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ABSTRACT PAGE 

With the recent technology advances of wireless communication and lightweight low-power 
sensors, Body Sensor Network (BSN) is made possible. More and more researchers are 
interested in developing numerous novel BSN applications, such as remote health/fitness 
monitoring, military and sport training, interactive gaming, personal information sharing, and 
secure authentication. Despite the unstable wireless communication, various confidence 
requirements are placed on the BSN networking service. This thesis aims to provide Quality of 
Service (QoS) solutions for BSN communication, in order to achieve the required confidence 
goals. 

We develop communication quality solutions to satisfy confidence requirements from both the 
communication and application levels, in single and multiple BSNs. First, we build 
communication QoS, targeting at providing service quality guarantees in terms of throughput 
and time delay on the communication level. More specifically, considering the heterogeneous 
BSN platform in a real deployment, we develop a radio-agnostic solution for wireless resource 
scheduling in the BSN. Second, we provide a QoS solution for both inter- and intra-BSN 
communications when more than one BSNs are involved. Third, we define application fidelity 
for two neurometric applications as examples, and bridge a connection between the 
communication QoS and application QoS. 
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Towards Confident Body Sensor Networking 



CHAPTER 1 

INTRODUCTION 

A Body sensor network (BSN) consists of a group of wireless sensors, which are either 

wearable on or implanted into a human body to monitor vital physiological parameters and 

body movements. The data collected by body sensors are usually transmitted to an aggre

gator (e.g., a cell phone) and then is reliably delivered to a data center (e.g., a hospital) in 

real-time for analysis. BSNs have attracted significant interest from a wide range of applica

tions, including smart health-care [31] [25] [21] [44], assisted living [37], emergency response 

[22], athletic performance evaluation [7] , and interactive controls [12] [59] [51] [33] [20]. 

For example, a wireless electroencephalography (EEG) headset can be included in a BSN 

to sample neuro signals generated from the human brain activities. Using EEG biomarks, 

neurometric applications can be developed to monitor and diagnose various neurological 

and psychological diseases, such as coma, depression and age-related cognitive changes. 

2 
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Applications in BSN place confidence requirements on the networking. Take the neu

rometric applications for example, almost all such applications demand high application 

fidelity and very low mis-diagnosis. Also, considering the EEG data transmitted from the 

headset to the aggregator, each neurometric application requires certain amount of data for 

the purpose of monitoring or diagnosis. In addition, the data should be transmitted with 

limited delay in many cases, such as real-time diagnosis and interactive control. 

However, satisfying these confidence requirements in the BSN context is difficult. The 

low power sensor devices place limitation on available communication resource (250Kbps 

bandwidth in popular sensor motes like TelosB), and environment noise farther caused 

unpredictable wireless link quality. In addition, new research challenges are created due 

to the distinct characteristics of BSN, comparing with the conventional wireless sensor 

network (WSN) [13]. Firstly, the mobility of the BSN wearer adds further instability for 

the wireless communication in BSN. Secondly, the nodes placed on human body usually 

would not be deployed with high density as in the traditional WSN. Thirdly, the BSN 

network architecture requires less hop and may use specific node (such as a cellphone) to 

relay sensor data. Lastly, BSN sensor data also has different transmission rate and latency 

bound. These differences result in requirement for new BSN communication QoS solutions. 

In this work, we plan to address it through three aspects: (!)Building communication QoS, 

(2)Connecting communication QoS with application QoS and {3)Exposing communication 

QoS availability to other BSNs. 

Building Communication QoS. At the communication level, the service quality is 

harmed by the irregular wireless communications within a BSN [49] [72], as well a.'> the 

mobility of BSNs. So, we propose to build the communication QoS in the BSN. More 
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specifically, we provide radio-agnostic solution for joint throughput and time delay perfor

mance assurance within a BSN. 

Connecting Communication QoS with Application QoS. At the application level, 

application fidelity requirements are different depending on the individual applications, and 

cannot be mapped directly to communication QoS. Taking two neurometric applications as 

examples, our proposed solution aims to match BSN communication with the neurometric 

application fidelity requirements. 

Exposing Communication QoS Availability to Other BSNs. When multiple BSNs 

are involved, it is even harder to provide communication quality assurance with the compli

cated network structure where inter- and intra-BSN connections coexist. When an applica

tion requires the cooperation of multiple BSNs, we aim to provide communication QoS for 

inter- and intra-BSN connections. 

1.1 Building Communication QoS 

Many BSN applications are performance-critical, requiring stringent throughput and time 

delay performance assurance. For instance, in a BSN, an off-the-shelf wireless EEG device, 

the Emotiv EPOC Neuroheadset, can generate 4kbps EEG data streams from each of its 

14 electrodes. A depression detection application requires EEG data from 2 electrodes and 

a Mild Cognitive Impairment (MCI) analysis requires 4 electrodes. This means, the BSN 

networking should provide assurance for 8kbps and 16kbps throughput requirements for the 

two applications, respectively. In addition, for time-critical applications, such as interactive 

control, responses should be made in real-time, which puts a time-delay requirement on the 
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data transmission. 

To provide joint throughput and time delay performance assurance within BSNs, two 

research challenges need to be addressed: the irregular BSN link quality and the heteroge

neous BSN radio platforms. In [70], the general low power wireless sensor communication is 

reported to be notoriously irregular. In [49] [72], the link quality in a BSN is reported to be 

highly dynamic and even harder to predict than in a general wireless sensor network due to 

interference from environment [73], body activities [37], and body fading [60]. In order to en

sure the requested performance in the presence of such irregular BSN link quality, available 

resources must be adaptively rescheduled according to efficiency and cost. Also, existing 

body sensor devices, especially medical sensor devices, often use heterogeneous radio plat

forms, such as CClOOO, ZigBeejCC2420, and Bluetooth. It is indispensable to achieve the 

performance assurance in a radio-agnostic manner to support platform portability. 

In literature, many existing works propose specific MAC protocols or extensions to 

specific MAC protocols and radio platforms for providing statistical throughput and/or 

time delay performance assurance. Representative works are [58], [18], [5], [69], [30], [14], 

and [47]. Some other works, even though radio-agnostic is discussed, do not provide any 

performance assurance but instead provide best effort solutions for enhancing throughput 

and/or reducing time delay. Representative works are [39], [48], [66], [23], and [50]. Another 

group of works provide either throughput or time delay performance assurance, but not 

both. Representative works are [53], [1], [40], [26], and [72]. In [29], a solution is presented 

for multiple BSN data streams that can guarantee different throughput requirements but 

with only a single time delay bound. However, this work does not meet our goal of allowing 

different data streams to request both different throughputs and time delays. Moreover, 
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[29] is based on an individual-polling scheme, in which each data packet transmission from 

a sensor mote is preceded by a polling message from the central aggregator, rather than 

the more effective group-polling scheme, in which multiple data packet transmissions are 

allowed after a single polling message. Consequently, [29] is not appropriate for radio 

agnostic performance assurance and also introduces a minimum of 50% communication 

overhead. 

In our proposed work, a novel and efficient radio agnostic solution is developed for het

erogeneous BSNs. This solution allows different data streams to request different through

put and time delay performance assurances. For the purpose of radio-agnostic design, a 

group-polling scheme is used, which also reduces communication overhead. 

1.2 Connecting Communication QoS with Application QoS 

At the application level, the definition of QoS varies across different applications, and the 

relationship between communication QoS and application QoS is also unknown. In this 

work, the relationship between communication and application QoS is studied through two 

neurometric applications as examples. We use the commercial Emotiv EPOC Neuroheadset 

in BSN to collect EEG data for the neurometric applications. The headset is designed to 

communicate with a laptop as base station instead of the aggregator. As the local station 

dose not move with the BSN, the communication pattern between EEG sensors on the 

headset and the base station is quite lossy due to human mobility. The current communi

cation pattern of EEG headset is examined to exploit connection between communication 

and application fidelity. 
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Another issue to be considered here is the energy consumption. The recently developed 

low-cost wireless EEG sensor devices make it possible to add EEG neurometrics to in-situ 

physiological monitoring applications. Comparing to the conventional scalp EEG, the small 

wireless EEG headset or headband removes the need for cleaning the scalp area and hence 

requires minimum preparation for EEG collection. It also removes the electrodes wires and 

hence frees patients from the clinical environment, enabling ubiquitous and less invasive 

in-situ physiological monitoring. However, using battery instead of in-wall power supply, 

such EEG devices should optimize it energy usage of EEG data sampling and networking. 

There are some existing works that design neurometric applications with a certain degree 

of fidelity. At the application level, algorithms for emotion detection and epileptic seizure 

detection are developed, respectively, and the application fidelity is evaluated in terms of 

the detection accuracy [43] [63]. Some other works [2] [61] [62] [4] trade the application 

accuracy with energy efficiency through algorithm improvements. The trade-off between 

energy consumption and data quality has also been studied in body sensor networks [6] 

[24] [3], but they only consider the distortion of sampled sensor readings rather than the 

application fidelity requirements. At a lower level, channel-aware QoS solutions have been 

developed for wireless sensor networks, e.g., frequency adaptation and encoding adaptation 

have been exploited in [71] and [68], respectively, in order to enhance the energy efficiency 

of communication. But they do not associate the low level QoS metrics with the application 

fidelity requirements. In addition to communication solutions, new hardware design, such 

as the chip design improvement in [67], is also proposed to improve the energy efficiency. 

This work aims to improve the communication design of EEG sensing applications while 

meeting applications' fidelity requirements. To this end, we investigate the sampling and 
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networking of an off-the-shelf Emotiv EPOC Neuroheadset [17] for neurometric applica-

tions1. In real scenarios, we measure the communication pattern between EEG sensors on 

the EPOC neuroheadset and a nearby base station (a laptop) to which the sensors directly 

communicate. A mismatch is uncovered between the current lossy communication pattern 

and the neurometric application fidelity requirements. Three pitfalls that contribute to 

this mismatch are identified in the design. First, the current EEG wireless headset design 

does not consider the lossy communication patterns in reality, thus the application fidelity 

sharply drops when the wireless link quality degrades. Second, all headset's electrodes sam-

pleat the same speeds without considering applications' fidelity requirements. But like an 

I-frame is more significant than a B- or P-frame in an MPEG-4 video stream, different EEG 

sensing channels may also have different impacts on the fidelity of different neurometric ap-

plications. Unlike the existence of standardized 1-/B-/P-frames in the MPEG-4 standard, 

there are no standardized data frames and it is also difficult to standardize them for dif-

ferent neurometric applications. Therefore, a generic approach is needed to automatically 

learn the sensitivity of different neurometric applications' fidelities to the EEG sensory data. 

Third, applications' priorities are neglected. For instance, to a 29 years old human subject 

with tentative diagnosis of depression, the electrode readings used for depression detection 

is more important than those used for the detection of aging-related cognitive changes. 

To address these problems, we propose a series of generic techniques, with which we are 

able to quantify the sensitivity of neurometric application fidelity to the EEG data. These 

techniques are also used to improve the energy efficiency and neurometric fidelity of EEG 

1 Note that the headset uses private hardware and software design, and it does not provide direct com
munication control to developers. However, its manufacture encourages [17] researchers like us to give 
communication improvement suggestions which they will incorporate in future EEG sensing applications. 
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sensor sampling and networking. 

1.3 Exposing Communication QoS Availability to Other BSN s 

The BSN performs in-situ monitoring in people's daily life, of which group activities take a 

large part when people spend time with families and friends, or work with colleagues. For 

example, a group of athletes training and living together may all wear BSNs to monitor 

their athletic performance, as well as their daily schedules; or a group of senior people in 

a senior community may wear BSNs to monitor their health status and daily activities. In 

these scenarios, multiple BSNs often coexist within the communication range of each other, 

and their applications can utilize the shared sensor data from other buddy BSNs. Here a 

buddy BSN is the BSN worn by a family member, a friend, or a colleague, who can be 

trusted. Concerning the privacy issue, we assume that only non-private sensor data, such 

as environment temperature readings and background noise samples, can be shared with 

another trusted buddy. Sharing sensor data among multiple buddy BSNs has the following 

benefits. First, when a group of people are together, their BSNs may have multiple sensors 

collecting the same data, such as environment temperature or background noise, then the 

extra sensors can be turned off to save energy, and only one sensor is needed to broadcast 

its sensor data to be shared by all coexisting BSNs. Second, the applications in a BSNs 

can borrow the sensors from other neighboring BSNs to enhance their performance. Take 

the activity recognition application as an example, some activities are hard to classify with 

data from a single BSN, such as watching television and chatting with friends. In these 

cases, the sensor data from other BSNs help increase the classification accuracy. 
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Applications in BSNs require certain data throughput to satisfy application fidelity 

requirements. To provide QoS for both inter- and intra-BSN communications in multiple 

neighboring buddy BSNs, the major challenge is how to properly allocate the wireless 

resources to both inter- and intra-BSN communications in multiple BSNs. For the intra

BSN communication in a BSN, possible interference from other BSNs traffic should be 

taken into consideration. For the inter-BSN communication, the QoS assurance should be 

provided for all the BSNs sharing the same sensor. Here a BSN also needs to discover the 

other buddies and establish the sharing relationship. 

There are existing studies providing the communication QoS in a single BSN, such as [72] 

[55], and between BSNs and static networks, such as [46], but the communication quality 

among multiple BSNs is not considered. Some other works, such as BikeNet [16], Bubble

sensing [41 J, and CaliBree [45], have developed new applications using the data delivered 

between different devices carried by different people and utilizing people rendezvous [28], but 

the communication qualities have not yet been studied. Researchers have also investigated 

the human mobility models and analyzed the inter-contact time of different individuals [56] 

[34] [35] [64] [15]. However, these works only aim to improve network connectivity and 

performance by predicting when the devices on different people can communicate with each 

other, but assume perfect communication, rather than address the inter- and intra-network 

interference by providing the communication QoS. 

1.4 Contributions 

The main contribution of this work can be summarized as follows: 
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• Building Communication QoS. We jointly consider throughput and time delay perfor

mance assurance for heterogeneous body networks that demand radio-agnostic solu

tions. 

We theoretically prove that joint throughput and time delay assurance with a group

polling scheme is NP-hard, while throughput assurance only is P. 

We propose BodyT2, a practical solution for joint throughput and time delay perfor

mance assurance in heterogeneous body networks. We also develop a phone-centric 

body network to demonstrate BodyT2's effectiveness. 

Through both TelosB mote lab tests as well as on body deployments in an Android 

phone-centric personal wearable system, our performance evaluation demonstrates 

that BodyT2 greatly outperforms existing solutions. 

• Connecting Communication QoS with Application QoS. We uncover and analyze a 

mismatch between the lossy EEG sensor communication pattern and the high neuro

metric application fidelity requirements. 

We propose generic techniques that can automatically learn the sensitivity of appli

cation fidelity to sampled sensor readings, especially for neurometric applications. 

With the learned sensitivity, we propose an energy minimization algorithm that al

lows us to minimize the energy usage in EEG sampling and networking with given 

application fidelity requirements. 

With the learned sensitivity, we also propose a fidelity maximization algorithm that 

allows us to maximize the sum of all applications' fidelities with a given data buffer 

on a wireless EEG headset. 
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• Exposing communication QoS availability to other BSNs. We propose a framework 

called BuddyQoS, which enables the neighboring buddy BSNs to discover each other 

and share sensors between them. 

We enables the upper layer applications to request the same or different through

put assurance for data streams from either the local BSN or the neighboring buddy 

BSNs. With these requests, BuddyQoS provides statistical throughput assurance for 

the communications in each BSN. 

In particular, we expose the communication QoS availability across different neigh

boring buddy BSNs. Here exposing the communication QoS availability means, when 

a BSN shares its local nodes with its neighboring buddies, they collaborate to provide 

the required throughput assurance for the shared data streams. For the shared nodes, 

the resources needed to deliver the data to all listening BSNs are estimated in their 

local BSNs. Based on the estimation, the data streams are allocated with sufficient 

resource, and the resource allocation is broadcast to all listening BSNs. 

1.5 Dissertation Organization 

The rest of the dissertation is organized as follows. First, Chapter 2 presents the related 

works. Chapter 3 aims to build communication QoS, and proposes a novel approach to 

provide joint throughput and time delay assurance in a radio-agnostic. Chapter 4 farther 

connects communication QoS with application QoS. Taking two neurometric application 

as example, we propose to automatically learn the data sensitivity to application fidelities, 

based on which EEG sampling and networking in the BSN can be improved. Chapter 5 
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studies the connections among multiple BSNs, and expose communication QoS to each 

other. Finally, Chapter 6 concludes the dissertation. 



CHAPTER 2 

RELATED WORKS 

In this chapter, we present the related works to our study. Section 2.1 includes designs 

with communication quality considerations in wireless networks. Section 2.2 includes works 

concerning physiological and psychological application fidelity. Section 2.3 includes stud

ies on rendezvous applications, when sensors on two people should be connected for data 

transmission. 

2.1 Building Communication QoS 

On the communication level, a number of works have been proposed to provide throughput 

and/or time delay performance assurance for wireless ad hoc networks and sensor networks. 

