligent vision system on mobile 

robot platform in this thesis is one-stage type. However, the R-CNN network is still an 

important beginning of deep learning object detection neural networks. 

3.1.2 SSD 

The Single Shot MultiBox Detector (SSD) algorithm is one of the most widely used 

algorithms in the field of target detection so far, and many researchers and engineers 

have developed a lot of improved algorithms on the original SSD neural network[51]. As 

mentioned above, the RPN layer used by Faster-RCNN is used to extract the features 

of the entire image. However, one of the drawbacks of RPN is that the detection effect 

for small target objects is very poor, because its anchor is fixed. Each point on the 

feature map is mapped back to the original image. If the size of the input image is large 

and the size of the output feature map is small, each point on the feature map is 

responsible for a large area, and generally the feature map of the last layer is relatively 

abstract. In this way, the features of small target objects on the original image cannot 

be extracted well. In view of this, SSD was born. Unlike RPN processing the results of 
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prediction and detection on the final feature map, SSD performs information fusion 

from multiple scales feature maps. It predicts and detects results on feature maps of 

various levels and finally integrate the different prediction results.  

 

The structure of SSD is shown in Figure 3-3. The backbone network part of the SSD 

adopts the idea of VGG16, but SSD has some modifications: the two Fully Connected 

(FC) layers are replaced with convolutional layers, the dropout layer is removed, the 

atrous convolution algorithm is introduced and parameters of pooling layer are 

improved. In order not to reduce the size of the feature map, several feature maps of 

multiple scales can perform accurately detection at the same time. The receptive field 

of the feature map at the bottom is relatively small, and the receptive field at the high-

level is relatively large. The shallow layers are more interested in the edges, while the 

deep layers are more interested in the complex features composed of the shallow 

features.  

SSD also draws on the anchor structure in Faster-RCNN, which will generate a series 

of default boxes from the feature map and select out one prior box as the initial 

coordinates. The final predicted positioning information is actually the relative 

coordinates of the bounding box after regression and the prior box before regression. 

That is, some default boxes are preset, and then the real object detection window is 

obtained by SoftMax classification and bounding box regression. Also, different default 

boxes are selected for feature maps of different scales. Finally, the predicted detection 

Figure 3-3 Neural Network Structure of SSD 
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boxes are sent to the Non-Maximum Suppression (NMS) module to calculate the final 

detection result. 

The inference results of SSD neural network deployed on the RK3399PRO platform is 

shown in Figure 3-4. 

 

In general, SSD not only borrows part of the mechanism in Faster-RCNN, but also 

speeds up the detection process based on it. Because SSD is a one-stage network, it 

outputs detection results only in one step, Faster-RCNN is a two-stage network which 

requires two networks to perform operations. The data enhancement, multi-scale fusion, 

and FC layer adopted by the SSD have all verified this. The accuracy of the SSD does 

not lose much compared to Faster-RCNN. In the AIoT scenario, SSD is also one of the 

most widely used algorithms. However, the SSD neural network algorithm also has 

certain shortcomings. Although there is a multi-scale pyramidal feature hierarchy idea, 

the detection of small targets is still not good. In the application scenario of the mobile 

robot in this thesis, small target objects are still in a more important part. And some 

parameters of the SSD's prior box need to be set manually and the basic size cannot be 

obtained through self-learning. The size and shape of the prior box used by each layer 

of the feature map in the neural network are different, which causes the setting up 

process rely heavily on experience. At this point, compared to the You Only Look Once  

(YOLO) algorithm proposed below, SSD has no advantage. The anchor box shape 

calculated by YOLO through adaptive clustering is much better than the manual setting 

in SSD. 

MobileNet-SSD is one of the successfully improved algorithms of original SSD 

networks. The inference data of MobileNet-SSD neural network deployed on the 

RK3399PRO is shown in Table 3-1. The inference performance depends not only on 

Figure 3-4 Inference Result of SSD on RK3399PRO 
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the computing power, but also on the memory usage and the hardware platform operator 

support. Although the SSD is light enough, it also brings a decrease in accuracy. And 

due to the particularity of the depthwise convolution compared to the traditional 2D 

convolution structure, the accuracy loss of the depthwise convolution kernel after int8 

quantization is large, while the core of MobileNet-SSD is the depthwise convolution. 

Therefore, SSD is not suitable for the object detection field on the mobile robot platform 

in this thesis. 

 

Table 3-1 Inference Data of MobileNet-SSD on RK3399PRO 

 Initial Model Quantized Model 

Model Size (MB) 13.1 6.62 

System Memory (MB) 186.48 90.56 

NPU Memory (MB) 106.70 52.41 

Inference Cost (us) 181017 25255 

FPS 5.52 39.6 

 

3.1.3 YOLO 

The YOLO algorithm is comparable to the SSD algorithm in the field of computer 

vision, and it is also one of the most used object detection neural network algorithms 

so far. It has developed from YOLOV1 to YOLOV4, and each version has different 

innovations. It is still being developed and updated, and there are many developers' 

contributions in the current object detection field[52]. 

The structure of YOLO network is shown in Figure 3-5. 

Figure 3-5 Neural Network Structure of YOLO 



30 

 

 

When the first generation of YOLO was proposed, the core innovation was to convert 

the object detection into a regression problem. This is completely different from the R-

CNN at the time, which is the characteristic of one-stage, using only one step to output 

the bounding box and category probability. YOLO's network structure is very clear, that 

is, through several fully convolutional layers and maximum pooling layers to extract 

the abstract features of the input image, then through the FC layers to output the 

predicted object’s bounding box and category probability. YOLO has achieved a major 

breakthrough in real-time performance, but the accuracy is not good, the result is very 

poor in the detection of small targets, especially when two targets are very close to each 

other, the detection result is terrible. And YOLO's positioning is very poor. 

Therefore, on YOLOV2, the author has modified many places to solve these problems. 

Compared with YOLO, it is faster and more accurate. The main idea of YOLOV2 is 

still similar to the YOLO network, but there are some adjustments. First, on the 

backbone network, YOLOV2 uses Darknet-19, which is similar to the VGG used in 

SSD, but the difference is that after convolution on each layer, Batch Normalization 

(BN) is used to preprocess the input data, so that the output of each layer can be 

normalized distribution. In this way, the internal covariate shift caused by the data 

distribution changes will not occur and the network does not need to learn the 

distribution of the data at each layer, which reduces the learning rate during training. 

And YOLOV2 uses a dimensionality reduction idea by putting the 1x1 convolution 

between 3x3 and using it to compress the features. Overall, this structure is almost 6 

times faster compared to VGG, and there is not much loss in accuracy. The structure of 

YOLOV2 is shown in Figure 3-6. 

YOLOV2 also introduces the anchor mechanism in Faster-RCNN, which is also applied 

in SSD. It uses the predicted offset and confidence of the anchor box to make the final 

prediction, instead of the direct coordinate prediction in YOLOV1. The difference with 

Figure 3-6 Neural Network Structure of YOLOV2 
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Faster-RCNN is that YOLOV2 uses the sigmoid function to normalize the offsets to the 

0-1 interval in order to constrain the centroid of the bounding box to the current grid, 

which makes the training of the model more stable. The size and proportion of the 

anchor box selected by Faster-RCNN are empirically set and not very representative, 

so the K-means clustering method is used to obtain the size of the anchor box in 

YOLOV2. In order to fuse the features of different feature maps, YOLOV2 uses a 

passthrough layer to connect the high resolution shallow features to the low resolution 

deep features and stacking features in different channels. And then the detection and 

regression are performed. This structure can improve the detection ability of small 

targets. The inference results of YOLOV2 network deployed on the RK3399PRO 

platform is shown in Figure 3-7. 

Overall, compared to YOLO, YOLOV2 has a huge improvement in accuracy and 

maintains the speed as fast as YOLO. In edge AI computing scenario, the real-time 

performance of YOLO series neural network is much higher than that of Faster-RCNN. 

And YOLOV3 and YOLOV4 were further optimized and developed with greater 

improvements. So, in this thesis, YOLO's algorithm was selected on the mobile robot 

platform, and the advantages and disadvantages of different algorithms were compared. 

3.2 YOLOV3 Deployment 

The YOLOV3 algorithm is the pinnacle of the YOLO algorithm, and many developers 

still choose the YOLOV3 framework to do their own development work for deep 

learning object detection neural network[53]. The intelligent vision system on mobile 

robot platform in this thesis also deploys YOLOV3 algorithm network to do obstacle 

detection. 

Figure 3-7 Inference Result of YOLOV2 on RK3399PRO 
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The backbone part of YOLOV3 has a huge improvement compared to YOLOV2 by 

improving the original Darknet-19 structure into Darknet-53 structure.  

The idea of ResNet network is also used. The backbone Darknet-53 consists of 1x1 and 

3x3 convolutional layers, each convolution operator followed by a BN layer and Leaky 

ReLU activation function. The BN layer for data pre-processing is used to improve the 

learning rate. These components form the basic convolutional unit: Conv+Bn+Leaky 

ReLU (CBLR) of YOLOV3, and there is no pooling layer or FC layer in the whole 

network. Then the idea of Resnet is adopted, each input is passed through two CBLRs 

and then add with the original input, so the features are fused. This ResNet unit allows 

the network to extract deeper features and at the same time avoid the gradient vanishing 

or exploding problem that occur during training.  

Then some layers in the middle of the backbone network are concated with the 

upsampling of some layers behind, which can achieve a concept of multi-scale features 

fusion as used in YOLOV2 and SSD network. Concat is not the same as the add 

operation of ResNet, concat is to expand the dimension of the tensor, while add is only 

to superimpose features without expanding the dimension. These are the improvements 

of this backbone network, and one of the most innovative points. Another feature of 

YOLOV3 is multi-scale detection. 

The output of YOLOV3 is not only one output box, but three different scales of network 

output, each scale is responsible for three bounding boxes, adding up to a total of 9 

anchor boxes, which is better for detecting small target objects. The output tensors are 

not completely independent, unlike the SSD which uses the processing result of the 

middle layer in the backbone network as the output of the feature map, the three output 

tensors of YOLOV3 here are the output of the feature map after sampling and stitching, 

which drawing on the idea of Feature Pyramid Network (FPN).  

The structure of YOLOV3 is shown in Figure 3-8. 

In the intelligent vision system on mobile robot platform in this thesis, the neural 

network of YOLOV3 was chosen for deployment test, by neural network training on 

MS coco dataset with 80 target species and also on constructed dataset (see Chapter 5 

for details).  

The training process of own dataset are shown in Figure 3-9. 

