
DESIGN OF A DISTRIBUTED MEMORY UNIT
FOR CLUSTERED MICROARCHITECTURES

Stefan Bieschewski

Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

Barcelona (Spain), April 2013

Advisors:
Antonio González

Joan-Manuel Parcerisa

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor en Informàtica

ABSTRACT
Power constraints led to the end of exponential growth in single–processor performance,
which characterized the semiconductor industry for many years. Single–chip multiprocessors
allowed the performance growth to continue so far. Yet, Amdahl’s law asserts that the overall
performance of future single–chip multiprocessors will depend crucially on single–processor
performance. In a multiprocessor a small growth in single–processor performance can justify
the use of significant resources.

Partitioning the layout of critical components can improve the energy–efficiency and
ultimately the performance of a single processor. In a clustered microarchitecture parts of
these components form clusters. Instructions are processed locally in the clusters and benefit
from the smaller size and complexity of the clusters components. Because the clusters
together process a single instruction stream communications between clusters are necessary
and introduce an additional cost.

This thesis proposes the design of a distributed memory unit and first level cache in the
context of a clustered microarchitecture. While the partitioning of other parts of the
microarchitecture has been well studied the distribution of the memory unit and the cache has
received comparatively little attention.

The first proposal consists of a set of cache bank predictors. Eight different predictor
designs are compared based on cost and accuracy. The second proposal is the distributed
memory unit. The load and store queues are split into smaller queues for distributed
disambiguation. The mapping of memory instructions to cache banks is delayed until
addresses have been calculated. We show how disambiguation can be implemented efficiently
with unordered queues. A bank predictor is used to map instructions that consume memory
data near the data origin. We show that this organization significantly reduces both energy
usage and latency.

The third proposal introduces Dispatch Throttling and Pre-Access Queues. These
mechanisms avoid load/store queue overflows that are a result of the late allocation of entries.
The fourth proposal introduces Memory Issue Queues, which add functionality to select
instructions for execution and re-execution to the memory unit. The fifth proposal introduces
Conservative Deadlock Aware Entry Allocation. This mechanism is a deadlock safe issue
policy for the Memory Issue Queues. Deadlocks can result from certain queue allocations
because entries are allocated out-of-order instead of in-order like in traditional architectures.
The sixth proposal is the Early Release of Load Queue Entries. Architectures with weak
memory ordering such as Alpha, PowerPC or ARMv7 can take advantage of this mechanism
to release load queue entries before the commit stage. Together, these proposals allow
significantly smaller and more energy efficient load queues without the need of energy hungry
recovery mechanisms and without performance penalties.

Finally, we present a detailed study that compares the proposed distributed memory unit
to a centralized memory unit and confirms its advantages of reduced energy usage and of
improved performance.

	

 iii

To my wife and parents.

	

 v

ACKNOWLEDGMENTS

First, I would like to thank my advisors Antonio González and Joan Manuel Parcerisa for their
support and their patience. Without them, this work would not exist.

I want to thank all the PhD students room C6-E208, which became a second home to
many of us.

I want to thank my parents for their support and their faith in me. Their support allowed
me to finnish this work. I want to thank my wife for her love and understanding during these
years.

This work was supported by Intel Corporation and by the Spanish Ministry of Science
and Education under grants TIN 2004-03072 and TIN 2004-07739-C02-01, by the Ministry of
Education and Science under grant TIN 2007-61763, by the Ministry of Economy and
Competitiveness under grant TIN 2010-18368, and by the Generalitat of Catalonia under
grants 2005-SGR-00950 and 2009-SGR-1250.

	

 vii

TABLE OF CONTENTS

ABSTRACT...	

 III

TABLE OF CONTENTS...	

 V

CHAPTER 1. INTRODUCTION..	

 1
...1.1 Background and Motivation	

 1

..1.1.1 Power Consumption	

 1
..1.1.2 Chip Level Multiprocessing	

 2
..1.1.3 Complexity and Wire Delay	

 2

..1.1.4 Clustered Microarchitectures	

 3
..1.2 Energy and Performance of Distributed Caches	

 4

..1.2.1 Modeling Caches and Interconnections	

 4
...1.2.2 Energy and Performance Estimations	

 6

...1.3 Thesis Overview and Contributions	

 7
...1.3.1 Bank Predictors	

 7

...1.3.2 A Distributed Memory Unit	

 8
..1.3.3 Improvements to the Distributed Memory Unit	

 9

..1.3.4 Thesis Contributions	

 9
..1.4 Document Organization	

 10

CHAPTER 2. PREVIOUS RELATED WORK ..	

 11
..2.1 Memory Disambiguation	

 11

..2.1.1 Disambiguating Load Instructions	

 13

..2.1.2 Disambiguating Store Instructions	

 14
...2.1.3 Multiprocessor Memory Consistency	

 15

..2.2 Monolithic Disambiguation	

 15
...2.2.1 First Approaches to Dynamic Hardware Disambiguation	

 15

................................2.2.2 Commercial Implementations for Monolithic Disambiguation	

 16
..2.2.3 Intel P6	

 17

...2.2.4 Digital Alpha EV6	

 20
..2.2.5 AMD K7	

 23

...2.3 Distributed Disambiguation	

 24
..2.3.1 Yoaz et al.	

 25

..2.3.2 Zyuban and Kogge	

 26
..2.3.3 TRIPS	

 27
..2.3.4 Others	

 29

..2.4 Bank Prediction	

 31

viii	

CHAPTER 3. BANK PREDICTORS..	

 33
..3.1 Introduction	

 33

..3.2 Methodology of the Evaluation	

 34
...3.3 Description and Evaluation of the Predictors	

 34

...3.3.1 Last Bank Predictor	

 34
...3.3.2 Global Bank Predictor	

 36
...3.3.3 Gshare Bank Predictor	

 37

..3.3.4 Local History Bank Predictor	

 40
..3.3.5 Stride Predictors	

 42

..3.3.6 Local Stride Predictor	

 44
...3.3.7 Gskew Bank Predictor	

 45
..3.3.8 Tournament Predictor	

 47

...3.4 Comparison of Bank Predictors Based on Bit Budget	

 49
..3.5 Accuracy and Prediction Rate	

 50

..3.6 Energy and Performance Estimations	

 50
..3.7 Conclusions	

 52

CHAPTER 4. A DISTRIBUTED MEMORY UNIT..	

 53
...4.1 Qualitative Design Decisions	

 54

..4.1.2 Distributed Cache	

 54
..4.1.3 Inter–Cluster Networks and Instruction Steering	

 54

...4.1.4 Late allocation and unordered queues	

 56
..4.1.5 Deadlocks	

 57

..4.1.6 Reservation of Queue Entries	

 58
..4.1.7 Release of Queue Entries	

 58

..4.1.8 Handling Store Data and Store Address Instructions	

 58
..4.1.9 Store–to–Load Forwarding	

 59

..4.1.10 Handling Unresolved Stores	

 60
..4.1.11 Multiprocessor Memory Consistency	

 61

..4.1.12 Recovering From a Pipeline Flush	

 61
...4.2 Quantitative Design Decisions	

 62

...4.2.1 Experimental Methodology	

 62
..4.2.2 Choosing the Interleaving Factor	

 63

..4.2.3 Load Issue Policy	

 64
..4.3 Conclusions	

 67

CHAPTER 5. IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT...............	

 69
...5.1 Dispatch Throttling	

 70

..5.1.1 Dispatch Throttling: Implementation	

 71
..5.1.2 Dispatch Throttling: Evaluation	

 72

..5.2 Pre–Access Queues	

 75

	

 ix

..5.2.1 Pre–Access Queues: Implementation	

 76
..5.2.2 Pre–Access Queues: Evaluation	

 77

...5.3 The Memory Issue Queue	

 80
...5.3.1 Memory Issue Queue: Implementation	

 81

...5.3.2 Memory Issue Queue: Evaluation	

 84
..5.4 Conservative Deadlock Aware Entry Allocation (CDA)	

 86

............................5.4.1 Conservative Deadlock Aware Entry Allocation: Implementation	

 87
....................................5.4.2 Conservative Deadlock Aware Entry Allocation: Evaluation	

 88

..5.5 Early Release of Load Queue Entries	

 90
..5.5.1 Early Release of Load Queue Entries: Implementation	

 94

..5.5.2 Early Release of Load Queue Entries: Evaluation	

 96
...5.6 Quantitative Comparison to Previous Work	

 96

..5.7 Conclusion	

 101

CHAPTER 6. CONCLUSIONS..	

 103
..6.1 Conclusions	

 103

...6.2 Open Research Areas	

 106

APPENDIX A. ENERGY ESTIMATION ..	

 107

BIBLIOGRAPHY...	

 113

LIST OF FIGURES ..	

 127

LIST OF TABLES..	

 129

LIST OF EXAMPLES...	

 130

x	

Chapter 1. Introduction

CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

1.1.1 Power Consumption

The last decade saw the end of exponential growth in single–processor performance. This end
was caused mainly by power constraints. Since the adoption of CMOS technology, classic
CMOS scaling [Den74] allowed engineers to shrink physical structures and to increase clock
frequencies and at the same time to hold power density constant. However, classic CMOS
scaling focuses on the MOS transistor and does not account for a number of additional
factors.

Interconnects and Clock Frequency

New circuits and more aggressive microarchitectures allowed engineers to increase clock
frequencies even faster than the sole transistor speed would have allowed otherwise. More
complex microarchitectures required more and faster interconnects. Additional levels of metal
where incorporated to provide these interconnects,, which increased capacitance. To speed up
interconnects, they were made taller, again increasing capacitance. Tall and dense
interconnects lead to increased side–to–side capacitance and thus further contributed to the
phenomenon. Together, increased clock frequency and increased capacitance both led to an

	

 1

unforeseen rise in power density. At some point, power density rose so much that cooling
became infeasible. [Ful11]

Voltage Scaling

Classic CMOS scaling anticipates that voltages scale linearly with the scaling factor. [Den74]
However, when the threshold voltage shrinks linearly, the leakage current grows
exponentially. While this has been no problem 15 years ago, it became an important concern
during the last decade as leakage became a significant part of overall power. To limit leakage,
voltages have been reduced slower as predicted by the scaling model. Higher–than–predicted
voltages lead to slower switches, which further contributes to the gap between predicted and
attainable performance. [Ful11]

1.1.2 Chip Level Multiprocessing

To be able to continue to deliver an exponential performance increase in the face of recent
power restraints, the semiconductor industry has adopted chip level multiprocessing. Using
multiple less aggressive processor cores, it is possible to continue to increase overall chip
performance. This is feasible even in the presence of severe power constraints. However,
because chip level multiprocessing is not transparent to software, applications have to be
rewritten to make use of multiple processors. Applications that are not rewritten will only see
a modest increase in performance, unlike the exponential performance growth of the past,
which required (almost) no help from software.

Amdahl’s Law

A serious challenge that all parallel applications have to face is Amdahl's law. It states that
even a relatively small sequential portion of an application will seriously limit the speedup
that is attainable with parallelization. [Amd67] Therefore, to attain the highest overall chip
performance it is of utter importance not to neglect single thread performance. In this context,
even tiny improvements to single thread performance can justify the use of considerable
resources. [Hil08][Woo08]

The existence of many sequential legacy applications and the ramifications of Amdahl's
law for parallelized applications both stress the importance of single thread performance for
the overall chip performance of chip level multiprocessor.

1.1.3 Complexity and Wire Delay

To improve the single thread performance underlying parallelism like instruction level
parallelism has to be uncovered. Extracting this parallelism is increasingly difficult.

2	

 CHAPTER 1

Complexity1 is affected to a great extent by the size and the width of structures like issue
queues and the corresponding forwarding logic. While larger and wider structures can exploit
more instruction level parallelism, the increased complexity will ultimately limit performance.
[Pal97]

Wire delay poses another challenge for microarchitectures. Wire delay does not scale
with transistor delay and instead shrinks at a slower rate. Since die area has remained
approximately constant, global wires have to span more gates with each process generation.
To mitigate this effect and speed up wires, more and bigger levels of metal were added in the
past. The wires themselves became taller and more prone to crosstalk. This lead to an
increment in capacitance and contributed to the increase of power density. (See Section 1.1.1)

1.1.4 Clustered Microarchitectures

Single thread performance remains an issue of uttermost importance. One way to enhance
single thread performance is to improve the instruction level parallelism. To achieve this goal,
key components of the superscalar microarchitecture have to grow in size and width. The
physical growth of the structures implies a corresponding growth in complexity. Clustered
microarchitectures manage this complexity by partitioning the microarchitecture into small
and simple units, called clusters.

If no attempt were made to control the growing complexity, it could affect the cycle time
negatively and thereby nullify the performance gain that was obtained through the increased
parallelism. Pipelining cannot hide the additional delays of larger and wider structures
because of tight loops, which prevail in modern architectures. Well-studied examples are the
issue queues and the operand-forwarding network. [Pal97][Sta00]

Instead of large and wide monolithic structures, clustered microarchitectures are formed
out of multiple small and narrow structures. These structures are combined into clusters to
allow fast, local communications. Global communications between clusters are more
expensive but they are also explicit to the microarchitecture, which allows it to proactively
minimize global communications.

As a consequence of the partition in many smaller structures and because of global
communications, clustered microarchitectures achieve slightly less IPC than monolithic
microarchitectures of the same size and width. Nevertheless, this disadvantage is more than
compensated for by the lower complexity of a clustered microarchitecture, which allows
either a higher clock frequency for architectures of the same size and width or alternatively
larger and wider structures at the same clock frequency. [Pal97]

INTRODUCTION	

 3

1 Complexity can be defined in many ways. Here we adopt the definition by Palacharla, Jouppi and Smith.
[Pal97]. They define complexity as the delay through the critical path of a circuit.

The inherently lower complexity of clustered microarchitectures also results in an
improved energy efficiency compared to monolithic architectures, especially for large and
wide configurations. [Zyu00][Zyu01] Because the performance of todays chips is limited by
power consumption, improved energy efficiency directly translates into better performance.

1.2 Energy and Performance of Distributed Caches

This thesis focuses on the distribution of the memory unit and the data cache. The data cache
can be organized in clusters just like other complex parts of the microarchitecture. Organizing
both—backend and cache—in clusters has the potential to minimize communication and
lower overall complexity. To further motivate this argument we use a simple mathematical
model to compare a centralized and two distributed caches.

1.2.1 Modeling Caches and Interconnections

We estimate energy and latency of a data cache access of load instruction. Besides the actual
cache access we also take the communication cost into account.

We model the caches and the interconnection network between clusters using CACTI 6.5
[Mur09] and compare a centralized cache with a size of 64Kbytes and two cache ports to a
distributed cache with the same total size, which is partitioned into four banks of 16Kbytes
with two ports each2. The caches are optimized to minimize delay and dynamic energy
consumption.