However, they are usually designed as specific MAC protocols or extensions, rather than 

14 
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being radio-agnostic. Based on a hardware-assisted time synchronization radio platform 

(called FireFly), both a MAC [58] and a real time operation system [18] are developed to 

provide high throughput and bounded time delay. A real-time voice stream-capability [42] 

is also built with the Firefly nodes. [5] provides differentiated service to guarantee com

munication delay and loss based on the Distributed Coordination Function (DCF) specific 

to IEEE 802.11. [69] maintains average delay assurance to real-time multimedia applica

tions in wireless ad hoc networks that use IEEE 802.11. [30] devises, in compliance with 

EDCA-incorporated UWB MAC, a framework that provides deterministic throughput for 

real-time traffic. [14] explores IEEE 802.15.4 radio's capability of supporting discrete event 

control applications with short time delay requirement. [47] proposes a MAC for deliver

ing low-latency event driven alarm information in wireless sensor networks with minimum 

overall delay. 

Several radio-agnostic solutions also exist in literature. But rather than providing 

throughput and/or time delay performance assurance, they usually schedule available re

sources to optimize or improve specific performance metrics, like improving throughput and 

reducing time delay. [39] and [48] propose resource management approaches to enhance 

network throughput. [66] schedules resources to minimize the average delay in bandwidth

sharing networks with a linear topology. [23] develops a sensor network operating system 

that incorporates preemptive priority scheduling to achieve short time delay. [50] derives 

the average delay bound and maximized throughput for one-hop wireless networks. 

Several other radio-agnostic designs exist for assuring throughput or time delay perfor

mance, but not both. [53] considers a multicast network where only time delay bounds 

are assured. [1] analyzes the real-time capacity of multihop wireless networks and pro-
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poses a fixed-priority scheduling to guarantee time delay. [40] presents a velocity-monotonic 

scheduling that accounts for time delay and distance in large-scale networks. [26] guarantees 

end-to-end delay for three types of communication services in wireless sensor networks with 

geographic location information. [72] guarantees different throughput requirements from 

applications, but time delay requirements are ignored. 

We are also aware that [29] presents a radio-agnostic solution for both throughput and 

time delay performance assurance. However, all data streams in the same network are 

subject to a single time delay bound, unable to request different time delay assurances 

as what we propose in this work. Moreover, this design introduces 50% communication 

overhead, since it is based on the individual-polling rather than group-polling scheme. 

2.2 Connecting Communication QoS with Application QoS 

Several existing works propose neurometric applications with fidelity consideration. The 

emotion detection application developed in [43] aims to find the features that are robust 

to EEG signal noise and have strong discriminative capacity. In [63], an onset epileptic 

seizure detection algorithm is designed. It uses machine learning to extract spectral, spatial, 

and temporal features from sampled EEG signals to achieve high accuracy and short delay. 

However, to meet the application fidelity requirements, these works only consider improving 

the detection and classification algorithms, but do not take lossy wireless communication 

into account. Moreover, at the presence of data loss, how to maximize application fidelity 

is not addressed. 

At the application level, efforts have also been paid to trade accuracy with energy 
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efficiency. In [2], a synchronization likelihood channel selection method is developed to 

reduce the number of EEG data streams used in emotion assessment, with only a slight loss 

of classification performance. In [61], a screening detector is developed to help multi-feature 

detection algorithms reduce energy consumption by processing much fewer features. In [62], 

a machine learning technique is used to construct an epilepsy detector with fewer channels. 

In [4], lossless sensor data compression is proposed to reduce the communication energy 

usage at the expense of the increased computation complexity. However, different from our 

work, none of these solutions propose to automatically learn the sensitivity of application 

fidelity to sensory data for reducing energy consumption. 

The trade-off between energy and data quality has been studied in body sensor networks. 

Barth et. al. [6] evaluate the energy usage with respect to data distortion. Hanson et. al. 

[24] explore energy-fidelity scalability to adjust compression ratios while still maintaining 

data quality. Au et. al. [3] provide real-time energy profiling and management for achieving 

desired sensing resolutions. However, in these works, fidelity is quantified with the metrics 

like "mean square error" and "data resolution". These metrics only measure how much 

the raw sensor data is distorted but cannot quantify the distortion of the neurometric 

application fidelity, in terms of diagnosing accuracy or false alarm that we focus on. 

At a lower level, channel-aware QoS solutions have been developed for enhancing the 

system performance. MMSN [71] provides frequency adaption to maximize parallel trans

mission among neighboring nodes for energy efficiency. ACR [68] proposes adaptive en

coding scheme to enhancing collision recovery and transmission efficiency. However, these 

solutions do not associate the lower level QoS with application fidelity. 

At the hareware level, some solutions like [67] aim to improve the energy efficiency in 
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EEG acquisition, digitization, and feature extraction on the chip. However, it is not a 

communication solution like ours. 

2.3 Exposing Communication QoS Availability to Other BSNs 

In the BSN area, there are works studying the communication QoS in a single BSN. 

BodyQoS [72] provides statistical throughput assurance, and BodyT2 [55] provides joint 

throughput and time delay assurance for communications in a single BSN with heteroge

neous radios in sensors. MCMAC [46] develops a TDMA-based MAC protocol to support 

communication between BSNs and static networks. However, these works do not consider 

the communication qualities among multiple BSNs. 

In other areas, there are works enhancing mobile applications based on the data ex

changed between different mobile devices on different individuals, utilizing people ren

dezvous [28]. BikeNet [16] is built for the community of cyclists, where cycling-related 

data are collected to quantify cyclist performance and the cyclist environment. Bubble

sensing [41] proposes to distribute sensing tasks among multiple sensors on different people, 

and relies on the rendezvous to deliver the required data back to the task initiator. Cali

Bree [45] proposes to increase system accuracy with distributed self-calibration, depending 

on the opportunistic rendezvous to determine their relative miscalibration. However, these 

works do not take communication quality issues into consideration. CaliBree [45] proposes 

a light weighted solution considering the limited sensing contact time, but there is no com

munication quality assurance during the rendezvous. 

Also, in the context of opportunistic routing, human mobility is well studied for the 



19 

purpose of enhancing connectivity and performance of the opportunistic routing. Rhee 

et. al. propose truncated Levy walk (TLW) [56] and Lee et. al. propose Self-similar 

Least Action Walk (SLAW) model [34] to produce synthetic walk traces with all human 

mobility features for simulation and theoretical analysis. In [35], the authors analytically 

derive the delay-capacity tradeoff's for Levy mobility model. Srinivasa et. al. propose 

CREST [64] to estimate the time remaining for the next rendezvous using conditional 

residual time. Eisenman et. al. [15] perform numerical analysis on sensor sharing and 

substitution strategies for enhancing data fidelity and delay. These works assume negligible 

time for data delivery, and connections between sensors on two human body only involve 

two nodes. Their main focus is usually on inter-contact time to predict when the data can 

be delivered to the next way-point. These works assume that once the sensor nodes are close 

to each other, the data are forwarded successfully without addressing the communication 

quality issue that we focus on in this work. 



CHAPTER 3 

BUILDING COMMUNICATION QOS 

Many BSN applications require stringent performance assurance in terms of communication 

throughput and bounded time delay, we propose BodyT2, which provide this joint assurance 

in a novel radio-agnostic manner. In our approach, the underlying MAC and PHY layers can 

be heterogeneous and their details do not need to be known to upper layers like the resource 

management. Such a radio-agnostic performance assurance is critical because a range of 

radio platforms are adopted for practical body sensor usage. Our approach is based on a 

group-polling scheme that is essential for radio-agnostic BSN design. Through theoretical 

analysis, we prove that with the group-polling scheme, achieving joint throughput and time 

delay assurance is an NP-hard problem. For practical system deployment, we propose the 

BodyT2 framework that assures throughput and time delay performance in a heterogeneous 

BSN. Through both TelosB mote lab tests and real body experiments in an Android phone-

20 



21 

centric BSN, we demonstrate that BodyT2 achieves superior performance over existing 

solutions. 

3.1 Problem Definition and Analysis 

In this section, we theoretically analyze BSN resource scheduling in order to meet requested 

performance assurance. We first explain the asymmetric BSN architecture and compare two 

BSN scheduling schemes: group-polling and individual-polling. Then, based on the more 

effective group-polling scheme, we prove that scheduling for the throughput performance 

assurance is a P problem, while the joint throughput and time delay assurance is NP-hard. 

3.1.1 Group-Polling v.s. Individual-Polling 

An asymmetric architecture is desired for BSNs in which a comparatively more powerful 

aggregator polls less powerful sensor motes for data communication [72]. Two scheduling 

schemes have been proposed based on this asymmetric BSN architecture. In the individual

polling [29] scheme, each data packet transmission from a mote is preceded by a polling 

packet from the aggregator that specifies which mote is polled. Since this scheme adds 

in a minimum of 50% communication overhead, it is not appropriate for practical radio

agnostic system deployment. A more effective and energy efficient group-polling scheme is 

introduced in [72], in which multiple data packet transmissions are allowed from a mote 

following a single polling packet from the aggregator. The series of packets sent after a 

polling packet, which can be more than one packet, is called a packet train. Group-polling 

is strongly preferred over individual-polling mainly for the following two reasons: 
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• Efficiency. Compared with individual-polling, group-polling requires much fewer 

polling packets to deliver the same amount of data packets, greatly saving communica

tion bandwidth (s250Kbps in popular sensor motes like TelosB) and energy (sensor motes 

are usually powered by AA batteries). The saved communication bandwidth can be used 

to serve more data streams in a BSN, enhancing the BSN capacity. By listening to more 

sparsely transmitted polling messages, sensor motes have more sleeping time and hence the 

system lifetime is extended. 

• Catering to Radio-Agnostic BSN Designs. Since heterogeneous radio platforms are 

widely adopted in the commercial market, radio-agnostic performance assurance is needed in 

BSNs. Group-polling better caters to this demand than individual-polling since it operates 

on a virtual MAC (VMAC) abstraction [72]. For throughput performance assurance, VMAC 

abstracts common MAC behaviors with time-domain parameters: TminPkt and TmaxPkt· 

These are respectively the lower and upper bound of the time that the underlying MAC 

uses for handling a packet transmission request. When the channel is clear, the radio 

control is returned to VMAC within TminPkti when suffering interference, the underlying 

MAC may return the radio control within T maxPkt and report giving up after exceeding 

the maximum number of backoffs and/or retransmissions. During runtime, VMAC also 

measures the average MAC response time n for each mote k in a BSN, which reflects the 

average communication cost of a specific mote for a single data packet communication. So, 

Tk E [T minPkll T maxPktl· 

Without knowledge of the underlying MAC implementation, the aggregator using individual-

polling has to reserve the maximum time TmaxPkt for a single data packet transmission. In 

most cases, the data packet can be successfully transmitted with time much less than 
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TmaxPkt, so the rest of the reserved time is wasted. However, with group-polling the aggre

gator can efficiently estimate the time needed to transmit a packet train as Tk x N umof Pkt. 

Even though the underlying MAC is only allowed to send a data packet when the remaining 

reserved time is no less than T maxPkt (otherwise, we risk losing control of the underlying 

radio), this packet's real transmission time Tk is usually much less than T maxpA:t. The dif

ference (T maxPkt - Tk) can be salvaged and merged to the time reserved for sending the 

next packet. In this way, fluctuation of the transmission time is absorbed and tolerated. 

3.1.2 Throughput Assurance 

In BodyQoS [72], throughput performance assurance is provided with the group-polling 

scheme. Each data stream i specifies its throughput requirement bi and the scheduling 

algorithm determines the resource, specifically the time resource, for the data stream. 

Definition 3.1 (BodyQoS Scheduling problem) Suppose group-polling is used in a BSN. 

Given a fixed-length time interval Tinterval and N data streams in the BSN with throughput 

requirements { bi}, the problem is to decide the time schedule for each data stream, such that 

in Tinterval the delivered thr-oughput is no less than the requested throughput. 

In order to solve this problem, BodyQoS first computes the required bandwidth for each 

data stream when the channel is clear, which is called the ideal bandwidth. Also, the time 

to send one packet is T minPkt when there is no interference, and the number of data packets 

to be delivered within Tinterval is fbi ~~ig.~~~"a'l, where Spkt is the affective payload size of a 

single data packet in bytes. Then at run time, the effective bandwidth is measured. With 

the ratio of the ideal bandwidth to the moving average result of the effective bandwidth, 
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BodyQoS dynamically recomputes the average packet sending time and the number of data 

packets, the product of them is the time needed for delivering stream i's data packets. 

The time for sending one polling message is estimated as TmaxPkt, and BodyQoS adopts 

a constant number (1 is default) of polling messages within 7interval for each data stream, 

which is configured as a system-wide parameter. 

Admission decisions are made based on the total required throughput of all QoS streams, 

and the scheduling algorithm computes the time schedule for each stream. Since it needs 

constant time complexity to compute the time of both data communication and polling for 

individual data streams, computing the required time schedule for all motes in the network 

is a P problem. In summary, with only the throughput requirement in the group-polling 

scheme, the BodyQoS scheduling problem is solvable in polynomial time. 

3.1.3 Joint Assurance of Throughput and Time Delay 

For time delay performance assurance, dk,i is introduced to denote the requested time delay 

bound for data stream ion sensor mote k. The complete performance assurance requirement 

is denoted as (bk,i, dk,i,Pk,i) where bk,i specifies the throughput requirement and Pk,i denotes 

the priority. Instead of scheduling polling messages for individual data stream as in [72], 

here the aggregator aggregates polling messages for all data streams on the same mote. 

To put it another way, the aggregator does not specify how much time each stream on a 

mote uses but only allocates enough time to satisfy the total throughput requirement of all 

streams on the same mote. Thus, a packet train sent from a mote can contain data packets 

from different data streams. 

Now, the scheduling problem is more complicated with the added time delay requirement 
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since it needs to ensure that individual data packets are delivered within dk,i· This is 

equivalent to ensuring that the gap between any two consecutively scheduled packet trains 

for mote k is bounded by dk,i minus the time of transmitting one polling packet and one 

data packet. So, if data arrive just after the end of a packet train, the data can be timely 

transmitted in the next packet train. When multiple data streams are on the same mote 

k, the aggregator considers the minimum delay requirement min{ dk,d· For convenience of 
t 

presentation, we introduce two intermediate symbols: 

L;bk,i 
• Bk = -4.--- is the number of packets required to be sent for all streams on mote k in 

"pkt 

a unit time. 

• G k = min { dk,i} - T maxPkt - Tk is the maximum gap allowed between consecutive 
t 

packet trains of mote k. 

The packet train schedule can be represented as { ( stk,j, etk,j)}, where stk,j is the start 

time for the aggregator to send the polling message of the packet train j of mote k and 

etk,j is the latest time a data packet from this packet train is allowed to be received at the 

aggregator. The BodyQoS Scheduling Problem in Def. 3.1 can be extended to the following 

BodyT2 Scheduling problem. 

Definition 3.2 (BodyT2 Scheduling problem II) Suppose group-polling is used in a 

BSN. Given N motes in the BSN with performance requirements (Bk, Gk), the problem is 

to decide the time schedule { ( stk,j, etk,j)} such that for all k E [1, N], j E N, the following 

constraints are satisfied: 

• Length Constraint. Vk,j, etk,j - stk,j = TmaxPkt + n X f(etk,j - etk,j-1) X Bk l It 

ensures that the allocated time is enough to transmit both the data and polling packets for 
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all streams on mote k based on the throughput requirements. 

• Gap Constraint. Vk,j,stk,J- etk,J-l:::; Gk. It ensures that the gap between any two 

consecutively allocated packet trains of mote k is bounded by the minimum time delay 

requirement of all streams on mote k. 

packet trains do not overlap, i.e., no internal interference. 

Lemma 3.1 The BodyT2 Scheduling problem II is NP-hard. 

With the following three steps, we demonstrate that a known NP-complete problem, 

the Partition problem (II'), is polynomially reducible to our BodyT2 Scheduling problem 

II. Let rr' and rr refer to any instances of problems II' and II, respectively. We construct 

a polynomial reduction f that converts any instance rr' of the Partition problem to some 

instance rr = f(rr') of our BodyT2 Scheduling problem such that rr' has a solution if and 

only if rr = f(rr') has a solution. 

Step 1: Construct the polynomial reduction f from rr' torr. 

Definition 3.3 (Partition problem II') Given a finite set A of numbers, is there A' ~ 

A, such that 2:.:: ak = 2:.:: ak'? 
akEA' aktEA-A' 

For any partition problem instance rr' with set A = { a1, ... , an} of n integers, we choose 

a constant c such that c x ak 2: 2 for all k E [1, n]. We construct the following instance 

rr = f(rr') of the BodyT2 Scheduling problem with n+1 motes. We let Tk = TmaxPkt = 1, Vk, 
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and letT= c x ( L ak+2 x an+!), where an+l ~ 2/c (so cxan+l ~ 2). We define (Bk, Gk) 
akEA 

as: 

{ 

(cxak-l T- c x ak), k E [1, n] 
(BklGk)= (cxL+J_:_l T/2 ) k=n+1 T/2 , - c X an+l , 

This reduction can clearly be done in polynomial time. 

Step 2: Prove that if 1r
1 has a solution, then f(tr') has a solution. 