Since further training of more batches will lead to a decrease in accuracy and over-

fitting, the training weights with the highest accuracy are extracted. 
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The testing results of YOLOV3 neural network on high-performance server are shown 

in Figure 3-10, each window shows one detected object, and each followed number is 

Figure 3-8 Neural Network Structure of YOLOV3 

Figure 3-9 Training Process of YOLOV3 
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the confidence of the object, which represents the probability that the object is included 

in the detection window and that the detection window fully includes the object profile. 

The neural network model is then transferred and deployed to the RK3399PRO 

platform for inference. The thesis processes the output data of the three output tensors 

of the neural network for visualization. When the input image’s size is 608x608, the 

sizes of the three output tensors are 19x19x255,38x38x255, 76x76x255. The number 

255 corresponds to 3x(80+5), in which 3 corresponds to the 3 anchor boxes each tensor 

is responsible for, 80 corresponds to the probability of each of the 80 object categories 

in the MS coco dataset and 5 corresponds to (𝑥, 𝑦, 𝑤, ℎ) and the confidence of each 

detection box. The inference results of YOLOV3 network on RK3399PRO platform are 

shown in Figure 3-11. Labels and confidences of each object are shown in captions. 

 

Figure 3-10 Inference Result of YOLOV3 on Darknet 
(Left) Person 1.00 TV Monitor 0.75 Dining Table 0.52 Person 0.44  

(Right) Person 1.00 Chair 1.00 Chair 1.00 Bottle 0.95 Laptop 0.87 Cup 0.67 

Figure 3-11 Inference Result of YOLOV3 on RK3399PRO 
(Left) Person 1.00 TV Monitor 0.82 

(Right) Person 1.00 Laptop 1.00 Chair 1.00 Chair 0.99 Cup 0.94 Mouse 0.72 Bottle 0.68 Bottle 0.55  
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Table 3-2 Inference Data of YOLOV3 on RK3399PRO 

 Initial Model Quantized Model 

Size (MB) 118.29 59.28 

Input Size 416x416 608x608 416x416 608x608 

System Memory 

(MB) 
407.35 447.43 199.88 241.31 

NPU Memory 

(MB) 
293.77 315.73 142.07 153.20 

 Time Cost (us) 2165990 4712463 75756 171060 

FPS 0.46 0.21 13.2 5.85 

 

The inference data of YOLOV3 network on RK3399PRO platform are shown in Table 

3-2. In general, YOLOV3 is a very good neural network in the field of engineering, 

which is widely used in edge computing scenarios and mobile robotics platform. 

YOLOV3 has been introduced for a long time and is a very mature target detection 

neural network framework, while compared to the following state-of-the-art object 

detection neural network algorithm YOLOV4, it still has a lot of shortcomings. 

3.3 YOLOV4 Deployment 

YOLOV4 is a state-of-the-art object detection neural network proposed in 2020. 

YOLOV4 was not introduced by Redmon, the original author of YOLOV1-V3, but by 

Alexey. Compared with the network framework of YOLOV3, YOLOV4 does not make 

particularly large changes on the backbone network Darknet-53, but YOLOV4 has been 

improved by a series of small tricks, and the final experiment data prove that YOLOV4 

can achieve higher inference speed with the same detection accuracy[54]. YOLOV4 has 

some optimizations and is more suitable for single-GPU training and single-GPU 

inference. In general edge computing scenarios, the hardware architecture is usually a 

single GPU, NPU or AI acceleration unit, so YOLOV4 has an advantage in this scenario. 

The structure of YOLOV4 network is shown in Figure 3-12. 
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The backbone network of YOLOV4 is the CSPDarknet53, which is a combination of 

YOLOV2's Darknet53 with CSPNet. CSPNet solves the problem of that previous 

neural network structures require a lot of inference calculations, mainly by dividing the 

basic feature graph into two parts and then merging and implementing them through a 

cross stage hierarchy[55-56]. In YOLOV4, the original ResNet block of YOLOV3 is split. 

The main part continues the original ResNet block operation, while the secondary part 

is directly connected to the final network layer after a small amount of processing. This 

structure design can achieve richer gradient combinations while reducing the 

calculation. Another feature of YOLOV4 network is that the original Leaky ReLU 

activation function is replaced by the Mish activation function. 

In YOLOV3, there was no pooling layer, the tensor size was changed by increasing the 

stride of the convolution kernel, but in YOLOV4, the pooling layer is re-introduced, the 

role of pooling is to reduce the dimensionality, reduce the amount of information, and 

prevent the neural network model from overfitting. Different pooling methods have 

different functions. YOLOV4 instead chooses the max-pooling, which takes the largest 

value of a local area, so that it can better learn the edge and texture structure of the 

image and better retain the whole feature of the image. YOLOV4 uses Spatial Pyramid 

Pooling (SPP) structure, which was originally designed to allow CNN to calculate 

without the limitation of fixed input size by max-pooling and fusing features at multi-

Figure 3-12 Neural Network Structure of YOLOV4 
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scales[57]. YOLOV4 utilizes this structure here because SPP significantly increases the 

receptive field and separates out the most important contextual features. At the same 

time this SPP structure does not affect YOLOV4's inference performance, by max-

pooling at 4 different scales, 1x1,5x5,9x9,13x13, and where 1x1 pooling is equivalent 

to doing nothing. The structure of SPP is shown in Figure 3-13. 

After the SPP module, at the neck network of object detection, YOLOV4 uses Path 

Aggregation Network (PANET), which mainly contains FPN, bottom-up path 

augmentation, adaptive feature pooling and fully- connected fusion. The FPN feature 

pyramid is also used in YOLOV3, which is top-down and fuses the high-level 

information by upsampling. Bottom-up path augmentation is a bottom-up one, mainly 

considering the shallow feature information, feature sampling of this piece, so as to 

learn some edge feature of the target. Adaptive feature pooling is about feature fusion, 

using each ROI to fuse the feature map of each layer. FC fusion is to introduce a FC 

branch for the original segmentation branch and get more accurate segmentation results 

by fusing the output of these two branches. This structure is designed for semantic 

segmentation, so it is not used in YOLOV4 for object detection. And the shortcut 

connection in the original PANET is turned into concat in YOLOV4, so that the 

dimensionality of the feature tensor can be expanded. 

The head of YOLOV4 is similar to the head of YOLOV3, which outputs three output 

tensor and each tensor is responsible for 3 anchor boxes. The difference is that 

YOLOV4 contains a bottom-up path enhancement, so the order of output tensor is 

reversed. When the size of input image is 608x608. The sizes of the three output tensors 

are 76x76x255, 38x38x255, 19x19x255, and each number represents the same meaning 

Figure 3-13 Structure of SPP 
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as that in YOLOV3. 

There are also some other optimization contributions in YOLOV4. It introduces the 

CIOU_LOSS to improve the accuracy of training. 

𝐶𝐼𝑂𝑈𝐿𝑂𝑆𝑆 = 1 − 𝐶𝐼𝑂𝑈 = 1 − (𝐼𝑂𝑈 −
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶
2 −

𝑣2

(1 − 𝐼𝑂𝑈) + 𝑣
)   (3 − 1) 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑝

ℎ𝑝
)2                                    (3 − 2) 

Compared with the traditional IOU LOSS function which only considers the overlap 

area of the detection window and the target window, CIOU LOSS not only considers 

this overlap area, but also the distance between the centroids of the two windows and 

the aspect ratio of the two frames. This approach makes the regression of the prediction 

faster and more accurate, and these small optimizations are considered as free bags and 

do not add any performance decrease and accuracy loss, unlike the SPP and other 

special bags which adjust network structure. Because the free packages do not affect 

the forward inference process, but only change the reverse propagation and have some 

effects on the input and output sides. 

Similarly, on the mobile robot platform in this thesis, the YOLOV4 neural network is 

selected to train on the MS coco dataset with 80 target classes and own dataset. The 

training process of YOLOV4 network is shown in Figure 3-14 and the inference results 

of YOLOV4 network on high-performance server is shown in Figure 3-15.  

Figure 3-14 Training Process of YOLOV4  
(Loss function has more oscillation than YOLOV3) 
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Then the neural network model is deployed to RK3399PRO platform for inference 

through model conversion. The post-processing of the neural network here is similar to 

the post-processing of YOLOV3, because the output heads are similar, only the order 

of output tensors are different. And here I refer to the ideas of DIOU LOSS and CIOU 

LOSS[58], using DIOU NMS in the filtering of the output object detection windows. The 

traditional NMS only considers the overlap of the two detection windows and the 

confidence, while DIOU NMS also considers the distance between the centroids of the 

two detection windows and the aspect ratio of detection windows. It does not need to 

calculate the ground truth when performing forward inference. In the final object 

detection results with overlap, DIOU NMS outperforms the normal NMS, and it does 

not increase the computation much, without adding too much memory and CPU burden.  

𝐷𝐼𝑂𝑈 = 𝐼𝑂𝑈 −
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

2

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶
2                                               (3 − 3) 

𝑠𝑖 = {
 𝑠𝑖, 𝐷𝐼𝑂𝑈(𝑀, 𝐵𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ

0 , 𝐷𝐼𝑂𝑈(𝑀, 𝐵𝑖) < 𝑡ℎ𝑟𝑒𝑠ℎ
                                     (3 − 4) 

The inference results of YOLOV4 model on RK3399PRO platform is shown in Figure 

3-16 and the data is shown in Table 3-3. 

According to Table 3-2 and 3-3, before optimizing the neural network structure of 

YOLOV4, the performance of YOLOV4 on RK3399PRO platform is much worse than 

YOLOV3. However, on the high-performance server it is quite different, there is not 

much difference between the inference performance of YOLOV4 and YOLOV3. Some 

comparative data between YOLOV4 and YOLOV3 on the high-performance server are 

shown in Table 3-4 (without any network structure adjustments to YOLOV4 and 

YOLOV3). 