The cost of communication depends linearly on the distance, which address and data
have to travel. Assuming that clusters are laid out like in Figure 1.1 the total distance is
always a multiple of the distance between two neighboring clusters. We use this distance as
unit and calculate time and energy for it using CACTI.

The distance address and data have to travel depends on the layout and on the
distribution of data and instructions. We assume that address generations as well as cache
accesses are distributed uniformly over all clusters. Figure 1.1 shows two example layouts of
the back-end with a distributed and with a centralized data cache. The rectangles labeled L1D
$ represent the first level data cache; the rectangles labeled ICN represent the interconnection

E
Load

= E
CacheRead

+ E
Communication

t
Load

= t
CacheRead

+ t
Communication

E
Communication

= (d
LoadAddress

+ d
LoadData

) · E
UnitDistance

·N
BitsPerMessage

t
Communication

= (d
LoadAddress

+ d
LoadData

) · t
UnitDistance

4	

 CHAPTER 1

2 These parameters give the distributed cache four times as much bandwidth. We chose the same distributed
cache parameters for this experiment as we used in the experiments for Chapter 4 and 5 of this thesis. A
centralized cache with equal bandwidth would result in an extremely slow and energy-hungry cache. Hence, we
restrict the number of ports of the centralized cache to two.

network. [Par04] We assume a topology of a bidirectional ring where all links have the same
priority (even though the link between clusters 0 and 3 has a higher cost than the other links).
There are three configurations:

• A centralized configuration with layout a) from Figure 1.1 above. In this configuration the
address travels from the address generation unit to cluster 1, the cache performs the read
access, and the load data travels back to the destination cluster, where instructions wait to
consume the data. Addresses and data travel one and a quarter side lengths each on average.

• A naïve distributed configuration with layout b) from Figure 1.1. above. The address
travels from the address generation unit to the data cache, the cache performs the read
access, and the load data travels back to the destination cluster, where instructions wait to
consume the data. Address and data travel one and a half side lengths each on average.

• An ideal distributed configuration using the same layout b) from Figure 1.1 as the naïve
configuration above. This configuration always maps the consumers of load instructions to
the clusters where the data reside3. The address travels from the address generation unit to
the data cache, and the cache performs the read access. Because the data is consumed in the
same cluster, no further communication is necessary4. Only the address travels one and a
half side lengths on average, load data is always consumed locally.

INTRODUCTION	

 5

3 This is an idealization, because the address (and therefore the destination cluster) is not yet known in the
pipeline stage were registers are mapped to clusters. A real architecture might utilize a predictor to provide this
information in time. This configuration assumes a perfect predictor.

4 Chapter 4 will describe the communication scheme in more detail.

Figure 1.1: Example layouts for the back-end. Example a) shows a distributed cache where each cluster can
access directly part of the cache, while example b) shows a centralized cache where only Cluster 1 can access the
cache directly. ICN denotes the interconnection network, which allows clusters to access remote caches.

Cluster 0

L1D$

ICN

Cluster 1

L1D$

ICN

Cluster 2

L1D$

ICN

Cluster 3

L1D$

ICN

Cluster 0

L1D$

ICN

Cluster 1

ICN

Cluster 2

ICN

Cluster 3

ICN

a)

b)

To calculate the length of the interconnects between two neighboring clusters we roughly
estimate the chip area of each cluster. We studied illustrated die plots of three out-of-order
microarchitectures (MIPS R10K, Intel Pentium III, and IBM PowerPC 7400) and measured
the chip area of the blocks that correspond roughly to a cluster of the back-end. These blocks
account for two integer units, a single floating-point unit, the memory unit, the register file
and the corresponding issue queues. By averaging the three estimates, we arrive at an
approximate area of 1600 million square lambda5 per cluster or at a square with a side length
of 40 thousand lambdas.

Finally, interconnects are 78 bits wide, 64 bits of address or data and 14 bits of additional
information like instruction type, destination cluster, sequence number, access size, etc.

1.2.2 Energy and Performance Estimations

Figure 1.2 shows the normalized average access time per read access and the normalized
dynamic energy usage for all three configurations and for four feature sizes.

The left graph of Figure 1.2 shows a significantly lower average access time for the two
distributed configurations compared to the centralized configuration. The difference between
distributed and centralized configurations increases with newer process technologies. The
average access times are dominated by the cache access and the smaller distributed caches
have the shorter access times. The right graph of Figure 1.2 shows the dynamic energy usage.
The ideal distributed configuration uses significantly less dynamic energy than the other two
configurations. The dynamic energy usage is dominated by the interconnects and the ideal
distributed configuration only sends load addresses but no load data over the network. The
static energy consumption (not shown in Figure 1.2) is slightly less (7 to 12%) for the
distributed configurations.

We deduce from these estimations, that a distributed cache organization has the potential
for shorter access times and for a significantly lower dynamic energy usage. The advantage
exists for all process technologies we examined and is more pronounced in newer
technologies.

d
LoadAddress

=

8
><

>:

1.25, if centralized

1.5, if näıve distributed

1.5, if ideal distributed

d
LoadData

=

8
><

>:

1.25, if centralized

1.5, if näıve distributed

0, if ideal distributed

NBitsPerMessage = 78

6	

 CHAPTER 1

5 Lambda is the unit defined as half the process size.

Furthermore, comparing the naïve and the ideal distributed configurations, we can
conclude that it is worthwhile to minimize communications between clusters. A bank
predictor (see Section 1.3 below) can help to reduce these communications. A configuration
with a good bank predictor will approach the communication characteristics of the ideal
configuration and share its benefits. (See Section 3.6 for concrete numbers.)

This analysis focused on the distribution of the data cache. However, the entire memory
unit will benefit from a distributed implementation and the corresponding reduction in
complexity. This is especially true for the disambiguation logic, which contains large content
addressable memory structures. A distributed implementation can use smaller and narrower
structures, thereby significantly reduce the complexity and achieve shorter access times as
well as lower dynamic energy consumption.

1.3 Thesis Overview and Contributions

This section will give an overview over this thesis.

1.3.1 Bank Predictors

Chapter 3 explores bank predictors. As we have seen in Section 1.2 bank predictors are very
useful to reduce global communications in clustered microarchitectures with a distributed data
cache. Using the bank predictions, the instruction steering mechanism can map instructions to
the cluster where their memory data resides. Since the actual memory address of a load
instruction is calculated late in the pipeline, the bank is not yet known when the load
instruction and its consumers pass the steering stage. The bank predictor makes this
information available on time.

INTRODUCTION	

 7

Figure 1.2: Normalized Access Time and Dynamic Energy. These diagrams show the average normalized
access times and the average normalized dynamic energy for the configurations described in detail in Section
1.2.1. The data include the cache access as well as the intercommunications between clusters. The x-axis shows
data for four different process technologies.

0

0,2

0,4

0,6

0,8

1,0

90nm 65nm 45nm 32nm

Normalized Dynamic Energy

0

0,2

0,4

0,6

0,8

1,0

90nm 65nm 45nm 32nm

Normalized Access Time

Centralized Naïve Distribution Ideal Distribution

We adapt several well-known branch and value predictors to the domain of bank
prediction and study their accuracy as well as their complexity. Previous work on bank
predictors was either limited to two banks [Yoa99] (we study predictors with eight banks) or
centered on the general feasibility of the approach without considering complexity. [Nee00]
We find that some hashing schemes adopted from value predictors by other researchers
[Bal02] are not effective.

The best predictors we found in our study were the Gshare and Tournament Predictors,
based on the well-known branch predictors [McF93]. An accuracy of 60% can be obtained
with a Gshare predictor of only 192 bytes size, an accuracy of 82% requires a Gshare
predictor of 3Kbytes, an accuracy of 90% requires a Tournament Predictor of 15Kbytes size
and finally an accuracy of 95% would require a huge Tournament Predictor of 652Kbytes.

None of the many predictors we tested could deliver a satisfactory confidence prediction
for the bank predictions. Other proposals for distributed memory units [Zyu00][Zyu01]
[Yoa99] use a confidence predictor (in addition to the bank predictor) to control speculation
and reduce the number of mispredictions. If their microarchitectures have no confidence in a
bank prediction, they do not use the bank prediction speculatively and thereby avoid the risk
of a misprediction. In this case, they send the instruction to all memory pipelines instead of
just the pipeline indicated by the bank predictor. Mispredictions can still occur when the
microarchitecture has confidence in an incorrect bank prediction. The authors of these
proposals assume that less than 3% of all confident predictions are mispredicted and therefore
misspeculations do not impact performance much, even if the cost of a single misspeculation
is significant. In contrast, because we are unable to reproduce a comparable confidence
predictor for our distributed memory unit we forego the use of a confidence predictor
altogether and strive instead to minimize the cost of each single bank misprediction.

1.3.2 A Distributed Memory Unit

Chapter 4 describes our proposal for a distributed memory unit. We propose the design of a
distributed memory unit, which contains some novel contributions. We propose a steering
scheme and an associated memory pipeline that make use of a bank predictor but do not rely
on the accuracy of a confidence predictor and instead tolerate mispredictions gracefully.

We propose physically unordered load and store queues as well as the late allocation of
queue entries. (See Bieschewski et al. [Bie07]) A similar approach was simultaneously
proposed by Sethumadhavan et al. [Set07] and we adopt their terminology to avoid confusion.
In our case, it is especially attractive to delay the allocation of queue entries until the address
calculation, because it allows us to tolerate bank mispredictions gracefully. Unordered queues
are a direct consequence of late allocation, the only two alternatives would be very sparsely
occupied queues or a complex entry compression scheme, both alternatives are very
expensive. We show how unordered queues can be adopted using several previously known
techniques.

8	

 CHAPTER 1

We propose schemes to allocate and free entries in the unordered queues of the
distributed memory unit as well as schemes to handle store address and store data
instructions6.

1.3.3 Improvements to the Distributed Memory Unit

We introduce techniques to improve the flow of memory instructions. These techniques can
stall the dispatch stage to control the flow of memory instructions. This reduces the pressure
on some structures (like buffers of the interconnect network) that can lead to overflows. It also
reduces the number of deadlock events, which can occur because queue entries are allocated
out-of-order.

To improve performance and to allow more flexible memory issue policies we introduce
memory issue queues to our design. These queues allow the choice of an issue policy. This
can be used to give older instructions precedence over younger instructions, which improves
performance. Memory issue queues also allow us to propose a conservative issue policy,
which completely eliminates deadlock events. This issue policy collects information about
local and remote instructions to decide when a memory instruction can safely issue (and
allocate an entry in the load or store queue) without causing a deadlock.

The last proposal allows load queue entries to be safely released before the commit stage.
This technique increases the effective window size for memory instructions of the processor.

1.3.4 Thesis Contributions

• Bank Predictors

We propose various bank predictors. The most promising predictors are based on branch
predictors and are adapted to deliver 3 bit bank predictions instead of 1 bit branch predictions.
The resulting bank predictors outperform bank predictors of comparable size based on value
or address predictors.

• Distributed Memory Unit

We propose the late allocation of queue entries and physically unordered queues for a
distributed memory unit. We also demonstrate how these queues may be implemented with a
complexity that is comparable to conventional queues.

We propose a steering scheme and a interconnection network for memory addresses and
data. This scheme minimizes communication between clusters using a bank predictor without
relying on a confidence prediction.

INTRODUCTION	

 9

6 Our microarchitecture proposal splits store instructions in two internal instructions: a store address and a store
data instruction, like e.g. the Intel P6, see Section 2.2.3.

• Dispatch Throttling

We propose a scheme to control the instruction flow at the dispatch stage. This scheme
reduces the pressure on the queues of the distributed memory unit and thereby reduces
deadlocks and overflows.

• Memory Issue Queue

We propose a scheme to issue memory instructions using a memory issue queue. The
memory issue queue allows older instructions to issue before younger instructions. This
priority scheme improves performance and it allows the memory issue queue to stall
instructions without generating a deadlock inside the issue queue. This property of the
memory issue queue is used in the next proposal.

• Conservative Deadlock Aware Entry Allocation

We propose a scheme to intelligently issue instructions from the memory issue queue
only if there is no danger of a deadlock in the memory queue. The scheme considers the status
of instructions in all clusters.

• Early Release of Load Queue Entries

We propose a scheme to release load queue entries before the commit stage. This
optimization is only possible if weak memory ordering is used. It improves performance by
effectively enlarging the memory queue.

• Energy and Performance Comparison

We model energy and performance of a centralized and a distributed memory unit. The
model confirms that our proposal uses significantly less energy and exhibits a higher
performance.

1.4 Document Organization

• Chapter 2 gives a detailed overview over related research and the state of the art. Several
examples are discussed in detail.

• Chapter 3 treats bank predictors. We present various predictors, explain the differences
between predictors of different domains, and finally evaluate the predictors and discuss the
results.

• Chapter 4 presents the distributed memory unit. The various techniques and mechanisms of
the memory unit are discussed in detail.

• Chapter 5 presents the improvements to the distributed memory unit. This chapter contains
four proposals on how to further improve the distributed memory unit that is presented in
Chapter 4.

• Chapter 6 gives a short summary and an outlook of possible future research directions.

10	

 CHAPTER 1

Chapter 2. Previous Related Work

CHAPTER 2
PREVIOUS RELATED WORK

This chapter will give a short overview of disambiguation techniques and previous
approaches to solve this problem. After a short introduction to the topic we will discuss some
commercial solutions in detail to point out various challenges of an implementation. We
continue with the discussion of academic proposals for distributed disambiguation and
conclude establishing the relevance of bank prediction for distributed disambiguation.

2.1 Memory Disambiguation

Memory disambiguation [Fis83] is a set of techniques to identify dependencies between
memory operations. This allows a processor to perform these operations in parallel or in a
different order while still producing the expected results. This flexibility is essential to
achieve high instruction level parallelism in modern processors.

The first implementations of memory disambiguation were performed exclusively in
software at compile-time. [Fis83] This type of disambiguation is called static. Memory
disambiguation can also be implemented at runtime [Hua94], which is called dynamic. While
it is possible to perform dynamic disambiguation entirely in software it is much more suited
to a combined software/hardware implementation or to an implementation in hardware only.

	

 11

Static and dynamic disambiguation each have their applications. Static disambiguation
allows more complex optimizations because it is performed at compile-time. Dynamic
disambiguation allows optimizations based on run-time values–namely the address of
memory accesses–and can change according to program behavior.

Transparent dynamic hardware disambiguation has the additional benefit that it
automatically works with legacy binaries. Static disambiguation usually requires a
recompilation of an application.

In the following discussion, we will restrict ourselves to discuss transparent dynamic
memory disambiguation performed in hardware.

Examples of Dynamic Memory Disambiguation

Load instructions are usually more urgent than store instructions because the following
instructions are more likely to depend on the outcome of a register than on the outcome of a
memory location. Register dependencies are much more common than memory dependencies,
loads are therefore more likely than stores to form part of the critical path.

