323 research outputs found

    The Modelling of Stereoscopic 3D Scene Acquisition

    Get PDF
    The main goal of this work is to find a suitable method for calculating the best setting of a stereo pair of cameras that are viewing the scene to enable spatial imaging. The method is based on a geometric model of a stereo pair cameras currently used for the acquisition of 3D scenes. Based on selectable camera parameters and object positions in the scene, the resultant model allows calculating the parameters of the stereo pair of images that influence the quality of spatial imaging. For the purpose of presenting the properties of the model of a simple 3D scene, an interactive application was created that allows, in addition to setting the cameras and scene parameters and displaying the calculated parameters, also displaying the modelled scene using perspective views and the stereo pair modelled with the aid of anaglyphic images. The resulting modelling method can be used in practice to determine appropriate parameters of the camera configuration based on the known arrangement of the objects in the scene. Analogously, it can, for a given camera configuration, determine appropriate geometrical limits of arranging the objects in the scene being displayed. This method ensures that the resulting stereoscopic recording will be of good quality and observer-friendly

    Direct Manipulation Of Virtual Objects

    Get PDF
    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user\u27s real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities--proprioception, haptics, and audition--and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum--Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables

    Une méthode pour l'évaluation de la qualité des images 3D stéréoscopiques.

    Get PDF
    Dans le contexte d'un intérêt grandissant pour les systèmes stéréoscopiques, mais sans méthodes reproductible pour estimer leur qualité, notre travail propose une contribution à la meilleure compréhension des mécanismes de perception et de jugement humains relatifs au concept multi-dimensionnel de qualité d'image stéréoscopique. Dans cette optique, notre démarche s'est basée sur un certain nombre d'outils : nous avons proposé un cadre adapté afin de structurer le processus d'analyse de la qualité des images stéréoscopiques, nous avons implémenté dans notre laboratoire un système expérimental afin de conduire plusieurs tests, nous avons crée trois bases de données d'images stéréoscopiques contenant des configurations précises et enfin nous avons conduit plusieurs expériences basées sur ces collections d'images. La grande quantité d'information obtenue par l'intermédiaire de ces expérimentations a été utilisée afin de construire un premier modèle mathématique permettant d'expliquer la perception globale de la qualité de la stéréoscopie en fonction des paramètres physiques des images étudiée.In a context of ever-growing interest in stereoscopic systems, but where no standardized algorithmic methods of stereoscopic quality assessment exist, our work stands as a step forward in the understanding of the human perception and judgment mechanisms related to the multidimensional concept of stereoscopic image quality. We used a series of tools in order to perform in-depth investigations in this direction: we proposed an adapted framework to structure the process of stereoscopic quality assessment, we implemented a stereoscopic system in our laboratory for performing various tests, we created three stereoscopic datasets with precise structures, and we performed several experimental studies using these datasets. The numerous experimental data obtained were used in order to propose a first mathematical framework for explaining the overall percept of stereoscopic quality in function of the physical parameters of the stereoscopic images under study.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Stereoscopic Cinema

    Get PDF
    International audienceStereoscopic cinema has seen a surge of activity in recent years, and for the first time all of the major Hollywood studios released 3-D movies in 2009. This is happening alongside the adoption of 3-D technology for sports broadcasting, and the arrival of 3-D TVs for the home. Two previous attempts to introduce 3-D cinema in the 1950s and the 1980s failed because the contemporary technology was immature and resulted in viewer discomfort. But current technologies – such as accurately-adjustable 3-D camera rigs with onboard computers to automatically inform a camera operator of inappropriate stereoscopic shots, digital processing for post-shooting rectification of the 3-D imagery, digital projectors for accurate positioning of the two stereo projections on the cinema screen, and polarized silver screens to reduce cross-talk between the viewers left- and right-eyes – mean that the viewer experience is at a much higher level of quality than in the past. Even so, creation of stereoscopic cinema is an open, active research area, and there are many challenges from acquisition to post-production to automatic adaptation for different-sized display. This chapter describes the current state-of-the-art in stereoscopic cinema, and directions of future work