Figure 3-15 Inference Result of YOLOV4 on Darknet 
(Left) Person 0.95 TV Person 0.56 

(Right) Person 0.99 Chair 0.99 Laptop 0.94 Cup 0.86 Bottle 0.83 Chair 0.82 Backpack 0.50 Keyboard 0.45 
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Table 3-3 Inference Data of YOLOV4 on RK3399PRO 

 Initial Model Quantized Model 

 Model Size (MB) 122.95 61.66 

 Input Size 416x416 608x608 416x416 608x608 

System Memory 

(MB) 
530.40 609.49 307.08 344.99 

 NPU Memory 

 (MB) 
 327.54 362.55 158.67 176.84 

Time Cost 

(us) 
2622625 5751369 542642 1166211 

FPS 0.38 0.17 1.84 0.86 

 

 

 

Figure 3-16 Inference Result of YOLOV4 on RK3399PRO 
(Left) Person 1.00 TV Monitor 0.82 

(Right) Person 1.00 Chair 1.00 Laptop 1.00 Cup 0.94 Chair 0.88 Mouse 0.72 Bottle 0.68 
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Table 3-4 Comparison of YOLOV4 and YOLOV3 on Server 

 YOLOV3 YOLOV4 

Model Size (MB) 236 245 

AP50:95 30.9 40.3 

Input Size  416x416 608x608 416x416 608x608 

Memory Usage  

(MB) 
18.88 36.22 18.88 36.22 

BFLOPS 65.879 140.723 60.137 128.459 

Time Cost 

(ms) 
31.07 60.137 34.012 63.16 

FPS 32.4 17.1 31.8 16.2 

 

Although the inference performance difference between YOLOV3 and YOLOV4 on 

RK3399PRO hardware platform is large, the performance difference on the server is 

minimal, and the accuracy of YOLOV4 on server can be much higher than YOLOV3,  

accordingly, the accuracy of YOLOV4 is also higher than YOLOV3 by comparing the 

inference image results in RK3399PRO platform. YOLOV3 has a lot of mature 

development in the industry, while YOLOV4, as the latest state-of-the-art neural 

network framework for object detection. Considering the better accuracy, many 

optimizations can be made to make YOLOV4's performance on the hardware side 

exceed that of YOLOV3, approaching the data of high-performance servers. In view of 

this, the intelligent vision system on mobile robot platform in this thesis also adopts the 

algorithm idea of YOLOV4, and the subsequent chapter 4 describes in detail about 

specific optimization process done on the hardware side, engineering implementation 

adaptations and neural network structure adjustment. 

3.4 YOLOV4-Tiny Deployment 

YOLOV4-Tiny is an official light model provided by the authors of YOLOV4, a 

network specifically for scenarios with high real-time requirements, as well as 
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YOLOV3-Tiny, which was also provided by YOLOV3 official. YOLOV4-Tiny has 

about a quarter of YOLOV4’s layers, which is equivalent to deleting a large chunk of 

the original network structure. When testing on RTX2070, it can achieve more than 300 

FPS and 20 AP on MS coco dataset. It is perfectly acceptable to compromise this 

accuracy for high speed. Tiny is essentially a lightweight target detection network that 

can be deployed directly to low-end AI acceleration platforms, and it takes into account 

not only the limitations of computing power on these platforms, but also the impact of 

memory limitations, context, DRAM speed, and cache hit rate, all of which are 

particularly influential factors on edge computing platforms. The backbone network of 

YOLOV4-Tiny is OSANet, and the same with YOLOV4, it refers to the idea of CSPNet, 

where the main layers are connected by the ResNet part and perform the convolutional 

operation, and the secondary part is directly connected to the final network layers with 

the output of the main ResNet layers for concat operation. Some tricks are still similar 

to YOLOV4, but the Mish activation function is not used, and the structure of SPP is 

not used, only the maximum pooling layer is added in the middle two layers. The output 

of YOLOV4-Tiny has only two tensors, which adds up to only 6 anchor boxes, so 

YOLOV4-Tiny is much faster than YOLOV4. 

Figure 3-17 Training Process of YOLOV4-Tiny 
(The Loss function is more stable than YOLOV3 and YOLOV4 and has less average loss) 



43 

 

 

In this thesis, YOLOV4-Tiny is also select to train on the MS coco dataset with 80 

target species, and own dataset, the training process is shown in Figure 3-17. The 

inference result of YOLOV4-Tiny on server is shown in Figure 3-18. 

Then the YOLOV4-Tiny network model is converted to deploy on the RK3399PRO 

platform for inference. The post-processing here is also referred to the post-processing 

of YOLOV4, but the output tensor here is only two, so some adjustments are made. In 

the filtering process of multiple detection windows, the DIOU NMS selected by the 

previous YOLOV4 post-processing was still used here. The inference result of 

YOLOV4-Tiny neural network is shown in Figure 3-19. The comparison of YOLOV4 

and YOLOV4-Tiny is shown in Table 3-5.  

 

Figure 3-18 Inference Result of YOLOV4-Tiny on Darknet 
(Left) Person 0.93 Dining Table 0.54 Cup 0.36 

(Right) Chair 0.91 Laptop 0.90 Chair 0.65 Person 0.56 Cake 0.50 Bottle 0.33 Refrigerator 0.32 

Figure 3-19 Inference Result of YOLOV4-Tiny on RK3399PRO 
(Left) Person 0.82 Dining Table 0.42 

(Right) Laptop 0.90 Person 0.68 Chair 0.63 Chair 0.48 Cake 0.46 

(Almost all the detected boxes are wrong) 
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Table 3-5 Comparison of YOLOV4 and YOLOV4-Tiny on RK3399PRO 

 YOLOV4 YOLOV4-Tiny 

Model Size 

(MB) 
245 22.4 

AP50:95 40.3 20.6 

Quantization Yes No Yes No 

System Memory 

(MB) 
307.08 530.40 31.11 48.02 

NPU Memory 

(MB) 
160.03 327.54 19.01 38.89 

Time Cost 

(us) 
542642 2622625 20792 453759 

FPS 1.84 0.38 2.2 48.1 

 

According to the Figure, YOLOV4-Tiny network has a serious loss of accuracy on the 

RK3399PRO hardware platform. Although it is lighter, occupies less memory and faster 

than YOLOV4, the loss of accuracy due to the reduced network structure of YOLOV4-

Tiny is unusually high. Whether quantized or not, the minimum accuracy requirements 

cannot be achieved. Therefore, this thesis finally gives up the choice of YOLOV4-Tiny 

and still select YOLOV4 as the object detection neural network of the intelligent vision 

system on the mobile robot platform. 

3.5 Network Framework 

All deep learning neural networks need a framework for training and inference, only 

has a network is not enough, you need to build the structure of the network on a 

framework, and through the input and output to process the data needed. Deep learning 

has developed to a very mature ecology, including some open source deep learning 

framework as well as in each hardware manufacturer's closed-source neural network 

inference framework, which can only deploy on their own chips. Through these 
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frameworks, the input and output interfaces, network layer construction, model training, 

model visualization and model testing deployment can be all customized. The same 

neural networks are implemented differently in different frameworks. Currently the 

most contributed by developers are TensorFlow, PyTorch, Caffe, etc. The following of 

this chapter introduces the deep learning framework platform used for the mobile robot 

platform in this thesis. 

3.5.1 Darknet 

Darknet is a framework developed by the original authors of the YOLO series for the 

YOLO algorithm. Darknet was designed with the same idea as YOLO, to be efficient 

and light, and to greatly improve performance and inference speed while maintain 

acceptable accuracy. So, Darknet basically has no other package dependencies, and is 

written from the bottom of C language. It later added NVIDIA's CUDA packages and 

cuDNN acceleration units for GPU acceleration and support for OPENCV compilation. 

However, Darknet does not have a large number of developers like TensorFlow and 

other frameworks, only a small team is developing. The advantage of darknet is that it 

is easy to compile and no need to install other dependencies. It has clear structure, 

source code and model network framework and its weight files are very clear, easy to 

change and transplant. It is easy to deploy darknet on the actual engineering project, 

which is one of the ideas when YOLO was founded. The object detection neural 

network on high-performance server in this thesis is built on Darknet framework. 

3.5.2 RKNN 

RKNN is a framework for neural network inference on Rockchip's own NPU hardware 

platform, which consists of converting trained neural network models from general 

deep learning frameworks such as TensorFlow, PyTorch and darknet into RKNN 

framework format and deploying them to Rockchip’s deep learning acceleration NPU 

platform to perform forward inference. If the neural network models in other deep 

learning frameworks are put on ARM platform directly without converting to RKNN 

framework format, they can only utilize the CPU of ARM, which has very low 

computing power. While the inference speed can be greatly improved by converting the 

models into RKNN and accelerating on NPU. The RKNN framework also includes 
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some operator substitution, merging and optimization, as well as built-in functions such 

as the accuracy analysis, performance evaluation and memory consumption analysis. 

Model segmentation can also be performed to improve the accuracy and performance 

of the model inference. In this thesis, several neural networks are used in the intelligent 

vision system on mobile robot platform: YOLOV3, YOLOV4, YOLOV4-TINY and 

other optimized neural networks, they are also converted to the RKNN framework for 

neural network inference on RK3399PRO platform, the operating system used in the 

RK3399PRO is the Debian10 Linux distribution. Based on the features of the 

RK3399PRO hardware, this thesis has done some hardware allocation of computing 

resources, neural network optimization, operator development, etc. 

3.6 Summary 

This chapter focuses on different deep learning object detection neural networks and 

their developments. Their respective characteristic advantages in different scenarios are 

compared. This chapter then applies ideas of these neural network algorithm and 

deploys them to high-performance server for training and low-power hardware 

platforms for inference. The performance and accuracy of different network structures 

are compared on both RTX2070 hardware and RK3399PRO hardware, and the potential 

optimization effects of each neural network structure is analyzed. At next this chapter 

describes the difference of neural network deployment between edge side and cloud 

server side and introduces deep learning frameworks. Finally, YOLOV4 is selected as 

the most suitable neural network algorithm for obstacle detection function of intelligent 

vision system on mobile robot platform in this thesis. 
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4 Neural Network Optimization on Hardware 

Although deep learning neural network is a popular topic in research and engineering, 

the current neural network inference is basically based on the powerful GPU 

acceleration in the cloud server, which has very high requirements for the server's 

computing power, memory speed, multi-threading support, distribution, etc. However, 

when the neural network inference is performed on smart phones and embedded 

terminals, the hardware support is not as rich as that on the cloud, so we can only rely 

on low-end chips for inference. Some developers use cloud-based upstream and 

downstream data, sending sensor’s data to the cloud for inference and then sending the 

results back to the low-power terminal, but this approach is very dependent on the 

performance of the network and consumes a lot of energy to transfer the data to the 

cloud. Therefore, in most cases, when doing neural network inference in edge 

computing scenarios, we still have to rely on the local hardware for computing, so we 

need to make a comprehensive optimization improvement of the neural network 

structure. This chapter focus on the optimization improvement of YOLOV4 deep 

learning neural network on the RK3399PRO hardware platform, including operator 

splitting, replacement, and fusion, conversion of model data layout and improvement 

of activation function and pooling layer. Also, the model is quantized to 8-bit, and 

MMSE and Moving Average Min Max algorithms are utilized in the quantization 

process to update the parameters to minimize the accuracy loss. Finally, the optimized 

neural network has a good optimization effect on the RK3399PRO hardware platform 

compared to the original YOLOV4 network. 