For this reason, if a load and a store instruction compete for a resource like a cache port,
it is usually beneficial to give preference to the load, even if it follows the store in the original
instruction stream. However, changing the order of execution may result in unwanted results.
Example 2.1 shows a code sequence consisting of a store and a load instruction. On the left
hand, the addresses A and B refer to different memory locations and consequently the order of
execution does not change the results. The right hand shows a different situation. Here, A and
B refer to the same memory location. If the load is executed before the store, the resulting
value in the register r2 is incorrect. The function of memory disambiguation is to detect
memory dependencies like those on the right side to avoid the incorrect result shown in this
example.

12	

 CHAPTER 2

A and B refer to different
memory locations

A and B refer to the same
memory location

Initialization:Initialization: *A=a,*B=b, R1=1, R2=2; A=B,*A=*B=ab, R1=1, R2=2;

Original Program:Original Program: Store R1, A
Load R2, B
Store R1, A
Load R2, B

Final
State

Original Order: *A==1,*B==b, R1==1, R2==b *A==*B==1, R1==1, R2==1Final
State Reversed Order: *A==1,*B==b, R1==1, R2==b *A==*B==1, R1==1, R2==ab

Example 2.1: Store-Load Dependency. The expressions use a syntax resembling the C language. The symbol *
denotes a reference, the symbol = an assignment, and the symbol == asserts equality. The final state depends on
the execution order if the memory references conflict.

Speculative Store Instructions Require Disambiguation

Speculative processors are a common case where the order of load and store instructions is
often changed. These processors execute instructions speculatively in advance and later
commit changes to the software–visible processor state, when all previous instructions have
been executed correctly. Load instructions can be treated like other instructions that write to
registers but store instructions that write to main memory must not execute speculatively. If a
store would overwrite main memory, it could not easily be undone in case of a
misspeculation. Therefore, store instructions are held in a special buffer until they commit.
Loads that are executed speculatively must be disambiguated with the stores in this buffer,
otherwise, incorrect results like those demonstrated on the right side of Example 2.1 can
occur.

2.1.1 Disambiguating Load Instructions

In general, the disambiguation of a load instruction is necessary whenever a store instruction
is delayed with respect to the load. This not only occurs in out-of-order processors, but also
might happen whenever store instructions are held in a buffer. The most typical example is the
store queue of a modern speculative out-of-order processor. Other common examples of these
buffers include write–combine buffers and buffers in the memory hierarchy in general. To be
able to correctly detect such dependencies the disambiguation logic must be able to determine
the original program order of all memory instructions.

If the disambiguation logic detects a dependency between a load and such a delayed
store, there exist several options to handle the conflict and avoid incorrect results. The first
option is to delay the load as well. This implies some form of buffer where the load
instruction can be held until it can advance. In case of a modern speculative out-of-order
processor, this buffer is the load queue or the issue queue. If no buffer is available to hold an
offending load instruction, the processor has to avoid an incorrect result in other ways, e.g. by
restarting the whole pipeline. The delaying of the load always implies the existence of some
mechanism to decide when a load should be released and finally executed. This mechanism
may simply check periodically if the conflict persists. A more sophisticated mechanism may
release the load only if a certain event occurs and the conflict disappears.

A second option to handle dependencies is to pass the data on from the store instruction
directly to the load instruction. This technique is also called forwarding, load bypassing, and
memory renaming. It requires that the store data is already available. In an out-of-order
processor, this may not always be the case. Depending on the instruction architecture in
question some complex corner cases can arise and complicate the implementation. It is
common to delay the load instruction instead of passing the data on if one of these cases
occurs. An example of such a corner case for architectures with various memory access sizes
is a situation where a single load instruction depends on various store instructions at the same

PREVIOUS RELATED WORK	

 13

time. More corner cases will be mentioned in the description of some current
microarchitectures below.

In out-of-order processors there can arise situations where the address of a previously
delayed store instruction is not yet available, because the instruction has not yet been
executed. In such a situation the disambiguation logic cannot decide if a dependency does
exist or not. Again, there are two options. The safe option is to delay the load instruction until
the store address becomes known. The other option is to execute the load instruction
speculatively. Of course, before such a speculatively executed load instruction can commit,
the disambiguation logic must verify that no conflict did exist at the time of its execution.
Processors that allow load instructions to execute in such a speculative way usually use a
heuristic like a predictor to decide if the speculation is worthwhile.

2.1.2 Disambiguating Store Instructions

To maintain a meaningful memory semantic stores to the same memory location must execute
in the original program order. If this requirement is not obeyed, memory contents may contain
unexpected results as Example 2.2 demonstrates. While on the left side of Example 2.2 there
exist no dependencies and results are identical, on the right side both stores access the same
memory location, and therefore lead to an incorrect result if their relative order is changed.
The easiest way to deal with this problem is to avoid reordering store instructions altogether
with respect to one another. In that case, no disambiguation is necessary to detect store–store
dependencies. However, if stores are allowed to execute out-of-order they must be
disambiguated. Modern out-of-order microarchitectures execute stores (i.e. write store data to
memory) only after the commit phase, which is guaranteed to occur in original program order.
Therefore, in general these microarchitectures do not need to use disambiguation to detect
store–store dependencies (see Section 2.2.4 for an exception).

14	

 CHAPTER 2

Example 2.2: Store-Store Dependency. The expressions use a syntax resembling the C language. The symbol *
denotes a reference, the symbol = an assignment, and the symbol == asserts equality. The final state depends on
the execution order if the memory references conflict.

A and B refer to different
memory locations

A and B refer to the same
memory location

Initialization:Initialization: *A=a, *B=b, R1=1, R2=2; A=B,*A=*B=ab, R1=1, R2=2;

Original Program:Original Program: Store R1, A
Store R2, B
Store R1, A
Store R2, B

Final
State

Original order: *A==1,*B==2, R1==1, R2==2 *A==*B==2, R1==1, R2==2Final
State Reversed order: *A==1,*B==2, R1==1, R2==2 *A==*B==1, R1==1, R2==2

In the same way in which delayed stores can violate dependencies, delayed loads can
lead to incorrect results. Example 2.3 shows the result of a delayed load. On the left side no
dependence exists and results are unaffected by the order in which instructions are executed.
On the right side a dependency exists and reordering instructions leads to an incorrect result
of the load instruction. In a modern out-of-order microarchitecture this case does not occur
because loads are either executed speculative or at commit while stores are always executed at
commit. This mechanism prevents loads from being delayed relative to stores. If memory
operations are reordered at another point of the memory pipeline however, care must be taken
not to allow stores to pass loads without proper disambiguation.

2.1.3 Multiprocessor Memory Consistency

Dynamic hardware disambiguation allows a processor to exploit instruction level parallelism,
while it maintains the programing model of a simple sequential processor. This model of a
sequential processor is also the basis of memory consistency models of shared memory
multiprocessors. To maintain the appearance of sequential processors in the presence of
shared memory, the disambiguation logic must track additional types of dependencies. While
the details depend on the memory consistency model of the architecture in question, many
implementations track dependencies between load instructions as well as dependencies
between store instructions in addition to the dependencies illustrated above.

2.2 Monolithic Disambiguation

2.2.1 First Approaches to Dynamic Hardware Disambiguation

The IBM System/360 Model 91 [And67][Bol67] from 1967 is best known for Tomasulo’s
Algorithm but it also features a store queue that decouples the processor core from memory.
This queue contains disambiguation logic and can detect store–load dependencies. If it detects
such a dependency, it can forward the store data to the load instruction.

PREVIOUS RELATED WORK	

 15

A and B refer to different
memory locations

A and B refer to the same
memory location

Initialization:Initialization: *A=a,*B=b, R1=1, R2=2; A=B,*A=*B=ab, R1=1, R2=2;

Original Program:Original Program: Load R1, A
Store R2, B
Load R1, A
Store R2, B

Final
State

Original order: *A==a,*B==2, R1==a, R2==2 *A==*B==2, R1==ab, R2==2Final
State Reversed order: *A==a,*B==2, R1==a, R2==2 *A==*B==2, R1==2, R2==2

Example 2.3: Load-Store Dependency. The expressions use a syntax resembling the C language. The symbol *
denotes a reference, the symbol = an assignment, and the symbol == asserts equality. The final state depends on
the execution order if the memory references conflict.

A further improvement was the proposal of the dependency matrix for HPS [Pat85].
Using a vector of the dependency matrix the disambiguation logic can quickly detect if an
instruction is preceded by a store with an unresolved address. These unresolved stores only
block load instructions that follow them in the original program order.

Another important proposal was the Address Resolution Buffer (ARB) in 1996 by
Franklin and Sohi [Fra96]. In addition to the features of the IBM System/360 Model 91 and
the HPS dependency matrix, it can execute loads speculatively in the presence of unresolved
stores. The ARB can also detect if the speculation was successful or not.

Even though the ARB is more complex than other proposals, it avoids large monolithic
structures. The absence of a big content addressable memory is especially worth mentioning.
The ARB achieves this decentralization by a banked organization. We will discuss banked
organizations and related approaches in more detail later in this chapter.

2.2.2 Commercial Implementations for Monolithic Disambiguation

In this section, we will discuss four commercial solutions to dynamic memory
disambiguation. The following information comes from public company sources. However, it
was not always possible to determine if a published technique was indeed implemented in the
microprocessor in question. We feel that this inconvenience is of no importance for the
discussion of the state of art.

The four microprocessors and especially their memory units that we will compare in this
section share similar characteristics. They are all general-purpose out-of-order processors,
which are prepared to be used in multiprocessor systems. However, they all solve the
resulting problems in different ways.

The central problem is to make memory accesses fast. The memory unit and the first
level cache contain the critical path in many microarchitectures and therefore define the time
of a clock cycle. An inefficient implementation of this path would lead to a slower clock cycle
and thereby slow down the entire processor. Pipelining memory accesses helps to a certain
degree but a deep pipeline where every load operation has a latency of many cycles is also
undesirable. To avoid this slowdown memory disambiguation happens in parallel with the first
level cache access and the virtual to physical address translation. This introduces some
problems because the (physically tagged) caches as well as the memory disambiguation need
the translated physical address of each memory operation.

Another challenge lies in the complexity of modern memory hierarchies. To achieve high
average performance, implementations are optimized for the common case but also need to
handle the complex cases correctly. Examples are cache and TLB misses and faults as well as
memory dependencies. If such a complex case is detected the access may have to be delayed
(or interrupted and re-executed) to receive special treatment. The microarchitecture has to

16	

 CHAPTER 2

provide the mechanisms to delay (or interrupt and re-execute) these accesses. Some
microarchitectures chose to speculatively execute instructions that depend on a memory
operation before it can be determined if that memory operation did execute correctly. These
microarchitectures need additional mechanisms to recover from misspeculations.

2.2.3 Intel P6

The first three–way superscalar out-of-order processor featuring the P6 microarchitecture was
introduced in 1995 [Gwe95]. The out-of-order processor core does not deal directly with the
instructions of the CISC ISA but instead operates on µ-ops, which are RISC–like operations.
These µ-ops are generated on the fly from the CISC instructions by the front-end of the
processor. All memory accesses by CISC instructions are translated into load and store µ-ops.
While there is only one load µ-op, there are two types of store µ-ops: one that computes the
store address (STA), and another that forwards the store data (STD). Figure 2.1 shows the
mechanism used to schedule memory instructions. All memory operations are first issued by
the reservation station (RS) to the address generation units (AGU). There are two dedicated
address generation units: one for load and one for store instructions.

Load instructions are inserted into the load queue (LDQ) once their effective address has
been calculated by the address generation unit7. [Abr97] The load queue possesses its own

PREVIOUS RELATED WORK	

 17

7 The patent [Abr97] was filed in 1996 and lists several well known architects of the P6 as inventors. It is
therefore very likely that the patent does indeed describe the P6 implementation. For the sake of this discussion
it is sufficient to note that the patent describes a feasible implementation.

LDQLoad
Scheduler

AGU1

STQ

AGU2

Load
From RS

STA
From RS

STD
From RS

To Cache
& TLB

SDQ

Figure 2.1: Simplified Schema of the P6 Memory Unit.

scheduler that selects the load instruction, which will be executed next. Loads arriving from
the AGU can bypass scheduler and load queue if no other load instructions are ready to
execute.

Store instructions are inserted into the store address queue and into the store data queue
where they are held until the store instruction commits. Only after commit the store data is
written to the data cache.

Sometimes a resource conflict or a data dependency is detected while a load is executed.
In these cases the load waits in the load queue until the conflict or dependency disappears.
Resource conflicts may be caused by the data cache or the translation look-aside buffer. If
such a conflict is detected while a load is executing, the load execution is cancelled and the
load queue entry is marked as blocked. The load queue entry also records, which resource
conflict caused the block. When the resource becomes available again, all loads, which were
waiting on this resource, are awakened. This mechanism is similar to a conventional issue
queue in an out-of-order microarchitecture.

The load queue scheduler handles data dependencies like resource conflicts, except that
queue entries include an additional reference to the dependent store instruction. This
additional reference allows a more selective wakeup of loads. Several types of data
dependencies are detected. A store with an unknown address prevents all younger loads from
executing—the P6 does not speculate on data dependencies. A store with unknown store data
blocks all younger loads with the same address. A store to some memory location blocks
younger loads to the same location when the store data size is smaller than the load data size.
In this case, data forwarding from the store to the load is not possible because the store does
not contain all the necessary data. The load is blocked until the store writes to memory and
the load finally gets its data from the cache.

Data dependencies are detected while a load is executed. To detect the dependencies the
mechanism must identify relevant store queue entries that are both valid and contain stores
older than the load executing. Store queue entries are allocated in a round robin scheme by
instruction age to facilitate the identification of relevant queue entries. Stores that are issued
consecutively are allocated adjacent queue entries, whereby in a round robin scheme the first
and the last entry are considered logically adjacent. This guarantees that the relevant stores are
located in adjacent queue entries. The oldest store in the queue is marked by a tail pointer8.
The youngest store that is still older than the load instruction is identified by a coloring
scheme. Upon instruction dispatch, each load is marked with the “color” (the number of its
store queue entry) of the most recently dispatched store instruction. The queue entries
between the tail pointer and the “color” of the load are both valid and contain the stores that
are older than the load executing.

18	

 CHAPTER 2

8 There are two contrary naming conventions to refer to the two ends of a FIFO. To avoid confusion, we adopt
the terminology of [Abr79] wherein tail refers to the oldest and head to the youngest entry.

Store–to–Load Forwarding

Sometimes it is not enough to detect the presence of data dependencies but it is necessary to
select a single dependency. This is the case for store to load forwarding. When a load
instruction detects one or more older store instructions with a matching virtual address, it
cannot obtain its data from memory. Instead, it must either wait for the store(s) to write their
data to memory or obtain its data from the store(s). The latter is preferable for performance
reasons but the required logic is extremely complex if all cases are handled. The P6 handles
only the most common case where load and store have identical virtual addresses and the load
data size is equal to or smaller than the store data size. In this case, the load data can be
obtained directly from a single store data entry. If forwarding is not possible, the load is
blocked until all data dependencies disappear, i.e. until the dependent stores write to memory.