For any partition problem 1r
1

, assume there is a solution such that A' = {ak' , ... , ak' }, 
I n2 

A-A'= {akp ... ,akn
1

}, n1+n2 = n, and La= L a= Tj2c-an+l· We have the 
aEA' aEA-A' 

following scheduling f(tr') which repeats with a cycle of length T. 

T I 2 T/ 2 
• • • • • • 

c•akl I • • lc•aknl C•an+l c•ak'l I • • lc•ak·~ C•an+l 

C*L:ak .. *Lak·----. t 
ukEA-A' ak' EA' 

Figure 3.1: The Constructed BodyT2 Scheduling 

As shown in Figure 3.1, packet trains of mote k1, ... , kn 1 are scheduled in the first half 

of T and packet trains of mote k~, 0 •• , k~2 are scheduled in the second half. We then have: 

for mote k = k1, .. o, kn 1 , 

stk,j = stk,j-1 + T, j > 1 

for mote k = k~, ... , k~2 , 



stk' 1 = 
1' 

stk,j 

etk,j = 

for mote n + 1, 

stn+l,j = 

etn+1,j = 

T/2, stk' 1 = etk' 1, 
2' 1' 

stk,j-l + T, j > 1 

stk,j + c x ak'' 

{ 
T/2- c X an+l• j = 1 
stn+l,j-1 + T /2, j > 1 

stn+l.j + c X an+1· 
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Now, we check whether the three constraints in Def. 3.2 are satisfied. First, we check 

for mote k E [1, n]. Since the right side of the Length Constraint equals l+TxBk = 

1 + T x ex~ -l = c x ak and the left side of it equals etk,j- stk,j = c x ak, the Length Constraint 

is satisfied. The Gap Constraint also stands as stk,j-etk,j-1 = T-cxak = Gk. In any 

(j-1)xT = stk2 ,j, so the packet trains of mote k E [k1, k111 ] do not overlap, i.e., the Disjoint 

Constraint stands. In a similar way, we can also prove that the Disjoint Constraint stands 

for mote k E [k~, k~2 ]. 

Second, we check for mote n+ 1. The Length Constraint is satisfied as its right side equals 

to 1+TxBn+l = 1+txcxarN-1 = cXan+I = etn+I,j-Stn+l,j, which equals to its left side. 

Since stn+l,j-etn+I,j-1 = T/2-cxan+I = Gn+I, the Gap Constraint also holds. In the 

same period, etk,q,J = stk1,j+ 2::: (etk,j-stkj) = stk1,I+(j-l)xT+cx 2::: ak = 
k=kJ, ... ,kn1 akEA-A 

(j-1)xT+T/2-cxan+l = stn+1,2j-l· In a similar way, etk~2 .j = stn+1.2J· So, the packet 

trains of mote n+ 1 do not overlap with those of other motes and the Disjoint Constraint 

stands. Therefore, the schedule in Figure 3.1 is feasible. 
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Step 3: Prove that if j(1r') has a solution, then the corresponding 1r
1 has a solution. 

Assume that f( 1r
1

) has a schedule {(stk.j, etk,j)} that satisfies the three constraints in 

Def. 3.2. We need to construct a solution for the corresponding 1r
1

• 

First, in the schedule {(stk,j,etk,j)}, we can prove that there must exist a period T that 

satisfies: 

• 'ikE [l,n], 3 exactly one j, such that (stk,j• etk,j) ~ T (abusing the denotation T a 

little bit) and 

• For mote n+l, 3 exactly one j, such that (stn+l,j, etn+l,j) ~ T, (stn+l,j+l, etn+l.i+I) ~ 

T and 

{
etn+l,j- stn+l,j :etn+l,J+l- stn+~,j+l:c X ar.t+l; 
stn+l,J- etn1 ,1-1-stn+l,J+l- etn1 ,1 -Gn+l• 

• T = (etn+l,j-1, etn+l,j+l)· This can be proven by contradiction. 

Second, we construct a subset of motes {k~, ... , k~ 2 } such that during time period T, 

With the Disjoint Constraint, we can derive 

2:: (etk,j- stk,j) = c x 2:: ak ::; Gn+l 
kE{ki , ... k~2 } kE{ki , ... k~, 2 } 

2:: ( etk · - stk ·) = c x ,J ,J 2:: ak ::; Gn+l 
kE{k], ... kn 1 } kE{k1 , ... k,'l} 
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Since E (etk,j- stk,j) = 2 x Gn+l, we have c x E ak = c x E ak'· So, 
kE[l,n] kE{k1, ... kn 1 } kE{k~ , ... k:,

2
} 

the partition problem rr' has a solution A' = { ak', ... , ak' } . 
1 n2 

Therefore, with steps 1"'3, we prove Lemma. 3.1, i.e., our BodyT2 Scheduling problem 

is NP-hard. 

3.2 BodyT2 Design 

Since the BodyT2 Scheduling problem for joint throughput and time delay assurance is 

NP-hard, it is nontrivial to obtain the optimal solution. In this section, we propose an 

empirical solution for practical system deployment. We present the necessary /sufficient 

conditions for admission control and also the algorithms for admission control and time 

resource scheduling. We also extend the existing VMAC [72] for enforcing the time re-

source scheduling result to meet the time delay performance requirements in addition to 

the throughput performance requirements. 

3.2.1 Admission Control 

The admission controller examines the performance assurance requests { (bk,i, dk,i, Pk,i) }, k E 

[1, n] and makes ACCEPT /REJECT decisions. In time period T, the admission controller 

computes the total required time for satisfying all streams' requests when interference is 

captured and reflected by Tk. This includes both data and polling packets. The total 

number of data packets mote k needs to transmit is D(k, T) = f Bk x Tl (Bk as defined in 

Section 3.1.3). The total number of polling packets for mote k, defined as P(k, T), equals 

the number of packet trains scheduled for that mote. In BodyQoS [72] which only provides 

throughput assurance, P(k, T) is simply fixed as 1 for each T, but when the time delay 
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assurance is jointly considered it is more difficult to determine. The total required time for 

both data and polling packets can be computed as D(k, T) X n + P(k, T) X TmaxPkt which 

needs to be no more than the total available timeT. 

The Necessary and Sufficient Admission Conditions If mote k is scheduled to send 

P(k, T) packet trains during T, the sum of gaps between its packet trains plus the time 

for sending the P(k, T) polling packets is T-D(k, T)xTk. Also, the gap between any two 

consecutive packet trains of mote k should be bounded by Gk (defined in Section 3.1.3). 

So, T- D(k, T) x Tk :::; P(k, T) x (Gk + TmaxPkt)· When the gap decreases, the number 

of packet trains increases. Since Gk is the maximum gap allowed, the minimum number of 

packet trains is: 

n . (k T) _ T- D(k, T) x Tk 
rrnzn , - G ,.,., · 

k + .LmaxPkt 
(3.1) 

So, the minimum required time for sending data and polling packets for mote k is: 

Smin(k, T) = D(k, T) X Tk + Pmin(k, T) X TmaxPkt· (3.2) 

Therefore, the necessary condition of admission control is: 

L5min(k,1):::; 1. (3.3) 
k 

To derive a sufficient admission condition, assume a round-robin schedule in which all 

motes within T receive the same number of polling messages from the aggregator. The 

number of polling messages is estimated as the maximum value of Pmin(k, T) for all k. In 

this way, a sufficient condition for admission control can be derived as: 
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"'(D(k, 1) X T~.; + max{Pmin(k, 1)} X TmaxPI.:t)::; 1. L k 
(3.4) 

k 

Algorithm 1 Admission Control 

Input: performance requests {(bk,i, dk,i,Pk,i)} for data stream i EN on mote k E [l..n], 
the average packet transmission time {n} for mote k 
Output: ACCEPT or REJECT decision 
repeat 

if the necessary condition in Inequ. (3.3) is broken then 
REJECT and remove the request with the lowest Pk,i from {(bk,i, dk,i,Pk,i) }; continue; 

end if 
if the sufficient condition in Inequ. (3.4) stands then 

return ACCEPT; 
end if 
tc = 0; V remaining k, let etA:,j-1 = 0 and Rk = 0; 
loop 

call Algorithm 2 with input ({(bk,i,dk,i,Pk,i)}, tc, {etk,j-1}, {Rk}) and get output 
((stk,J, etk,j) or FAILURE); 
if Algorithm 2 returns FAILURE then 

REJECT and remove the request with the lowest Pk,i from {(bk,i, dk,i,Pk,i)}; break; 
else 

tc = etk,j; etk,j-1 = etk,j; 
end if 
if at least one packet train is allocated to each mote then 

return ACCEPT; 
end if 

end loop 
until { (bk,i, dk,i• Pk,i)} = 0 
return ACCEPT; 

The Admission Control Algorithm With the necessary and sufficient conditions, the 

admission controller can make preliminary decisions: if the necessary condition fails, a 

REJECT decision is made; if the sufficient condition holds, an ACCEPT decision is made; 

otherwise, if the sufficient condition fails but the necessary condition holds, it is hard to tell 

whether an appropriate schedule can be obtained for the requested data streams. As we have 

proven in Section 3.1.3, this is actually an NP-hard problem. Therefore, we integrate an 
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empirical solution into our admission control Algorithm 1. With the help of Algorithm 2 (to 

be explained later), Algorithm 1 tries to make an appropriate schedule, i.e., determining 

the start and end time of packet trains for all motes to meet the joint throughput and 

time delay constraints. If a schedule is found, an ACCEPT decision is made; otherwise, a 

REJECT decision is made. When a REJECT decision is made, the data stream with the 

lowest priority is removed and the admission controller tries to make ACCEPT /REJECT 

decisions again with the remaining data streams. This process repeats until either an 

ACCEPT decision is made or all data streams are finally rejected and removed. The later 

case happens when interference is so strong that no packets can be timely delivered. 

Algorithm for Scheduling the Next Packet Train Algorithm 2 presents details of 

scheduling the next packet train. It is used in both the admission control Algorithm 1 and 

the time resource scheduling Algorithm 3 that we will discuss later. In Algorithm 2, we 

introduce Rk to denote the number of expected but unsent packets from mote k. So, by 

the end of a packet train etk,j, even though the aggregator expects to receive D(k, etk,j

etk,j-l) (D(k, t) as defined in Section 3.2.1) packets from mote k based on the throughput 

requirement, it may actually receive D(k, etk,j- etA·,j-d- Rk packets. A negative Rk value 

means that the aggregator receives more packets than expected from mote k, so it allocates 

less time for mote k's next packet train. When sensor data sampling and packet arrival 

are uniformly distributed, Rk provides flexibility to time resource scheduling. Since Rk is 

measured and can only have a nonzero value at runtime, Rk is set to zero in admission 

control. Jointly considering Rk and Def. 3.1. Length Constraint, we have: 

(3.5) 
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Figure 3.2: Scheduling the Next Packet Train 

Suppose the most recently scheduled packet train, say packet train j -1 for mote k, has 

the schedule of (stk,j- 1, etk,j-1), then the latest start time of mote k's next packet train j 

should be etk,j-l +Gk. In this algorithm, we try to schedule the next packet train j for the 

mote that has the minimum etk,j-1 +Gk value, say mote k1, which is similar to the earliest 

deadline first policy. An empirical rule we use here is: we give mote k1 's packet train j a 

schedule if and only if we can foresee that any other mote, say k2 as in Algorithm 2 and 

Figure 3.2, can also have its packet train j scheduled. 

As shown in Figure 3.2, k1 is the mote that has the earliest start time stk,j = etk,j-1 +Gk. 

k2 is another arbitrary mote that has a later start time stk2 ,j. k3 is another arbitrary 

mote with its start time stk3 ,j in between those of k1 and k2. Suppose k3 's most recent 

packet train schedule is (stk3 ,j-l, etk3 ,j_I). Then, during (tc, stk2 ,j], k3 desires to send at 

least one packet train (C in Figure 3.2). The total time that all such k3 motes require 

is L: Smin(k3, stk2 ,j-etk3 ,j-1) which can be computed according to Equation (3.2). Also, 
k3 

during (etk 1,j, stk2 ,j], mote k1 requires time Smin(kl, stk2 ,j-etk1,j) to send packet train B. 

The time between packet trains A and D should be long enough to schedule packet trains 

B and C, that is, 



L(Smin(k3, stk2,j- etk3 ,j-l) + Rk:3 X Tk3 ) + Smin(kl, st~.:2 ,j- etlq,j) 
ka 
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Here, stk2 ,j = etk2 ,j-1+Gk which is the latest possible start time of mote k2's next packet 

train j. 

With Inequ. (3. 7), we make sure that there is enough room to schedule packet train A. 

Also, with Inequ. (3.8), we make sure that the distance between packet train A and mote 

k1 's pr;evious packet train j -1 is bounded by G k 1 • 

Finally, etk1,j is computed as the largest value that satisfies Inequ. (3.6)rv (3.8) and 

stk1 ,j is computed with Equation (3.5). 

3.2.2 Time Resource Scheduling 

In time resource scheduling, the aggregator sequentially computes the time allocated to each 

packet train. More specifically, the time resource scheduling Algorithm 3 calls Algorithm 2 

to compute a schedule (stk,j• etk,j) for the next packet train as well as a schedule (stl.,',j• etk',j) 

for the packet train after the next. BodyT2 communication supports two kinds of data: the 

QoS data that requires throughput and time delay assurance, and the best effort data that 

does not. If enough time (~ 2 x TmaxPkt) is available before starting the next packet train, 
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Algorithm 2 Scheduling the Next Packet Train 

Input: performance requirements { (bk,i, dk,i• Pk,d }, the current time tc, the end time 
of the most recently scheduled packet trains for all motes {etk,j-d, {Rk} 
Output: the next packet train schedule (stk,j,etk,j) or (FAILURE) 
'ilk, compute the Gk value based on its definition in Section 3.1.3 
get m~n{etk,j- 1 + Gk} and assume it is etk 1.j-1 + Gk1 

for any k2 (k2 =f k1) do 
/*Check if the period (stkd• stk2,j] is long enough for packet trains of all other motes 
(say k3 as an arbitrary one)*/ 
for any k3 ( stk1.j ::; stk3 ,j ::; stk2 ,j, k3 # k1, k3 ::f; k2) do 

With Equation (3.2), estimate Smin(k3, stk2 ,j -etk3 ,j-l) which is the time that mote 
k3 needs in (tc, stk2,j] 

end for 
compute L.. Smin(k3, stk2,j- etk3,j-1) 

k3 

estimate the largest etk1,j that satisfies Inequ. (3.6), (3.7), and (3.8) 
if )3 such etk1 ,j then 

return (FAILURE) 
end if 

end for 
etk1,j = the minimum etkd value computed above for all k:3 
compute stkt.i with Equation (3.5) 
return (stk1 ,j,etk1,j) 
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VMAC is called to poll for best effort data. Then, when time proceeds to stk,j, VMAC is 

called to poll mote k to enforce schedule (stk,j, etk,j)· The time resource scheduling waits 

while mote k transmits QoS data packets. The execution of current schedule ends when 

either an early termination of this packet train is received from mote k due to lack of data 

or the time proceeds to stk',j· After that, parameters Tk and Rk are updated to assist 

scheduling the next packet train while the process repeats. 

Algorithm 3 Time Resource Scheduling 

Input: performance requirements { (bk,i, dk,i, Pk,i)}, { Rk} 
Output: function calls to VMAC 
\:/k, etk,j-l = 0; Rk = 0 
loop 

call Algorithm 2 with input ({(bk,i,dk,i,Pk,i)}, tc =the current time, {etk,j-1}, {Rk}) 
and get output ((stk,j, etk,j) or FAILURE) 
if Algorithm 2 returns FAILURE then 

I* this only happens when the interference level largely increases after the admission 
control* I 
execute the admission control Algorithm 1 again to remove low priority 
streams;continue; 

end if 
etk,j-l = etk,ji Rk = 0; 
if stk,j 2: the current time + 2 X T maxPkt then 

call VMAC to poll for best effort data 
end if 
wait until the time proceeds to stk,j; 
call Algorithm 2 with input ({(bk,i,dk,i,Pk,i)}, tc = etk,j, {etk,j-d, {Rk}) and get 
output ((stk',j, etk',j) or FAILURE); 
if Algorithm 2 returns FAILURE then 

for the same reason above, execute the admission control Algorithm 1 again to remove 
low priority streams;continue; 

end if 
call VMAG to poll mote k for QoS data; 
wait until the time proceeds to stk' ,j or mote k terminates the packet train early; then, 
update the values of etk,j, Tk, and Rk with runtime measurements and let etk,j-1 = 
etk,ji 

end loop 
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3.2.3 Enforcing Time Schedule on VMAC 

VMAC is located on both the aggregator and motes for enforcing the time resource schedul

ing result computed by Algorithm 3. We extend the existing VMAC [72] to enforce the newly 

added time delay requirement in additional to the throughput requirement. The extended 

VMAC not only checks the remaining allocated time but also the specified time delay con

straint for each packet transmission. It also notifies the aggregator to terminate the packet 

train if there is no packet to send. 

On the aggregator, VMAC receives calls from the above scheduler and calls the underly

ing real MAC functions. For a packet train schedule (stk,j, etk,j), VMAC sends a polling mes

sage to mote k with the allocated time length PLk,,j = etk,j-Stk,j-TmaxPkt+(stk',j-et~,;,j)· 

Here, stk',j-etk,j is the gap between mote k's packet train j and mote k''s packet train j. 

