17 research outputs found

    Exploiting the Weak Generational Hypothesis for Write Reduction and Object Recycling

    Get PDF
    Programming languages with automatic memory management are continuing to grow in popularity due to ease of programming. However, these languages tend to allocate objects excessively, leading to inefficient use of memory and large garbage collection and allocation overheads. The weak generational hypothesis notes that objects tend to die young in languages with automatic dynamic memory management. Much work has been done to optimize allocation and garbage collection algorithms based on this observation. Previous work has largely focused on developing efficient software algorithms for allocation and collection. However, much less work has studied architectural solutions. In this work, we propose and evaluate architectural support for assisting allocation and garbage collection. We first study the effects of languages with automatic memory management on the memory system. As objects often die young, it is likely many objects die while in the processor\u27s caches. Writes of dead data back to main memory are unnecessary, as the data will never be used again. To study this, we develop and present architecture support to identify dead objects while they remain resident in cache and eliminate any unnecessary writes. We show that many writes out of the caches are unnecessary, and can be avoided using our hardware additions. Next, we study the effects of using dead data in cache to assist with allocation and garbage collection. Logic is developed and presented to allow for reuse of cache space found dead to satisfy future allocation requests. We show that dead cache space can be recycled at a high rate, reducing pressure on the allocator and reducing cache miss rates. However, a full implementation of our initial approach is shown to be unscalable. We propose and study limitations to our approach, trading object coverage for scalability. Third, we present a new approach for identifying objects that die young based on a limitation of our previous approach. We show this approach has much lower storage and logic requirements and is scalable, while only slightly decreasing overall object coverage

    Axiomatic hardware-software contracts for security

    Get PDF
    We propose leakage containment models (LCMs)—novel axiomatic security contracts which support formally reasoning about the security guarantees of programs when they run on particular microarchitectures. Our core contribution is an axiomatic vocabulary for formalizing LCMs, derived from the established axiomatic vocabulary for formalizing processor memory consistency models. Using this vocabulary, we formalize microarchitectural leakage—focusing on leakage through hardware memory systems—so that it can be automatically detected in programs and provide a taxonomy for classifying said leakage by severity. To illustrate the efficacy of LCMs, we first demonstrate that our leakage definition faithfully captures a sampling of (transient and non-transient) microarchitectural attacks from the literature. Second, we develop a static analysis tool based on LCMs which automatically identifies Spectre vulnerabilities in programs and scales to analyze real-world crypto-libraries

    Reliability for exascale computing : system modelling and error mitigation for task-parallel HPC applications

    Get PDF
    As high performance computing (HPC) systems continue to grow, their fault rate increases. Applications running on these systems have to deal with rates on the order of hours or days. Furthermore, some studies for future Exascale systems predict the rates to be on the order of minutes. As a result, efficient fault tolerance solutions are needed to be able to tolerate frequent failures. A fault tolerance solution for future HPC and Exascale systems must be low-cost, efficient and highly scalable. It should have low overhead in fault-free execution and provide fast restart because long-running applications are expected to experience many faults during the execution. Meanwhile task-based dataflow parallel programming models (PM) are becoming a popular paradigm in HPC applications at large scale. For instance, we see the adaptation of task-based dataflow parallelism in OpenMP 4.0, OmpSs PM, Argobots and Intel Threading Building Blocks. In this thesis we propose fault-tolerance solutions for task-parallel dataflow HPC applications. Specifically, first we design and implement a checkpoint/restart and message-logging framework to recover from errors. We then develop performance models to investigate the benefits of our task-level frameworks when integrated with system-wide checkpointing. Moreover, we design and implement selective task replication mechanisms to detect and recover from silent data corruptions in task-parallel dataflow HPC applications. Finally, we introduce a runtime-based coding scheme to detect and recover from memory errors in these applications. Considering the span of all of our schemes, we see that they provide a fairly high failure coverage where both computation and memory is protected against errors.A medida que los Sistemas de Cómputo de Alto rendimiento (HPC por sus siglas en inglés) siguen creciendo, también las tasas de fallos aumentan. Las aplicaciones que se ejecutan en estos sistemas tienen una tasa de fallos que pueden estar en el orden de horas o días. Además, algunos estudios predicen que los fallos estarán en el orden de minutos en los Sistemas Exascale. Por lo tanto, son necesarias soluciones eficientes para la tolerancia a fallos que puedan tolerar fallos frecuentes. Las soluciones para tolerancia a fallos en los Sistemas futuros de HPC y Exascale tienen que ser de bajo costo, eficientes y altamente escalable. El sobrecosto en la ejecución sin fallos debe ser bajo y también se debe proporcionar reinicio rápido, ya que se espera que las aplicaciones de larga duración experimenten muchos fallos durante la ejecución. Por otra parte, los modelos de programación paralelas basados en tareas ordenadas de acuerdo a sus dependencias de datos, se están convirtiendo en un paradigma popular en aplicaciones HPC a gran escala. Por ejemplo, los siguientes modelos de programación paralela incluyen este tipo de modelo de programación OpenMP 4.0, OmpSs, Argobots e Intel Threading Building Blocks. En esta tesis proponemos soluciones de tolerancia a fallos para aplicaciones de HPC programadas en un modelo de programación paralelo basado tareas. Específicamente, en primer lugar, diseñamos e implementamos mecanismos “checkpoint/restart” y “message-logging” para recuperarse de los errores. Para investigar los beneficios de nuestras herramientas a nivel de tarea cuando se integra con los “system-wide checkpointing” se han desarrollado modelos de rendimiento. Por otra parte, diseñamos e implementamos mecanismos de replicación selectiva de tareas que permiten detectar y recuperarse de daños de datos silenciosos en aplicaciones programadas siguiendo el modelo de programación paralela basadas en tareas. Por último, se introduce un esquema de codificación que funciona en tiempo de ejecución para detectar y recuperarse de los errores de la memoria en estas aplicaciones. Todos los esquemas propuestos, en conjunto, proporcionan una cobertura bastante alta a los fallos tanto si estos se producen el cálculo o en la memoria.Postprint (published version