4.1 General AI Chip Platform 

In a board sense, the chips which can run AI algorithms can be called AI chips, but the 

general meaning of the AI chip platform refers to the chip specifically to AI algorithms 

to do a special acceleration design. AI chips are mainly optimized for deep learning 

neural network algorithms and other machine learning algorithms are also involved. At 

present, the main solutions of major semiconductor manufacturers are based on GPU, 

FPGA and ASIC, which are the main directions. The ASICs include a variety of TPU, 

NPU, DSP, etc. GPUs are versatile, fast and efficient, but along with them comes high 
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power consumption. FPGAs have the advantages of low power consumption and 

programmability, but the requirements for developers are much higher. The ASIC side 

includes hardware-level optimizations for higher performance, power consumption 

ratio, and is tailored for AI, but with the rapid development of deep learning algorithms, 

the hardware IC level design side also needs to be updated quickly to accommodate the 

latest algorithms. The hardware platform AI chip used in this thesis is the RK3399PRO, 

and the solution chosen is a customized hardware with a built-in NPU for neural 

network inference acceleration, and the optimization of the YOLOV4 neural network 

is also based on this NPU to do the optimization. Several chips with AI acceleration 

units are shown in Figure 4-1. 

 

4.2 Hardware Architecture 

The mobile robot vision platform in this thesis uses a development board based on the 

RK3399PRO chip. In the architecture of RK3399PRO, the CPU of the chip adopts a 6-

core 64-bit ARM processor, including a dual-core Cortex-A72 and a quad-core Cortex-

A53, and the access consistency between these two clusters is ensured by CCI500, each 

A72 core has 48KB of L1 instruction cache and 32KB of data Each A72 core has 48KB 

of L1 instruction cache and 32KB of data cache (4 groups are linked); each A53 core 

has 32KB of L1 cache and 32KB of L1 data cache (4 groups are linked), and each 

cluster shares one L2 cache, 1MB for the large cluster (A72) and 512KB for the small 

cluster (A53). Then in the multimedia image processing part, the GPU uses quad-core 

ARM Mail-T860 MP4 GPU, the VPU supports 4K VP9 and 4K 10bits H265/H264 

video decoding up to 60 fps and the Image Enhancement Processor (IEP) has a number 

of video post-processing functions, including image enhancement, image noise 

Figure 4-1 Different AI Acceleration Chips (a) Nvidia’s GPU (b) Qualcomm’s DSP 

 (c) SAMSUNG’S NPU 

(a) (b) (c) 
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reduction, anti-interlacing, edge sharpening, detail and color optimization, etc.  

The core part of RK3399PRO is an AI acceleration unit NPU, which can support 8bit 

and 16bit neural network inference operations with computing power up to 3.0 TOPs, 

and the main AI acceleration core of this NPU is the use of Multiplier and Accumulation 

(MAC) acceleration array to achieve the acceleration of the most important 

convolutional operations in CNN. The built-in core can reach a maximum of 1920 

MACs per cycle at int8 data type and 192 MACs per cycle at int16. While the amount 

of data contained in the neural network is particularly large and requires a lot of memory 

bandwidth. The NPU has a built-in buffer of 512 kilobytes, which can also be used to 

store the data that needs to be read many times to improve the inference performance 

of the whole network. The architecture of the System on Chip (SoC) and the resource 

allocation is shown in Figure 4-2. 

The peripheral circuitry of the development board is arranged as follows: the memory 

includes 32bit 2GB LPDDR3 memory provided to the CPU, while the NPU section 

provides a separate 32bit 1GB LPDDR3 memory. This 1GB of dedicated memory is 

sufficient to store the weights and activations included in the neural network operation, 

Figure 4-2 RK3399PRO Soc Architecture 
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plus the built-in buffer can greatly improve the time consumption required for data 

accessing during neural network inference. Meanwhile, the peripheral interfaces 

include USB, PCIE, Ethernet port and MIPI-CSI camera interface. The specific use of 

these interfaces includes the connection of subsequent monocular cameras, 2D laser 

LiDAR and other sensors. The development board structure and the connection of some 

interfaces are shown in figure 4-3. 

4.3 TVM 

AI has been in a limelight today, but most developers and researchers only focus on 

algorithm level research. When AI needs to be practically applied to daily lives, 

engineering related issues is crucial. Usually, the deployment of a deep learning neural 

network is divided into two parts, training and inference. Currently for training, the 

most popular way is to use TensorFlow, PyTorch and other open source frameworks, 

the mainstream frameworks have basically determined the process. However, in neural 

network inference, because of the different hardware platforms are deployed, inference 

frameworks are also different. In order to achieve a model transformation that enables 

neural networks to run efficiently on inference frameworks of various hardware 

platforms, TVM emerges. The front-end of TVM is a deep learning compiler that 

compiles models under various neural network frameworks, which outputs an 

Intermediate Representation (IR) layer called computational graph IR, and the back-

end of TVM optimizes these computational graph IRs to spit out an IR for a back-end 

Figure 4-3 Development Board Connection Diagram 
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specified hardware platform, and finally puts them into the hardware platform for 

compilation and inference[59]. The compilation and optimization process of different 

neural network models on TVM is shown in Figure 4-4. 

There are many engineers and researchers who are developing projects based on TVM, 

and there are also many developers who have borrowed the optimization ideas of TVM. 

In this thesis, the model conversion from DARKNET to RKNN is performed, and the 

optimization of the operator development is also borrowed from the idea of graph IR 

optimization. Some optimized algorithms are used to do the optimal allocation of the 

underlying operators of the neural network, which can significantly improve the 

performance of neural network inference on the hardware platform. 

4.4 Model Transform 

Before neural network inference, we need to convert the original model under the 

training framework to the model under the inference framework. So, we need a model 

conversion process. During the conversion, the operator replacement, memory layout 

and scheduling all greatly affect the performance of the final inference process, without 

considering the neural network weights change, these operations do not affect the 

accuracy.  

For the memory layout part, the storage format of each tensor in neural network model 

Figure 4-4 Compilation and Optimization Process of TVM 
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under the Darknet framework is HWC format, because only one batch data will be input 

at one time, that is, one image, and the output is a format of HxWx255 as mentioned in 

Chapter 3. While the hardware platform is not only for CV-related neural network 

algorithms, but also for other neural network algorithms. Multiple batch inputs like 

timing sequence may be involved in other neural network algorithms. Therefore, it is 

necessary to change the storage format corresponding to each layer of individual tensor 

to NHWC format during the model conversion. The advantage of NHWC format is that 

the values of the three RGB channels of a single point can be read at one time, refer to 

Figure 4-5, because the data is stored sequentially inside the hardware memory structure, 

which reduces the time consumed to read the memory.  

Meanwhile, in the dedicated memory of NPU and the built-in buffer, the hardware 

memory has been optimized for accessing the weights data of each layer of convolution 

kernel in the neural network. Under the Darknet framework, the weights’ storage format 

is IOHW, while under the RKNN framework, the weights need to be converted into 

HWIO format. Regardless of how many dimensions the data is logically expressed, it 

is stored in the computer according to 1D format. Therefore, when reading the data 

serially, the RK3399PRO hardware platform can read the values in the height and width 

direction of each convolutional kernel sequentially, and then process each feature map 

sequentially. So that after the same convolutional kernel is processed, it can be quickly 

passed to the next layer for operation or temporarily stored in the internal buffer. If 

IOHW is used, it is not possible to split the parameters of individual convolutional 

kernels. It is necessary to read the HW of all convolutional kernels from DDR at once 

and then perform the operation. The memory format difference of the convolutional 

kernels can be referred to the memory format difference of the tensor’s format, which 

is similar and shown in Figure 4-5. 

YOLOV4 fuses three parts of operations, Conv, BN and Mish, into one single unit CBM 

unit in the Darknet framework. While in the RKNN framework, it is necessary to first 

separate this single fused unit. Since the inference does not require the neural network 

Figure 4-5 Memory Layout Difference 
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to continuously learn the distribution of the data as in training, only the input layer 

needs to add a normalization of the input image with setting the standard deviation 

value, mean value and the channel. Therefore, the BN layer can also be optimized 

separately. The parameters of Conv and the activation layers are quantized separately, 

and the optimization can be performed at different operator levels. On the mobile robot 

platform in this thesis, the input data format needs to be set to RGB, and the quantization, 

pruning and other operator developments need to be performed during the model 

conversion. 

4.5 Quantization 

With the development of deep learning, more and more state-of-the-art neural network 

algorithms are getting deeper and deeper, the operators are more and more complex. 

These models introduce a huge number of parameters and computation. When need to 

deploy these models to the mobile terminals, it will encounter some bottlenecks in 

hardware resources. In order to improve the performance of neural networks in edge 

computing scenarios, the model quantization came out, which means that the original 

neural network’s floating point operations to be converted into low-bit fixed-point 

operations in order to achieve lower memory occupation and higher inference efficiency. 

Many embedded platforms do not support floating point operations like MCUs and 

DSPs. Because the CNN is insensitive to noise, the quantization does not seriously 

affect the noise if trained properly. If the AI chip is optimized specifically for fixed-

point operations, it can bring higher inference performance, but it also brings a problem, 

that is, the loss of neural network accuracy. Thus, before quantization, training has to 

be done with accurate float point. Then in order to achieve optimizations, parameters 

of the algorithm used in quantization are as challenging as the parameters of the neural 

network itself. 

There are also a variety of different quantization algorithms. The major categories are 

divided into Quantization Aware Training (QAT) and Post-Training Quantization  

(PTQ). PTQ is the quantization of the completed training model. In QAT, the 

quantization is achieved during training, while the gradient will be 0 due to quantization, 

and it cannot be back-propagated to the front layers of neural network, which will lead 

to a serious decrease in training accuracy, and there is no good solution for this problem 

in engineering now. In most of the cases developers still using PTQ to quantize the 
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trained model weights. 

The PTQ process steps are shown in Figure 4-6. 