    Stereoscopic modelling and monitoring of the roughness in concrete pavements

    Get PDF
    The detection and measurement of surface properties, such as cracks and roughness, on concrete structures have been of significant interest in recent years. Crack formation, width and propagation as well as surface roughness are important indicators of the structural integrity and condition of a concrete pavement that can determine the need for an upgrade or maintenance operation in roads and bridges. The use of non-destructive testing techniques for development of analytical and numerical processing tools that enables the efficient measurement of surface properties is the aim of this work. In the proposed framework, a stereo camera set-up is utilised to map and register surface roughness of a concrete pavement. The benefit of using a depth image to create a surface map lies in its low-cost and ability to provide depth changes at a highly-refined level with approximately 0.05 mm accuracy. Concrete samples of different roughness are used to assess the viability of such technique in enhancing inspection ability and the effectiveness of robust structural health monitoring and assessment. The focus is placed on: the acquisition of spatial and visual data and creating a 3D point cloud mesh using XYZ and RGB data; an efficient algorithm for the registration and analysis of XYZ- RGB data; and accuracy assessment of stereo cameras in detection and measurement. The investigation herein outlined capitalises on the potential for stereo cameras in developing a pipeline for data acquisition, detection and measurement of cracks and surface roughness in concrete structures.ARC DE150101703, ARC DP140100529, ARC LP14010059

    Efficient rendering for three-dimensional displays

    Get PDF
    This thesis explores more efficient methods for visualizing point data sets on three-dimensional (3D) displays. Point data sets are used in many scientific applications, e.g. cosmological simulations. Visualizing these data sets in {3D} is desirable because it can more readily reveal structure and unknown phenomena. However, cutting-edge scientific point data sets are very large and producing/rendering even a single image is expensive. Furthermore, current literature suggests that the ideal number of views for 3D (multiview) displays can be in the hundreds, which compounds the costs. The accepted notion that many views are required for {3D} displays is challenged by carrying out a novel human factor trials study. The results suggest that humans are actually surprisingly insensitive to the number of viewpoints with regard to their task performance, when occlusion in the scene is not a dominant factor. Existing stereoscopic rendering algorithms can have high set-up costs which limits their use and none are tuned for uncorrelated {3D} point rendering. This thesis shows that it is possible to improve rendering speeds for a low number of views by perspective reprojection. The novelty in the approach described lies in delaying the reprojection and generation of the viewpoints until the fragment stage of the pipeline and streamlining the rendering pipeline for points only. Theoretical analysis suggests a fragment reprojection scheme will render at least 2.8 times faster than na\"{i}vely re-rendering the scene from multiple viewpoints. Building upon the fragment reprojection technique, further rendering performance is shown to be possible (at the cost of some rendering accuracy) by restricting the amount of reprojection required according to the stereoscopic resolution of the display. A significant benefit is that the scene depth can be mapped arbitrarily to the perceived depth range of the display at no extra cost than a single region mapping approach. Using an average case-study (rendering from a 500k points for a 9-view High Definition 3D display), theoretical analysis suggests that this new approach is capable of twice the performance gains than simply reprojecting every single fragment, and quantitative measures show the algorithm to be 5 times faster than a naïve rendering approach. Further detailed quantitative results, under varying scenarios, are provided and discussed

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    An Information-Theoretic Approach to the Cost-benefit Analysis of Visualization in Virtual Environments

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Visualization and virtual environments (VEs) have been two interconnected parallel strands in visual computing for decades. Some VEs have been purposely developed for visualization applications, while many visualization applications are exemplary showcases in general-purpose VEs. Because of the development and operation costs of VEs, the majority of visualization applications in practice have yet to benefit from the capacity of VEs. In this paper, we examine this status quo from an information-theoretic perspective. Our objectives are to conduct cost-benefit analysis on typical VE systems (including augmented and mixed reality, theatre-based systems, and large powerwalls), to explain why some visualization applications benefit more from VEs than others, and to sketch out pathways for the future development of visualization applications in VEs. We support our theoretical propositions and analysis using theories and discoveries in the literature of cognitive sciences and the practical evidence reported in the literatures of visualization and VEs
    corecore