269 research outputs found

    Resource identification in fog-to-cloud systems: toward an identity management strategy

    Get PDF
    og-to-Cloud (F2C) is a novel paradigm aiming at extending the cloud computing capabilities to the edge of the network through the hierarchical and coordinated management of both, centralized cloud datacenters and distributed fog resources. It will allow all kinds of devices that are capable to connect to the F2C network to share its idle resources and access both, service provider and third parties’ resources to expand its own capabilities. However, despite the numerous advantages offered by the F2C model, such as the possibility of offloading delay-sensitive tasks to a nearby device and using the cloud infrastructure in the execution of resource-intensive tasks, the list of open challenges that needs to be addressed to have a deployable F2C system is pretty long. In this paper we focus on the resource identification challenge, proposing an identity management system (IDMS) solution that starts assigning identifiers (IDs) to the devices in the F2C network in a decentralized fashion using hashes and afterwards, manages the usage of those IDs applying a fragmentation technique. The obtained results during the validation phase show that our proposal not only meets the desired IDMS characteristics, but also that the fragmentation strategy is aligned with the constrained nature of the devices in the lowest tier of the network hierarchy.Peer ReviewedPostprint (author's final draft

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Towards Confident Body Sensor Networking

    Get PDF
    With the recent technology advances of wireless communication and lightweight low-power sensors, Body Sensor Network (BSN) is made possible. More and more researchers are interested in developing numerous novel BSN applications, such as remote health/fitness monitoring, military and sport training, interactive gaming, personal information sharing, and secure authentication. Despite the unstable wireless communication, various confidence requirements are placed on the BSN networking service. This thesis aims to provide Quality of Service (QoS) solutions for BSN communication, in order to achieve the required confidence goals.;We develop communication quality solutions to satisfy confidence requirements from both the communication and application levels, in single and multiple BSNs. First, we build communication QoS, targeting at providing service quality guarantees in terms of throughput and time delay on the communication level. More specifically, considering the heterogeneous BSN platform in a real deployment, we develop a radio-agnostic solution for wireless resource scheduling in the BSN. Second, we provide a QoS solution for both inter- and intra-BSN communications when more than one BSNs are involved. Third, we define application fidelity for two neurometric applications as examples, and bridge a connection between the communication QoS and application QoS

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Cooperative Communications in Smart Grid Networks

    Get PDF
    The conventional grid system is facing great challenges due to the fast growing electricity demand throughout the world. The smart grid has emerged as the next generation of grid power systems, aimed at providing secure, reliable and low cost power generation, distribution and consumption intelligently. The smart grid communication system within the smart grid network is of fundamental importance to support data transfer and information exchange within the smart grid system. The National Institute of Standards and Technology has identified wireless communications as an important networking technology to be employed in power systems. The reliability of the data transmission is essential for the smart grid system to achieve high accuracy for the power generation, distribution and consumption. In this thesis, we investigate cooperative communications to improve transmission reliability in smart grid networks. Although many issues within cooperative communication have already been addressed, there is a lack of research efforts on cooperative communication for the wireless smart grid communication system which has its own network features and different transmission requirements. In our research, the smart grid communication networks were studied, and cooperative communications in smart grid networks were analysed. The research work mainly focuses on three problems: the application of cooperative relay communications to modern smart grid communication networks, the cooperative relay-based network development strategy, and the optimization of cooperative relay communication for smart grids. For the first problem, the application of cooperative relay communication to a home area network (HAN) of smart grid system is presented. The wireless transmission reliability is identified as the issue of most concern in wireless smart grid networks. We model the smart grid HAN as a wireless mesh network that deploys cooperative relay communication to enhance the transmission reliability. We apply cooperative relay communication to provide a user equipment selection scheme to effectively improve the transmission quality between the electricity equipment and the smart meter. For the second problem, we address the network design and planning problem in the smart grid HAN. The outage performance of direct transmission and cooperative transmission was analysed. Based on the reliability performance metric that we have defined, we propose a HAN deployment strategy to improve the reliability of the transmission links. The proposed HAN deployment strategy is tested in a home environment. The smart meter location optimization problem has also been identified and solved. The simulation results show that our proposed network deployment strategy can guarantee high reliability for smart grid communications in home area networks. For the third problem, the research focuses on the optimization of the cooperative relay transmission regarding the power allocation and relay selection in the neighbourhood area network (NAN) of the smart grid system. Owing to the complexity of the joint optimization problem, reduced-complexity algorithms have been proposed to minimize the transmission power, at the same time, guarantee the link reliability of the cooperative communications. The optimization problem of power allocation and relay selection is formulated and treated as a combinatorial optimization problem. Two sub-optimal solutions that simplify the optimization process are devised. Based on the solutions, two different algorithms are proposed to solve the optimization problem with reduced complexity. The simulation results demonstrate that both two algorithms have good performance on minimizing the total transmission power while guaranteeing the transmission reliability for the wireless smart grid communication system. In this thesis, we consider cooperative communications in a smart grid scenario. We minimize the outage probability and thus improve the reliability of the communications taking place in the smart grid by considering the optimization problem of power control, relay selection and the network deployment problem. Although similar problems might have been well investigated in conventional wireless networks, such as the cellular network, little research has been conducted in smart grid communications. We apply new optimization techniques and propose solutions for these optimization problems specifically tailored for smart grid communications. We demonstrate that, compared to naively applying the algorithms suitable for conventional communications to the smart gird scenario, our proposed algorithm significantly improves the performance of smart grid communications. Finally, we note that, in future work, it will be possible to consider more complex smart grid communications system models. For example, it is worthwhile considering hetregeneous smart communications by combining HAN and wide area networks (WAN). In addition, instead of assuming that all communications have the equal priority, as in this thesis, more comprehensive analysis of the priority of the smart grid communication can be applied to the research

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
    • 

    corecore