However, it is possible that more than one store queue entry matches the load address.
The forwarding logic must then identify the youngest of the matches that are older than the
load. The logic scans store queue entries beginning from the store queue entry indicated by
the “color” of the load instruction up to the entry indicated by the tail pointer. The store queue
of the P6 has only 12 entries, so that this scan can be accomplished very efficiently. The
implementation might be similar to a 12–wide carry-lookahead adder circuit where the
“carry” is a signal that indicates if a match occurred.

Paged Memory

The presence of paged memory adds another level of complexity to the already complex
problem of memory disambiguation. The translation of virtual to physical addresses may
introduce additional data dependencies, i.e. two different virtual pages may be mapped to the
same physical page, which can lead to data dependencies between instructions even though
these access different virtual addresses. The address translation also introduces a delay so that
physical addresses are not immediately available to the memory unit. Therefore, memory
disambiguation (as well as cache memory access) are initiated with the page offset of the
virtual address, which is not translated and therefore immediately available. Comparing only
part of the address can guarantee the absence of dependencies but can also generate false hits.
For that reason the entire virtual address is compared before data is forwarded from a store to
a load. False hits have no adverse effects except that they delay the execution of the affected
load instructions until the matching store commits. Using the page offset for disambiguation
allows the use of a significantly smaller, faster and less power hungry CAM. On the
downside, some performance is lost by load instructions, which are delayed by false hits.

Multiprocessor Memory Ordering

To achieve correct memory ordering in the presence of various processors sharing the same
system bus the processor snoops the bus. All external stores are checked for dependencies
with local speculative loads. When a dependency is detected, the load and all following
instructions (that may have consumed an incorrect input value) are flushed from the pipeline

PREVIOUS RELATED WORK	

 19

and then re-executed. The comparison is performed with full physical addresses but it is not
time critical because matches (typically) occur infrequently and the external system bus runs
at a lower clock frequency than the processor core and the first level cache. The physical
addresses of speculative loads are stored in the load queue. Because all speculative load
instructions must be compared, load instructions can only be removed from the load queue
after they commit.

2.2.4 Digital Alpha EV6

The Digital Alpha EV6 [Gwe96][Kes98] was introduced in 1998. It was the first out-of-order
microprocessor to implement the Alpha instruction set. Load and store instructions are treated
in a similar manner as integer instructions and share the issue queues with integer
instructions. Store instructions are not split into two microinstructions (like e.g. Intel’s P6
does) but are issued once their operands (address and data) are available. After they issue,
load instructions are inserted into a load queue and simultaneously access the data cache.
Store instructions are inserted into a store queue after being issued but do not write to the
cache until they are retired. Both load and store instructions are positioned in the queues in
the original program order, even though they enter the queues at issue out-of-order. [Kes98]
Figure 2.2 shows a simplified Scheme of the memory unit.

Load and store instructions are only issued once and are removed from the issue queue
immediately after they issue. They are only issued if there is sufficient space in the load or
store queue. No other tests for conditions that may prevent a correct execution (like resource
conflicts or memory dependencies) are performed prior to issue. If such a condition occurs
after the issue stage, the memory instruction cannot easily be re-issued because it was already
removed from the issue queue and its entry may already be occupied by another instruction.
In this case, the entire pipeline must be restarted. The offending memory instruction and all
younger instructions are removed from the pipeline. Then instructions are fetched again from
the instruction cache starting with the offending memory instruction. The register mapper
stores a copy of the register map for all in-flight instructions, which enables a quick recovery
of the register map after a pipeline restart. Still, a pipeline restart is expensive and the EV6
uses a predictor to avoid restarts (see below). [Kes98]

Store–to–Load Forwarding

When a load instruction issues, its address and age are compared to all entries of the store
queue. A read–after–write dependency exists only if the addresses match and the matching
store is older than the load. If several stores satisfy these conditions, then the youngest of
them holds the data required for store–to–load forwarding. This store could be identified by
comparing the instruction age of all stores that satisfy the above conditions, but this would be
slow and expensive. Alternatively, the physical proximity of the queue entries could be used
to deduce the relative age of instructions, like described in Section 2.2.3. However, the EV6

20	

 CHAPTER 2

favors another technique.9 [Web02] Each queue entry is assigned an additional bit, called the
no–hit–bit. When this bit is set, an entry does not report any address matches (or hits).
Whenever an instruction is inserted into the store queue, the address of the new instruction is
compared to all stores in the queue. If there are no matches the no–hit–bit of the new entry is
cleared and the new store will participate in future searches. If there already is a matching
store in the queue, its age is compared to the new store. The no–hit–bit of the older store is set
and the no–hit–bit of the younger store is cleared. This assures that only the youngest store in
a group of stores with equal addresses will report a match.

This solves the problem of identifying a candidate for store–to–load forwarding in the
store queue when there is more than one store with a matching address. Unfortunately, there is
no guarantee that the candidate store is older than the issuing load, so this condition must be
checked. If the candidate store is actually younger than the issuing load, it does not qualify for
forwarding. Still, there might exist dependencies on older stores in the queue with their no–
hit–bit set. To resolve this situation the pipeline has to be restarted. Fortunately, this condition
occurs only infrequently.

PREVIOUS RELATED WORK	

 21

9 The patent [Web02] was filed in 1998, lists three well known architects of the EV6 as inventors, and explicitly
names the EV6 as the preferred embodiment of the invention. It is therefore very likely that the patent does
indeed describe the EV6 implementation. For the sake of this discussion it is sufficient to note that the patent
describes one feasible implementation.

LDQ

Integer
Unit 1

STQ

Integer
Unit 2

IQ1 IQ2

Data
Cache TLB

Result Bus

Integer
Scheduler

Integer
Scheduler

Figure 2.2: Simplified Schema of the EV6 Memory Unit.

There are more conditions like data size, alignment, etc. that have to be met for a
successful store–to–load forwarding. Again, if forwarding is not possible, the pipeline has to
be restarted, because there is no way to re-issue the load instruction later. These problems can
be almost completely avoided by careful programming and optimizing compilers.

When a store instruction issues, its address and age are compared to all entries in the load
queue. If any younger load instructions with matching address are found, the pipeline must be
restarted, because these load instructions may depend on the issuing store and should have
executed after the store. To avoid frequent pipeline restarts caused by ignored read–after–
write dependencies the EV6 deploys a predictor, the store wait table. [Kes98] Whenever the
previously described situation occurs, the predictor is trained with the Program Counter of the
offending load instruction. Before load instructions are inserted into the issue queues, the
predictor predicts if they will honor read–after–write dependencies. Load instructions that are
predicted to violate dependencies are issued only after all older store instructions have issued.

Paged Memory

Memory disambiguation is very time critical and therefore cannot wait until addresses are
translated by the translation look-aside buffer. One possible solution is to use the page offset
instead of the full address, until the full physical address is available. Since the page offset is
not affected by the translation, it is immediately available. Intel’s P6 employs this method.
The downside to this solution are false hits, which occur when two addresses seem to match
but in fact only have matching page offsets. The probability of false hits increases with queue
size. What’s more, in case of the EV6 false hits often lead to pipeline restarts (see below) and
are therefore quite expensive. To remedy this situation the EV6 uses two bits from the virtual
page number in addition to the page offset for memory disambiguation. [Web02] In
comparison Intel’s P6 can afford to use the page offset only because it features a smaller store
queue (only 12 in contrast to the 32 entries of the EV6) and the load queue scheduler reduces
the cost of false hits by avoiding pipeline restarts. In addition to false hits, using the virtual
address for memory disambiguation can also lead to false misses. These occur when two
virtual addresses (more specifically: the subsets of the virtual addresses used for comparison)
do not match but their physical addresses do match. This very infrequent case nonetheless has
to be handled correctly.

To detect these situations, as soon as the physical address of a load instruction becomes
available the entire store queue is searched again with the full physical address of the load. If
a false hit or a false miss is detected the pipeline is restarted. Stores search the load queue to
detect dependency violations that require a pipeline restart. These searches are not time
critical and are performed with physical addresses.

22	

 CHAPTER 2

Multiprocessor Memory Ordering

To guarantee correct memory ordering the processor has to enforce in-order execution of
loads that access the same memory cell. To achieve this, all load instructions search the load
queue for younger load instructions with the same address. If an offending load is found the
pipeline is restarted. This search is not time critical and can be performed with physical
addresses.

2.2.5 AMD K7

The first processor featuring AMD’s K7 microarchitecture was the Athlon introduced in 1999.
[Die98] This processor generates RISC–like operations from the complex instructions of the
x86 architecture. Load and store operations are dispatched to the memory unit after they have
been decoded. Certain x86 instructions where a memory operand serves as a source as well as
a destination generate a single load–store operation. [AMD02]

Figure 2.3 shows a simplified scheme of the memory unit. The memory unit contains two
queues to accommodate operations. Both queues are unified–they share load and store
operations as well as load–store operations (load–store operations consist of a load followed
by a store to the same address). The first queue (also called LS1 buffer) holds operations until
their address arrives from the AGUs and they probe the first level cache. A cache probe
directly returns data for load operations that hit the cache and generates a cache miss if the
accessed data is not present in the cache. The first queue is rather small (12 entries) and is
organized as a FIFO. Only the two oldest queue entries can probe the cache if their addresses
are resolved and if cache ports are available. Once operations have probed the cache, they are
moved to a second queue (also called LS2 buffer) where they reside until they commit. The
second queue also serves as a scheduler for operations, which were not yet executed and were
delayed (e.g. by a cache or a TLB miss).

The logic to detect memory dependencies is using a last in buffer bit similar to the no–hit
bit of the Alpha EV6, but takes advantage of the fact that addresses stay in program order
inside the two buffers. Therefore, even though the same technique is used as in the Alpha, in
the Athlon it is guaranteed to always work correctly, instead of merely serving as a heuristic10.
[Hug02]

The simple architecture and small capacity of the LS1 buffer also allow for an efficient
implementation. The price for these advantages is the risk that a memory instruction with an
unresolved address will hold up the whole memory pipeline.

PREVIOUS RELATED WORK	

 23

10 The patent [Hug02] was filed in 1999 and describes a microarchitecture as context, which perfectly matches
AMDs official documentation of the Athlon [AMD02]. It is therefore very likely that the patent does indeed
describe the Athlon. For the sake of this discussion it is sufficient to note, that the patent describes a feasible
implementation.

Multiprocessor Memory Ordering

Multiprocessor memory ordering for x86 compatible architecture requires that store
instructions appear to occur in the same order on all processors. Stores broadcast their
addresses to all processors and each address is searched in the LS2 buffer for matching load
instructions. If any load instructions are found the pipeline is restarted because these loads
make stores appear to execute in a different order on some processors.

2.3 Distributed Disambiguation

The division of memory in banks has been common in computer architecture for a long time.
Because banks can be accessed in parallel, the maximum throughput of the entire memory
increases. Ideally the bandwidth of banked memory approaches that of truly multi-ported
memory even though multi-ported memory is much more expensive than memory built from
single-ported memory banks. In practice however, the bandwidth is limited by bank conflicts
that occur when multiple accesses to an individual single-ported memory conflict with one
another.

The banked organization is useful for all layers of the memory hierarchy from disc arrays
and main memory up to processor caches and registers. It is also possible to use it for internal

24	

 CHAPTER 2

LS1

LS2

To Cache &
TLB

Load
Scheduler

Load/Store
from Dispatch

Address from
AGU1,2,3

Data from
ALU1,2,3

Dependency
Link File

Figure 2.3: Simplified Schema of the K7 Memory Unit.

structures of the memory unit, like load and store queues, and substitute one big memory with
several smaller memories. Because part of this memory is fully associative, its size is of
special concern for complexity, speed and energy efficiency.

2.3.1 Yoaz et al.

Yoaz et al. [Yoa99] were the first to propose the use of a cache bank predictor to avoid cache
bank conflicts and simplify the pipeline design. They propose to use an independent memory
pipeline for each cache bank. Because memory instructions issue to the pipelines before the
actual data addresses are known (the address generation units are part of the pipelines), cache
bank conflicts are difficult to avoid.

Memory instructions could be scheduled a second time after their address was calculated
but this is less desirable because it adds complexity to the microarchitecture and tends to
increase the latency of load instructions. (Compare Figure 2.4: Conventional Multi-banked,
Dual scheduled Multi-banked) Yoaz et al. propose a bank predictor to aid load instruction
scheduling and to avoid bank conflicts. In addition, Yoaz et al. argue that a sufficiently
accurate predictor enables simplified memory pipelines that need no crossbars or memory
schedulers yet can approach bandwidth and latency of a true multi-ported cache. (Compare
Figure 2.4: Sliced Multi-banked) Because the penalty of a misprediction in such a simplified
pipeline is high (the load and all dependent instructions must re-execute) the accuracy of the
bank predictor is crucial for this architecture. To achieve the required accuracy Yoaz et al.
propose to assign a confidence to each prediction and replicate all load instructions with a
low–confidence prediction to all pipelines simultaneously. If a memory pipeline is idle, loads
with high–confidence predictions can be replicated too to further lower the number of
mispredictions. Once the data address, and therefore the cache bank, is known, unneeded
replicated instructions are cancelled. Figure 2.4 summarizes the four variants of memory
pipelines discussed by Yoaz et al.

PREVIOUS RELATED WORK	

 25

Figure 2.4: Different Memory Pipeline Organizations, Illustration from Yoaz et al.

Another way of making hit/miss predictions is by using an
address predictor to directly check whether the data is in the
cache or not. Unfortunately, this requires a tag lookup in the
cache, and since the pressure on this resource is high for the
L1 cache, this option is costly to implement. However, if we
are interested in L2 hit/miss prediction, this may be a viable
option. A simple mechanism for alleviating some of the pres-
sure on tag lookup was suggested in [Pinte96], and may be
used to enable this type of prediction for L1 also. If the load
address is predicted correctly we can of course fetch the data
ahead of time and not use it for hit-miss prediction only, but
this requires different mechanisms and is beyond the scope
of this paper.

2.3 Bank Prediction
Bank Prediction affects the processor in several ways.

The most important use of bank prediction is to allow a
multi-banked cache to closely approach the memory per-
formance of a truly multi-ported cache. The major weakness
of multi-banked designs is that an improperly ordered in-
struction stream leaves part of the memory bandwidth un-
used. This is because each bank can only service one access
simultaneously. Therefore, bank conflicts reduce perform-
ance, and the extent of this effect is dependent on the CPU
micro-architecture. With bank prediction, the bank informa-
tion is available early in the pipeline before instruction
scheduling. Thus, scheduling can be performed in a way that
efficiently utilizes the multiple bank structure, i.e. memory
operations predicted to access the same bank are not dis-
patched simultaneously.