Since this gap immediately follows the scheduled time period etk,j -stk,j-T maxPkt and is 

also not scheduled to any other packet train, it is allocated to extend the length of packet 

train j for mote k. When VMAC is called to poll for best effort data before a packet train 

schedule (stk,j, etk,j), it broadcasts a message, indicating that the following time period 

(stk,j- current time -TmaxPkt) is open for all motes' best effort communication. During 

this period, potential collision resolution among different motes' transmissions is handled 

by the underlying specific MAC protocols. 

When a mote, say mote k, receives a polling message, VMAC enforces the time resource 

scheduling result by feeding QoS or best effort data to the aggregator within the allocated 

time periods. When polled for QoS packets with length P Lk,j (computed in the previous 

paragraph), VMAC on mote k computes the amount of data that each stream ion mote k 
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requests to send since the end of mote k's previous packet train. Then, VMAC organizes 

the data into a packet train in which the packets with earlier deadlines, including those 

for retransmissions, are put ahead of those with later deadlines. Before sending each data 

packet, VMAC conducts the following checks: 

• If the remaining allocated time is less than T maxPkt. VMAC does not send the data 

packet and the packet train terminates. This ensures that the control of the underlying 

radio is returned to the upper layers before the allocated time expires. Again, it is worthy 

to repeat that in most cases it takes less time than T maxPkt to deliver this data packet. 

However, VMAC is able to salvage the unused time of this data packet to send the next 

data packet. 

• If the deadline of the data packet is earlier than the current time plus T~,;, it is im

mediately dropped since we may otherwise waste time on a packet that finally misses its 

deadline. 

• If the current data packet is the only QoS data packet remaining in the mote, VMAC 

sets the N olvf oreData bit in the replied packet's header which informs the aggregator of 

the early termination of the packet train. 

3.3 Performance Evaluation 

BodyT2 is implemented in TinyOS 2.x with NesC, and evaluated through both TelosB 

mote lab tests and real body experiments in an Android phone-centric BSN. BodyT2 is 

compared with the state-of-the-art BodyQoS [72] as well as the default best effort solution 

in the standard TinyOS 2.x release. Three performance metrics are used: (i) the percentage 
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of delivered throughput, i.e., the timely delivered data throughput over the requested data 

throughput; (ii) the data packet deadline miss ratio, which is computed as the number of 

data packets that miss their deadlines divided by the number of data packets requested to 

be sent from motes; and (iii) the average energy consumed to timely deliver one application 

data byte to the aggregator. Detailed evaluation settings are given below: 

TelosB mote lab tests. A data stream with performance requirement (5kbps throughput, 

200ms time delay) is admitted into BodyT2 to report data from source to the aggregator 

in the lab experiments. Besides the existing interference from the lab environment like 

WiFi and Zigbee [73], a TelosB node is also introduced to generate explicit interference (see 

Tab. 3.1). 

Real body experiments in an Android phone-centric BSN. We also develop an 

Android phone-centric BSN to demonstrate the effectiveness and efficiency of BodyT2 and 

present the prototype BSN in Figure 3.3. The aggregator of the BSN is zoomed to Fig

ure 3.4 in which one TelosB is plugged in the USB hub to directly communicate with the 

Android phone. Multiple sensor motes can also be plugged in the USB hub and operate on 

different frequencies for improving the aggregator throughput. Additional sensor motes can 

be attached on the human body and wirelessly communicates to the aggregator. Our main 

technical contributions for developing such a BSN lies in four aspects: Android OS kernel 

support, hardware support, TinyoS support, and application support. Due to space limi-

tations, more technical details are not presented here but available in our technical report 

[52]. 

In our real body experiments, TelosB devices are attached to a human body as shown in 

Figure 3.3: a TelosB is attached to the left chest that generates a data stream with the per-



Interference 
Level 
Level 0 
Levell 
Level 2 
Level 3 

Table 3.1: Interference Settings 

Interference Strength 

Lab background noise 
Lab background noise + 1 noise packet every 30ms 
Lab background noise + 1 noise packet every 25ms 
Lab background noise + 1 noise packet every 20ms 

Figure 3.3: A Phone
centric BSN 

Figure 3.4: The Aggrega
tor 
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Interference 
Period 
Osrvl20s 
120srvl80s 
180srv240s 
240s.-v300s 

formance requirement (4kbps throughput, 500ms time delay) and requests BodyT2 service; 

a TelosB is attached to the left wrist that generates a data stream with the performance 

requirement (2kbps throughput, lOOOnis time delay bound) and also requests BodyT2 ser-

vice; a TelosB mote is attached slightly above the right hip that generates a data stream 

with the performance requirement ( 4kbps bandwidth, 500ms time delay) but requests best 

effort service; the same aggregator as shown in Figure 3.4 is put inside the bottom left 

pocket of the jacket for data collection and analysis. 

All experiments described above are repeated multiple times and similar results are 

observed. In the following subsections, we present two groups of representative results 

which demonstrate that BodyT2 largely outperforms the existing BodyQoS and best effort 



solutions. 

3.3.1 Performance Results of TelosB Mote Lab Tests 

0 

-BodyT2 
D Best Effort 

No Interference Level 1. Level 2. 
lnterence Level 

Level3. 
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Figure 3.5: Performance Comparison through TelosB Mote Lab Tests: Delivered Through
put% 

Figure 3.5 plots the mean and standard deviation of the percentage of timely delivered 

throughput when different interference levels are present in the lab experiment. We first 

observe that BodyT2 achieves a higher timely delivered throughput ratio than those of best 

effort and BodyQoS. In fact, BodyT2 achieves up to 10% higher throughput ratio than best 

effort and 91% higher throughput ratio than BodyQoS. Second, we observe that BodyT2 

achieves a more stable throughput delivery ratio than those of best effort and BodyQoS. As 

shown in the figure, the largest standard deviation for BodyT2 is 5.2% under interference 

level 2, while best effort has the largest standard deviation of 13.2% under interference 

level 2 and BodyQoS has the largest standard deviation 28.7% under interference level 1. 

Third, we observe that the performance gain of BodyT2 over best effort and BodyQoS 
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increases when interference increases. For instance, throughout the 4 interference periods, 

BodyT2 has a less obvious decrease of the throughput delivery ratio than those of best effort 

and BodyQoS. BodyT2 achieves superior performance than existing approaches because 

its design addresses the joint throughput and time delay requirements, while the existing 

approaches do not. We are also aware that BodyQoS performs much better than best effort 

in [72] when only the throughput requirement is considered, but it performs worse than 

best effort when the time delay requirement is jointly considered here. This is because 

BodyQoS is not designed to address the time delay requirement and hence data packets can 

be held too long to be timely delivered. Due to uncertainty of the lab background noise, the 

interference intensity may fluctuate with time. So, packets that were scheduled to be sent 

out but actually unsent in the previous time period, when the interference is comparatively 

strong, may be able to be sent out in the current time period, when the interference is 

comparatively weak, to fullfill the throughput requirement. This is why sometimes the 

percentage of delivered throughput exceeds 100%. 

Figure 3.6 presents the data packet deadline miss ratio. First, we see that BodyT2 

achieves an extremely low deadline miss ratio ( < 5%) under all 4 interference levels, while 

best effort has 17.9% packets missing deadlines under interference level 3 and BodyQoS 

misses all deadlines under interference level 2. Second, we see that the deadline miss ratios 

for best effort and BodyQoS largely increase when interference increases. For example, best 

effort's deadline miss ratio raises 11% from interference level 2 to 3. Meanwhile, BodyT2's 

deadline miss ratio remains almost constantly low. For similar reasons, BodyQoS performs 

the worst among the three. BodyQoS misses all deadlines under interference level 2 but 

has nonzero throughput delivery ratio under interference level 2, because data packets not 
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Level3. 

Figure 3.6: Performance Comparison through TelosB Mote Lab Tests: Deadline Miss 
Ratio 

delivered in the previous time period, i.e., under interference level 1, are sent out here. 

Level 1. Level 2. Level3. 
Interference Level 

Figure 3. 7: Performance Comparison through TelosB Mote Lab Tests: Energy Consump
tion Per Delivered Byte 

Figure 3. 7 shows the energy consumption per timely delivered application data byte, 

measured in Joules (J). As the number of timely delivered data byte for BodyQoS drops 
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to zero, we may have division by zero. So, we assign a very large energy consumption 

value lxl0-3.! in such cases. Since they-axis value for BodyQoS is much larger than 

that of BodyT2 and best effort, we plot the y-axis with a log scale. From Figure 3.7, we 

observe that BodyT2 uses similar energy as that of best effort. We also observe that when 

interference increases BodyT2's energy consumption per timely delivered data byte remains 

stable, but best effort's energy consumption per timely delivered data byte fluctuates and 

becomes less stable. This is because fewer data bytes are timely delivered in best effort than 

BodyT2 when interference increases even though best effort dose not waste more energy 

retransmitting packets that finally miss deadlines. 

3.3.2 Performance Results of Real Body Experiments in an Android 

Phone-centric BSN 

120% 

40% 

150 

-e- BodyT2 4kbps 
u .. Best Effort 4kbps 

-- BodyT2 2kbps 

200 250 300 
Time (s) 

Figure 3.8: BodyT2 Performance Through Real Body Experiments: Delivered Band
width% 

Figure 3.8 plots the the timely throughput delivery ratio. We observe that both BodyT2 
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data streams on average maintain "' 100% timely throughput delivery ratio. However, the 

best effort data stream on average has < 100% timely throughput delivery ratio which 

also fluctuates significantly. For example, the best effort stream achieves only 77% ratio 

at 210s and 79.5% ratio at 260s, but BodyT2 data streams' ratios never go below 95.5%. 

This demonstrates BodyT2's effectiveness and best effort's ineffectiveness in supporting 

multiple data streams' throughput and time delay performance requirements. Here, for the 

same reason as we have presented when explaining Figure 3.5, we also observe that the 

percentage of delivered throughput fluctuates above and below the 100% line. 
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Figure 3.9: BodyT2 Performance Through Real Body Experiments: Deadline Miss Ratio 

Figure 3.9 depicts the data packet deadline miss ratio. We observe a near zero deadline 

miss ratio for both BodyT2 data streams but up to 22% deadline miss ratio for the best 

effort data stream. This is because on the one hand, best effort uses the resources remaining 

after QoS resource scheduling, and on the other hand, the best effort approach does not 

consider deadline when scheduling resources. 
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Figure 3.10: BodyT2 Performance Through Real Body Experiments: Energy Consump
tion Per Byte 

Figure 3.10 shows the energy consumption per timely delivered application data byte. 

We observe that while both the BodyT2 data streams and the best effort data stream 

have similar energy efficiency on average, the energy efficiency fluctuation of the best effort 

data stream is much higher than that of the BodyT2 data streams. The maximum energy 

consumption per timely delivered data byte on the two BodyT2 data streams are 1.88 x 

10-5 J and 1.92 x w-5 J, respectively. But the maximum value of the best effort data stream 

is 2.24x w-5 J, which is 17%"" 20% higher than that of BodyT2. This is because the group-

polling scheme and also adaptive resource scheduling in BodyT2 can absorb and tolerant 

fluctuations of link qualities but best effort can not. 

3.4 Conclusions 

Joint throughput and time delay performance assurance is critical for many BSN appli-

cations. We proposes a novel approach to provide this joint assurance in a radio-agnostic 



48 

manner. Our approach is based on a group-polling scheme that is essential for radio-agnostic 

BSN design. We rigorously prove that with the group-polling scheme resource scheduling for 

the throughput performance assurance is P, while the joint throughput and time delay as

surance is NP-hard. For practical system deployment, we propose the BodyT2 framework 

that assures throughput and time delay performance in a heterogeneous BSN. Through 

both TelosB mote lab tests and real body experiments in an Android phone-centric BSN, 

we demonstrate that BodyT2 achieves superior performance over existing solutions. 



CHAPTER 4 

CONNECTING COMMUNICATION 

QOS WITH APPLICATION QOS 

As the application QoS varies depending on different applications, we especially focus on one 

type of applications in the BSN: the neurometric applications using electroencephalography 

(EEG) sensing. There has been great interest in exploring the applications of EEG to 

monitor and diagnose human mental health problems. In comparison with other BSN 

applications, a high volume of data traffic is usually collected through wireless in current 

EEG sensing applications. With a newly developed wireless neuroheadset that requires 

minimum preparation for data collection, we can incorporate EEG neurometrics into in

situ and ubiquitous physiological monitoring. As EEG headset is a resource constraint 

49 
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system while providing critical health services, the design of EEG sensor sampling and 

networking must take both high application fidelity and energy efficiency into account. 

However, through our empirical study in realistic environments with an off-the-shelf Emotive 

EPOC Neuroheadset, we uncover a mismatch between lossy EEG sensor communication and 

high neurometric application fidelity requirements. 

To tackle this problem, we first propose a learning technique that automatically learns 

the sensitivity of neurometric application fidelity to EEG data. The learned sensitivity is 

also used to develop an energy minimization algorithm and a fidelity maximization algo

rithm. The energy minimization algorithm minimizes the energy usage in EEG sampling 

and networking while meeting applications' fidelity requirements. The fidelity maximiza

tion algorithm maximizes the sum of all applications' fidelities through the incorporation 

and optimal utilization of a limited data buffer. The effectiveness of our proposed solutions 

is validated through trace-driven experiments. 

4.1 Motivation 

We use a newly developed commercial wireless EEG headset, the Emotiv EPOC Neurohead

set, to collect EEG signals. Whereas the device is not specially designed for the usage of 

health care, it is the state-of-the-art high resolution wireless neuro-signal acquisition device 

we can get from the market. As shown in Figure 4.1, the neural signals are sampled with 

14 scalp sensors, and transmitted using a custom wireless chipset operating in the 2.4GHz 

band. A proprietary wireless connection is used to deliver the sampled data to a local base 

station plugged with an USB dongle, as shown in Figure 4.2. The headset's communication 



51 

module does not open its control to developers. From our observation, no packet storage 

or retransmission scheme exists in its default design. 

In our experiments, we first study the real communication pattern of the headset. We 

observe that although the packet loss rate is low when the headset is connected to the base 

station, it can be easily disconnected. Then, we define the fidelities of two applications 

using two common neurometric indices, the Tsallis Entropy ( qEEG) Ratio [8] and the 

Cerebral Asymmetry Score [27]. Finally, based on our experiment results, we uncover a 

mismatch between the current wireless communication pattern and the applications' fidelity 

requirements. 

Figure 
EMotiv 
Electrodes 

4.1: EPOC 
N euroheadset 

Figure 4.2: Working with EMotiv Neuro
headset 

4.1.1 Communication Pattern 

We collect 27 communication traces between the EEG headset and the local station in both 

working and home environment as shown in Figure 4.3. To study the influence of different 

environments on the wireless communication, we collect traces in different locations around 

offices and hallways in an academic building, and between the living room and the kitchen 
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in an residential apartment. The communication traces are collected as the subject wearing 

the headset performs various normal daily activities, like walking, working and cooking. 
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Figure 4.3: Home Environment for EEG Data Collection 

The communication between the EEG headset and the local station can be impacted by 

distance, human mobility and environmental factors. The wireless connection is generally 

reliable within the same room, but could be easily disconnected when the headset is more 

than 4 "" 5 meters away from the local station. No packet can be delivered during a 

disconnection period, until the headset is moved back to the local station and reconnects 

with it again. Even with connection, some packets could be dropped if the headset is not 
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very close to the local station, especially when there are environmental obstacles in between, 

or people walking around causing interference. 
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Figure 4.4: CDF of Connection Length 
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Figure 4.5: Trace of Preparing Food in Kitchen 
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Easily disconnected. We observe that the communication between the EEG headset and 

the local base station is impacted by distance, human mobility and environmental factors. 

The EEG headset's wireless communication range is very limited, and the headset is easily 

disconnected beyond 4 "' 5 meters. The trace plotted in Figure 4.5 is collected in horne 

environment (see Figure 4.3 for the apartment floor print) when the headset wearer was 

preparing food in the kitchen and moving around the house from time to time, with the local 

base station set in the middle of the living room. The Y axis is the number of lost packets 

in each second. When the headset is disconnected, all 128 packets (the full sampling rate 

is 128 packets per second) are lost in each second during disconnection. In this trace, the 

headset is disconnected for about 2/3 of the time. The time elapsed before disconnection 

is short, ranging from 16 seconds to 21 minutes, with its cumulative distribution function 

(CDF) plotted in Figure 4.4. 
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Low packet loss rate with connection. When the wireless communication is not dis

connected, we divide the collected EEG data into bins of one second. Figure 4.6 plots the 

CDF of the packet loss rate for the bins that contain packet losses, which only account for 

6.05% of all used bins. From Figure 4.6, we can see that about 80% of these bins have less 

than 20% packet lose. Considering that 93.95% of the bins do not even have any packet 

loss, only 1.18% of the total transmitted packets are lost. In other words, once the headset 

is connected, the packet loss rate is very low. 

