461 research outputs found

    Radiation Effects in Integrated Circuits, and Radiation Hardening Techniques

    Get PDF
    Radiation from natural and artificial elements bombards the earth The radiation environment depends on energy distribution and particle spectra. Radiation affects most electronic components, especially ICs (ICs). High nuclear reactors and space radiation damage electronic components, but the earth's electronic components also do. Semiconductors are radiation-sensitive, hence ICs need radiation shielding. The operation and performance of devices are affected by these effects. Radiation type, energy, flux, and exposure period affect damage. Gamma rays and neutrons are indirect ionizing radiation. These beams harm silicon-based semiconductors like transistors. Radiation can damage semiconductors, especially ICs. As a result of displacement damage and ionizing radiation, semiconductors degrade in three devices. Insulator traps charge. (2) minor carrier recombination modifications Various-energy particles generate different ionization and displacement damage. In the research of radiation effects and consequences, it's vital to look at how radiation affects semiconductors and integrated circuits. Radiation hardening decreases radiation damage. Radiation hardening renders electronics ionizing or non-ionizing radiation-resistant. To assure appropriate operation, IC, sensor, and military aircraft makers adopted hardening. Keywords: Hardening Technique, Integrated Circuits, Radiation DOI: 10.7176/CEIS/13-5-04 Publication date:October 31st 202

    Radiation Testing and Evaluation Issues for Modern Integrated Circuits

    Get PDF
    Abstract. Changes in modern integrated circuit (IC) technologies have modified the way we approach and conduct radiation tolerance and testing of electronics. These changes include scaling of geometries, new materials, new packaging technologies, and overall speed and device complexity challenges. In this short course section, we will identify and discuss these issues as they impact radiation testing, modeling, and effects mitigation of modern integrated circuits. The focus will be on CMOS-based technologies, however, other high performance technologies will be discussed where appropriate. The effects of concern will be: Single-Event Effects (SEE) and steady state total ionizing dose (TID) IC response. However, due to the growing use of opto-electronics in space systems issues concerning displacement damage testing will also be considered. This short course section is not intended to provide detailed "how-to-test" information, but simply provide a snapshot of current challenges and some of the approaches being considered

    Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    Get PDF
    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment

    Hardware, Software and Data Analysis Techniques for SRAM-Based Field Programmable Gate Array Circuits

    Get PDF
    This work presents a built, tested, and demonstrated test structure that is low-cost, flexible, and re-usable for robust radiation experimentation, primarily to investigate memory, in this case SRAMs and SRAM-based FPGAs. The space environment can induce many kinds of failures due to radiation effects. These failures result in a loss of money, time, intelligence, and information. In order to evaluate technologies for potential failures, a detailed test methodology and associated structure are required. In this solution, an FPGA board was used as the controller platform, with multiple VHDL circuit controllers, data collection and reporting modules. The structure was demonstrated by programming an SRAM-based FPGA board as the device under test (DUT) with various types of adders, counters and RAM modules. The controllers, hardware, and data collection operations were tested and validated using gamma radiation from a Co-60 source at the Ohio State University Nuclear Reactor to irradiate the DUT. The test structure is easily modified to allow for a broad range of experiments on the same DUT. In addition, this structure is easily adaptable for other memory types, such as DRAM, FlashRam, and MRAM. These additions will be discussed further in this document. The system fits in a backpack and costs less than $1000

    Study of Radiation Tolerant Storage Cells for Digital Systems

    Get PDF
    Single event upsets (SEUs) are a significant reliability issue in semiconductor devices. Fully Depleted Silicon-on-Insulator (FDSOI) technologies have been shown to exhibit better SEU performance compared to bulk technologies. This is attributed to the thin Silicon (Si) layer on top of a Buried Oxide (BOX) layer, which allows each transistor to function as an insulated Si island, thus reducing the threat of charge-sharing. Moreover, the small volume of the Si in FDSOI devices results in a reduction of the amount of charge induced by an ion strike. The effects of Total Ionizing Dose (TID) on integrated circuits (ICs) can lead to changes in gate propagation delays, leakage currents, and device functionality. When IC circuits are exposed to ionizing radiation, positive charges accumulate in the gate oxide and field oxide layers, which results in reduced gate control and increased leakage current. TID effects in bulk technologies are usually simpler due to the presence of only one gate oxide layer, but FDSOI technologies have a more complex response to TID effects because of the additional BOX layer. In this research, we aim to address the challenges of developing cost-effective electronics for space applications by bridging the gap between expensive space-qualified components and high-performance commercial technologies. Key research questions involve exploring various radiation-hardening-by-design (RHBD) techniques and their trade-offs, as well as investigating the feasibility of radiation-hardened microcontrollers. The effectiveness of RHBD techniques in mitigating soft errors is well-established. In our study, a test chip was designed using the 22-nm FDSOI process, incorporating multiple RHBD Flip-Flop (FF) chains alongside a conventional FF chain. Three distinct types of ring oscillators (ROs) and a 256 kbit SRAM was also fabricated in the test chip. To evaluate the SEU and TID performance of these designs, we conducted multiple irradiation experiments with alpha particles, heavy ions, and gamma-rays. Alpha particle irradiation tests were carried out at the University of Saskatchewan using an Americium-241 alpha source. Heavy ion experiments were performed at the Texas A&M University Cyclotron Institute, utilizing Ne, Ar, Cu, and Ag in a 15 MeV/amu cocktail. Lastly, TID experiments were conducted using a Gammacell 220 Co-60 chamber at the University of Saskatchewan. By evaluating the performance of these designs under various irradiation conditions, we strive to advance the development of cost-effective, high-performance electronics suitable for space applications, ultimately demonstrating the significance of this project. When exposed to heavy ions, radiation-hardened FFs demonstrated varying levels of improvement in SEU performance, albeit with added power and timing penalties compared to conventional designs. Stacked-transistor DFF designs showed significant enhancement, while charge-cancelling and interleaving techniques further reduced upsets. Guard-gate (GG) based FF designs provided additional SEU protection, with the DFR-FF and GG-DICE FF designs showing zero upsets under all test conditions. Schmitt-trigger-based DFF designs exhibited improved SEU performance, making them attractive choices for hardening applications. The 22-nm FDSOI process proved more resilient to TID effects than the 28-nm process; however, TID effects remained prominent, with increased leakage current and SRAM block degradation at high doses. These findings offer valuable insights for designers aiming to meet performance and SER specifications for circuits in radiation environments, emphasizing the need for additional attention during the design phase for complex radiation-hardened circuits

    Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management

    Get PDF
    As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management
    corecore