Another possible use of a bank predictor is the simplifi-
cation of the memory execution pipeline, as well as other
memory related structures. By providing a prediction in an
early stage of the processing pipeline, the load instruction
can be scheduled to a simplified memory execution pipeline.
This sliced memory pipeline does not have a cross-bar link-
ing it to all cache banks, but is hard-wired to one bank only
(single-bank pipelines). Interconnects are very costly, and
their complexity increases super-linearly with the number of
ports whereas the single-bank pipeline scheme is highly scal-
able. Similarly, disambiguation and memory reordering are
usually performed with structures featuring a CAM where the
number of entries determines the access time. Slicing the dis-
ambiguation hardware into several banks makes the imple-
mentation simpler and faster. The sliced pipeline is also
shorter than the regular multi-banked cache pipeline, since
the decision stage, where the proper bank is picked, is no
longer required. This reduces the latency for all load opera-
tions thus increasing overall performance, provided the bank
is predicted with high-accuracy.

In the sliced pipeline, however, a load whose bank is mis-
predicted, will not be able to execute, and must be flushed
and re-executed once the bank is known, even if there is no
bank conflict. In order to minimize this degradation in per-
formance, when there is no contention on the memory ports,
or if the confidence level of the bank prediction is low, the
memory operation may be dispatched to all memory pipe-

lines. Once the actual bank is known, all instructions in the
wrong pipelines are canceled, wasting one cycle in each pipe
in the case of a low confidence prediction. Note that stores
are never on the critical path, thus they may always be dupli-
cated to all pipelines.

A comparison of memory pipelines for a truly multi-
ported cache, a dual-scheduled implementation, a conven-
tional multi-banked, and our sliced multi-banked cache ap-
pear in Figure 4. The sliced pipe requires a bank predictor
for operation, while both the sliced and conventional multi-
banked configurations will benefit from a bank predictor due
to scheduling improvements. However, the accuracy of the
predictor is more important for the sliced pipe. If the pre-
dictor is not accurate enough, either too many loads will
need to be replicated to both pipes (little advantage over a
single-ported cache), or large penalties would be incurred.

The various implementations also differ in their data fetch
latencies and bank conflict penalties. The truly multi-ported
cache has no latency penalties and no conflicts. The conven-
tional multi-banked configuration has an increased latency
due to the crossbar setup and decision stage, and suffers from
conflict penalties, since conflicting loads must either stall the
pipe or re-execute/re-schedule. The dual-scheduled mecha-
nism eliminates conflict penalties but increases the load la-
tency due to the second scheduler. The sliced multi-banked
pipeline has the same latency as the ideal multi-ported pipe-
line. However, when a misprediction occurs and two loads
are dispatched simultaneously to wrong banks (if only a sin-
gle load is dispatched it is duplicated to both banks) the
loads must be re-executed.

Sliced
Multi-banked

Dual scheduled
Multi-banked

Sched.
Window

Truly
Multi-ported

Multi
Ported
Cache

Address
Generation

Decision

Conventional
Multi-banked

Bank
0

Bank
1

Bank
0

Bank
1

Bank
0

Bank
1

memory
access
latency

cache
access
latency

Figure 4 Memory Pipeline Comparison
In evaluating a bank predictor, there are two factors which

are of particular interest in determining its performance: pre-
diction rate (how many memory operations are predicted?)
and accuracy (how accurate are the bank predictions?). The
importance of the accuracy and misprediction-rate are de-
pendent on the use of the predictor (conventional or sliced
multi-banked). If the predictor is used for better scheduling
only, the penalty may be less significant since we can stall
the pipeline until the bank is available rather than re-
executing the instruction from scratch. Confidence can be
used in the sliced pipeline scheme to reduce the number of

2.3.2 Zyuban and Kogge

Just as banked organization is based on physical partition of memory structures, clustered
microarchitecture (see Section 1.1.4) is based on the physical partition of microarchitectural
structures. By establishing a fixed mapping between clusters and cache banks, both concepts
are combined. This combination facilitates the communication between a cluster and its
associated cache bank. By reducing the distance for these communications, less power is
spent and the access time is improved.

Zyuban and Kogge [Zyu01][Zyu00] apply the ideas of Yoaz et al. to their proposal of a
clustered microarchitecture. Each cluster of the microarchitecture is associated with a cache
bank and a memory pipeline and each memory pipeline has an independent memory
scheduler.

Load instructions with a high–confidence prediction are assigned to a single cluster. The
load instruction calculates its effective address, and if the prediction turns out correct, it enters
the memory pipeline, and accesses the cache bank, all locally in the same cluster.

Load instructions with a low–confidence prediction reserve entries in all memory
pipelines at once, even though the effective address is only calculated in one cluster (Yoaz et
al. also replicate address calculations in similar cases). Once the address is known, it is sent to
the corresponding cluster where it enters the memory pipeline while the unneeded
reservations in other clusters are cancelled.

Incorrect high–confidence predictions are a special case. Zyuban and Kogge propose to
transfer the address from the cluster where it was calculated to the memory pipeline where the
access has to take place and transfer the result back again to the first cluster where the result
register was reserved and where the result is expected by dependent instructions. Two
complications arise.

First, there might be no space for additional instructions in the destination memory
pipeline. Worse, a deadlock might arise11 and prevent any further progress of the
microarchitecture. Zyuban and Kogge suggest to reserve four otherwise unused extra entries
in each memory pipeline to decrease the frequency of this event and to generate a soft
exception (a pipeline flush) to recover from deadlock.

Second, the disambiguation scheme requires all instructions to enter (or reserve an entry
in) the memory pipelines in program order. However, instructions with an incorrect high–
confidence prediction do not enter the memory pipeline in program order. Disambiguation
requires not only the address but also the relative ordering of the instructions in the memory

26	

 CHAPTER 2

11 Deadlocks can occur when resources are allocated out of program order; e.g. if the oldest instruction in flight
cannot progress because younger instructions hold all instances of a critical resource—in this case the entries of
the load queue.

pipeline. As described above, traditionally this ordering of instructions assumes an instruction
queue where instructions are stored in physically adjacent entries in program order. Inserting
an instruction into this kind of structure is not trivial, but unfortunately, Zyuban and Kogge do
not elaborate on this issue. The issue is nonetheless important, because the only viable
alternative to handle it is an expensive pipeline flush whenever an incorrect high–confidence
prediction occurs.

Zyuban and Kogge emulate12 a bank predictor with prediction rate/accuracy percentages
of 70/99 respectively. The prediction rate refers to the percentage of predictions with high
confidence; the accuracy refers to the percentage of correct predictions out of predictions with
high confidence. The same pair of parameters is used for the simulation of two and four cache
banks citing the results of Yoaz et al. [Yoa99] However, Yoaz et al. report prediction rates/
accuracy percentages of 50/98, 50/97 and 70/97 respectively for two banks only. Zyuban and
Kogge’s assumptions are therefore somewhat optimistic especially when more than two cache
banks are concerned.

In this thesis, we will propose alternative solutions to these problems, which do not rely
on idealized components and discuss possible implementations in detail. This includes bank
predictors as well as a scheme to manage the allocation of entries in distributed memory
queues.

2.3.3 TRIPS

Sethumadhavan et al. [Set07] present the memory architecture of TRIPS (Tera-op, Reliable
Intelligently adaptive Processing System) a project of the University of Texas at Austin. The
work on TRIPS proceeded in parallel with the work of this thesis [Bie07] and independently
arrived at similar conclusions on some open questions, most notably the suitability of
unordered queues for distributed disambiguation and the resulting issue of flow control.

TRIPS is a clustered microarchitecture with a block–oriented instruction set where
blocks of up to 128 instructions execute in an atomic manner. Up to 32 of the instructions of a
block can access memory and up to eight blocks can simultaneously be in flight. TRIPS is
organized in tiles of different types, which are replicated and connected by several on chip
networks to form the complete microarchitecture. Among others there are execution tiles that
contain arithmetic units (which are also used to calculate memory addresses) with the
corresponding issue queues to execute instructions out-of-order and data tiles, which contain
a data cache bank with the corresponding disambiguation logic and a joint load/store queue.

The paper stresses the fact that by delaying the reservation of entries in the load/store
queue until instructions arrive at the data tile, the average occupancy of the queue can be

PREVIOUS RELATED WORK	

 27

12 We suppose that the term emulate refers to a statistical emulation of the predictor, where prediction rate and
accuracy are fixed and the internal structure of the predictor is a black box.

reduced. Traditionally, entries in the memory queue are reserved in program order before
addresses are calculated, to be able to store them in the same order in physically adjacent
entries. By delaying the reservation, it is no longer feasible to maintain that order and the
mechanisms to perform the basic functions of disambiguation must be revised.
SethumadhavanM et al. propose to extend the load/store queue by an age CAM that can
compare the age (e.g. a sequence number) of an instruction to all entries in the queue and
output greater/lesser/equals results for each entry. Using this age CAM, the disambiguation
logic can be implemented in a straightforward manner with one exception. If a load
instruction hits several older store instructions the logic is unable to immediately order the
stores by age and requires a cycle per store instruction hit to establish dependencies and
forward store data to the load instruction. Traditional architectures can delay the load
instruction until the older stores write to the cache and then obtain data from the cache, but
TRIPS’ atomic instruction blocks do not permit stores to commit and write to the data cache if
they are located in the same block as a non-completed and dependent load instruction. The
atomicity of instruction blocks also puts a lower limit on the size of the load/store queue of a
data tile. Exactly one of instruction blocks in flight inside the processor is non-speculative, it
is guaranteed to execute atomically, while the other blocks are speculative and their results
might be discarded later. At any moment there can be up to 32 non-speculative and up to 224
speculative memory instructions in flight. Every data tile must be able to hold at least 32
memory instructions because all non-speculative might be directed to the same data tile (in
TRIPS a data tile corresponds to data cache bank with an associated memory pipeline). A
priority scheme favors non-speculative instructions over speculative instructions to guarantee
forward progress of the microarchitecture. However, prioritizing non-speculative instructions
is costly and involves pipeline flushes. Therefore, memory queues larger than the minimum of
32 instructions improve performance.

Sethumadhavan et al. propose three methods for control flow to avoid frequent load/store
queue overflows and deadlocks. These methods do not directly compare the age of
instructions to establish priorities but rather distinguish only between speculative and non-
speculative instructions. Non-speculative instructions are given priority over speculative
instructions to avoid deadlocks. If a non-speculative instruction arrives at a data tile with a
full load/store queue the pipeline is flushed to avoid a deadlock. Speculative instructions that
arrive at such a full data tile are handled by one of the following three schemes.

The first scheme re-executes speculative instructions that arrive at a data tile with a full
queue. These instructions are then held at the execution tile until the oldest instruction block
commits.

The second scheme buffers speculative instructions that arrive at a data tile with a full
queue. The data tile is extended with a special buffer where speculative instructions wait until
the next instruction block commits.

28	

 CHAPTER 2

The third scheme establishes two virtual channels of different priority between execution
tiles and data tiles. The channel with a higher priority is reserved for non-speculative
instructions; the other channel is used by speculative instructions. If a speculative instruction
encounters a data tile with a full load/store queue, it asserts backward pressure and prevents
the advance of other speculative instructions from the execution tiles.

TRIPS is an aggressively parallel architecture that allows up to 1024 in-flight
instructions. Consequently, the load/store queues are large–between 32 and 64 entries per
cluster. The larger the queues, the less frequent are queue overflows and deadlocks. But load/
store queue entries are expensive. They consume considerable energy and large queues can
slow the cycle time down. The age CAM further increases the cost of each queue entry. In this
thesis we will propose mechanisms, which completely avoid overflows and deadlocks with
small queues and without using the costly age CAM. This makes a distributed memory unit
attractive for less aggressively parallel architectures, which focus on power efficiency.

2.3.4 Others

Torres et al. [Tor05] use a banked store queue inside a monolithic microarchitecture to
speculatively forward memory values. The allocation of queue entries of their distributed
store queue is delayed until store instructions execute. Allocation therefore happens out-of-
order. Store queue entries may be overwritten before the corresponding store commits if
newer store instructions arrive and the store queue is full. Furthermore, their distributed store
queue does not handle multiple matches. To guarantee correct memory semantics they use a
second centralized store queue, which verifies all accesses. This strategy allows fast
speculative disambiguation. The downside are occasional misspeculations and the
verification/re-execution of all load instructions in the redundant centralized store queue,
which incur a significant cost in area and energy usage. Our proposal in contrast limits
speculative activity and does not require the verification of all load instructions.

Racunas and Patt [Rac03] propose a distributed cache for clustered microarchitectures.
Instead of cache banks, they associate a set of exclusive cache partitions to the clusters, so
that at any time a specific cache line can be present in only one of the cache partitions.
Several local and global tables map data addresses and static instructions to cache partitions.
Load and store instructions that hit the local cache of their assigned cluster can be
disambiguated locally. A global store queue ensures correctness in the case of mispredicted
load instructions. Their proposal allows fast disambiguation but also suffers from a reduced
data cache hit rate. The work presented in this thesis does not compromise the cache
performance.

Balasubramonian [Bal04] advocates the use an address predictor for load and store
instructions and a dependency predictor for stores to speculatively execute load instructions
and improve the performance of clustered microarchitectures for selected SPECfp
benchmarks. Furthermore, he argues that broadcasts of store addresses between clusters delay

PREVIOUS RELATED WORK	

 29

the disambiguation of load instructions and pose a critical performance bottleneck for
distributed cache organizations. Our own experiments (see Section 4.2.3) confirm the poor
performance of configurations with a conservative issue policy. They also suggest that good
results can be achieved across all SPECint and SPECfp benchmarks by issuing load
instructions speculatively. We find that speculative issue effectively solves the problem of
delayed load disambiguation.

Irie et al. [Iri05] and Watanabe et al. [Wat05] propose to adapt memory bypassing
[Mos97b] for clustered microarchitectures. Their proposals are orthogonal to those presented
in this thesis. However, memory-bypassing techniques provide little performance benefit over
simpler memory dependence prediction, which guides the scheduling of speculative execution
of load instructions. [Loh02] For this reason we include memory dependence prediction but
not memory bypassing in our architecture proposal. (See Section 4.2.3.)

Gunadi and Lipasti [Gun07] propose a scheme with late allocation and an unordered
store queue for a traditional architecture with a single centralized memory unit. They adopt
solutions from the realm of non-compacting issue queues to unordered store queues. This
allows them to solve the problem of how to select instructions by age in an unordered queue.
Their circuit could be used in the context of this thesis substituting the selection mechanisms
described in Sections 2.2.4, 4.1.9 and 4.1.11.