4.1.2 EEG-based Neurometric Application and Fidelity Definition 

With two widely used neurometric indices, we define the fidelity of specific neurometric 

applications: the Tsallis Entropy ratio used for distinguishing mild dementia subjects from 

normal aging subjects [8], and the cerebral asymmetry score used for identifying depressed 

subjects [27]. 

4.1.2.1 Mild Cognitive Impairment (MCI) Detection using Tsallis Entropy 

( qEEG) Ratio 

The Tsallis entropy ( qEEG) ratio, Rp0 , is the ratio of measured qEEG values between 

prefrontal cortex and occipital lobe. We compute the prefrontal qEEG with EEG readings 

from electrodes AF3 and AF4, and the occipital qEEG with EEG readings from 01 and 

02. The electrodes positions are shown in Figure 4.1. The readings are averaged for all the 

electrodes from the same regions, and then divided into an epoch of 30 seconds. The critical 

points, which are the local maxima and minima of the averaged readings, further divide the 

epoch into multiple intervals. Considering the variance of the EEG signal in both slow and 
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rapid manners, the qEEG equals to one minus the ratio of the sum of all the rapid variances 

divided by the slow variance. The slow variance is the measure of signal variance over each 

epoch, but the rapid variance is measured for each interval, as show in Equation 4.1. 

N 

varslow - l:)xi- x)2 ( 4.1) 
i=l 

varRapid - 2: (xi- Xj) 2 (4.2) 
x;ElntervalJ 

L: varRapid 

qEEG 1-
Intervalj 

= 
varstow 

(4.3) 

Rpo 
prefrontal qEEG 

= 
occipital qEEG 

(4.4) 

A subject can be classified as a MCI patient or normal people based on its Rp0 values. 

According to [8], the Rpo metric demonstrates statistically significant differences between 

MCI patients and normal people. A mean Rp0 of 1.65 is measured for MCI patients, but 

1.21 for normal people, and f-lo = 1.2 is proposed as the classification threshold. Based on 

statistical hypothesis test technique, we use two tailed T-test to decide if the mean of the 

subject's Rpo is below or above the threshold f-lO· The statistic to be tested is t = s!J~L~ 1 , 

where x is the mean of measured Rp0 values, s is the standard derivation, and n is the 

number of measured Rp0 values. With the t value, a p-value can be found using a table 

of values from Student's t-distribution. If the calculated p-value is above the critical value 

t 0 ; 2(n- 1), which can be found in the statistical table with given statistical significance a, 

then the subject is classified as MCI patient; otherwise, the subject is classified as normal. 

Now we define and quantify the application fidelity of MCI detection. We define the 

application fidelity as the MCI detection accuracy. To quantify the application fidelity, 

we use the result of classification with full information, i.e., EEG signals sampled with 
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the full rate, as the ground truth. Then, using partial information, i.e., EEG signals with 

reduced sampling rate, we perform the MCI classification again. Here we use the term Data 

Decimation to refer to retaining a lower rate than the full rate for data sampling and 

transmission. The data decimation rate is computed as the ratio of the new sampling rate 

after decimation compared with the full rate. For example, 10% data decimation means that 

the data sampling and transmission rate is reduced to 10% of the full rate. With the full-

sampling-rate traces we collected, the data decimation is performed by randomly keeping a 

portion of the EEG readings and dropping the rest. Finally, we calculate the percentage of 

the classification results that are identical to the ground truth. This percentage is defined 

to be the application fidelity of MCI detection. 

Figure 4. 7 presents the fidelity of MCI detection. Since for a given total data decimation 
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rate, different combinations of data decimation rates (which we call data decimation assign

ments) can be applied to the same four electrodes, we randomly choose 30 of the possible 

data decimation assignments and plot their fidelity results with box plot in Figure 4.7. This 

box plot shows the median, 25th and 75th percentiles, upper and lower adjacent values, and 

outliers. 

4.1.2.2 Depression Detection using Cerebral Asymmetry Score 

The cerebral asymmetry score quantifies the difference of the a band powers between left 

and right cerebral hemisphere. Readings from two symmetrical electrodes, F3 and F4, are 

used to compute the asymmetry score. The series of sampled EEG data is divided into 

chunks of 2.05s, with 75% overlapping [27]. A Fast Fourier Transform [32] is applied to 

each chunk, and the power density (measured in 11-V2 /Hz) is computed as the sum of the 

activities across all bins within the a band divided by the number of bins. Here the a 

band is one of the five EEG bands: o, 1-4Hz; (), 4-8Hz; a, 8- 13Hz; (3, 13-20Hz; 

and electromyogram (EMG), 70-80Hz. All power density values are log-transformed to 

normalize their distribution. The asymmetry score equals the log of the right hemisphere 

a band power minus the log of the left hemisphere a band power (Log right a band power 

- Log left a band power in 11-V2 /Hz). 

The asymmetry score can be used to decide if a subject is in depression, as its value 

is very different between a depressed patient and normal people. According to [27], the 

mean values of the asymmetry scores are about -0.2 and 0.2 for depressed and normal 

people, respectively. The asymmetry scores of normal people are hardly below -0.2, but 

the asymmetry scores of depressed patients are hardly above 0.2. Thus, based on the 
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measured asymmetry scores, we use T-test for classification. If the test shows that the 

subject's mean asymmetry score is above 0.2 with given significant level o:, the subject is 

classified as normal; if the mean is below -0.2, the subject is classified as depressed; if the 

mean is between -0.2 and 0.2, the subject is classified as undetermined. 

F4 Decimation % 
10 20 

30 40 
5060 

90100 
70 80 

F3 Decimation % 

Figure 4.8: Cerebral Asymmetry Score Fidelity 

Similar to the MCI detection, the fidelity of the depression detection application is 

defined as the percentage of identical event detection results between when the full-sampling-

rate data is used and when decimated data is used. Figure 4.8 plots the fidelity of asymmetry 

score when different rates of decimation are applied. 

Assuming both applications are equally important, each with 0.5 priority weight, Fig-

ure 4.9 plots the total weighted fidelity with data decimation rates on all 6 electrodes, using 

box plot. 
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4.1.3 Mismatch between Communication Pattern and Application Fi-

delity 

From the communication pattern analysis in Section 4.1.1, we can see that the wireless 

EEG headset is either well connected or disconnected with the local base station most of 

the time. So, we discuss the application fidelity under these two scenarios, respectively. 

Well connected. We find that the current design uses a higher sampling rate than nee-

essary. As we apply data decimation to the sampled data, the result shows that it is still 

possible to maintain high fidelity for the two example applications. For example, in Fig-

ure 4.8, the fidelity of depression detection can still be as high as 94% when both F3 and 

F4 electrodes' readings are applied with 15% data decimation rate. This implies that the 

application does not need the full sampling rate of 128Hz for all the electrodes on the neuro-
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headset. From Figures 4.7, 4.8 and 4.9, we can see that the application fidelity is generally 

monotonous with the data decimation rate, but can be degraded with inappropriate data 

decimation assignments. This means that different data streams have different impacts on 

specific application's fidelity. For instance, when F4 electrode maintains the full sampling 

rate and F3 only applies 20% data decimation rate, the depression detection fidelity drops 

sharply to 39%. The fidelity is much worse than what is given in our previous example, 

although the total data decimation rate of the two electrodes is much higher (a total data 

decimation rate of 40% comparing with 15%). From the variation of the MCI detection 

application fidelity shown in Figure 4.7, we can also see that even when the total data dec

imation rate is fixed, the fidelity may still vary with different data decimation assignments, 

e.g., with the total data decimation rate fixed as 45%, the application fidelity can vary from 

zero to 100%. 

Disconnected. We find that the current design overlooks application fidelity requirements 

when the headset is disconnected. The Emotiv neuroheadset does not have any data buffer. 

When the headset is disconnected, the sampled data is completely lost, and the application 

fidelity is not provided during the disconnection period. As a result, the use of EEG headset 

will be interrupted when the subject cannot remain close enough to the local base station. 

For example, in the kitchen cooking trace we collected, the subject needs to wear the headset 

for more than 45 minutes to perform a 15 minutes effective EEG monitoring. 

Summary. Based on the measurement results and analysis, we can see that the existing 

commercial neuroheadset does not take the realistic communication patterns and application 

fidelity requirements into its design consideration. The current neural signal sampling 
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design is inadequate for meeting the application fidelity requirements and handling real

time communication scenarios. Thus, we propose a new approach, which can automatically 

learn the sensitivity of application fidelity to EEG data, and utilize the learned sensitivity 

to cope with the mismatch between the neuroheadset 's wireless communication pattern and 

the application fidelity requirements. Note that our approach is not limited to the Emotiv 

EPOC Neuroheadset, as it does not depend on any specific design of the wireless EEG 

device. 

4.2 Problem Definition and Analysis 

Base on the data sensitivity to application fidelity, we apply different data decimation for 

different data sources to achieve different application optimization goals. Depending on 

whether the wireless link is well connected or disconnected, we formally define two appli

cation optimization problems. (1) In many scenarios as we have illustrated in Section 4.1, 

full data sampling rate is usually not needed to produce the requested application fidelity. 

So, we propose to optimize the total data decimation of all data streams while meeting the 

user requested application fidelity. Obviously, minimizing the total data decimation lowers 

the total energy usage, which is essential for the battery powered wireless EEG headset. 

(2) In the cases when the wireless communication is disconnected, a local buffer is used to 

temporarily cache the data for later delivery once the wireless link is connected again. Since 

the buffer space is limited, here we propose to optimize the usage of the limited space by 

optimizing the data decimation among different data streams, so that the weighted sum, of 

all application fidelities is maximized. 
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In Table 4.1, we list the notations that we will use for the formal definition of these two 

problems. 

Table 4.1: Notations for Problem Definitions 

II Symbol Definition II 
ai The ith application in the system, i E {l..N} 
Wj The weight associated with application ai. Larger weights are given to 

more important applications 
Sj It is the p~t data stream in the system, j E {l..Ji1}. All Ji1 data streams 

are assumed to have the same full data sampling rate 
si It denotes the subset of data streams requested by application ai. Dif-

ferent applications may require the same set of data streams. 
tj The data decimation assigned to data stream sJ, j E {l..M} 
Ti The data decimation assignment, Ti ={til, ti2, ... }, to the data streams 

set, Si = { Sil, Si2, ... } , that is requested by application ai 
fi(Ti) It denotes the fidelity function for application ai. The function input 

is the data decimation assignment Ti to the data streams set Si that is 
requested by application ai. The function output is the application ai's 
fidelity, which is in the range of [0, 1] 

4.2.1 Energy Minimization 

When the wireless link is connected, we formally define the energy minimization problem 

as follows. 

Definition 4.1 (Energy Minimization Problem) For the purpose of minimizing en-

ergy, how to optimize the data decimation assignment 7i to the data streams used by appli-

cation ai, so that each ai 's desired fidelity threshold Fi is satisfied and the total decimation 

tr 2: tJ is minimized. 
jE{l..M} 

Here, we implicitly use the fact that more decimation (or more data) means more com-

munication energy cost. Moreover, this problem can be formalized as follows: 
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min l1 2::: tj 
jE{l..M} 

s.t. f ·(T) > F ! t - t (4.5) 

In this case, the constraint functions are described by oracle models (which are also 

called black box). In an oracle model, we don't know the fis explicitly, but we can evaluate 

fis manually or by computer program. This is referred to as querying the oracle [9]. In [9], 

it is also mentioned that some prior information like oracle model's convexity is sometimes 

given or could be assumed depending on the application context. Intuitively, in the energy 

minimization problem, more data decimation (more communication energy) always means 

more application fidelity. In short, it is reasonable for us to assume the fidelity function is 

an increasing function of the assigned decimation. 

4.2.2 Application Fidelity Maximization 

When the wireless connection is disconnected, we formally define the application fidelity 

maximization problem as follows. 

Definition 4.2 (Application Fidelity Maximization Problem) Given a data buffer 

size, that is a given upper threshold for l1 2::: tj, how to optimize the data decimation 
jE{l..M} 

assignment Ti = {t1 .. tM} for data streams, so that the sum of all applications' weighted 

N 

fidelity I: Wi · fi(Ti) is maximized. 
i=l 

Based on the definition, we find that it is a variant of Resource Allocation Problem 

(RAP). RAP aims to assign the available resources to all agents in an economic way. One 
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example of RAP is that a gambler, frustrated by persistent losses and envious of his friends' 

winnings, decides to allow a group of his fellow gamblers to make bets on his behalf. He 

decides he will wager a fixed sum of money, but that he will apportion his money among his 

friends based on how well they are doing. Certainly, if he knew psychically ahead of time 

which of his friends would win the most, he would naturally have that friend handle all his 

wagers. Lacking such clairvoyance, however, he attempts to allocate each race's wager in 

such a way that his total winnings for the season will be reasonably close to what he would 

have won had he bet everything with the luckiest friends [38]. 

Comparing to the above RAP example, in problem 4.2, the 'gambler should be some 

coalition like users or programs and the limited money should be resources like buffer size. 

Moreover, the friends should be the data streams which contribute to the final winning 

while the winnings should be the applications' fidelities. Up to now, we have seen these 

two problems are similar to each other to some extent, but they still have some differences. 

The difference between the example and problem 4.2 is that each friend only affects his 

own winning output while each data stream affects several outputs (application fidelities). 

Therefore, we can see that the problem in Definition 4.2 is a variant of basic resource 

allocation problem. 

Many algorithms exist for solving RAP. One class of resource allocation algorithms 

among them is the weighted majority algorithm class [38] whose basic framework is described 

as follows: 

In the above framework, the weight vector represents how many resources should be 

allocated to each agent (could be gambler or application) and all resources are initially 

evenly allocated. After that, the algorithm goes into the allocating loop. In each round 
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Algorithm 4 Weighted Majority Algorithm Framework 

N 
Input: (3 E [0, 1], initial weight vector u1 E [0, 1]N with 2.: u} = 1, number of trials T 

Output: The allocation vector pt 
for t = 1 to T do 

Choose allocation pt = Nut 

L:::Ul 
i=l 

Receive loss vector lt E [0, 1]N from environment 
Set the new weights vector to be u~+l = u~(31l 

end for 

i=l 

of the loop, each agent's action is simulated and the loss of the agent is computed. Then 

all agents' losses are formed as a loss vector. With the loss vector, the algorithm adjusts 

each agent's weight based on the following rule: increasing more resources to the agent who 

makes profits in this round and reducing resources to those agents who lose in this round. 

The parameter (3 controls each adjustment's scale and each adjustment step determines how 

fast the current allocation strategy approaches the optimal solution. Thus, (3 can be used 

to control how fast the algorithm converges. When the next round begins, the resources 

arereallocated according to the new weight vector. The algorithm terminates after certain 

number of rounds and the final weight vector represents the final decision on how to allocate 

resources to the agents. 

Since the weighted majority algorithm class has promising and solid convergence analysis 

result, we design an algorithm (in Section 4.4) based on it to solve the fidelity maximization 

problem. 
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4.3 Exploiting Data Sensitivity to Minimize Energy Con-

sumption 

Since data communication and processing dominate the energy cost of a sensing system, 

we assume that the total energy consumption is approximately proportional to the amount 

of data the sensing system needs to communicate and process. Thus, for the problem 

defined in Def. 4.1, when the wireless communication is reliable, we propose an energy 

minimization algorithm to minimize the data decimation. The proposed algorithm consists 

of two parts. First, for an individual application, a solution is given to determine the 

optimal data decimation assignment among the data streams required by this application. 

Then, considering all applications in the system, we propose to adjust the data decimation 

across different applications to minimize the total data decimation while still meeting the 

desired application fidelity thresholds. 

4.3.1 Data Decimation for a Single Application 

First, we formally define the problem of data decimation for a single application as follows: 

Definition 4.3 (Single Application Data Decimation) For application ai, given a spec-

ified data decimation requirement li = dJ 2::.: tj, the problem is to find the optimal data 
'Vtj ET, 

decimation assignment Ti = {til, ti2, ... } , so that the given application fidelity fi is maxi-

mized. 

We notice that this problem is similar to the traditional sensitivity analysis [10] [11], 

which tries to identify the relative importance of each input (corresponding to each data 

stream in the problem stated in Def. 4.3). So, a basic sensitivity analysis technique called 
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Local Method is used here to assign the data decimation to different data streams of a single 

application. To decide the importance of each data stream Sj, the Local Method checks 

the simple derivative of the fidelity function fi with respect to Sj 's data decimation change. 

While all other data streams use the same full sampling rate, Sj is applied with decimation 

tj which is changed inK enumeration steps. We denote the change between the kth and (k+ 

l)th data decimation as !:l.tjk, and the corresponding application fidelity change as !:l.fik, k E 

K-1 
{l..K -1}. Then, the average derivative for data stream Sj is k~l 'L l~{ik I· Intuitively, 

A~=l 1 k 

with a larger value of the average derivative, the ;th data stream is more important to the 

application. Thus the decimation of data streams j is computed as: 

(4.6) 

4.3.2 Data Decimation for Multiple Applications 

From Figures 4. 7 and 4.8, we find that the application fidelity generally increases with 

the increase of data decimation. Based on this monotonous property, we design the main 

algorithm for multi-application data decimation, which is inspired by the bisection method 

for quasiconvex optimization [9]. This algorithm utilizes an approach similar to the binary 

search, which repeatedly adjusts the data decimation li to all data streams requested by 

each application ai. This loop stops when all the resulting applications' fidelities {fi}s are 

above and close enough to the required thresholds { Fi }s within a specified tolerance interval 

€ (€ > 0). With each possible li, the data decimation is assigned to the data streams of ai 

according to Equation 4.6. 