    Design of a distributed memory unit for clustered microarchitectures

    Get PDF
    Power constraints led to the end of exponential growth in single–processor performance, which characterized the semiconductor industry for many years. Single–chip multiprocessors allowed the performance growth to continue so far. Yet, Amdahl’s law asserts that the overall performance of future single–chip multiprocessors will depend crucially on single–processor performance. In a multiprocessor a small growth in single–processor performance can justify the use of significant resources. Partitioning the layout of critical components can improve the energy–efficiency and ultimately the performance of a single processor. In a clustered microarchitecture parts of these components form clusters. Instructions are processed locally in the clusters and benefit from the smaller size and complexity of the clusters components. Because the clusters together process a single instruction stream communications between clusters are necessary and introduce an additional cost. This thesis proposes the design of a distributed memory unit and first level cache in the context of a clustered microarchitecture. While the partitioning of other parts of the microarchitecture has been well studied the distribution of the memory unit and the cache has received comparatively little attention. The first proposal consists of a set of cache bank predictors. Eight different predictor designs are compared based on cost and accuracy. The second proposal is the distributed memory unit. The load and store queues are split into smaller queues for distributed disambiguation. The mapping of memory instructions to cache banks is delayed until addresses have been calculated. We show how disambiguation can be implemented efficiently with unordered queues. A bank predictor is used to map instructions that consume memory data near the data origin. We show that this organization significantly reduces both energy usage and latency. The third proposal introduces Dispatch Throttling and Pre-Access Queues. These mechanisms avoid load/store queue overflows that are a result of the late allocation of entries. The fourth proposal introduces Memory Issue Queues, which add functionality to select instructions for execution and re-execution to the memory unit. The fifth proposal introduces Conservative Deadlock Aware Entry Allocation. This mechanism is a deadlock safe issue policy for the Memory Issue Queues. Deadlocks can result from certain queue allocations because entries are allocated out-of-order instead of in-order like in traditional architectures. The sixth proposal is the Early Release of Load Queue Entries. Architectures with weak memory ordering such as Alpha, PowerPC or ARMv7 can take advantage of this mechanism to release load queue entries before the commit stage. Together, these proposals allow significantly smaller and more energy efficient load queues without the need of energy hungry recovery mechanisms and without performance penalties. Finally, we present a detailed study that compares the proposed distributed memory unit to a centralized memory unit and confirms its advantages of reduced energy usage and of improved performance

    Performance Evaluation for Hybrid Architectures

    Get PDF
    In this dissertation we discuss methologies for estimating the performance of applications on hybrid architectures, systems that include various types of computing resources (e.g. traditional general-purpose processors, chip multiprocessors, reconfigurable hardware). A common use of hybrid architectures will be to deploy coarse pipeline stages of application on suitable compute units with communication path for transferring data. The first problem we focus on relates to the sizing the data queues between the different processing elements of an hybrid system. Much of the discussion centers on our analytical models that can be used to derive performance metrics of interest such as, throughput and stalling probability for networks of processing elements with finite data buffering between them. We then discuss to the reliability of performance models. There we start by presenting scenarios where our analytical model is reliable, and introduce tests that can detect their inapplicability. As we transition into the question of reliability of performance models, we access the accuracy and applicability of various evaluation methods. We present results from our experiments to show the need for measuring and accounting for operating system effects in architectural modeling and estimation

    Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance Computing

    Get PDF
    Blocking microarchitectural (digital) side channels is one of the most pressing challenges in hardware security today. Recently, there has been a surge of effort that attempts to block these leakages by writing programs data obliviously. In this model, programs are written to avoid placing sensitive data-dependent pressure on shared resources. Despite recent efforts, however, running data oblivious programs on modern machines today is insecure and low performance. First, writing programs obliviously assumes certain instructions in today\u27s ISAs will not leak privacy, whereas today\u27s ISAs and hardware provide no such guarantees. Second, writing programs to avoid data-dependent behavior is inherently high performance overhead. This paper tackles both the security and performance aspects of this problem by proposing a Data Oblivious ISA extension (OISA). On the security side, we present ISA design principles to block microarchitectural side channels, and embody these ideas in a concrete ISA capable of safely executing existing data oblivious programs. On the performance side, we design the OISA with support for efficient memory oblivious computation, and with safety features that allow modern hardware optimizations, e.g., out-of-order speculative execution, to remain enabled in the common case. We provide a complete hardware prototype of our ideas, built on top of the RISC-V out-of-order, speculative BOOM processor, and prove that the OISA can provide the advertised security through a formal analysis of an abstract BOOM-style machine. We evaluate area overhead of hardware mechanisms needed to support our prototype, and provide performance experiments showing how the OISA speeds up a variety of existing data oblivious codes (including ``constant time\u27\u27 cryptography and memory oblivious data structures), in addition to improving their security and portability

    Code optimizations for narrow bitwidth architectures

    Get PDF
    This thesis takes a HW/SW collaborative approach to tackle the problem of computational inefficiency in a holistic manner. The hardware is redesigned by restraining the datapath to merely 16-bit datawidth (integer datapath only) to provide an extremely simple, low-cost, low-complexity execution core which is best at executing the most common case efficiently. This redesign, referred to as the Narrow Bitwidth Architecture, is unique in that although the datapath is squeezed to 16-bits, it continues to offer the advantage of higher memory addressability like the contemporary wider datapath architectures. Its interface to the outside (software) world is termed as the Narrow ISA. The software is responsible for efficiently mapping the current stack of 64-bit applications onto the 16-bit hardware. However, this HW/SW approach introduces a non-negligible penalty both in dynamic code-size and performance-impact even with a reasonably smart code-translator that maps the 64- bit applications on to the 16-bit processor. The goal of this thesis is to design a software layer that harnesses the power of compiler optimizations to assuage this negative performance penalty of the Narrow ISA. More specifically, this thesis focuses on compiler optimizations targeting the problem of how to compile a 64-bit program to a 16-bit datapath machine from the perspective of Minimum Required Computations (MRC). Given a program, the notion of MRC aims to infer how much computation is really required to generate the same (correct) output as the original program. Approaching perfect MRC is an intrinsically ambitious goal and it requires oracle predictions of program behavior. Towards this end, the thesis proposes three heuristic-based optimizations to closely infer the MRC. The perspective of MRC unfolds into a definition of productiveness - if a computation does not alter the storage location, it is non-productive and hence, not necessary to be performed. In this research, the definition of productiveness has been applied to different granularities of the data-flow as well as control-flow of the programs. Three profile-based, code optimization techniques have been proposed : 1. Global Productiveness Propagation (GPP) which applies the concept of productiveness at the granularity of a function. 2. Local Productiveness Pruning (LPP) applies the same concept but at a much finer granularity of a single instruction. 3. Minimal Branch Computation (MBC) is an profile-based, code-reordering optimization technique which applies the principles of MRC for conditional branches. The primary aim of all these techniques is to reduce the dynamic code footprint of the Narrow ISA. The first two optimizations (GPP and LPP) perform the task of speculatively pruning the non-productive (useless) computations using profiles. Further, these two optimization techniques perform backward traversal of the optimization regions to embed checks into the nonspeculative slices, hence, making them self-sufficient to detect mis-speculation dynamically. The MBC optimization is a use case of a broader concept of a lazy computation model. The idea behind MBC is to reorder the backslices containing narrow computations such that the minimal necessary computations to generate the same (correct) output are performed in the most-frequent case; the rest of the computations are performed only when necessary. With the proposed optimizations, it can be concluded that there do exist ways to smartly compile a 64-bit application to a 16- bit ISA such that the overheads are considerably reduced.Esta tesis deriva su motivación en la inherente ineficiencia computacional de los procesadores actuales: a pesar de que muchas aplicaciones contemporáneas tienen unos requisitos de ancho de bits estrechos (aplicaciones de enteros, de red y multimedia), el hardware acaba utilizando el camino de datos completo, utilizando más recursos de los necesarios y consumiendo más energía. Esta tesis utiliza una aproximación HW/SW para atacar, de forma íntegra, el problema de la ineficiencia computacional. El hardware se ha rediseñado para restringir el ancho de bits del camino de datos a sólo 16 bits (únicamente el de enteros) y ofrecer así un núcleo de ejecución simple, de bajo consumo y baja complejidad, el cual está diseñado para ejecutar de forma eficiente el caso común. El rediseño, llamado en esta tesis Arquitectura de Ancho de Bits Estrecho (narrow bitwidth en inglés), es único en el sentido que aunque el camino de datos se ha estrechado a 16 bits, el sistema continúa ofreciendo las ventajas de direccionar grandes cantidades de memoria tal como procesadores con caminos de datos más anchos (64 bits actualmente). Su interface con el mundo exterior se denomina ISA estrecho. En nuestra propuesta el software es responsable de mapear eficientemente la actual pila software de las aplicaciones de 64 bits en el hardware de 16 bits. Sin embargo, esta aproximación HW/SW introduce penalizaciones no despreciables tanto en el tamaño del código dinámico como en el rendimiento, incluso con un traductor de código inteligente que mapea las aplicaciones de 64 bits en el procesador de 16 bits. El objetivo de esta tesis es el de diseñar una capa software que aproveche la capacidad de las optimizaciones para reducir el efecto negativo en el rendimiento del ISA estrecho. Concretamente, esta tesis se centra en optimizaciones que tratan el problema de como compilar programas de 64 bits para una máquina de 16 bits desde la perspectiva de las Mínimas Computaciones Requeridas (MRC en inglés). Dado un programa, la noción de MRC intenta deducir la cantidad de cómputo que realmente se necesita para generar la misma (correcta) salida que el programa original. Aproximarse al MRC perfecto es una meta intrínsecamente ambiciosa y que requiere predicciones perfectas de comportamiento del programa. Con este fin, la tesis propone tres heurísticas basadas en optimizaciones que tratan de inferir el MRC. La utilización de MRC se desarrolla en la definición de productividad: si un cálculo no altera el dato que ya había almacenado, entonces no es productivo y por lo tanto, no es necesario llevarlo a cabo. Se han propuesto tres optimizaciones del código basadas en profile: 1. Propagación Global de la Productividad (GPP en inglés) aplica el concepto de productividad a la granularidad de función. 2. Poda Local de Productividad (LPP en inglés) aplica el mismo concepto pero a una granularidad mucho más fina, la de una única instrucción. 3. Computación Mínima del Salto (MBC en inglés) es una técnica de reordenación de código que aplica los principios de MRC a los saltos condicionales. El objetivo principal de todas esta técnicas es el de reducir el tamaño dinámico del código estrecho. Las primeras dos optimizaciones (GPP y LPP) realizan la tarea de podar especulativamente las computaciones no productivas (innecesarias) utilizando profiles. Además, estas dos optimizaciones realizan un recorrido hacia atrás de las regiones a optimizar para añadir chequeos en el código no especulativo, haciendo de esta forma la técnica autosuficiente para detectar, dinámicamente, los casos de fallo en la especulación. La idea de la optimización MBC es reordenar las instrucciones que generan el salto condicional tal que las mínimas computaciones que general la misma (correcta) salida se ejecuten en la mayoría de los casos; el resto de las computaciones se ejecutarán sólo cuando sea necesario