4.5.1 Asymmetric Affine Quantization 

The asymmetric affine quantization algorithm refers to linear mapping the neural 

network data of fp32 to the representation range of int8. The asymmetric means that the 

distribution range of the data after quantization is not symmetric with the distribution 

range before quantization, that is, the zero point is different, and the zero point after 

quantization is not the same as the zero point of initial weights. The advantage of this 

quantization is that the data distribution of weights and activation of the original model 

is not evenly distributed on both sides of the zero point in most cases. The formula is 

as follows. 
𝑥𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑠𝑐𝑎𝑙𝑒 ∙ 𝑥𝑓𝑙𝑜𝑎𝑡 − 𝑍𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡)                         (4 − 1) 

Since the bias of the original convolutional layer does not have a significant impact on 

the accuracy when performing network inference on hardware platform, it is simply 

removed here. In order to calculate the scale and zero point in the quantization process 

we need to know the actual dynamic range of fp32 weight and activation. For the 

inference process, weight is a constant tensor that does not require additional data sets 

to be sampled to determine the actual dynamic range. The actual dynamic range of 

activation, however, must be sampled (a process generally referred to as data 

Figure 4-6 PTQ Process 
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calibration), which means that a certain amount of input data is needed for quantization, 

usually several images covering all the application scenarios. Through these actual 

input data, the parameters for quantization are calibrated. 

One of the simplest and most used sampling methods is the maximum-minimum 

(MinMax) algorithm. The basic idea is to determine the actual dynamic range by 

selecting the maximum and minimum values directly from the fp32 tensor, which is 

shown in the following formula. 

𝑥𝑚𝑖𝑛  = {
min (𝑋), 𝑖𝑓 𝑥𝑚𝑖𝑛 = 𝑁𝑜𝑛𝑒

min (𝑥𝑚𝑖𝑛, min (𝑋)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (4 − 2) 

𝑥𝑚𝑎𝑥  = {
max (𝑋), 𝑖𝑓 𝑥𝑚𝑎𝑥 = 𝑁𝑜𝑛𝑒

max (𝑥𝑚𝑎𝑥, max (𝑋)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (4 − 3) 

For weights, this sampling method is not saturated. For activation, it is not saturated in 

the sampled data. But it can be saturated if there are data outside the actual dynamic 

range in the validation dataset. The advantage of this algorithm is that it is simple and 

straightforward. However, for activation data, if there are outliers in the sampled data, 

the actual dynamic range can be significantly extended. For instance, 99% of the data 

are evenly distributed between [-300, 300] in the actual calculation, but there is an 

outlier with a value of 50,000 when sampling, so the dynamic range obtained by this 

sampling algorithm becomes [-300, 50,000], which will seriously affect the accuracy 

after quantization. 

Therefore, the thesis using Moving Average MinMax sampling algorithm. Unlike the 

MinMax algorithm, which is a direct sampling, Moving Average MinMax uses a 

hyperparameter c (default value is 0.01) to update the dynamic range step by step. 

𝑥𝑚𝑖𝑛  = {
min (𝑋), 𝑖𝑓 𝑥𝑚𝑖𝑛 = 𝑁𝑜𝑛𝑒

(1 − c)𝑥𝑚𝑖𝑛 + cmin (𝑋), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (4 − 4) 

𝑥𝑚𝑎𝑥  = {
max (𝑋), 𝑖𝑓 𝑥𝑚𝑎𝑥 = 𝑁𝑜𝑛𝑒

(1 − c)𝑥𝑚𝑎𝑥 + cmax (𝑋), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (4 − 5) 

The dynamic range of activation data obtained by this algorithm is generally smaller 

than the actual dynamic range. While for weights, the effect of Moving Average 

MinMax is the same as MinMax because there is no iteration of sampling. 
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The different parameters selected during quantization can directly affect the final 

accuracy loss. The error analysis data plot of the quantization using asymmetric affine 

algorithm is shown in Figure 4-7. The error analysis represents the calculation of the 

Euclidean distance and Cosine distance between the original layer of the model and the 

quantized layer, both of them are normalized to the range of 0-1. When the Euclidean 

distance is smaller and the Cosine distance is larger, it represents the smaller data 

difference between the quantized layers and original layers, which means the less 

accuracy loss after quantization. 

4.5.2 Dynamic Fixed Point Quantization 

Another point we need to consider during quantization is that the range of data value in 

each layer of the neural network is not necessarily the same, which gives rise to a 

problem of dynamic value range. In large layers, the output is the result of the 

accumulation of thousands, so the network weights’ parameters are much smaller than 

the output. The fixed point algorithm has only a limited ability to cover a wide dynamic 

range, where fixed point refers to the number of decimal places. Therefore, a dynamic 

fixed-point quantization algorithm is used to quantize the parameters of different layers 

separately, which means different layers and groups have different number of decimal 

Figure 4-7 Accuracy Analysis of Asymmetric Affine Quantization 
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places. The formula of this algorithm is as follows. 

 

𝑛 = (−1)𝑠 ∙ 2−𝑓𝑙 ∙ ∑ 2𝑖 ∙ 𝑥𝑖

𝐵−2

𝑖=0
                                           (4 − 6) 

Here the number of decimal places is constant within the same group, the front part of 

the formula represents the sign digit, the middle is the length of the fraction taken, and 

the back represents the trailing digit, so the number of decimal places will be different 

for different network layers. And the data in each network layer of the neural network 

can be divided into three groups, one for the input layer, one for the weights, and one 

for the output layer. The number of decimal places is different for different groups. The 

quantization of activation layer is the same. According to the number of bits needed to 

quantize the integer part, subtracting this bit width from 8 bits is the bit width of the 

fractional part. The scale parameter is also calculated by a dynamic range selection 

algorithm which is similar to the asymmetric affine quantization. The dynamic fixed-

point algorithm allows better coverage of the dynamic range of the data in each part, 

since the weights are generally smaller than the input and output of the layer. And the 

normal round operation brings some errors, so here use the stochastic method to 

perform round operation. The formula is as follows. 

 

𝑅𝑜𝑢𝑛𝑑(𝑥) = {
⌊𝑥⌋, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − (𝑥 − ⌊𝑥⌋)

⌊𝑥⌋ + 1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑥 − ⌊𝑥⌋
              (4 − 7) 

 

The accuracy analysis data of dynamic fixed point quantization algorithm is shown in 

Figure 4-8. And the comparison of quantization accuracy between asymmetric affine 

and dynamic fixed point algorithms is shown in Figure 4-9. 

According to the results, the asymmetric affine quantization algorithm has less accuracy 

loss compared to the dynamic fixed point quantization algorithm, so the quantization 

process of the object detection neural network in this thesis adopts the asymmetric 

affine quantization algorithm. 
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Figure 4-8 Accuracy Analysis of Dynamic Fixed Point 

Figure 4-9 Comparison between Two Quantization Algorithms 
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4.5.3 MMSE Optimization 

MMSE algorithm refers to minimize the mean squared error, it focuses on a set of 

random data to calculate their distribution characteristics, representing the average of 

the sum of the squares of the differences of each data deviation from the true value, 

which is initially used in communication engineering. As an equalizer, MMSE is a post-

processing algorithm that helps us to find out the received data and make it is as close 

as possible to the original transmission data. In short, the most important step in MMSE 

is to find a matrix G, which can simply be the inverse of the channel transfer matrix 

𝐻−1 if we assume that there is no noise. When there is some noise, MMSE is used to 

reflect the noise. While in deep learning, MMSE is usually used as a loss function 

during neural network training, and the mean square error is calculated by the difference 

between the predicted value and the ground truth, and then the weight parameters of 

each convolutional kernel of the previous neural network are continuously updated to 

achieve an optimal model training. 

However, the MMSE algorithm used in this thesis is mainly for the optimization of the 

quantization algorithm. MSE represents the expected value of the square of the distance 

between the quantized layer and the original fp32 layer. The smaller the MSE value is, 

the smaller the loss of accuracy after quantization. So, the MMSE quantization 

algorithm here is to calculate the MSE value by setting different scale, zero point and 

other quantization parameters each time, and then iterate this operation by changing the 

parameters until the minimum MSE is reached. That is, the accuracy of the quantized 

model is the closest to the original model. In the intelligent vision system on mobile 

robot platform in this thesis, MMSE optimization is applied to the asymmetric affine 

quantization algorithm. The formula is as follows. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 − 𝑓𝑙𝑜𝑎𝑡)2

𝑁

𝑡=1

                                (4 − 8) 

The accuracy analysis comparison between normal asymmetric affine quantization 

algorithm and MMSE optimized quantization is shown in Figure 4-10. According to the 

results, after using MMSE to optimize the quantization, it is obvious that the error of 

the model is much smaller and the decrease in accuracy is also much lower than the 

normal quantization. The results shown are only the neural network model quantized 
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after 5 iterations of MSE calculation. Theoretically, the more iterations, the longer it 

takes to run in quantification, but the accuracy will be better after quantization. 

4.5.4 Mixed Precision 

Mixed precision refers to the different precision of data between different layers of the 

neural network, some layers use fp32, some layers use int16 and some layers use int8. 

The advantage of mixed precision is that some layers of the network will lose accuracy 

if they are quantized by int8. If we just keep the original float32 data type for these 

layers and use quantized int8 for the other layers, the accuracy loss is not too much and 

the performance of the forward inference of the neural network will not be degraded 

too much. There are two ways to implement mixed precision, one is mixed precision 

training, and the other is mixed precision quantization. The mixed precision training 

has a certain effect on the gradient and is not conducive for backward propagation and 

requires a better loss function and hyperparameters to train a model with better accuracy. 

In practice this implementation is more complicated and troublesome. 

Therefore, in this thesis, mixed precision quantization is deployed. For different neural 

network layers, different quantization methods and data formats are chosen. The higher 

precision data format is used for some "sensitive" layers of the network, while the lower 

Figure 4-10 MMSE Optimization Result 
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precision data format is used for the "non-sensitive" layers. However, it is not easy to 

achieve the optimal solution for mixed precision, which requires a lot of repeated 

quantization, repeated inference and even sometimes repeated training to evaluate the 

accuracy of the current mixed precision model. Also, the inference performance needs 

to be considered, as the inference speed drops rapidly when the number of fp32 

becomes larger. This thesis also has tried making part of the layer using fp32 format 

and other layers using int8 quantization. While because the inference optimization of 

fp32 data format is really so poor on the NPU of RK3399PRO. Finally, the thesis still 

uses a whole int8 quantization idea. But the idea of mixed precision is fine, and if in 

other hardware platforms with better support and expandability, this structure should be 

able to achieve an optimal result. The idea of mixed precision is shown in Figure 4-11. 