Algorithm 5 Algorithm: Energy Minimization 

Input: Fidelity functions {fi(7i)}, fidelity requirements {Fi}, the tolerance E 

Output: Decimation to all data streams {t1 .. tM} 
Vj = l..M, t1 = 0 
for i = 1 to N do 

Initiate the data decimation upper bound tLi = 1 and lower bound bi = 0 
Compute the initial data decimation for application ai as li = ~ · (bi + tLi); 
repeat 
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/* Distribute the total data decimation li of application ai to all data streams that 
application ai requests, according to Equation 4.6* / 
for tj E 7i do 

if tj < the result of Equation 4.6 then 
tj = the result of Equation 4.6 

end if 
end for 
Calculate fi(li) 
if fi - Fi > 0 then 

if fi - Fi < E then 
Break 

end if 
tli = li 

else if fi - Fi < 0 then 
bi = li 

else 
Break 

end if 
li = ~ . (bi + 'lJ,i) 

until false 
end for M 

Return( the total data decimation T = Li!:J ti ) 
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4.4 Exploiting Data Sensitivity to Maximize Application Fi

delity 

When the data with the full sampling rate cannot be all immediately delivered due to 

network disconnection, the local buffer is utilized to cache data for later deliver when the 

network is connected again. In this section, we propose a novel algorithm to optimize the 

usage of the limited buffer, so that the total weighted application fidelity is maximized. 

Given the total possible data decimation T, which is decided by the available buffer size, 

our algorithm iteratively adjust the data decimation among applications. This algorithm 

is inspired by the Weighted Majority Algorithm [38], which tackles the resource allocation 

problem in game theory. From each iteration, the trends of changes are learnt for both the 

total weighted fidelity and individual applications' fidelities. Then, the algorithm increases 

decimation for those applications that impact more on the total weighted fidelity. It also 

follows Equation 4.6 to compute the data decimation assignment to data streams requested 

by each application. 

As the algorithm iteratively computes data decimation { t1, ... , t M}, we denote the cur

rent iteration step index as q. The results of the qth iteration are denoted with superscript 

q. The algorithm stops iterating after a specified number of rounds, which is denoted by 

Q. So q E {l..Q}. 

4.5 Evaluation 

We evaluate the above two proposed solutions with trace-driven experiments. We use 20 

EEG data traces collected from a human subject in an office environment. Each trace 
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Algorithm 6 Algorithm: Fidelity Maximization 

Input: Fidelity functions {fi(Ti)}, the total data decimation T, the iteration bound 
Q, /3 E [0, 1] (/3 controls the alogorithm's converging speed) 
Output: Decimation to all data streams {tl··tM} 
/*Vi initiate UP}, {li} and fidelity change tlfi*l 
Vi, JP = 1, li = T, tlfi = 0 
/*initially assume Vj, tj = T* I 
Vj, t} = T 
Initiate the iteration step index q = 1 
repeat 

Vi, compute t/ with { tj} 
/* If the total weighted fidelity decreases, recompute tlfi* I 

N 
1 

N 
if I: g- · wi - I: !? · Wi > 0 then 

i=l i=l 

Vi, compute tlfi = u?-l - !?) . Wi for application ai 
end if 
/* Adjust li for each application ai, according to !:l.fi* I 
for i = 1 to N do 

if !:l.fi > 0 then 
li = li * /3-l!.f; 

end if 
j* Compute the qth data decimation for application ai with the adjusted li, ac
cording to Equation 4.6* I 
for j = il..imi do 

if tJ is NULL OR tJ < the result of Equation 4.6 then 
tj = the result of Equation 4.6 

end if 
end for 

end for 
j* Normalize { tJ} *I 
\..1' q _ T·M·tq 
v),tj- M 

I: tq 
j=l J 

q=q+1 
until q > Q 
Return (the data decimation assignment { t 1, ... , t M}) 
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contains data generated by six EEG electrodes (AF3/ AF4, 01/02, and F3/F4 as shown in 

Figure 4.1) over a 30-minute period with a 128Hz sampling rate. Two applications operate 

at the local base station: the first application computes the asymmetry score with the EEG 

data from electrodes F3/F4 for depression detection; the second application computes the 

qEEG ratio with the EEG data from electrodes AF3/ AF4 and 01/02 for MCI detection. 

Algorithms 5 and 6 are evaluated in the following subsections 4.5.1 and 4.5.2, respec

tively. The 20 EEG data traces are separated into a training set and an evaluation set. 

Each of these two algorithms first tuns on the training set to compute the data decimation 

assignment. Then, the computed decimation assignment is applied to the evaluation set. 

On both sets, the fidelity is computed in the way described in 4.1.2. The evaluation is 

repeated following a 5-fold cross-validation style, i.e., the 20 EEG data traces are divided 

into five groups with each group having four traces; each of the five groups is used in turn 

as the evaluation set, and the other four groups are used as the training set. In total, each 

experiment runs 5 rounds, and the fidelities achieved in these five rounds are averaged. 

4.5.1 Evaluation of the Energy Minimization Algorithm 

Figures 4.10 and 4.11 show the evaluation results of the Algorithm 5. The application 

fidelity requirements increase from 0.6 to 1, as shown by the x-axis of the two figures. Fig

ure 4.10 shows the total decimation for all electrodes (2 electrodes for depression detection, 

and 4 electrodes for MCI detection) used by each application to achieve the required fi

delity threshold. Figure 4.11 shows the achieved application fidelity when the decimation 

assignment computed by Algorithm 5 is applied to the evaluation set. We observe that both 

applications approximately achieve the required neurometric fidelities with the computed 
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Figure 4.10: Decimation Assignment Computed with Energy Minimization Algorithm 

decimation assignment, which is lower than the full sampling rate. So, energy can be saved 

by sampling and sending the decimated data only. We observe that when the required 

threshold is around 0.9, only less than 0.25 and 0.1 decimations are needed for the two 

applications, respectively. That is to say, 75% and 90% of the sampling and communication 

energy can be saved by our solution for each application, respectively. 

Figure 4.10 also reflects different sensitivities of different applications' fidelities to the 

EEG data. . The computed data decimation increases as the required fidelity threshold 

increases, but the decimation of data for depression detection needs to be largely increased 

to achieve a fidelity higher than 85%. This implies that when a higher application fidelity is 

required, a higher decimation should be assigned to the data that is requested by depression 

detection. 
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Figure 4.11 shows the fidelity achieved by the decimation assignment computed by 

Algorithm 5. Most of the achieved fidelity is higher than or close to the required threshold 

for both applications. For MCI detection, the achieved fidelity is always slightly higher 

or roughly equal to the required fidelity. For depression detection, the achieved fidelity is 

higher than the required fidelity when the required fidelity is less than 92%, after which the 

requested high fidelity threshold is not met. One possible reason is that the fidelity is only 

an approximate, but not a strict, increasing function of data decimation (See Figure 4.8). 

4.5.2 Evaluation of the Fidelity Maximization Algorithm 

In this evaluation, we compare our fidelity maximization algorithm with the default even 

decimation assignment algorithm, which distributes the total decimation evenly to the six 

needed electrodes. 
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Figure 4.12: Decimation Assignment Computed with Fidelity Maximization Algorithm 
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When the wireless communication is reliable, we use the energy minimization algorithm 

to achieve perfect application fidelity with the minimum energy consumption. When the 
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Figure 4.14: Fidelity Achieved with Fidelity Maximization Algorithm: App Weight W1 = 

{.5, .5} 

wireless communication is disconnected, we incorporate a limited data buffer into the EEG 

headset to save sampled data temporarily for later delivery. 

During the disconnection period, the fidelity maximization algorithm is also called to 

maximize the total weighted application fidelity according to the limited buffer size. 

As demonstrated in Figure 4.10, only a small decimation rate is needed in order to 

achieve the perfect application fidelity. This suggests that we need a smart way to allow 

us to focus on a small range of low decimation rate in order to effectively evaluate our 

fidelity maximization algorithm. Therefore, in this experiment, we first apply our energy 

minimization algorithm to get the minimally needed decimation rate. Then, we further 

apply a second round of decimation with six different rates (six test cases), including 12.5%, 

18%, 25%, 35%, 50%, and 90%, which correspond to different data buffer sizes. 
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Figure 4.15: Fidelity Achieved with Fidelity Maximization Algorithm: App Weight W1 = 
{.8, .2} 

Different application weights are also allowed for the two applications. The weight vector 

W1 = { .2, .8} means that the depression detection application and the MCI detection ap-

plication have priority weights of 0.2 and 0.8, respectively. The weight vector W2 = { .5, .5} 

means that the depression detection application and the MCI detection application each has 

the same priority weight of 0.5. The weight vector W3 = { .8, .2} means that the depression 

detection application has the the priority weight of 0.8, and the MCI detection application 

has the priority weight of 0.2. Figure 4.12 plots the allocated decimation assignment and 

Figure 4.13 4.14 and 4.15 plots the achieved application fidelity, with the input of different 

application weight vectors, respectively. 

In Figure 4.12, the three bars in each of the six test cases show the decimation assign-

ments computed with one of the six given total decimation rates as well as the three different 
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combinations of the application weights. The figure shows that the fidelity maximization 

algorithm is able to adapt the decimation assignment to meet different application fidelity 

and decimation rate requirements. In the first three test cases, we find that similar dec

imation assignments are computed for the MCI detection application. This suggests that 

with a very low total decimation rate ( <= 25%), the application's fidelity cannot be largely 

improved with a small decimation increase. So, the algorithm assigns more decimation to 

the depression detection so as to achieve a higher total fidelity. In the last two test cases, 

we can see that the algorithm assigns more decimation to the MCI detection application 

when it becomes more important. This is shown in the first bar of each test case that 

corresponds to the weight vector W1 = {.2, .8}. When the depression detection application 

becomes more important, as shown in the third bar of each test case that corresponds to 

the weight vector W3 = {.8, .2}, the algorithm assigns more decimation to the depression 

detection application. 

From Figure 4.13 4.14 and 4.15, when the buffer size is very small, as shown in the 

first three test cases of each figure, we observe that the default even decimation assignment 

algorithm achieves very low fidelity and is always largely outperformed by our proposed 

algorithm. This is because, as demonstrated in Figure 4.10, the MCI detection application 

can easily achieve a very high fidelity with a very small decimation rate compared with the 

depression detection application. Our proposed algorithm is able to automatically learn 

the sensitivity of different applications' fidelities to the EEG data. Then, based on the 

learned sensitivity, our algorithm chooses to first satisfy the application that requires less 

decimation to achieve a high application fidelity. On the other hand, the default algorithm 

assigns the same decimation to all data streams, ignoring the sensitivity difference between 
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different applications' fidelities. Thus, more than necessary decimation is assigned to the 

data streams of one application, but the other application's fidelity is harmed because of 

inadequate decimation assigned. 

From Figure 4.13 4.14 and 4.15, when the buffer size is not very small, as shown in 

the last three test cases of each figure, we observe that our design is still better than the 

default solution most of the time. In these three test cases, both algorithms assign high 

decimations to both applications because the total allowed decimation rate is high. With 

the high decimations assigned, the MCI detection application's fidelities achieved by both 

solutions are close to 1, and the depression detection's fidelities achieved by these two 

solutions do not have obvious difference. This is because, as shown in Figure 4.10, when 

the decimation is higher than or equal to 20%, a small increase of the decimation does not 

lead to a large improvement of the depression detection application's fidelity. 

4.6 Conclusions 

Meeting applications' fidelity requirements as well as saving energy are two central issues of 

incorporating EEG neurometrics into in-situ and ubiquitous physiological monitoring. In 

this work, we measure the realistic neuroheadset communication with an off-the-shelf Emo

tiv EPOC Neuroheadset, and reveal a mismatch between the lossy EEG sensor communica

tion pattern and the high neurometric application fidelity requirements. Then, taking the 

MCI detection and the depression detection as two example neurometric applications, we 

propose a generic approach to automatically learn the sensitivity of application fidelities to 

the EEG data. With the learned sensitivity, we propose an energy minimization algorithm 
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to minimize the energy usage in EEG sampling and networking when the wireless commu

nication is reliable. We also propose a fidelity maximization algorithm to maximize the 

total weighted applications' fidelities when the wireless communication is poor. Through 

trace-driven experiments, our proposed solutions are demonstrated to outperform existing 

ones. In addition to optimizing the data decimation as proposed in this work, we also plan 

to optimize other network metrics like data resolution, as well as to build network models 

in our future work, in order to meet applications' fidelity requirements and save energy. 



CHAPTER 5 

EXPOSING COMMUNICATION QOS 

AVAILABILITY TO OTHER BSNS 

When multiple Body Sensor Networks (BSNs) exist within the communication range of 

each other, information sharing among BSNs can be very beneficial to applications, such 

as improving accuracy and saving energy. However, how to provide communication quality 

assurance in coexisting and shared multiple BSNs is still an open problem. On one hand, 

a BSN should prevent possible interference from other BSNs' traffic to degrade the quality 

of intra-BSN links. On the other hand, a BSN should be able to discover its buddy BSNs 

in the neighborhood, and establish inter-BSN connections with Quality of Service (QoS) 

assurance. In this work, we propose a framework called BuddyQoS to provide throughput 
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assurance for coexisting and shared multiple BSNs. BuddyQoS estimates and properly 

schedules the wireless resources to all inter- and intra-BSN communications. Through 

trace-driven experiments, we demonstrate that our approach outperforms the default best 

effort solution using CSMA in TinyOS. 

5.1 BuddyQoS Overview 

We propose a QoS solution, the BuddyQoS framework, for multiple coexisting and shared 

buddy BSNs. Our proposed solution receives the throughput requirements from the ap-

plication layer, and returns admission decisions. The application assigns each requirement 

with a global priority, which denotes how important the requirement is. When the available 

resource is not enough to satisfy all the requirements, BuddyQoS uses the priority to decide 

which requirements are less important and can be rejected. 

In addition, BuddyQoS performs the share coordination to establish sensor sharing be

tween different BSNs. To address the privacy concerns for sensor sharing across different 

BSNs, we assume that only some non-private sensor data, such as environment temperature 

readings, and background noise samples, are shared between buddy BSNs. Also, we argue 

that the sensor sharing are more likely to happen when different BSNs are in the com

munication range of each other. Thus, the physical distance between people wearing the 

BSNs is short enough for them to visually recognize the activities of others, so the sensor 

sharing does not release more private information. The application layer is responsible for 

determine whether to share data to or from another neighboring buddy. When BuddyQoS 

notifies the application layer of a new neighboring BSN, the application layer should first 
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decide whether the BSN can be trusted. Then, the applications estimate whether they can 

benefit from the sensor sharing, with either enhanced performance or energy saving. If the 

applications allow sharing, they pass the sharing requests or decisions to BuddyQoS, which 

establishes the sensor sharing between different BSNs. 

Figure 5.1 shows the architecture of BuddyQoS, which consists of four main components: 

the Hybrid MAC, the Resource Scheduler, the Inter-BSN Admission Controller, and the 

Buddy Management module. 

The BuddyQoS Hybrid MAC sits on both the aggregator side and the sensor node 

side, above the PHY layer. The Hybrid MAC is responsible for transmitting and receiving 

packets, including data packets and management messages, for upper layers. We especially 

design the Hybrid MAC to combine the advantages of the TDMA scheme, for easy resource 

estimation and scheduling, and the CSMA scheme, for its flexibility. 

The Resource Scheduler on the aggregator side collaborates with the Slave Resource 

Scheduler on the node side to schedule resource for communications in the local BSN. 1) 
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On the aggregator side, the Resource Scheduler first receives a list of admitted throughput 

requirements from the Inter-BSN Admission Controller, and other BSNs' management in

formation from the Buddy Management module. Then, the Resource Scheduler computes 

the schedule for the local BSN, and enforces the schedule on aggregator. 2) Correspondingly 

on the node side, a Slave Resource Scheduler receives the schedule from the local aggregator, 

and enforce the schedule on node. 

The Inter-BSN Admission Controller on the aggregator side is responsible for making 

admission decisions for QoS requirements from local and neighboring buddy BSNs. First, 

when the application layer inputs throughput requirement for local data streams, this mod

ule estimates the resource needed to provide throughput assurance for communications 

in the local BSN. Then with the resource schedule of neighboring buddy BSNs from the 

Buddy Management module, the total resource needed to satisfy requirements for all lo

cal and buddy BSNs communications is computed. If the available resource is less than 

the total resource required, the Inter-BSN Admission Controller rejects some of the QoS re

quirements, according to their priorities. Otherwise, the QoS requirements are accepted and 

maintained in a list, which is output to the resource schedule, and the admission decisions 

are passed to the application layer. 

The Buddy Management module on the aggregator side handles the management infor

mation from neighboring buddy BSNs. When discovering a new buddy BSN, the Buddy 

Management module notifies the application layer. Then with sharing requests / decisions 

from the application layer, the Buddy Management module establishes the sensor sharing 

between buddy BSNs. Also, the Buddy Management module inputs the neighboring buddy 

BSNs' resource schedules to the Inter-BSN Admission Controller to help making admission 
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decisions. 

