8,901 research outputs found

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Energy use in residential buildings: Impact of building automation control systems on energy performance and flexibility

    Get PDF
    This work shows the results of a research activity aimed at characterizing the energy habits of Italian residential users. In detail, by the energy simulation of a buildings sample, the opportunity to implement a demand/response program (DR) has been investigated. Italian residential utilities are poorly electrified and flexible loads are low. The presence of an automation system is an essential requirement for participating in a DR program and, in addition, it can allow important reductions in energy consumption. In this work the characteristics of three control systems have been defined, based on the services incidence on energy consumptions along with a sensitivity analysis on some energy drivers. Using the procedure established by the European Standard EN 15232, the achievable energy and economic savings have been evaluated. Finally, a financial analysis of the investments has been carried out, considering also the incentives provided by the Italian regulations. The payback time is generally not very long: depending on the control system features it varies from 7 to 10 years; moreover, the automation system installation within dwellings is a relatively simple activity, which is characterized by a limited execution times and by an initial expenditure ranging in 1000 € to 4000 €, related to the three sample systems

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Multi objective optimization in charge management of micro grid based multistory carpark

    Get PDF
    Distributed power supply with the use of renewable energy sources and intelligent energy flow management has undoubtedly become one of the pressing trends in modern power engineering, which also inspired researchers from other fields to contribute to the topic. There are several kinds of micro grid platforms, each facing its own challenges and thus making the problem purely multi objective. In this paper, an evolutionary driven algorithm is applied and evaluated on a real platform represented by a private multistory carpark equipped with photovoltaic solar panels and several battery packs. The algorithm works as a core of an adaptive charge management system based on predicted conditions represented by estimated electric load and production in the future hours. The outcome of the paper is a comparison of the optimized and unoptimized charge management on three different battery setups proving that optimization may often outperform a battery setup with larger capacity in several criteria.Web of Science117art. no. 179

    Green buildings and design for adaptation: strategies for renovation of the built environment

    Get PDF
    The recent EU Directives 2010/31 and 2012/27 provide standards of nearly zero energy buildings for new constructions, aiming at a better quality of the built environment through the adoption of high-performance solutions. In the near future, cities are expected to be the main engine of development while bearing the impact of population growth: new challenges such as increasing energy efficiency, reducing maintenance costs of buildings and infrastructures, facing the effects of climate change and adjusting on-going and future impacts, require smart and sustainable approaches. To improve the capability of adaptation to dynamics of transformation, buildings and districts have to increase their resilience, assumed as ‘the capacity to adapt to changing conditions and to maintain or regain functionality and vitality in the face of stress or disturbance’ (Wilson A., Building Resilience in Boston, Boston Society of Architects, 2013). This paper describes the research methodology, developed by the Department of Architecture, a research unit of Technology for Architecture, to perform the assessment of resilience of existing buildings, as well as the outcomes of its application within Bologna urban context. This methodology focuses on the design for adaptation of social housing buildings, aiming at predicting their expected main impacts (energy consumption, emissions, efficiency, urban quality and environmental sustainability) and at developing models for renovation
    corecore