4.6 Pruning 

Pruning is also a commonly used method for neural network model compression. As 

the name implies, pruning means to prune a neural network to remove some neurons 

that do not contribute much. And this operation, like the quantization described in the 

previous chapter, is performed on a trained neural network model. The redundancy of 

the model is reduced by cutting out some unimportant connections or filters by certain 

criteria. The criteria for pruning algorithms are easy to obtain, including the accuracy 

Figure 4-11 Mixed Precision Process 



62 

 

 

and the inference performance of the neural network model before and after pruning. 

While how to prune and which criteria to set to judge the degree of contribution of a 

single neuron on the whole network, these are the focus of attention and the core part 

of pruning. 

Pruning is also an iterative process like quantization, through continuous pruning, 

continuous training and testing to evaluate the performance and accuracy. Currently, 

there is not any pruning criterion which has a high degree of conviction in engineering. 

Only a few developers have tried large pruning algorithms in practical engineering 

applications. The reason is that these algorithms are often designed to optimize a single 

neural network model, but when moving in the direction of universality, they often lead 

to a significant loss of accuracy. And the weights and activation values are different, 

which represents different convolutional kernels have different levels of contribution. 

This is also an important factor, which leads to the fact that pruning is not very practical 

at the moment. 

The current pruning algorithms are divided into two parts, one is weight-based pruning, 

another one is activation-based pruning. Weight-based pruning using the magnitude of 

the weights value of each layer to judge the importance of each convolutional kernel. 

For instance, using the sum of the absolute values of all the weights in one filter as a 

criterion, then the filters with low value will be pruned. This approach can effectively 

reduce the model complexity and does not bring great loss to the model[60]. In large 

neural networks, most of the neuron activations tend to be 0. For the neurons with 0 

activations, they can be pruned to greatly reduce the size of the model and the number 

of operations. This approach will not affect the performance of the model. The number 

of values with zero activation in each filter can be measured by Average Percentage of 

Zeros (APoZ), and it can be a criterion to evaluate whether a filter is important or not[61]. 

This thesis also chooses the weight parameter as the criterion to implement pruning 

operation on the YOLOV4 neural network framework. First, consider the minimum 

block: CBM in YOLOV4, and the minimum number of channels to be retained for each 

CBM is 2𝑛. Then, set the threshold value for the γ parameter of the BN layer according 

to the evaluation criteria, and the channels smaller than the threshold value are pruned. 

But we need to retain the minimum number of channels required for each convolutional 

kernel, so we cannot prune them all and the channels with the largest weights are kept 

according to the weight data sorting. The neural network pruned in this way has an 

inference speed increase in high-performance platform. While because the difference 
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of memory resource between server and RK3399PRO platform, according to the actual 

inference results, there is almost no big difference between original model and pruned 

model. And it brings the problem of accuracy loss, so the thesis finally did not 

implement pruning for the network framework. However, the pruning algorithm is still 

evolving, and the pruning effect may be better for large neural network models. On the 

YOLO, MobileNet and other network frameworks which are hardware-side friendly, 

efficient and light, the pruning results are not good, each convolutional kernel of the 

neural network occupies a certain impact. So, in the low-power embedded platform, 

there is a need for further development of pruning algorithms. 

4.7 Operator Development 

The development of operators is an extremely important part of the model conversion 

and deployment of neural network on hardware platform. The minimal granularity of 

neural network is the operator, so while doing data layout conversion, quantization and 

pruning, the development of operators is also necessary during the deployment of neural 

network on the hardware platform. The development of operators includes the splitting, 

replacement, fusion and discarding. These operations are based on different hardware 

structures, characteristics to specific analysis and optimization, because some hardware 

manufacturers will do certain optimization for different types of operators on the AI 

acceleration chip. 

4.7.1 Activation Function 

The activation function is an integral part of a neural network, as the name implies, the 

activation function is used to activate each neuron. Each convolutional kernel in neural 

network has a corresponding activation function, which receives the output of each 

convolutional kernel, activates it, and then transfers it to the next convolutional kernel. 

The main purpose of the activation function is to add nonlinear representation to the 

neural network. If all the neurons of one neural network are transferred linearly, then 

even if the network is very deep and complex, the output of the whole network will 

always be a linear combination of the inputs, and the functions which can be represented 

by neural networks is very limited. With the nonlinearity brought by the activation 

function, the expressiveness of the neural network is greatly improved, and it has the 
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ability to approximate any function. At the same time, the neural network needs to 

perform backward propagation to update the weights during training, so the activation 

function needs to be differentiable to apply gradient descent. 

The idea of activation function in neural network is shown in Figure 4-12. 

 

There are many different activation functions that can be applied, and each of them has 

its own advantages and disadvantages.  

 

Sigmoid: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
                                                    (4 − 9) 

Sigmoid transforms the continuous real value of input into an output between 0 and 1, 

positive infinity of input tends to 1 and negative infinity of inputs tends to 0. Previously, 

sigmoid is a function used by many developers, in recent years less people use it, mainly 

Figure 4-12 Activation Function Process 

Figure 4-13 Sigmoid Function Curve 
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because that when we initialize the neural network weights to random values between 

[0, 1], during the backward propagation derivation in neural network, the gradient is 

reduced to 0.25 times of the original value at each layer, and if the neural network has 

many layers, the gradient will become especially small and close to 0 after passing 

through these layers, which will leads to the phenomenon of gradient vanishing. If we 

initialize the weights of the neural network at random values between [1, +∞], then 

there is a possibility of gradient explosion. And the mean value of output is not 0, which 

will reduce the efficiency of weights update. Another disadvantage is that sigmoid with 

power of exponential operations, the calculation of this function is more time-

consuming. For neural network forward inference, it is okay, but for backward 

propagation training, this function will greatly increase the time. 

 

Tanh: 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                (4 − 10) 

The curve of Tanh is similar to the Sigmoid, but Tanh has some advantages. The output 

is almost smooth and has a small gradient when the input is extremely large or small. 

And Tanh solves the problem that the mean value of layer’s output is not 0, the output 

of tanh has an interval of 1 and centered on 0. However, the same problem of gradient 

disappearance and power operation of Sigmoid also exist in Tanh. 

Figure 4-14 Tanh Function Curve 
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ReLU: 
𝑓(𝑥) = max(0, 𝑥)                                                (4 − 11) 

ReLU is currently one of the most used activation functions by developers. The 

calculation of ReLU is very simple, it is a function that takes the maximum value. ReLU 

is not fully interval differentiable, it is not differentiable at 0, but it can consider 

calculating the sub-gradient. Because the output of ReLU is not interval bounded and 

it tends to infinity. When the input of the activation function is positive, ReLU does not 

have any problem of gradient vanishing or exploding which exist in sigmoid and Tanh. 

However, ReLU also contains some problems, its mean value of output is not 0. And 

when the input is negative, the neuron completely fails and will no longer be activated. 

It is fine during forward inference, but during the backward propagation training, the 

gradient will become 0, which may seriously affect the training accuracy. Despite these 

two minor problems, ReLU is still the most widely used activation function. 

 

Leaky ReLU: 
𝑓(𝑥) = max(0.01𝑥, 𝑥)                                           (4 − 12) 

Figure 4-15 ReLU Function Curve 

Figure 4-16 Leaky ReLU Function Curve 
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In order to solve the dead ReLU problem in ReLU, Leaky ReLU emerged, by giving 

very small linear components to the negative output value, so that these neurons can be 

activated when the input value is negative, and the gradient vanishing problem will not 

disappear during backward propagation training. Leaky ReLU extends the range of 

functions of ReLU, where both input and output are positive infinity to negative infinity. 

Theoretically, Leaky ReLU has all the advantages of ReLU without consuming more 

computing resources. 

 

Mish: 
𝑓(𝑥) = 𝑥 ∙ tanh (ln(1 + 𝑒𝑥))                                     (4 − 13) 

Tanh has a strong nonlinear expression and good derivative properties but has some 

problems such as gradient exploding and vanishing. ReLU avoids the problem of 

gradient saturation, but has a weak nonlinear expression, requires a very deep network, 

needs to stack multiple layers, and has bad derivative properties. In order to integrate 

the advantages of both, Mish emerged, and Mish is a combination of Tanh and ReLU. 

YOLOV4 object detection neural network has utilized Mish activation function. Mish, 

compared to ReLU, allows a small gradient propagation when the input is negative, 

rather than directly to 0, which leads to most neurons failing to activate. This is 

consistent with the idea of Leaky ReLU. Mish has better smoothness than Leaky ReLU, 

it is fully differentiable. Smooth activation functions allow for better data propagation 

in the neural network, which can improve the accuracy and the generalization of the 

model. According to the experimental data, Mish is much more stable and accurate than 

ReLU during training, while the computational complexity of Mish is a bit higher. 

However, the above results are only based on the powerful GPU on cloud server, when 

Figure 4-17 Mish Function Curve 
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the neural network is deployed on low-power hardware platform, the consumption of 

computing resources of different activation functions will be magnified. The 

comparison of neural network models with Leaky ReLU and Mish respectively on 

RTX2070 GPU platform are shown in Table 4-1 and the comparison results on 

RK3399PRO platform are shown in Table 4-2. 

It can be seen that there is little difference in the performance of the models with Mish 

and Leaky ReLU on the high-performance hardware terminal. However, Mish will 

occupy much more memory than Leaky ReLU on NPU of RK3399PRO platform. 

 

Table 4-1 Comparison of Models with Leaky ReLU and Mish on Server 

 Leaky ReLU Mish 

Model Size 

(MB) 
244 245 

AP50:95 39.6 40.3 

Allocate Memory 

(MB) 
18.88 18.88 

BFLOPS 60.137 60.137 

Inference Cost 

(ms) 
34.48 34.012 

FPS 32.2 31.8 

 

The inference time spent by each activation function layer in these models are shown 

in Figure 4-18, the models include the original and quantized models. It can be seen 

that the inference time consumed by activation function layer with Mish far exceed that 

consumed by activation layer with Leaky ReLU, which leads to the inference speed of 

the neural network with Mish activation function becoming very slow and failing to 

meet the real-time requirements on the embedded terminal. And the inference 

performance of Leaky ReLU increases significantly after quantization, while there is 

almost no difference of Mish between original layer and quantized layer. The accuracy 

improvement brought by Mish does not have any advantage after model conversion and 

quantization. Mish’s advantage over Leaky ReLU on high-performance hardware 

platform seems negligible on the RK3399PRO platform. 
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Table 4-2 Comparison of Models with Leaky ReLU and Mish on RK3399PRO 

 Leaky ReLU Mish 

Input Size    416x416 608x608 416x416 608x608 

System Memory 

(MB) 
258.24 259.06 307.08 344.99 

NPU Memory 

(MB) 
158.94 159.60 160.03 178.20 

Inference Cost 

(us) 
89856 90145 542642 1166208 

FPS 11.13 11.09 1.84 0.86 

 

The inference time spent by each activation function layer in these models are shown 

in Figure 4-18, the models include the original and quantized models. It can be seen 

that the inference time consumed by activation function layer with Mish far exceed that 

consumed by activation layer with Leaky ReLU, which leads to the inference speed of 

the neural network with Mish activation function becoming very slow and failing to 

Figure 4-18 Inference Time of Leaky ReLU and Mish Layers on RK3399PRO 



70 

 

 

meet the real-time requirements on the embedded terminal. And the inference 

performance of Leaky ReLU increases significantly after quantization, while there is 

almost no difference of Mish between original layer and quantized layer. The accuracy 

improvement brought by Mish does not have any advantage after model conversion and 

quantization. Mish’s advantage over Leaky ReLU on high-performance hardware 

platform seems negligible on the RK3399PRO platform. 