In Figure 5.1, three flows pass through the BuddyQoS framework. The date flow shows 

how the application data are handled by BuddyQoS to be transmitted between aggregators 

and sensor nodes. The local BSN management flow indicates how the information for 

local BSN communication scheduling passes through the BuddyQoS modules. The inter

BSN management flow carries the management information of neighboring buddy BSNs, 

including the buddy BSN schedules, sensor sharing requests and decisions, to coordinate 

the communication among multiple BSNs. 

5.2 BuddyQoS Hybrid MAC Design 

BuddyQoS uses a specific MAC design with the hybrid scheme, whose main idea is borrowed 

from Z-MAC (57]. Because on one hand, to provide QoS assurance, BuddyQoS needs to 

estimate the resource needed for the communication and make proper schedules, which 

is easy to do on a TDMA MAC. On the other hand, in the scenario of multiple BSNs, 

to eliminate contention from different BSNs which are highly dynamic with the mobility 

of human beings, the flexibility of a CSMA scheme is desired. The Hybrid MAC design 

combines the advantages of both CSMA and TDMA schemes, and is especially useful in 

the multiple BSNs scenario. Based on the Hybrid MAC, we develop the communication 

paradigm for data delivery, inter- and intra- BSN management information exchange. 

Assume that the aggregators and sensor nodes in the neighboring BSNs are all synchro

nized, and the time is divide into slots. When an aggregator or a sensor node needs to send 

packets, each packet is sent in a time slot. So, the number of time slots needed for inter-
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and intra-BSN communications can be estimated, and the Resource Scheduler assigns the 

time slots to the local transmitters. 

Within each slot, the scheme used for sending the packet resembles the CSMA scheme. 

When a transmitter has a packet to send in a time slot, it first backs off some time before 

carrier sensing the channel. Then if the channel is found clear, the packet can be sent. 

When there are multiple transmitters accessing a same slot, one of them can be assigned as 

the "owner", which is the same notion as in the Z-MAC design. The slot owner accesses the 

slot with the minimum backoff TbackMin• and other transmitters randomly back off between 

the minimum and maximum backoffs, [TbackMin• nackMaxl· Given a TDMA schedule, if a 

time slot is assigned to a transmitter, then the transmitter is the owner of that slot. Here 

the minimum backoff, TbackMin• can be set to tolerate time synchronize errors, and the 

maximum backoff, TbackMax. affects the setting of the time slots length. This scheme allows 

other transmitters to utilize the time slot when the owner does not have any packet to 

send. In addition, the sending priorities of transmitters can be decided by the values of the 

backoff, i.e., a low priority transmitter should back off longer. 

5.3 Inter-BSN Admission Controller and Resource Scheduler 

The Inter-BSN Admission Controller and the Resource Scheduler play the key role to provide 

throughput assurance for communications in coexisting and shared BSNs. In this section, 

we first develop the communication paradigm based on the Hybrid MAC to support data 

multicast with throughput assurance in multiple BSNs. With the paradigm, the resource 

needed to satisfy the throughput requirements from applications can be estimated. Based on 
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the estimation, the Inter-BSN Admission Controller makes admission decisions to accept 

or reject throughput requirements. The Resource Scheduler schedules the resource for 

inter- and intra-BSN communications to provide throughput assurance for all the admitted 

requirements. 

Slots allocated to a Transmitter 

~ ~ T 

Figure 5.2: Interval T Divided into Two Periods 

5.3.1 Communication Paradigm for Shared BSNs 

As shown in Figure 5.1, the Inter-BSN Admission Controller and Resource scheduler are 

responsible for estimating and allocating resources to deliver both the application data, and 

inter- and intra-BSN management information. These different kinds of communications are 

scheduled respectively in the two periods of each time interval, as illustrated in Figure 5.2. 

The first period contains T m slots, and is used for aggregators to broadcast inter- and intra

BSN management information. The second period contains Td slots, and is used for data 

delivery. 

In multiple coexisting and shared BSNs, when a sensor node sends out data packets, 

not only the local aggregator, aggregators from neighboring buddy BSNs sharing the sensor 

node may also be listening to the data packets. Thus, a communication paradigm to support 

throughput assurance for the multicast is necessary. 

A receiver may use ACK messages to notify the transmitter of the received or lost pack-
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ets. If multiple receivers lose data packets at the same time, all of them would ask the 

transmitter for retransmission; thus, the amount of ACK messages can be large. There has 

already been extensive studies on reducing the large number of ACK messages, known as 

the "ACK implosion" problem, in building reliable broadcast [54] [65]. But our problem is 

different from the reliable broadcast problem, as packet losses are allowed, when we utilize 

retransmission to provide the data throughput assurance. Similar to the TCP acknowledg-

ment design [19], BuddyQoS uses the selective NACK (SNACK) message instead of ACK 

message to notify transmitter for retransmission, thus to avoid the collision and reduce cost 

of sending multiple ACKs. Specifically, before all transmissions, all receivers are informed of 

the schedule and the number of data packets to be sent during the schedule. Each receiver 

records the received packets, and uses a bit vector to compactly store the sequence num-

bers of multiple lost packets. Then, each receiver only need to send one SNACK message 

containing its bit vector to the transmitter. 

n Data packet 
LJ from transmitter i; 

fjl L:J receiver j E J; = {j,, j2, .. } 
SNACK from 

88···8 GJ 8 ··8 GJ 8··8 .. 0·· 
I~ ~I I~ ~I I~ ~I I 

1st Trans. Retrans. Retrans. 

Figure 5.3: Communication Paradigm for Shared BSNs 

Figure 5.3 shows the data packet transmissions with SNACKs during the time slots 

scheduled for a transmitter. The first several slots are assigned to transmitter ito transmit 

its packets. Then the receivers can use the next time slot to send their SNACK message. 

The SNACK slot is not assigned to any specific owner, so with the Hybrid MAC, every 
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receiver has a chance to access the slot. When one of the SNACK messages is transmitted 

successfully, e.g., j 1 's SNACK in Figure 5.3, the following slots are assigned to the transmit-

ter for data retransmission. After retransmissions, if any receiver still has packets missing, 

it tries to access the next slot to send out a SNACK. 

The use of SNACK greatly reduces 

the cost of multiple ACKs, and with 

SNACK suppression, the number of 

SNACKs can be further reduced. Fig-

ure 5.4 shows a SNACK suppression 

example, where two receivers )1 and 

)2 are both listening to transmitter i. 

The number in each data packet de-

notes it sequence number, and num-

bers in the SNACK message denotes 

the sequence numbers of lost packets 

stored in the bit vector. After the first 

batch of transmissions, receiver j 1 loses 

the 2nd and 4th packets, and receiver 

)2 loses the 2nd packet. Utilizing the 

packet overhearing, a receiver can re-

ceive the SNACK packet from other re-

ceivers and compare their lost packets. 
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Figure 5.4: SNACK Suppression Example 

In Figure 5.4, )2 overhears j 1 's SNACK, and finds out that the set of Jl 's lost packets is 
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a superset of its own set of lost packets. Then, )2 suppresses its own SNACK packet, and 

receives the lost packets during the following retransmission answering to j1 's SNACK. In 

this example, one SNACK message is saved. 

To encourage the SNACK suppression, receivers with high packet loss rates, i.e. j 1 m 

the example, should send their SNACKs before those with low packet loss rates, i.e. h 

in the example. So with the BuddyQoS Hybrid MAC, each receiver sets its backoff for 

accessing the SNACK slot according to its packet loss rate. The higher the packet loss rate, 

the shorter the backoff. 

5.3.2 Resource Estimation for Shared BSNs 

The resource estimation is needed in both the Inter-BSN Admission Controller and the 

Resource Scheduler. The total resource needed equals the resource for management infor

mation exchange plus the resource for data delivery. In other words, the resource estimation 

computes the number of slots needed in Tm and Td periods, respectively. 

5.3.2.1 Resource Estimation for Management Information Exchange 

During each T m period, every aggregator sends one management message containing its 

inter- and intra-BSN management information. Therefore, the number of time slots needed 

in the T m period depends on the number of buddy BSNs in the neighborhood, which is 

flexible. Also, extra slots in Tm should be left open for new buddy BSNs coming to the 

neighborhood. 

At the beginning, Tm is initiated to Tinit· Then every interval, the length of T m is 

reevaluated with the number of neighboring buddy BSNs input from the Buddy Manage-
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ment module. If the current length of Tm minus the number of neighboring buddy BSNs is 

less than a threshold D.T, Tm is recomputed to be Tm+D.T. D.T is a parameter in the sys

tem configuration. If a larger number of BSNs come and leave the neighborhood frequently, 

D.T can be set higher. 

5.3.2.2 Resource Estimation for Data Delivery 

For data delivery during each Td, the resource estimation computes the number of time slots 

needed each data stream from local nodes, including the slots needed for delivering required 

data packets, SNACKs from receivers, and data packet retransmissions. The number of 

data packets to be transmitted is decided by the throughput requirement on each data 

stream. The number of SNACKs and retransmissions depend on the packet loss rates of 

each receiver. Following denotations are used in the resource estimation: 

• bi: the throughput requirement for the data stream from sensor node i; 

• Spkt: the effective payload size of each data packet; 

• qij: the packet loss rate for each receiver j from transmitter i; 

• R: the maximum number of transmissions for a data packet. The data packets fail 

for R times should be discarded, because data collected long ago is meaningless and 

can queue up in the buffer during congestion, causing buffer overflow; 

• Ji: the set of IDs of the receivers listening to node i, Ji = {j1, )2, ... }. Thus, the 

number of i's receivers is cardinality of set Ji, denoted as IJil 
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• Di: the number of data packets needed to be delivered in each interval T from trans-

mitter i to satisfy the throughput requirement from the applications. Di can be 

computed from the throughput requirement bi and the effective packet payload size 

S D rb;xTl. 
pkt, i = Spkt ' 

• E(K): let K be the number of data packet transmissions (including retransmissions) 

for each data packet to be successfully delivered to all receivers; pr. { K =k} is the prob-

ability of each data packet being transmitted k times before successfully received; then, 

E(K) stands for the expected number of transmissions, E(K) = L,:=l kxpr.{K =k }. 

• E(Nj): let Nj be the number of SNACKs sent by receiver j; pr.{Nj=n} is the prob-

ability of receiver j sending exactly n SNACKs; then, E(Nj) stands for the expected 

To compute the resource needed for the data delivery of each node i, the throughput re-

quirement bi is given by the application layer, and Spkt and Rare from system configurations. 

Besides, the packet loss rate Qij is computed using the moving average of the history % and 

the qij measured in current time by each receiver: qij = a.xqij_history + (1-a.)xqij_current· 

Here a. is the decay factor. With these inputs, to deliver the required data packets from 

each sensor node i, the number of slots needed equals the number of data packets to be 

sent multiplied by the expected number of transmissions for each data packet, DixE(K). 

For SNACKs from all receivers in Ji, the number of slots needed equals the sum of the 

expected number of SNACKs from all receivers, L,jEJi E(Nj)· Details for computing E(K) 

and E( Nj) are explained in the following paragraphs of this subsection. 
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The expected number of data packet transmissions E(K) is computed using Equa-

tion 5.1rv5.4. 

R 

E(K) = Lkxpr.{I<=k} 
k=l 

{ 
pr.{K:Sk}- pr.{K:Sk-1} 

Pr {K-k}-
. - - 1- pr.{K:SR-1} 

pr.{K:Sk} = fl pr.{Kj:Sk} 
jEJ; 

,k<R 

,k=R 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

Firstly, Equation 5.1 shows that E(K) can be computed with pr.{K=k}. Using Equa-

tion 5.2, we compute pr.{K=k} with pr.{K:Sk}. Then, to compute pr.{K:Sk}, we further 

look into the number of transmissions needed for the packet to be successfully received by 

each receiver j, which we denote as Kj. For all receivers jEJi to receive the data packet from 

transmitter i, the number of transmissions needed is K = maxjEJ; { Kj }. Assume that the 

packet loss for each receiver is independent, pr.{K:Sk} can be calculated using pr.{Kj:Sk} 

(the probability of transmitting less than or equal to k times for receiver j to successfully 

receive the data packet) of each receiver j, as shown in Equation 5.3. After that, for each re-

ceiver j, we use its packet loss rate Qij to compute pr.{Kj:Sk}. It is easy to see that if a data 
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packet is transmitted more than k times before receiver j successfully receives it, the first 

k transmissions to j must have all failed, and the probability is qt. So pr.{Kj:Sk}=l- qt, 
thus Equation 5.4 is derived. 

Finally, to deliver data packets from transmitter i with throughput assurance, the total 

number of slots needed equals: 

(5.5) 

The expected number of SNACKs sent from a receiver j E(Nj) is computed using 

Equation 5.6'"'-'5.8. 

R-1 

E(Nj) = L nxpr.{Nj=n} 
n=l 

,n<R 

,n=R 

(5.6) 

(5. 7) 

(5.8) 

Similar to the computation of E(K), according to Equation 5.6 to compute E(Nj) 

for each receiver j in Ji, we first compute pr.{Nj=n}. Using Equation 5.7, we compute 

pT.{Nj=n} with pr.{Nj<n}. Then we calculate pr.{Nj<n} using j's packet loss rate%· 

It is easy to see that when j sends more than n SNACKs for a data packet, the first n 
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transmissions for this packet must have failed, with the probability of qt. So the probability 

of j sending less than or equal to n SNACKs for one packet is 1 - qij. Also, if j sends out 

less than or equal to n SNACKs, it means that each of the Di data packets must have 

failed less than n times. We assume that the loss of each packet is independent, and then 

Equation 5.8 is derived. 

Finally, the total number of slots needed for transmitting SNACKs from all receivers of 

the Di data packets to transmitter i equals: 

R-2 

L E(Nj) = L (R- L(l- qij)D;) 
jEJ; jEJ; n=l 

R-2 

= Rx IJil- L L (1- qij)D; (5.9) 
jEJ; n=l 

Note that Equation 5.8 dose not consider the SNACK suppression, because it would 

require extra information of the correlation between the packet losses of different receivers, 

which is too costy to measure in the real scenarios. We leave this to be the future work 

to find out a lightweight real-time measurement of the packet loss correlations. However, 

the estimation of Equation 5.8 is always larger than or equal to the number of SNACK 

slots actually used, so there are still enough resource allocated to each node to satisfy the 

throughput requirements for them. 

As a result of the resource estimation, the total resource needed for the data delivery of 

each transmitter i is the sum of Equation 5.5 and Equation 5.9. 
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5.3.3 Admission Decisions 

The Inter-BSN Admission Controller in each BSN estimates the resource needed to sat

isfy the throughput requirements in the local BSN, and makes admission decisions to the 

application layer. 

First, resource estimation is performed to calculate the total resource needed for both 

information exchange and data delivery for all buddy BSNs in the same neighborhood. 

The length of Tm is determined as described in Section 5.3.2.1. Meanwhile, the Buddy 

Management module also inputs the data delivery resource needed by other buddy BSNs to 

the Inter-BSN Admission Controller. With the local BSN data delivery resource estimation 

calculated as described in Section 5.3.2.2, the Inter-BSN Admission Controller sums up the 

total resource needed for the data delivery of each transmitter i in the local BSN and all 

other neighboring buddy BSNs. 

Then admission decisions are made based on whether the total time slots needed for all 

data deliveries is larger than the Td slots available, where Td=T-Tm. If the available 

resource is sufficient, all local throughput requirements, as well as other buddy BSNs' 

throughput requirements, can be accepted. Otherwise, each aggregator decides on their own 

to reject some of the throughput requirements. According to the global priority assigned to 

each throughput requirement the rejection decisions are made. The Inter-BSN Admission 

Controller rejects requirements with lowest priorities, until the rest of the requirements can 

be satisfied. Once the Inter-BSN Admission Controller finds out any local requirement need 

to be rejected, it notifies the application layer that the corresponding requirement can no 

longer be satisfied. To the applications, this means that for one thing, the data stream is 
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only delivered with best effort from then on, and for another, its QoS requirement can be 

degraded in order to be admitted again. Finally, the set of accepted local requirements are 

passed to the Resource Scheduler. 

5.3.4 Resource Scheduler 

For each BSN, the Resource Scheduler decides the schedule of its management information 

broadcasting in T m, as well as its local data delivery in Td. In addition, the Resource 

Scheduler on the aggregator and the Slave Resource Scheduler on each sensor node are 

responsible for enforcing the local data delivery schedule. 

Both inter- and intra-BSN management information for each BSN are sent in a man

agement messages each Tm. The Resource Scheduler decides the slot in Tm to send its local 

management message. The buddy list maintained by the Buddy Management module is 

passed to the Resource Scheduler, and the order of the management messages from each 

buddy BSNs should be the same as the order of the buddy list. 

For the local BSN data delivery scheduling, first the Resource Scheduler looks up the 

buddy list to find out the schedules of other buddy BSNs. The sequence of data delivery 

schedule of each buddy BSN is the same as that of the management messages sent in 

Tm. The Resource Scheduler adds up the resource needed by the BSNs before its local 

BSN is scheduled in the list, and determines when to start its local schedule in Td. Then, 

with list of admitted requirements from the Inter-BSN Admission Controller, the Resource 

Scheduler estimates the resource needed for each local node, according to Equation 5.5 and 

Equation 5.9. 