Many more academic proposals exist, which do not focus on—but can be applied to—
distributed memory units. Many of these proposals are orthogonal to the techniques presented
in this thesis. The previous paragraph already mentioned memory bypassing. Memory
bypassing and related schemes [Tys97, Mos97b, Rei98, Mos99, Par03, Sha05, Sha06,
Sub06a] predict memory dependencies and pass results between instructions based on these
predictions. These schemes allow alternative organizations of the memory unit but have little
impact on performance. [Loh02] In this thesis, we use memory dependence prediction to
guide the speculative issue of load instructions. [Mos97a, Kes98, Chr98, Ond99, Mos00,
Fan06, Sub06b] Our experiments indicate that speculative issue provides an important
performance boost over a conservative issue policy (see Section 4.2.3). Some publications
propose to filter searches for memory dependencies to limit the usage of content addressable
memory (or to limit the re-execution of load instructions). [Set03, Cai04, Rot05, Cas06]
While we do not explicitly cover search filters in this thesis, our distributed memory unit
could be extended to include search filters. Finally, there are proposals to organize load and
store queues using concepts known from caches. [Sto05][Gan05][Gar06] Cache–like
organizations are especially attractive for large queues [Gan05] but a distributed memory unit
naturally leads to multiple smaller queues. Therefore, we do not adapt a cache–like
organization but instead propose unordered load–store queues (see Section 4.1.4), which are
more suited for a distributed organization.

30	

 CHAPTER 2

2.4 Bank Prediction

The bank predictor is a key element in the design of a disambiguation unit, which is
distributed by banks. The predictor makes the bank accessed by a memory instruction
available in an early stage of the pipeline and thus allows the architecture to plan the
allocation of resources accordingly, minimize communication delays, and simplify the overall
microarchitecture. It is therefore important to estimate the cost of the predictor as well as its
accuracy. These two parameters ultimately decide first, if it is reasonable at all to employ a
bank predictor, and second how to make use of the bank predictions. E.g. a bank predictor
with near 100% accuracy allows aggressive speculation and simplification of the
microarchitecture, even if the misprediction penalty is considerable. An accuracy significantly
lower than 100% on the other hand suggests that the prediction is better used as a hint to
improve resource allocation and reduce communication delays, but to avoid excessive
speculation. The resulting design of the microarchitecture does depend in no small degree on
the characteristics of the bank predictor.

There do not exist many publications on bank predictors. We are only aware of two
publications by other authors, the already mentioned paper by Yoaz et al. [Yoa99] and a
publication by Neefs et al. [Nee00]. Yoaz et al. primarily discuss configurations with two
cache banks where the predictor produces two single bit results (one bit to indicate the bank
and another bit to indicate the confidence in the prediction). Consequently, they propose
designs based on binary predictors, like branch predictors. To extend their results to more than
two banks they suggest two approaches. First to predict multiple bits independently from each
other using a different predictor for each bit, and second to use known address predictors.
None of these approaches is discussed in detail in their paper, which instead focuses on
configurations of two cache banks.

Neefs et al. [Nee00] evaluate bank predictors based on designs for value predictors and
present very detailed results e.g. on the accuracy obtained for various address bits. While they
demonstrate that bank predictors are a useful concept, their proposals for implementation
remain very abstract. In fact, they do not discuss the cost of the predictors, many of whom
assume near–infinite resources.

In this work, we will study bank predictors in greater detail and pay special attention to
configurations with a reasonable implementation complexity. Based on the results of that
study we will go on to propose a microarchitecture for a distributed memory unit, taking into
account the characteristics of the bank predictors.

PREVIOUS RELATED WORK	

 31

Chapter 3. Bank Predictors

CHAPTER 3
BANK PREDICTORS

Bank predictors are a key element in the design of our distributed memory unit. They allow
the microarchitecture to establish a mapping of memory instructions to clusters very early in
the pipeline long before the address of a memory access is known. This knowledge is used to
maximize locality by assigning memory instructions to those clusters where their
corresponding memory locations are (most likely) mapped.

Especially the accuracy of the bank predictor is an important design goal. It determines
how much effort on part of the microarchitecture is necessary to handle bank mispredictions.
In this chapter, we will apply the concepts of predictors from other domains to the problem of
bank prediction with special focus on the quantitative metrics of implementation cost and
accuracy.

3.1 Introduction

The most popular and by far the best-studied predictors are branch predictors. Binary
predictors are also frequently used in memory units e.g. to predict memory latency, memory
dependencies etc. Value predictors (especially address predictors, which can be considered a
type of value predictors) are another important class of predictors. Many of the techniques
used for branch and value prediction can be applied to bank prediction. There are however
some differences. While branch predictors predict binary values and value predictors typically

	

 33

predict 32 or 64–bit quantities, bank predictors predict values of a relatively small range
depending on the cache configuration.

Branch predictors often make use of the binary nature of their predictions. Examples are
counters that are often employed in binary predictors. The two binary states can be mapped to
an increment or a decrement action; for states that are more complex, there is no simple
extension. Other examples are voting predictors. For binary predictors, three predictors are
always sufficient to obtain a majority. If more complex states are predicted, the number of
required predictors quickly becomes unreasonable.

3.2 Methodology of the Evaluation

We use traces to evaluate the performance of the different bank predictors. The traces contain
the Program Counter and the address of all memory instructions. Because the bank prediction
is performed during an early pipeline stage it is common for many memory instructions to be
predicted before any of these predictions can be verified and fed back to the predictor to
update it accordingly. After the first experiments, we noticed the importance of the delay
between the bank prediction and the calculation of the address. This delay has a significant
effect on the results of the predictor. Therefore, we reconstructed the traces to include the
delay of the predictor updates.

To generate the traces we used the SimpleScalar 3.0 toolset [Aus02] with the Digital
Alpha instruction set architecture. We generated one trace for each SPECint2000 benchmark
except for 254.gap because the simulator could not execute the benchmark correctly at the
time we generated the traces. Each trace consists of the first 100 million memory references
(loads and stores) after skipping the initialization phase of each benchmark13. We simulate a
generic 8–way superscalar architecture with a delay of at least 26 cycles between the pipeline
stages where the bank is predicted and where the bank predictor can be updated.

We use a configuration of eight cache banks, which are interleaved by 64–bit words.
Therefore, we use the bits three, four and five of an address to determine the cache bank.

3.3 Description and Evaluation of the Predictors

3.3.1 Last Bank Predictor

This simple predictor consists of a single table like the bimodal branch predictor. [Smi81]
However, unlike the bimodal branch predictor each entry of the table does not consist of a
counter but of a small word that represents a cache bank. In our case, each word contains
three bits to address eight cache banks. We experimented with saturating counters and
assigned a counter to each of the three bits but results were discouraging. By splitting the

34	

 CHAPTER 3

13 The initialization phase of each benchmark was determined by inspecting and instrumenting the source code
of each benchmark.

word into independent bits, the correlation between the bits, and therefore important
information, is lost.

Figure 3.1 shows the structure of the predictor. The Bank Table is indexed by the least–
significant bits of the Program Counter, ignoring the two least–significant bits, which have no
function in a RISC architecture with 32–bit instruction words. The least–significant bits tend
to contain more entropy than the most–significant bits.

In the absence of aliasing, which occurs when two or more different instructions are
mapped to the same table entry, this predictor always predicts that an instruction will again
access the last bank it accessed. This assumption is reasonable for references to global
variables and in many cases for accesses to the stack and the heap. Even in the case of
destructive aliasing (which occurs when aliasing instructions access different banks) this
predictor recovers rapidly. However, due to its simple structure it is not able to capture more
complex access patterns.

The bank update and the bank prediction designated in Figure 3.1 do not occur
simultaneously. Instead, the update is delayed by several cycles as described above in

BANK PREDICTORS	

 35

Figure 3.1: Last Bank Predictor.

Bank
Table

PC

Bank-
Prediction

Bank-
Update

0
10
20
30
40
50
60
70
80
90

100

0,5K 2K 8K 32K 128K 512K 2048K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Bank Table

Figure 3.2: Accuracy of the Last Bank Predictor.

Section 3.1. This delay can affect results if the same static instruction enters the pipeline
multiple times e.g. in a very small loop.

Figure 3.2 shows the accuracy of the Last Bank predictor as a function of Bank Table
size. The maximum accuracy of 72.3% is reached at 128K entries (48Kbytes), more than 70%
accuracy are already reached with a table of 8K entries (3Kbytes). The accuracy reaches a
limit at great table sizes when the number of static memory instructions is significantly lower
than the number of entries in the Bank Table. Any further table enlargement results only in
more entries that are unused. The remaining 27.7% of all memory instructions exhibit access
patterns that are more complex and do not always access the same cache bank.

3.3.2 Global Bank Predictor

This kind of bank predictor is inspired by global branch predictors. The most recent accessed
banks are kept in a single shift register. When a new result is shifted into the register, the
oldest one is discarded. The contents of this shift register are called global history because its
results may originate from different static instructions. The global history forms the index into
the Bank Table that contains the next prediction. The size of the global history is defined by
the size of the Bank Table. Figure 3.3 shows the structure of the predictor.

This predictor gave good results in our first experiments, where we assumed that the
predictor updates occur immediately after the prediction. The predictor could effectively
identify instructions based on their history. However, when we adapted more realistic, delayed
predictor updates, the results of this predictor became unsatisfactory. Because the delay
between prediction and update depends on the complex out-of-order pipeline, it became
difficult for the predictor to identify instructions solely by the outdated global history.

To solve this problem, we implemented speculative updates of the global history. After
each prediction, the global history is updated speculatively with the previously predicted
value, while the Bank Table is left unmodified. Speculatively modifying the Bank Table
would be difficult to undo, and the global history is sufficient to identify instructions. During
the non-speculative update both, the history and the Bank Table, are updated. To update the
history in case of a misprediction, the incorrectly inserted bits are replaced with the correct
bits. In this respect, the bank predictor differs from branch predictors, which also perform a
speculative update of global history registers, because mispredicted branches empty the whole
pipeline and most of the global branch history. Bank mispredictions are easier to recover
from, as they typically incur an extra delay but not a complete pipeline restart.

The speculative update does indeed improve the results of the Global Predictor but
results, especially for small table sizes, remain poor. Small tables are restricted to a small
bank history, which may not be enough to predict future behavior. Another reason are updates
to the Bank Table that are not performed with the right global history index. Over time,
instructions can be identified by slightly incorrect global histories too, but this requires more

36	

 CHAPTER 3

Bank Table entries and more time to update the Bank Table with all the incorrect global
histories. The increased use of table entries leads to more aliasing. Figure 3.4 shows that
results for small tables are inferior to the Last Bank Predictor however the Global Predictor
improves with table size and is able to beat the Last Bank Predictor for tables with more than
16K entries (6Kbytes). However, the Global Predictor stagnates well below an accuracy of
90% even for huge tables.

3.3.3 Gshare Bank Predictor

The Gshare branch predictor was proposed by McFarling [McF93]. Our adoption to bank
prediction is similar to the Last Bank Predictor and the Global Bank Predictor. The index into
the Bank Table is formed by an XOR of the global history and the Program Counter. Each
entry of the Bank Table contains a bank prediction. The Program Counter is used exactly as it
is used for the Last Bank Predictor. The table size determines how many bits are extracted
from the Program Counter. The two least significant bits of the Program Counter are always

BANK PREDICTORS	

 37

0
10
20
30
40
50
60
70
80
90

100

0,5K 2K 8K 32K 128K 512K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Bank Table

Figure 3.4: Accuracy of the Global Bank Predictor using speculative updates.

Bank
Table

Bank-
Prediction

Bank-
Update

History

Figure 3.3: Global Bank Predictor.

zero and are therefore not used. The global history is shorter than the table size. In other
words, the global history contributes fewer bits to the index than the Program Counter. This
raises the question, which bits of the Program Counter should be XORed to the global history.
Because the least significant bits of the Program Counter contain more entropy than the most
significant bits, the entropy of the whole index is maximized if we combine the Program
Counter in the way illustrated by Figure 3.5. We were able to confirm experimentally that this
alignment gives the best results. Figure 3.6 shows the overall structure of a Gshare Bank
Predictor.

The structure of the Gshare Bank Predictor allows a variable history size. We
experimentally determined the best history size for each table size. Figure 3.7 shows how the
accuracy is affected by the size of the history. A history size of zero is a special case that
results in a Last Bank Predictor. A history of a single bank is enough to clearly outperform the
Last Bank Predictor for all table sizes. The Gshare Bank Predictor also outperforms the
Global Bank Predictor for all table sizes. This is due to the Gshare Bank Predictor’s ability to
identify static instructions using bits of the Program Counter in its index. The figure further
shows that greater table sizes favor larger histories. This is reasonable since a larger history

38	

 CHAPTER 3

Program Counter

Global History

Table Index

Most significant Bit Least significant Bit

0 0

Bank
Table

PC

Bank-
Prediction

Bank-
Update

History

Figure 3.5: Calculation of index for Gshare Bank Predictor. The two least significant Program Counter bits
are always zero and are therefore not used. Likewise the most significant bits of the Program Counter are not
used in the calculation.

Figure 3.6: Gshare Bank Predictor.

BANK PREDICTORS	

 39

Table Size 1‥64 128‥4K 8K 16K 32K‥128K 256K‥512K 1M‥2M

History Size 0 1 2 3 4 5 6

Figure 3.7: Accuracy of Gshare as a function of history and table size. The history size in three–bit entries is
shown as color, smaller histories starting from below.

Table 3.1: Optimal history size for Gshare Bank Predictor. Table size as well as history size are given in
entires. Each entry references one of eight banks and occupies three bits. E.g. the optimal history size for a table
of 16K entries is three three–bit entries for a total nine bits of history.

50
55
60
65
70
75
80
85
90
95

100

0,5K 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Bank Table

0 1 2 3 4 5 6 7

0
10
20
30
40
50
60
70
80
90

100

0,5K 2K 8K 32K 128K 512K 2048K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Bank Table

Figure 3.8: Accuracy of the Gshare Bank Predictor with optimal history size.

allows the predictor to effectively address more table entries for each static memory
instruction.

Since it is hard to read the exact numbers in Figure 3.7 we show the optimal history sizes
again in Table 3.1 and the accuracy of the optimal history for each table size again in
Figure 3.8. In our experiments with an unrealistic immediate update the optimal history size
was significantly larger. This indicates that larger delays lead to lower optimal history lengths.

Figure 3.8 shows that the accuracy of the Gshare Bank Predictor increases, but above
512K entries there is hardly any improvement, and the accuracy reaches a plateau at 93%. The
remaining 7% are instructions with complex patterns that the structure of Gshare cannot
capture and, to a small degree, static instructions that are predicted for the very first time
when the predictor has not yet learned to predict their access patterns.

3.3.4 Local History Bank Predictor

Local history predictors [Yeh92] have been used for both branch prediction and value
prediction. In the context of branch prediction, a local predictor is similar to a global predictor
except that it uses a table of history registers instead of a global history register. This table is
indexed with the Program Counter of the branch instruction.