And the RKNN framework of RK3399PRO has a special optimization for the ReLU 

activation function. After the single unit of YOLOV4 neural network is split in the 

original Darknet framework, some of the methods used during the model training will 

be removed first, and then if the activation function is ReLU, RKNN will perform a 

fusion operation on the Conv and ReLU operators, which is essentially the 

mathematical expression of several operators substituted and simplified, and the 

weights and other data of these operators will be accessed at the same time. The formula 

of initial Conv, BN and ReLU layers are as follows: 
𝑦𝑐𝑜𝑛𝑣 = 𝜔 ∙ 𝑥 + 𝑏                                                (4 − 14) 

 𝑦𝑏𝑛 =
𝛾 ∙ (𝑦𝑐𝑜𝑛𝑣 − 𝑚𝑒𝑎𝑛)

√𝑣𝑎𝑟
+ 𝛽                                   (4 − 15) 

 𝑦𝑅𝑒𝐿𝑈 = max( 𝑦𝑏𝑛, 0)                                           (4 − 16) 

While after the operator fusion, the formula are as follows: 

𝑦𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(
𝛾 ∙ 𝜔𝑛𝑒𝑤 ∙ 𝑥

√𝑣𝑎𝑟
+ 𝛽 +

𝛾 ∙  𝑏𝑛𝑒𝑤 − 𝐸[𝑥]

√𝑣𝑎𝑟
, 0)                (4 − 17) 

𝜔𝑛𝑒𝑤 =
𝛾 ∙ 𝜔 ∙ 𝑥

√𝑣𝑎𝑟
,  𝑏𝑛𝑒𝑤 =

𝛾 ∙ (𝑏 − 𝑚𝑒𝑎𝑛)

√𝑣𝑎𝑟
+ 𝛽                       (4 − 18) 

After performing the fusion of operators, the powerful NPU can be utilized at one time, 

and the original inference of three operators can be processed in just one pass now. This 

fusion of Conv, BN and ReLU can greatly reduce the memory accessing consumption 

and thus improve the inference speed of the whole neural network model. Because the 

object detection neural network in this thesis has a large number of 

(Conv+BN+Activation) structures, so the activation functions used in the neural 

network in this thesis are all converted from mish to leaky ReLU, which sacrifices a 

very small amount of accuracy to significantly improve the inference performance of 

the neural network model. 
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The operator fusion of ReLU is shown in Figure 4-19. 

4.7.2 Pooling 

Pooling layer is a function of downsampling in neural networks, which has two main 

purposes. On the one hand, in order to reduce the size of feature maps, compress the 

amount of data and parameters, reduce information redundancy, and prevent overfitting 

of neural networks, and on the other hand, to extract local features and extract the most 

significant part of a pair of feature maps, while ensuring feature invariance, including 

translation, rotation and scale invariance. 

Common pooling operations include max pooling and average pooling. The average 

pooling is to calculate the average value of the selected region of the feature map, and 

the average value is set to be the pooled value of the region, while the max pooling is 

to select the largest value of the selected region to be the pooled value of the region. 

When doing these pooling operations, there may be overlapping pooling process, that 

is, different pooling selected areas have overlapping parts. In general, average pooling 

is used to reduce the increase in variance of the predicted values due to the restricted 

size of the domain, so an average value is calculated, while max pooling is used to learn 

some details of the edge texture of the image to better extract the features of the image. 

And during backward propagation, average pooling is to divide the gradient of an 

element into N equal parts and assign it to the previous layer, so that the sum of the 

gradients (residuals) before and after pooling layer remains the same. The maximum 

pooling passes the gradient directly to one pixel in the previous layer, while the other 

Figure 4-19 Operator Fusion of ReLU 
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pixels do not accept the gradient, whose gradient is 0, in this way the gradient will be 

constant during pooling. The process of max pooling is shown in Figure 4-20. 

The neural network in this thesis uses the maximum pooling method, which can better 

extract the edge texture features from the feature map and obtain more accurate 

regression results. The initial YOLOV4 neural network model also contains a SPP, 

which means several max pooling layers of multiple scales is operated simultaneously, 

and then the output are connected by a route operation. The advantage of SPP is to 

convert feature maps at any scale into the same dimension, which allows the neural 

network to process images at any scale while avoiding the cropping and warping 

operations, so that it is not limited by the fixed size input. And the receptive field can 

be significantly increased if deploy SPP in the object detection neural network, as the 

SPP separates the most important contextual features and hardly affects the inference 

performance of the neural network. 

However, in the framework of RKNN, the four 1x1,5x5,9x9,13x13 max pooling layers 

in SPP are executed parallel, after storing the previous feature map into the dedicated 

memory of NPU on RK3399PRO, the operations at the four scales of this feature map 

are done at the same time, which greatly occupies the memory and computing power 

of NPU. Since 1x1 max pooling does not do any operation and the other three scales of 

max pooling affect the performance of inference greatly, the thesis considers only using 

two scales of max pooling in the SPP. Also, in order to ensure that the output is not 

affected by the fixed input size, the SPP structure need to add another 1x1 max pooling, 

that is, just transfer the original feature map of last layer. The SPP structure adjustment 

is shown in Figure 4-21. The inference result after this adjustment is shown in Table 4-

3. 

 

Figure 4-20 Max Pooling Process 
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Also, in the pooling layer of neural networks on RKNN framework, RKNN has the 

same operator fusion optimization, which is similar to the operator fusion of ReLU and 

Conv introduced in the previous chapter. If the pooling layer is connected behind ReLU 

activation function, then the RKNN framework can also automatically fuse these 

operators, similarly, the four operators (Conv+BN+ReLU+Pool) are directly fused. But 

here in the SPP it is necessary to split these several max pooling layers and perform the 

operations separately, so that the three pooling operators can be fused with other 

operators, and then calculate these fused operators and connect them through the concat 

layer. Similar to the operator fusion in the previous chapter, this fusion can greatly 

improve the memory accessing efficiency and the inference performance of the neural 

network model. 

By iteratively changing the model parameters and training the model for inference 

comparison, the inference performance is improved, and the loss of accuracy is not 

significant after the structure adjustment of pooling layer.  

The operator fusion process of pooling layer is shown in Figure 4-22. 

 

 

 

Figure 4-21 SPP Structure Adjustment 
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Table 4-3 Inference Results after SPP Adjustment on RK3399PRO 

 Initial Model After SPP Adjustment 

 Model Size 

 (MB) 
61.66 61.27 

System Memory 

(MB) 
293.71 258.04 

 NPU Memory 

(MB) 
174.03 158.92 

Inference Cost 

(us) 
147909 135781 

FPS 6.76 7.36 

 

4.7.3 Other Optimizations 

The development of operators in this chapter also includes some other optimization, 

such as discarding some operators that only affect backward propagation in neural 

network training, including dropout, mosaic and others. In addition to operator 

replacements, the thesis also deals with operator form conversion. It is important to note 

Figure 4-22 Operator Fusion of Pooling 
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that the same operator in different frameworks needs to be converted to RKNN 

framework to inference. This means change the form of the operator in different 

frameworks but maintain the original calculation implementation. Because the RKNN 

framework need to maintain generality and support various neural networks of different 

framework. In neural network in this thesis, the operator replacements include the 

conversion of the shortcut layer into add layer, route layer into concat layer, unsample 

layer into resize layer, etc. Also, the logistic function used during network training is 

converted to sigmoid function at the final output layer. During the forward inference 

process on RKNN framework, there is no need to do a backward propagation. And the 

linear function is directly integrated into the Conv operator in RKNN framework, no 

need to add a new operator for calculation. 

4.8 Summary 

In this chapter, we have introduced the ideas about the neural network adjustment and 

forward inference optimization of models on RK3399PRO hardware platform, which 

includes model conversion, data layout transformation, operator development and 

quantization. Also, this chapter introduces the architecture of RK3399PRO, utilizes 

from the optimization idea of TVM and tries network pruning. During the quantization, 

the chapter applies two algorithms and utilizes MMSE algorithm and Moving Average 

Min Max algorithm to update the parameters to minimize the accuracy loss. And this 

chapter focuses on the effect of activation functions and pooling layers of neural 

networks on the hardware platform. Finally, on the RK3399PRO platform, the object 

detection neural network can achieve real-time video stream detection, and the accuracy 

does not drop to a very low level, meeting the inference performance. And the optimized 

neural network has a 20 times improvement in inference performance on the 

RK3399PRO hardware platform compared to the original YOLOV4 neural network. 
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5 Experiment and Results 

This chapter shows the experiment results, including the construction of dataset, 

training and testing results of different object detection neural networks on high-

performance platform and the inference results on low-power platform. These results 

are analyzed and shown in the figures and tables in this chapter. According to the data, 

it is proved that the optimized neural network in this thesis has the best inference 

performance with acceptable accuracy among the tested networks. 

5.1 Dataset Construction 

The neural network training in this thesis has used two datasets, one is the open source 

MS coco dataset, another is self-constructed dataset. 

MS coco dataset has a total of 80 categories, including some common target types: 

people, dogs, bicycles, cars and so on. This is a dataset open source by Microsoft team, 

including five types of data annotation: object detection, key point detection, material 

segmentation, panoramic segmentation and image description, which are stored in json 

format. The chapter extracts the position and category information of each object from 

the annotated json format and generates the txt format for training on the darknet 

framework. 