    Improving processor efficiency by exploiting common-case behaviors of memory instructions

    Get PDF
    Processor efficiency can be described with the help of a number of  desirable effects or metrics, for example, performance, power, area, design complexity and access latency. These metrics serve as valuable tools used in designing new processors and they also act as  effective standards for comparing current processors. Various factors impact the efficiency of modern out-of-order processors and one important factor is the manner in which instructions are processed through the processor pipeline. In this dissertation research, we study the impact of load and store instructions (collectively known as memory instructions) on processor efficiency,  and show how to improve efficiency by exploiting common-case or  predictable patterns in the behavior of memory instructions. The memory behavior patterns that we focus on in our research are the predictability of memory dependences, the predictability in data forwarding patterns,   predictability in instruction criticality and conservativeness in resource allocation and deallocation policies. We first design a scalable  and high-performance memory dependence predictor and then apply accurate memory dependence prediction to improve the efficiency of the fetch engine of a simultaneous multi-threaded processor. We then use predictable data forwarding patterns to eliminate power-hungry  hardware in the processor with no loss in performance.  We then move to  studying instruction criticality to improve  processor efficiency. We study the behavior of critical load instructions  and propose applications that can be optimized using  predictable, load-criticality  information. Finally, we explore conventional techniques for allocation and deallocation  of critical structures that process memory instructions and propose new techniques to optimize the same.  Our new designs have the potential to reduce  the power and the area required by processors significantly without losing  performance, which lead to efficient designs of processors.Ph.D.Committee Chair: Loh, Gabriel H.; Committee Member: Clark, Nathan; Committee Member: Jaleel, Aamer; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin S.; Committee Member: Prvulovic, Milo
    corecore