In the realm of value prediction local history branch predictors are known as finite
context method predictors. These predictors are described by Sazeides and Smith. [Saz97]
Unlike local history branch predictors they hash the history to form the index for the Bank
Table.

Because bank identifiers consist of only a few bits, hashing does not improve the
accuracy of a Local History Bank Predictor, as we have experimentally confirmed. We have
also observed that including other information—like parts of the Program Counter—in the
computation of the Bank Table index [Bal02] is counterproductive, as it diminishes the
constructive aliasing [You95] between identical history patterns. See Figure 3.11 for
quantitative data.

Since this predictor contains two tables, there are several possibilities to split the
available transistor budget between them. We found that this division has little effect on
prediction accuracy. A history table that has eight times as many entries as the Bank Table
generates the best results among the alternatives that we have explored. In general, it is
preferable for small predictors to have bigger history tables and for large predictors to have
bigger Bank Tables. The reason is that conflicts in the history table are more severe than a
short history (which is implied by a small Bank Table), but once the history table is big
enough to hold the memory instructions of the current working set, the remaining storage is
better invested in a longer history and hence a larger Bank Table. However, the resulting

40	

 CHAPTER 3

difference in accuracy is so small that for simplicity we settle on a fixed factor for the relative
table sizes.

Figure 3.9 summarizes the structure of the Local History Bank Predictor. The size of the
entries in the history table is defined by the size of the Bank Table. We also evaluate
configurations where the history size, measured in bits, is not an exact multiple of three such
that the history can contain partial banks. This has no negative effects on the accuracy.

Figure 3.10 shows the accuracy of the Local History Bank Predictor as a function of table
size. The accuracy rises significantly up to a size of 2K entries for the history and 256 entries
for the Bank Table. Afterwards the accuracy increases more slowly until it reaches a plateau
around 90% of accuracy. Later we will see that a Gshare Bank Predictor has a higher accuracy
than a Local History Bank Predictor does if we compare configurations with a similar bit
budget. On the same basis of comparison, the Local History Bank Predictor compares
favorably with the Last Bank and the Global History Bank Predictor.

BANK PREDICTORS	

 41

History
Table

PC

Bank-
Prediction

Bank-
Update

Bank
Table

Figure 3.9: Local History Bank Predictor.

0
10
20
30
40
50
60
70
80
90

100

128 512 2K 8K 32K 128K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in History Table

Figure 3.10: Accuracy of the Local History Bank Predictor. In the configuration shown the history table is
eight times greater than the Bank Table.

Local predictors are more efficient than global predictors are when the bank accessed by
an instruction does not depend on its immediate predecessors. Notably constructive aliasing in
the Bank Table occurs much more frequently than in the case of global predictors.

Balasubramonian et al. [Bal02] proposed a predictor that is closely related to the Local
History Bank Predictor but differs in two aspects. First, the index into the Bank Table does
not only consist of bits from the history table. Instead, the index is formed by a hash function
(a simple XOR) of the history bits and two bits from the Program Counter. Second, the entries
of the Bank Table are bimodal two–bit counters instead of the simpler entries in our proposal.

In Figure 3.11 we compare the Local History Bank Predictor with the proposal of
Balasubramonian et al. [Bal02] Because the resulting Bank Table entries have a different size
we compare the predictors by their overall size in bits. As can be seen in Figure 3.11, our
implementation of their proposal shows inferior accuracy than a plain Local History Bank
Predictor.

3.3.5 Stride Predictors

Stride predictors compute the predicted result, rather than obtaining it directly from a
previously observed pattern. Stride predictors are based on the observation that the difference
(or stride) between two successive values generated by the same instruction is often a
constant. Instead of directly predicting the result, they predict this constant. The final

42	

 CHAPTER 3

0
10
20
30
40
50
60
70
80
90

100

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Ac
cu

ra
cy

 in
 P

er
ce

nt

Predictor Size in Bits

Hashed Predictor Local History Predictor

Figure 3.11: Comparison of Hashed and Local History Predictor. Accuracy is shown as a function of the
predictor size in bits for the Local History Bank Predictor presented in this section and for another proposal.
[Bal02]

prediction is then generated in a second step by adding the last encountered value to the
predicted stride.

Figure 3.12 shows the basic structure of a Stride Predictor. To make the algorithm more
robust against occasional mispredictions we use the two–delta method [Eic93]: a stride (or
delta) must occur at least two times in a row before it is used in future predictions. The two–
delta method requires an additional table to store the last encountered stride. When the
predictor is updated, it compares the current stride with the last stride from this table. If the
two strides match, the predictor updates the regular stride table. In total, there are three tables:
an address table, a last stride table, and a regular stride table. For simplicity, we omit the last
stride table in Figure 3.12.

If used as a bank predictor, it is not necessary to deal with the full addresses and strides.
Instead, only the address bits that are used to select the bank and all lower significant bits are

BANK PREDICTORS	

 43

Figure 3.12: Stride Predictor.

Addr
Table

PC

Bank-
Prediction

Bank-
Update

Stride
Table

Figure 3.13: Accuracy of the Stride Predictor.

0
10
20
30
40
50
60
70
80
90

100

128 512 2K 8K 32K 128K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Address and Stride Tables

included. Including the lower significant bits has the benefit that strides as small as one byte
can be correctly predicted. However, this doubles the bit budget for a fixed table size.

Figure 3.13 shows the accuracy of the stride predictor as a function of the size of the
history and stride tables. At about 16K table entries the accuracy reaches its plateau. This is
similar to the Last Bank predictor, which reaches its plateau at the same number of table
entries. The reason is that after all static instructions are mapped to a different table entry; any
more entries that are added remain unused and do not affect the results of the predictor.
However, the plateau of the stride predictor at about 82% is 10% higher than plateau of the
Last Bank Predictor, but comes at a much higher cost per table entry.

3.3.6 Local Stride Predictor

The Local Stride Predictor is a combination of the Local History Predictor with the Stride
Predictor. It is based on the Differential Finite Context Method Value Predictor [Goe01].

44	

 CHAPTER 3

Figure 3.14: Local Stride Predictor.

Addr
Table

PC

Bank-
Prediction

Bank-
Update

Stride
Table

History
Table

Figure 3.15: Accuracy of the Local Stride Predictor.

0
10
20
30
40
50
60
70
80
90

100

128+16 1K+128 8K+1K 64K+8K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Address and Stride Tables

Figure 3.14 summarizes the structure of this predictor. Similar to the Local History
Predictor it possesses a history table of shift registers that is indexed by the Program Counter.
However, unlike the Local History Predictor the histories contain strides instead of banks,
consequently the Bank Table of the Local History Predictor is also substituted by a stride
table. To calculate the strides an address table is required. However, unlike the Stride
Predictor, this predictor does not use the two–delta method. This structure is attractive
because it aims at constructive aliasing in the stride table: i.e. static instructions that always
access the same bank generate a constant history of zero in the history table and a stride of
zero in the first entry of the stride table. Like for the Local History Bank Predictor, we choose
a fixed factor of eight to determine the relative sizes of the tables. Therefore, the history table
has eight times more entries than the stride table. Address and history tables have the same
number of entries.

Figure 3.15 shows the accuracy of the Local Stride Predictor. For larger predictors it
reaches 92.7%–a higher plateau than that of the Local History Predictor (compare
Figure 3.10). This comes at the cost of the address table, which is absent in the Local History
Predictor. Figure 3.16 compares the two predictors considering their respective sizes. The
Local Stride Predictor is also more attractive than the Local Predictor is if we take cost into
account.

3.3.7 Gskew Bank Predictor

The Gskew Bank Predictor is modeled after the Gskew Branch Predictor described by
Michaud et al. [Mic97] It is a voting predictor that consists of three predictors. These smaller
predictors are similar to Gshare predictors but use each a different specially designed index

BANK PREDICTORS	

 45

Figure 3.16: Comparison of Local Predictor and Local Stride Predictor.

0
10
20
30
40
50
60
70
80
90

100

1E+02 1E+03 1E+04 1E+05 1E+06

Ac
cu

ra
cy

 in
 P

er
ce

nt

Predictor Size in Bits

Local Predictor Local Stride Predictor

46	

 CHAPTER 3

Figure 3.17: Gskew Predictor.

Bank
Table 1

PC

Bank-
Prediction

Bank-
Update

History

Hash1

Bank
Table 2

Hash2

Bank
Table 3

Hash3

Vote

Table 3.2: Optimal history size for Gskew Bank Predictor. E.g. the optimal history size for a table of 16K
entries is five banks (15 index bits).

Table Size 1‥256 512‥2K 4K‥16K 32K‥128K

History Size 1 2 5 6

Figure 3.18: Accuracy of the Gskew Bank Predictor. The history size for each table size is chosen to optimize
overall accuracy for the SPECint benchmarks.

0
10
20
30
40
50
60
70
80
90

100

256 1K 4K 16K 64K 256K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Bank Tables

function. These index functions have the notable property that if two inputs do produce a
conflict in two tables, they are guaranteed not to do so in the third table. In this way, Gskew
minimizes aliasing conflicts. Adapting these predictors to bank prediction is straightforward.
However, the voting function must be modified, because bank predictors are not (necessarily)
binary and situations can arise where all predictors disagree with each other and there is no
majority for any single prediction. Since there is no number of predictors that can guarantee a
majority in all cases, we designate a master predictor who overrules the other predictors if a
tie occurs. Figure 3.17 shows the structure of the Gskew predictor.

The predictors use a global history that is combined with the Program Counter to form
the index into the Bank Table. Therefore, the problem of the optimal history length arises
similarly to the Gshare Bank Predictor. We found the history size shown in Table 3.2 to
deliver the best overall accuracy for the SPECint2000 benchmarks.

We did further experiments with variations of gskew, e.g. we implemented e–gskew
[Mic97] and 2bcgskew [Sez99] predictors, however these predictors did not give better results
than a plain gskew predictor. We found that a partial update strategy gives slightly better
results than a total update strategy. With a total update strategy, the predictor is always
updated, with a partial update strategy, it is not updated if the prediction was correct, even if
one of the predictors gave an incorrect answer.

Figure 3.18 shows the results of the Gskew Bank Predictor as a function of the size of a
single table. Results are very good but it must be noted that the predictor uses three tables
instead of one (the x–axis show the size of a single table). The Gskew Predictor reaches a
plateau at about 128K entries and an accuracy of 93%.

3.3.8 Tournament Predictor

The Tournament Predictor [McF93] consists of three predictors: two bank predictors and a
meta predictor that is used to choose the result from one of the bank predictors. Because it
contains two different types of bank predictors, a Tournament Predictor can predict the sum of
patterns that each of the bank predictors is able to predict. This flexibility out-weights in many
cases the additional overhead of the meta predictor.

In this section, we examine a combination of a Local History Predictor and a Gshare
Predictor (the same combination as proposed in [McF93]). We tried other combinations of
bank predictors but of all the variants we evaluated this combination gave the best results.

The meta predictor is updated only if exactly one of the predictors gives a correct answer
but the other does not. Because the meta predictor is a binary predictor it is convenient to use
saturated counters. We use relatively small two–bit counters to allow the meta predictor to
alternate quickly between the bank predictors. There are two ways to update the bank
predictors. One is to always update all bank predictors as if they would operate independently

BANK PREDICTORS	

 47

(total update). The other is to update the bank predictors only if the overall prediction is
wrong (partial update). We found that the total update strategy gave slightly better results.

Figure 3.19 shows the basic structure of the predictor. The signals P1c and P2c are set if
the last prediction of bank predictor 1 and predictor 2 respectively was correct. As described
above the saturated counter of the meta table that is indexed by the Program Counter is
updated with the difference of the two signals. The bank predictors 1 and 2 operate as if they
were independent. For simplicity, we do not show their input and output signals here.

48	

 CHAPTER 3

Figure 3.19: Tournament Bank Predictor.

Bank
Predictor 1

PC

Bank-
Prediction

Meta
Table

Bank
Predictor 2

MUX

P1c - P2c

Figure 3.20: Accuracy of the Tournament Predictor. This predictor combines a Gshare and a Local History
Predictor. All tables of the predictor are of the same size except the Bank Table of the Local History Predictor,
which is eight times smaller.

0
10
20
30
40
50
60
70
80
90

100

128 512 2K 8K 32K 128K 512K

Ac
cu

ra
cy

 in
 P

er
ce

nt

Number of Entries in Tables

Figure 3.20 shows the accuracy of the Tournament Predictor. The results especially for
the larger sizes are the best so far. The accuracy reaches a plateau at about 64K entries at 96%
accuracy. However, to compare the results for small configurations we have to remember that
this predictor uses four tables and is more complex than other predictors with the same table
size.

3.4 Comparison of Bank Predictors Based on Bit Budget

Figure 3.21 shows the accuracy of all predictors as a function of size. While the figure is
quite crowded the most important result is clear to see: Only two predictors—Gshare and
Tournament—offer the best combination of accuracy and size for the whole range of sizes. Up
to about a size of 3Kbytes, Gshare is the best option; for bigger predictors the Tournament
Predictor is best.

Simple predictors with a single table like Gshare and Last Bank excel at lower sizes
where the more complex predictors have to work with smaller tables and therefore experience
more aliasing. This disadvantage disappears with larger sizes. The Tournament Predictor is
the most flexible because it can make use of local as well as global history. In the absence of

BANK PREDICTORS	

 49

Figure 3.21: Accuracy of all predictors as a function of the predictor size. Some predictors use the same
symbols: Last Bank uses bigger crosses than Gskew and Global uses bigger circles than Tournament.

40

50

60

70

80

90

100

1E+02 1E+03 1E+04 1E+05 1E+06

Ac
cu

ra
cy

 in
 P

er
ce

nt

Predictor size in Bytes

Last Bank Global Gshare Local
Stride Local Stride Gskew Tournament

aliasing that bigger predictors offer, this flexibility results in the best accuracy. Both of the
two best predictors are based on branch predictors.

3.5 Accuracy and Prediction Rate

In this chapter, we have characterized the different bank predictors by their size and by their
accuracy. But some applications of bank predictors require an additional parameter:
confidence. This parameter describes how likely a prediction is correct. The confidence is
usually a binary parameter. If a particular prediction has no confidence, it is unused in most
applications. The accuracy in this case refers only to confident predictions. The fraction of all
confident predictions is called the prediction rate.

The two most relevant proposals to our work from Yoaz et al. [Yoa99] and from Zyuban
and Kogge [Zyu00][Zyu01] rely on hardware simplifications, which seriously penalize bank
mispredictions. Consequently, these proposals require an accuracy very close to 100%. Yoaz
et al. describe predictors for two banks. In our experiments, we use eight banks instead of
two. Consequently, table entries are larger and occupy more area. Using the same area
constraint, a predictor for eight banks must compromise on the number of entries per table
and therefore suffers more collisions. In addition, the chance that a random prediction turns
out to be correct is 50% for two banks compared to only 12.5% in our case. Zyuban and
Kogge on the other hand use a synthetic predictor (a predictor that emulates a certain
prediction rate and accuracy without implementing the internal structures of the predictor). A
predictor with these properties would allow us to use these proposals in the design of our
distributed memory unit. Unfortunately, we could not find a predictor that satisfies these
requirements for a configuration of eight banks.