During the construction of own dataset, among the general obstacle types in the 

perspective of mobile robot, this thesis identifies five categories of obstacles: shoes, 

paper box, socket, headset, chair. This thesis labels the images which are downloaded 

from some open source websites and taken inside the laboratory. The labeling tool is 

Labelimg. The Labelimg is an open source image labeling software, which can be used 

to label the ground truth and category of each object in a graphic user interface, and the 

software will automatically generate labeled files in voc format or yolo format. In each 

line of the yolo format, the first number represents the category number, and the 

following numbers are (𝑥, 𝑦, 𝑤, ℎ) of each bounding box. Every image in the dataset 

should be fully labeled with each object. 

The labeling process is shown in Figure 5-1. 
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Because the number of images in own dataset is very small, there are only 1108 images. 

The thesis uses some dataset enhancement works to improve the richness of the dataset, 

including some random scaling, cropping, and arrangement of the images to stitch. 

These enhancements are applied to each image. With these works, the generalization 

ability of the neural network is improved during training. The process of data 

enhancement is shown in Figure 5-2. 

 

 

 

Figure 5-1 Dataset Labeling Process 

Figure 5-2 Dataset Enhancement Process 
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5.2 Model Training and Deployment 

All the deep learning object detection neural networks need continuous training and 

optimization before deploying to the hardware platform, the optimization at each stage 

has been introduced in the previous chapter, this chapter is mainly about displaying 

some test results, including the comparison of different networks on high-performance 

server and RK3399PRO platform. Only a few representative neural network models are 

shown here, including the original YOLOV3, YOLOV4, and YOLOV4-Tiny neural 

network models. This chapter also tests the YOLOV4-CSP network model, which 

changes the PANET of YOLOV4 to CSPNet. Finally, this chapter tests own neural 

network which is optimized in chapter 4. This neural network is noted as YOLO-Mine. 

5.2.1 Training 

The training of the neural networks in this thesis are implemented on the windows 

platform, based on the Darknet deep learning framework. The initial anchors are 

calculated according to the ground truth of the dataset and these anchors are used to 

train the neural network. The average loss value and the mean average precision value 

are used to observe the real-time accuracy change of during the model training. The 

training accuracy of the neural network is modified by setting different learning rates 

and threshold parameters. Not all models are the trained weights with maximum batches, 

because there is overfitting and accuracy loss if training more batches. The selected 

neural network models have the highest accuracy, and some models are trained for less 

batches. The comparison results of these models in high-performance server are shown 

in Table 5-1, all the data are tested when the size of input image is 416x416. 

The training process of these neural network models are shown in Figure 5-3. 

According to the data, the accuracies of all the models are relatively high except the 

YOLOV4-CSP model. There reason is that the Residual units in CSPNet make the neck 

network of YOLOV4 more complex, so this neural network need richer dataset. But 

this low accuracy model can still be used to test the inference performance on 

RK3399PRO platform, for that accuracy does not affect performance. 
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Figure 5-3 Neural Network Training Process (a) YOLOV3 (b) YOLOV4 (c) YOLOV4-CSP 

(d) YOLOV4-Tiny (5) YOLO-Mine 

(a) (b) 

(d) 

(e) 

(c) 
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Table 5-1 Inference Results of Models on Server 

Model V3 V4 CSP Tiny Mine 

Size (MB) 234 245 202 22.4 244 

AP50:95 30.9 40.3 39.6 20.6 38.5 

Memory 

(MB) 
18.88 18.88 18.88 72.42 18.88 

BFLOPS 65.879 60.137 50.834 6.910 61.134 

Time Cost 

 (ms) 
31.07 34.012 33.655 7.663 34.48 

FPS 32.4 31.8 20.8 43.3 32.2 

 

According to the data, except YOLOV4-Tiny network, other networks have similar 

inference performance on high-performance server. While the accuracy of YOLOV3 is 

much lower than other networks. 

5.2.2 Deployment 

After the object detection neural networks are trained with a good accuracy on the 

server, the models are then deployed to the RK3399PRO hardware platform. The 

operation system of the platform is the Debian 10 system based on ARM. The neural 

network models on the darknet framework are converted to the RKNN framework. 

Then the thesis uses images and video stream to test the inference performance and 

accuracy of these object detection neural networks. The results of initial models are 

shown in Table 5-2 and the results of quantized models are shown in Table 5-3. 

Similarly, these data are tested when the input image size is 416x416. 

According to the data, the final optimized YOLO-MINE network model has the best 

inference performance with acceptable accuracy on RK3399PRO hardware platform, 

which has higher accuracy than YOLOV3 and YOLOV4-Tiny and faster than YOLOV4 

and YOLOV4-CSP. 
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Table 5-2 Inference Results of Initial Models on RK3399PRO 

Model V3 V4 CSP Tiny Mine 

Model Size  

(MB) 
118.29 122.95 101.13 11.59 122.88 

System 

Memory 

(MB) 

407.35 530.40 478.64 48.02 483.37 

NPU Memory 

(MB) 
295.12 327.54 276.48 38.89 159.60 

Inference Cost 

(us) 
2165990 2622625 2323044 453759 2167076 

FPS 0.46 0.38 0.43 2.3 0.46 

 

 
Table 5-3 Inference Results of Quantized Models on RK3399PRO 

Model V3 V4 CSP Tiny Mine 

Model Size 

 (MB) 
59.28 61.66 50.7 5.83 61.28 

System 

Memory 

(MB) 

199.88 307.08 275.54 31.11 259.06 

NPU Memory 

(MB) 
143.42 160.03 134.08 19.01 147.58 

Inference Cost 

(us) 
75803 542784 555320 20793 89832 

FPS 13.19 1.84 1.80 48.1 11.13 
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Finally, the optimized object detection neural network is applied in the intelligent vision 

system in a low-cost disinfection robot. Figure 5-4 shows the whole framework of this 

disinfection robot and the functions of different modules. While this robot achieves the 

basic function, it can accurately detect the obstacles ahead through the monocular 

camera, and the accuracy can reach more than 90%, at the same time, the robot can 

automatically map and navigate its surroundings through the 2D LiDAR, with that it 

can disinfect the surrounding environment without repetition. This intelligent vision 

system can process real-time video streams at up to 15fps. With this system, the 

disinfection robot becomes more effective and intelligent.    

5.3 Summary 

This chapter is mainly about data display, including dataset construction, training of 

different neural networks and the inference results of these networks on server and 

RK3399PRO platform, including the initial models and quantized models. According 

to the comparison results, the optimized neural network in this thesis has the best 

inference performance with acceptable accuracy among all the tested neural networks, 

based on this neural network, the obstacle detection of real-time video streaming can 

be implemented on the mobile robot platform. This chapter finally shows the whole 

architecture of the disinfection robot, with this intelligent vision system, the robot will 

Figure 5-4 Disinfection Robot with Intelligent Vision System 
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become more effective and intelligent. And in the future, this vision system can be 

applied to other type of low-cost mobile robots. 
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6 Conclusion and Future Research Directions 

6.1 Conclusion 

With the development of the information technology, mobile robots embody both of 5G 

and AI, and as such play an important role in future developments. The core technology 

of robot includes perception, decision-making and execution. Perception is one of the 

most important aspects bringing understanding of the environment to intelligent 

systems. However, most researchers and engineers are not developing vision system for 

consumer-grade mobile robots. In this kind of edge computing scenario, all data 

processing needs to be deployed on low-power hardware platform. In view of this, this 

thesis designs an intelligent vision system based on a mobile robot platform. This 

intelligent vision system mainly includes two vision modules, one is the SLAM 

localization and navigation function, and the other one is the deep learning based 

obstacle object detection function. 

The main work and contributions of this thesis is divided into three parts: 

(1) In this thesis we design an architecture of the intelligent vision system, including 

the sensor construction, the allocation of hardware resources, the selection of perception 

algorithms and the communication between different modules. 

(2) Through the thesis, we compare different deep learning based object detection 

neural networks and analyzes the effect of different tricks on the overall model. Based 

on the constructed dataset, the different neural network models are trained and tested 

on a high-performance hardware platform, and they are also deployed to low-cost 

hardware platform for forward inference test. According to their performance and 

accuracy, the state-of-the-art object detection neural network YOLOV4, which is not 

adopted by most developers, is innovatively selected as the main idea of the obstacle 

detection module in the intelligent vision system. 

(3) The thesis implements a series of optimizations for the YOLOV4 object detection 

neural network based on the low-power RK3399PRO hardware platform, including 

conversion of the memory layout, optimization of the activation function and pooling 

layer and splitting, replacement, and fusion of different operators. In this thesis, we also 

show how quantization can be used to compress a neural network. The MMSE and 
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Moving Average Min Max algorithms are innovatively utilized in the process to update 

the parameters to reduce the accuracy loss of the quantized model and stochastic 

method is applied to do the round operation. Then the thesis tries model pruning and 

mixed accuracy quantization. Finally, the optimized network has a 20 times 

improvement in inference performance on the RK3399PRO hardware platform 

compared to the original YOLOV4 network and the accuracy only has a little loss. 

The finally designed intelligent vision system on the mobile robot can perform real-

time obstacle detection on 1080p60fps video streaming. The detection accuracy reaches 

more than 90%, while the processing rate can reach 15fps. At the same time the mobile 

robot can complete automatic localization and navigation function without cloud 

connection. With this system, the mobile robot can be lower-cost, more power-efficient 

and the intelligent is more robust. 

6.2 Future Research Directions 

This thesis designs an intelligent vision system with two modules, a deep learning-

based obstacle detection module and a SLAM localization and navigation module. The 

object detection is based on an open-source algorithm and the neural network is 

optimized and deployed on a low-power hardware platform. However, there are still 

some limitations and shortcomings of the whole vision system, which need further work 

in the future: 

(1) The vision system can apply 3DToF sensors to improve the accuracy of SLAM and 

depth cameras to obtain distance information for the object detection neural network, 

which can optimize the data post-processing fusion. 

(2) Non-linear quantization algorithm can be used in quantization and the data can be 

quantized to 4bit when the accuracy loss is within a certain acceptable range. In that 

way the network can be compressed even further in order to consume less memory and 

computing power. 

(3) A more efficient AI accelerator chip can be used. Memory access is an important 

factor when performing inference on the edge platform. It is possible to use Single 

Instruction Multiple Data (SIMD) based hardware to achieve more efficient 

convolutional data multiplexing. And it will be much faster if the memory is extremely 

close to the computation block on the hardware. Another idea is to use computation and 

storage integration technology, using new non-volatile storage devices such as ReRAM, 
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so the operators of neural networks can be built into the storage array, which can 

significantly improve the inference and power performance[62]. 
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