To enforce the schedule, the Resource Scheduler and Slave Resource Scheduler looks 
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up the schedules of local and buddy BSNs, in order to find out the time slots allocated to 

the aggregator and sensor node to send packets, as well as the time slots allocated to the 

transmitters it wants to listen to. During Tm, all aggregators and sensor nodes listens to all 

management information sent out. During Td, each aggregator listens to all local schedules 

and schedules of other BSNs' nodes, which it wants to share. Each sensor node delivers its 

data packets according to the communication paradigm described in Section 5.3.1. 

5.4 Buddy Management Design 

The Buddy Management module maintains the management information of neighboring 

buddy BSNs, including three lists: 1) the buddy list, which is a list of buddy BSNs in 

the neighborhood; 2) the listen list, which is a list of sensors from other BSNs that the 

local aggregator listens to; and 3) the share list, which is a list of BSNs sharing local 

sensor nodes. From the other BSNs' management messages received during Tm, the Buddy 

Management module extracts the inter-BSN management information to update its local 

records. This information is then passed to the Inter-BSN Admission Controller and the 

Resource Scheduler to help making admission decisions and resource schedules. Also, the 

Buddy Management module uses the management messages to perform neighbor discovery 

and sensor sharing coordination. 

5.4.1 Neighbor Discovery 

During the T m period, each aggregator listens to the management messages to find out 

other buddy BSN entering and leaving the neighborhood. The Buddy Management module 
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is responsible for maintaining a list of neighboring buddy BSNs according to the received 

management messages. 

The Buddy Managment module performs neighbor discovery based on the Hybrid MAC. 

When the Buddy Management module passes the buddy list to the Resource Scheduler, 

which determines the slot to send its management message, according to the order of the 

BSN list, and the backoff before accessing that slot. The Resource Scheduler never assigns 

any owner for the 1st slot in T m. So, the aggregator of first BSN in the buddy list should 

access the slot with some backoff in the range of [nackMin 1 nackMax]· If an aggregator 

successfully sends its management message in the 1st slot of T m, its buddy list is also sent 

out in the management message. In this way, this aggregator claims the following time 

slots for its known neighboring buddies. Then from the 2nd slot of Tm, the aggregators of 

the BSNs in the buddy list send their management messages one after another, all using 

minimum backoff TbackMin· Only after the BSNs in the first BSN's buddy list have all sent 

out their management messages, the new BSNs (not in the buddy list) can try to access the 

following slots with no owners, using backoffs between [nackMin' nackMax]· 

Thus, the neighboring BSNs send management messages in order. When an aggregator 

hears the management message of a new BSN, its Buddy Management module adds the new 

BSN to its buddy list. When an aggregator is not heard for several consecutive intervals, it 

is considered out of the neighborhood and removed from all other BSNs' buddy lists. 

According to this process, initially each BSN has no neighbors but only itself in its 

buddy list, so it tries to access the pt slot with some backoff. Here we use the aggregator's 

ID to be the ID of its local BSN. When a new BSN comes to the neighborhood, say BSN 

i2 coming to the neighborhood of BSN j 1 , at first, both of them compete the 1st slot. If 
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j 1 wins the pt slot, then h adds j1 to its buddy list before itself, and tries to access the 

next slot. Then j1 hears h 's management message in a later slot, it adds j2 to its buddy 

list after itself. Thus, the two BSNs discover each other. 

For the first BSN of the buddy list, it decides the backoff value according to the length of 

the buddy list. The more buddy BSNs following the local BSN in the buddy list, the shorter 

backoff will be used for sending its management message. So when a new BSN comes to 

the neighborhood of multiple BSNs who already know each other, it will fail accessing the 

1st slot in ~n, and transmit its management message after all existing BSNs. 

5.4.2 Sensor Sharing Coordination 

The management message also includes the listen list and the share list from the Buddy 

Management module. Using these two lists, the sensor sharing coordination is performed. 

During this process, the listen list acts as a list of sharing requests, and the share list acts as 

a list of sharing decisions, answering the requests. The details of the sharing coordination 

are described as follows: 

First, the Buddy Management module extracts the available sensor nodes from the 

schedule contained in the management message of a new neighboring buddy BSN, and 

reports to the application layer. Then the application layer decides whether it can share 

the sensor nodes from other BSNs, and inform the Buddy Management module of the share 

request, which is then add to the listen list and sent out in the management message. When 

the message is received by aggregators in other buddy BSNs, each aggregator checks the 

listen list, finds out the share request for its local nodes, and sends it to the application layer 

to get sharing decisions. If the application layer approves the sharing of the sensor node, 
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the Buddy Management module adds it to the share list to be sent out in the management 

message, answering the share request. 

When the Buddy Management module finds a buddy BSN left the neighborhood, it goes 

through its share list and listen list to remove the sharing relations with that BSN. 

5.5 Performance Evaluation 

We evaluate our proposed framework using trace-driven simulations. The traces of noise and 

signal strength used in the simulation are collected when sensor nodes wearing on human 

bodies communicate with aggregators. The traces are collected in a lab environment, where 

two people wearing two BSNs sit almost back to back, about 2 meters away from each other. 

The sensor nodes are attached to three positions on the human body: the left chest, the 

right wrist, and the right ankle. The aggregator is attached to the left waist. The RSSI 

readings for the noise and signal strength are recorded for 5 minutes for each sensor node 

communicating with each aggregator respectively. The noise traces are used to generate 

noise models following the Closest Pattern Matching ( CPM) algorithm [35] for each node 

and each aggregator. The signal strength traces are used directly in the simulation. 

We implement BuddyQoS in TinyOS 2.x with NesC, and simulations are run under the 

TOSSIM simulator [36]. We compare our solution with the default CSMA solution in the 

standard TinyOS 2.x release. Three performance metrics are used: i) the percentage of 

delivered throughput, which equals the delivered data throughput over the requested data 

throughput; ii) the control overhead, which equals the number of control packets, including 

SNACKs and management messages over the number of data packets requested to send; 
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·Table 5.1: System Parameter Configuration 

Parameter I Value II 
Backoff range [nackMin, TbackMax] [0.3ms, 2.44ms] 
Slot length 5ms 
Interval T lOOOms 
Initial Tm value Tinit 5 Slots 
Number of empty slots in Td f).,T 3 Slots 
Data packet payload size Spkt 32 Bytes 
Throughput requirement bi for each node i 1.2kbps 
Decay factor a 0.5 

iii) the data packet transmission time, the time used to transmit a data packet, including 

retransmission and excluding queuing time. 

Table 5.1 lists the system parameter configurations used in the simulations. The first 

three parameters are used by the Hybrid MAC, and we borrow some settings in the default 

CSMA in TOSSIM when we choose the values for them. In the default CSMA in TOSSIM, 

the initial backoff range is set as [0.3ms, 9. 78ms], after that, the backoff range is set as 

[0.3ms, 2.44ms]. As our Hybrid MAC has already used TDMA schedule to avoid most 

of the collisions, we use the shorter backoff range to make the data transmission more 

efficient. Tback!IIin is set as a non-zero value to tolerate time synchronization errors, and 

in our simulation, we deliberately introduced ::;O.lms time difference for each node's clock 

to simulate the synchronization errors. So we set the lower bound of the backoff range to 

be 0.3ms. Then to decide the slot length, we add up the maximum backoff, the preamble, 

and the time used to send one packet with 32 bytes data payload. We assume that the 

size of neighborhood is not very big, considering that Tinit=5 is enough for a family with 

two parents and several children. Also, we assume that it's not very likely that a lot of 

people come to the family at the same time, so we set f).,T=3. The decay factor a is set 
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to .5, considering the history and the current measurement of equally importance when 

computing the moving average of the packet lose rate. 

We first compare the performance of our solution with the default best effort solution 

using CSMA in TinyOS. Then BuddyQoS is evaluated with an increasing number of buddy 

BSNs in the neighborhood. With the noise and signal strength traces collected from a real 

environment, we increase the number of neighboring buddy BSNs from 2 to 4. Same as 

the trace collection setup, each BSN contains one aggregator and three sensor nodes, and 

each sharing a sensor node from another BSN. Each aggregator and node can hear all other 

aggregators and nodes in the neighboring BSNs. The shared nodes are not on the same 

position on the body. 

5.5.1 Performance Comparison with Default CSMA Release in TinyOS 

!i 1 
c. 
.t: 
C) e o.s 

f3. 
-g 
-~ 0.6 
Q) 
0 0.4 

0.2 

BSN1 

Local 

.BuddyQoS 
0Default CSMA 

BSN2 

Share Local Share 
Transmitter Nodes 

Figure 5.5: Delivered Throughput 

First, we measure the percentage of delivered throughput for BuddyQoS and the best 
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effort solution with two neighboring buddy BSNs, and the results are shown in Figure. 5.5. 

For each node under BuddyQoS and the default best effort solution, a group of two bars 

shows the average throughput delivery percentages for the two solutions respectively, and 

the errorbars show their standard derivation. For each solution, the simulation are run for 

5 minutes. Four groups are plotted for each BSN, with the first 3 groups illustrating the 

results for the 3 nodes in the local BSN, and the last group showing the results for the node 

shared from another buddy BSN. The results proves that our solution effectively achieves 

100% throughput delivery, while the default best effort solution only delivers a portion of 

the required throughput. On some of the nodes, especially the shared nodes, the delivered 

throughput can be as bad as only about 70% of the required throughput. 
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Figure 5.6: Control Overhead 

Then we measure the control overhead ofBuddyQoS. In BuddyQoS, the control overhead 

generated by the periodically broadcasted management messages and SNACKs. As one 

management message is sent every interval for all the local nodes, as well as the node it 
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share from other BSNs (to maintain the sharing relation), the cost of management messages 

should be divided among these nodes. In our evaluation setup, one management messages 

are used by 4 nodes (3 local nodes plus 1 shared node). Then during each interval, for 

each node we add the number of SNACKs sent to it and the 1/4 share of the management 

message, and the result is divided by the number of delivered data packets to compute the 

control overhead. Figure 5.6 plots the control overhead for each node from 2 neighboring 

buddy BSNs. The results of the mean control overhead are very low, only around 0.05 for 

each nodes, with very small standard derivation. Also, we can conclude that the cost of 

SNACKs is minor, and the control overhead is mainly caused by the management messages. 

This proves that the use of SNACK and SNACK suppression is efficient . 
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Figure 5. 7: Data Packet Transmission Time 

Finally, we calculate the time used to transmit a data packet, excluding the queuing 

delay. The data packet transmission time under BuddyQoS is compared with the results 

from the default system in Figure 5.7. We observe that BuddyQoS uses much less time to 
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send a data packet than the default CSMA. Only 1/3 of the time is used by BuddyQoS, 

and this shows that our solution is more efficient. BuddyQoS uses less time mainly because 

it uses a shorter backoff than the initial backoff of the default solution. 

5.5.2 Performance Results with an Increasing Number of Neighboring 
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Figure 5.8: Percentage of Delivered Throughput with Increasing Number of BSNs 

Figure 5.8 plots the percentage of delivered throughput with an increasing number of 
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buddy BSNs in the neighborhood. For each solution, the simulation runs for 5 minutes, 

and the percentage of delivered throughput is measured every 10 seconds. Then we plot 

the average and standard derivation of the measured results for each node of each BSN (3 

local nodes and 1 node shared from another BSN). 

Comparing our solution with the default best effort solution, we find that the best effort 

solution is not able to provide the data throughput assurance. The percentage of delivered 

throughput under the best effort solution varies with different nodes. This is because the 

packet losses are mainly due to the signal attenuation when going though human bodies 

rather than congestion. For some of the linkes, only about 70% of the data can be delivered. 

The standard derivation of the delivered throughput is also large (nearly 10%), which shows 

that the links are very unstable. However, BuddyQoS achieves the QoS goal required by the 

application for every node when the number of buddy BSNs in the neighborhood increases. 

100% of the required throughput are delivered with small standard derivations. 

5.6 Conclusion 

Multiple BSNs can often coexist in the communication range of each other, when a per

son wearing a BSN spend time with families, friends and colleagues. In these multiple 

coexisting BSNs, applications can benefit from sensor data sharing. This paper proposes a 

novel QoS solution, BuddyQoS, to provide throughput assurance for both inter- and intra

communications in multiple BSNs. Our solution is able to perform resource estimation and 

allocation across multiple BSNs. Both the management of information exchange and the 

data delivery are properly scheduled, and with a flexible Hybrid MAC design, the sched-
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ules can be effectively enforced. Through a trace-driven simulation, we demonstrate that 

BuddyQoS outperforms the default best effort solution, with 100% throughput delivery and 

minor control overhead. In our future work, we will study how to provide both throughput 

and time delay assurance for multiple coexisting BSNs. 



CHAPTER 6 

CONCLUSION 

The BSN deployment benefits greatly from the wireless communication technology, which 

makes it possible to install wearable and implantable bio-sensors on human body with

out constraining normal activities. The ubiquitous applications developed based on the 

BSN have stringent performance requirements, and they rely on the lower level network 

to provide certain QoS assurance for the data delivery. However, the low power sensor 

communication link quality can be easily degraded in the noisy environment. In addition, 

comparing with the conventional WSN, the distinct characteristics of the BSN [13] require 

new QoS solutions. 

In this dissertation, we develop confident body sensor networking solutions with three 

parts of works: 1) At the communication level, considering the existing heterogeneous BSN 

platform, we aim to provide a radio-agnostic QoS solution for the data delivery service 
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within a BSN. Without assumptions for the underlying MAC implementation, we study 

the resource scheduling problem in a BSN with both throughput and time delay require

ments for all data transmissions in a BSN. 2) At the application level, we aim to connect 

the communication QoS with the application QoS. As different applications have different 

requirements, we study how the application fidelity can be affected by the amount of data 

transmitted to the local station. Then, we develop algorithms to improve the system per

formance with limited resource. 3) When multiple BSNs coexist and share sensor data with 

each other, we aim to provide QoS solutions for both inter- and intra-BSN communications. 

In particular, we expose the communication QoS availability across BSNs. 

We address the above challenges through following works: 

• Building Communication QoS. We propose a novel radio-agnostic approach, BodyT2, 

to provide joint throughput and time delay assurance for the communication in a BSN. 

Using the virtual MAC abstraction, we define the resource scheduling problem for the 

communication in a BSN with throughput and time delay requirements. We theoret

ically analyze the complexity of this problem and propose a practical solution based 

on a group-polling scheme. We implement the BodyT2 framework and demonstrate 

its performance through both TelosB mote lab tests and real on-body experiments. 

• Connecting Communication QoS with Application QoS. We take neurometric appli

cations as examples, and study the realistic communication pattern of an off-the-shelf 

commercial wireless EEG headset. We find that the current lossy communication 

pattern of the EEG headset does not match the high neurometric application fidelity 

requirements. We define the application fidelity for the two example neurometric ap-
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application QoS. We propose to automatically learn the sensitivity of application fi

delities to sensory data. With the learned sensitivity, we develop two algorithms 

to enhance the system performance when the resource is limited. We valdiate the 

effectiveness of the proposed solution through trace-based experiments. 

• Exposing Communication QoS Availability to Other BSNs. We propose a novel QoS 

solution, BuddyQoS, to provide throughput assurance for both inter- and intra-commu 

nications in multiple coexisting and shared buddy BSNs. Our solution is able to 

perform resource estimation and allocation across multiple buddy BSNs. Both the 

management information exchange and the data delivery are properly scheduled. A 

communication paradigm is used to support throughput assurance for the data multi

cast in shared BSNs, and a specific hybrid MAC design is used to effectively enforce the 

communication schedules. Through a trace-driven simulation, we demonstrate that 

BuddyQoS outperforms the default CSMA release in TinyOS, with 100% throughput 

delivery and minor control overhead. In our future work, we will study how to provide 

both throughput and time delay assurance for multiple coexisting and shared buddy 

BSNs. 

Overall, we have developed different QoS solutions to provide the confident BSN com

munication services required from both the communication and application levels, in single 

and multiple BSNs. In our future work, we first plan to develop QoS solutions that opti

mize other network metrics, like data resolution and time delay in multiple coexisting BSNs. 

Taking the heterogeneous radio platforms in BSNs into consideration, we will provide the 

radio agnostic feature, and will implement and experiment with different standards, such as 
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ZigBee, Bluetooth, and WiFi. Also, regarding the mobility of BSNs, we plan to study the 

impact of different environments and human activities on the BSN communication qual

ity. With multiple BSNs, we will develop a lightweight real-time measurement tool for 

studying the packet loss correlation between a transmitter and multiple receivers. We plan 

to investigate the communication models not only in BSNs, but also between BSNs and 

static networks. We will utilize the knowledge of the environment and human activity to 

build context-aware QoS solutions for BSN communications. Lastly, we are interested in 

the different fidelity requirements of different applications in the BSN. We plan to study 

on more time sensitive applications, especially medical applications with specific fidelity 

requirements, and we will provide generic approaches that automatically adapt resource 

scheduling to meet those requirements. 
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