Sometimes it is possible to trade a lower prediction rate for a higher accuracy by
generating more conservative confidence predictions. In this case, the predictor generates
fewer confident predictions, but those predictions achieve a higher accuracy. We
experimented with tables of saturating counters of varying bit–size, adopted more
conservative approaches, where the counter is reset with every misprediction, and used
various indexing schemes to access the table with the counters. While some of these schemes
did slightly improve the accuracy, none of them was able to push it near 100%. Our inability
to construct a bank predictor, which achieves an accuracy near 100%, finally lead us to
consider different microarchitectural solutions than those described by Yoaz et al. and Zyuban
and Kogge.

3.6 Energy and Performance Estimations

In Section 1.2, we did a simple estimation of the energy and performance of centralized
versus distributed caches. The evaluation included one distributed configuration without a
bank predictor and another with a perfect predictor. The results showed that a predictor can
reduce the average access times as well as the dynamic energy consumption.

50	

 CHAPTER 3

To conclude this chapter we show these results again and include an improved
configuration, which contains a Tournament Predictor with tables of 2048 elements and a total
size of 3Kbytes. For this estimation, we consider the predictors accuracy as well as its
dynamic and static energy consumption:

To be consistent with the experiment in Section 1.2 we simulate a bank predictor for four
banks. We calculate the energy usage of the predictor’s memory using CACTI 6.5. [Mur09]
For each cache access, we consider one predictor read and one predictor write. In addition, we
account for unmatched load instructions, which are evicted from the pipeline by flushes
before they can access the cache:

This probability as well as the bank predictor accuracy was obtained from simulations of
our microarchitecture, which is described in detail in the following two chapters. The energy
consumed by the bank predictor is offset by the reduced communication of load data. To
calculate the average distance, which load data has to travel, we distinguish two cases: If the
bank prediction is correct, no communication is required, if the bank prediction is incorrect,
the load data has to travel 2 unit distances on average (compare Figure 1.1). Using the
accuracy of the bank predictor, we can calculate the total average distance for load data:

This average distance is well below the average distances for the centralized
configuration (1.25 unit distances) and the naïve–distributed configuration (1.5 unit
distances). We can therefore expect a considerable effect on latency as well as on dynamic
energy consumption.

Figure 3.22 shows how the predictor affects access time and the dynamic energy
consumption. The configuration with the Tournament Predictor is labeled as improved
distribution. The access time is mainly determined by the accuracy of the predictor. For the
majority of the load instructions, there was no inter–cluster communication required from the
data cache to the destination register, just like in the case of the ideal distribution.
Accordingly, the access times are close to the ideal distribution and from 17 to 38% lower
than the centralized configuration, depending on the process technology.

Less inter–cluster communications also lead to less dynamic energy consumption.
Unfortunately, the predictor itself consumes energy too, which offsets some of the savings.

E
Load

= E
CacheRead

+ E
Communication

+ E
BankPredictor

E
BankPredictor

= (1 + P
Unmatched

) · E
BankPredictorRead

+ E
BankPredictorWrite

PUnmatched = 0.2733

PHit = 1� PMiss = 0.7937

dHit = 0

dMiss = 2

dLoadData = dMiss · PMiss + dHit · PHit = 0.4126

BANK PREDICTORS	

 51

Nonetheless, the result is still a significantly reduced energy consumption. When we compare
the dynamic energy of the improved to the ideal distribution, about half of the difference is
due to communications as a consequence of bank mispredictions and the other half is due to
the consumption of the predictor itself. Compared to the centralized configuration dynamic
energy is 30 to 36% lower, depending on the process technology.

The predictor also increases the static energy consumption. Including cache,
interconnects, and the predictor, the real distribution consumes only slightly more static
energy than the centralized configuration, depending on the process technology from 0 to 2%.

We conclude that using bank predictors provides important benefits for a configuration
with distributed caches and makes it much more attractive than a centralized cache
configuration. This evaluation ignored an important step in the memory pipeline of an out-of-
order processor: the disambiguation of memory dependencies. We will discuss this topic in
depth in the next chapter.

3.7 Conclusions

In this chapter, we adapted predictors from other domains to the problem of bank prediction
and quantitatively evaluated the resulting predictors for a configuration of eight banks. Up to
a size of approximately 3Kbytes, the bank predictor based on the Gshare branch predictor
delivers the best accuracy. For greater sizes, a Tournament Predictor is the best choice. We
found that even though bank predictors can deliver an accuracy of up to 96% when the
predictor size is unconstrained, realistic configurations of about 3.3Kbytes reach an accuracy
of 84%. Including a confidence for each prediction was not sufficient to reach an accuracy
near 100% for realistic predictor sizes. This implies that our microarchitecture proposal
requires an efficient way to handle bank mispredictions.

52	

 CHAPTER 3

Figure 3.22: Revisiting Access Time and Dynamic Energy. The dark bar shows the estimation for an
improved distributed configuration with a bank predictor (the Tournament Predictor). This figure is based on
Figure 1.2 in Chapter 1.

0

0,2

0,4

0,6

0,8

1,0

90nm 65nm 45nm 32nm

Normalized Average Dynamic Energy

Centralized Naïve Distribution Improved Distributiion Ideal Distribution

0

0,2

0,4

0,6

0,8

1,0

90nm 65nm 45nm 32nm

Normalized Average Access Time

Chapter 4. A Distributed Memory Unit

CHAPTER 4
A DISTRIBUTED MEMORY UNIT

Baseline Clustered Architecture

The clustered architecture, which we use as a basis for our design and experiments, is
described in detail by Parcerisa [Par04]. The superscalar architecture is divided in a
centralized front-end and a distributed back-end. The front-end consists of the stages Fetch,
Decode, Cluster Steering, Rename, and Dispatch, the back-end of the stages Issue, Register
Read, Execute, Write–back, and Commit. Structures that belong to the back-end such as issue
queues, register file, and functional units are all distributed over homogeneous clusters. A
cluster therefore contains an issue queue, a register file, and various functional units.
Instruction results inside a cluster are handled (e.g. forwarded) like in a conventional
superscalar microarchitecture. If a result is needed at another cluster, a special copy
instruction is inserted in the instruction stream during the rename stage. This copy instruction
copies the data over an interconnection network to another cluster. Instructions are assigned to
clusters during the Cluster Steering stage. For best performance the steering algorithm
attempts to balance two contradicting goals: to minimize inter–cluster communication and to
make the best use of the resources of all clusters.

The data memory pipeline of the base architecture is centralized and not distributed. This
gives rise to the following design proposals for a distributed memory unit.

	

 53

4.1 Qualitative Design Decisions

4.1.2 Distributed Cache

The baseline architecture assumes a single memory pipeline and a centralized data cache.
There are two motives to adopt distributed memory pipelines and data caches and associate a
memory pipeline and a cache bank to each cluster.

First, the memory pipeline contains some very expensive logic, most notably the content
associative memory of the memory queues used for disambiguation. This pipeline can be
sliced in multiple simpler pipelines as described by Yoaz et al. [Yoa99] The key idea is to use
part of the data address to assign instructions to the pipeline in the same way as data is
assigned to banks in a banked cache. Using this way of distribution guarantees that memory
dependencies are confined to a single cluster and inter–cluster memory dependencies are
avoided. This greatly simplifies the disambiguation logic and the content associative memory
of each pipeline can be significantly smaller than the memory of a single centralized pipeline.

Second, the distributed data caches allow for the reduction of the physical distance
between data cache, memory pipelines and functional units. This results in better access times
and lower power consumption. While it is hard to keep all memory accesses local so that
addresses and data travel only inside a single cluster, even a partial reduction of inter–cluster
communication improves performance and lowers power consumption. See Section 1.2.2 in
Chapter 1 for a quantitative evaluation.

Another alternative to the centralized and distributed cache is a replicated cache where
each cluster holds a copy of the whole data cache. This way all read accesses to the data cache
are local to a cluster while write accesses must be broadcast to all other replicas of the data
cache. This alternative has the obvious disadvantage that the effective cache size is reduced.
But the most serious disadvantage for our application is that it does not allow a
straightforward distribution of the memory pipelines like a distributed banked data cache
does. In the following, we will therefore concentrate on the option of a distributed cache.

4.1.3 Inter–Cluster Networks and Instruction Steering

Any given load instruction may travel up to three clusters in its lifetime. Our baseline
architecture is based on the Digital Alpha ISA and therefore the address calculation of a load
instruction can have at most one register operand. Therefore, the first cluster visited is the
cluster where the source register is located. After the address calculation, the load travels to
the cluster where its data is located. It enters the memory pipeline, performs disambiguation,
and obtains its data from the cache. Finally, the instruction has to travel to the cluster where
its destination operand was mapped to write its data into the register file and forward it to all
instructions waiting for the data.

54	

 CHAPTER 4

The problem is illustrated in Figure 4.1. The first trip of the load instruction from cluster
A to cluster B could be avoided if the source register and the load data were mapped to the
same cluster. Unfortunately, there is no easy way to achieve this because the mapping of the
load data depends entirely on the address, and the mapping of the register operand may occur
a long time before the load instruction is even fetched. Instead, we chose to provide a
dedicated inter–cluster network to transport load instructions from the functional unit where
the address is calculated to the memory pipeline where the instruction is disambiguated.

The second trip of the load instruction from cluster B to cluster C can be avoided if the
output register is mapped to the same cluster as the load data. Unfortunately, the cluster of the
output register is scheduled during the Cluster Steering stage when the actual address and the
cache bank of the load data is still unknown. However, we can use a bank predictor like the
one described by Yoaz et al. to predict the cache bank and thereby the cluster where the load
data is located. If we map the output register to the predicted cluster the second trip from B to
C becomes unnecessary for the majority of load instructions. However, we have seen in the
last chapter that it is not reasonable to expect a bank prediction accuracy near 100% for all
load instructions. Therefore, we still need a way to gracefully handle bank mispredictions. If
the cache bank was predicted incorrectly and the output register was mapped to another
cluster, we transport the load data to its destination over a second dedicated inter–cluster
network.

Our proposed solution is different from Yoaz’ et al. solution in that they explicitly abstain
from adding any communication link between memory pipelines. For Yoaz et al. this
approach is feasible because they limit themselves to a microarchitecture with a shared
register file and only two memory banks for which high bank prediction rates and an accuracy
near 100% are realistic.

Zyuban and Kogge [Zyu00][Zyu01] also add two inter–cluster networks for addresses
and data respectively to their distributed memory unit. In their scheme, these networks are
used by low–confidence loads and by mispredicted load instructions. For high–confidence
load instructions, the address calculation is steered to the cluster where the load data is
predicted to be located and the source operand is sent to this cluster using the operand inter–
cluster network. If the prediction turns out correct no further inter–cluster communication is
necessary but if the prediction is wrong, two more inter–cluster communications are needed to
obtain and to return the load data. Therefore, in the worst case of a mispredicted high–
confidence load instruction up to three inter–cluster communications are necessary, each on a
different inter–cluster network. Because a combination of high prediction rate with a near
100% accuracy is very difficult to obtain for more than two clusters Zyuban and Kogge’s
scheme requires notably more inter–cluster communications than our proposal.

A DISTRIBUTED MEMORY UNIT	

 55

4.1.4 Late allocation and unordered queues

An important consideration in the design of a distributed memory unit is the amount of time
during which instructions occupy entries in the memory queues. Traditionally, these entries
are assigned to memory instructions before they are dispatched to the issue queues. Thereby
this assignation proceeds in the original program order. As soon as the address is calculated
and the instruction enters the memory pipeline, its queue entry is actually occupied and filled
with data. The entry then remains occupied until the instruction commits.

Late Allocation

Reserving entries in the various queues of a distributed memory unit is much more difficult
because during the Dispatch stage the address is unknown, and it is therefore not clear in
which of the multiple queues an entry should be reserved. Yoaz et al. propose to use bank
prediction to reserve entries in the instruction queues. They reserve one entry for each high–
confidence prediction and entries in all queues for low–confidence predictions. Once the
address of a low–confidence instruction is known, the unused entries are cancelled. Cancelled
entries are still unavailable for immediately following instructions unless an (overly)
expensive compacting queue design is used. To avoid excessive canceling of memory entries
the prediction rate (the percentage of high–confidence predictions) must be high. On the other
hand, the accuracy (the percentage of correct high–confidence predictions) must be near

56	

 CHAPTER 4

Figure 4.1: Example of a load instruction that travels three clusters.

Read Source
Register

Address
Calculation

Disambiguation

Cache Access

Write Destination
Register

Memory Pipeline
Cluster A

Read Source
Register

Address
Calculation

Disambiguation

Cache Access

Write Destination
Register

Memory Pipeline
Cluster B

Read Source
Register

Address
Calculation

Disambiguation

Cache Access

Write Destination
Register

Memory Pipeline
Cluster C

100% because it is very difficult to recover from mispredictions. In such a case, an entry
would be reserved in the wrong queue and had to be moved to the right queue while
maintaining all queue entries in the original program order. This would require an expensive
queue design that allows the insertion of entries or (more likely) involve an expensive
pipeline flush. Because our experiments on bank predictors described in the last chapter show
that it is very difficult to obtain both a high prediction rate and near 100% accuracy at the
same time we discarded the possibility of adopting Yoaz et al. scheme for our distributed
memory unit.

Unordered Queues

In the description so far, we assumed a traditional disambiguation logic that requires that
entries are physically ordered in the original program order. Therefore, the entries have to be
assigned to instructions at an early pipeline stage before the address (and hence the right
memory queue) is known. If we could assign the instructions to queue entries in any order, the
assignment could be delayed until the addresses were actually known. These lately allocated
and unordered queues would be better utilized too because the memory instructions would
spend less of their lifetime in the queue. Therefore, the queue size could be reduced and some
power could be saved without affecting performance negatively. However, the main
advantage is that unordered queues do not depend on unrealistically accurate bank predictors
to work efficiently, because mispredicted instructions may enter the queue out of program
order and without requiring a pipeline restart.

Separate Load and Store Queues

Our proposal uses the Alpha instruction set architecture and we adopt some of the
peculiarities of the Alpha EV6 like the separate queues for load and store instructions
[Kes98]. However, we depart from it in other details. E.g. we split store instructions into
internal store address and store data instructions. In many cases, the store address is known
significantly earlier than the store data and can be used by the disambiguation logic to resolve
potential memory conflicts. (See Section 4.1.6 below for more details.)

4.1.5 Deadlocks

Unfortunately, allocating resources such as queue entries out of program order can have
undesirable effects. One of them is the risk to create deadlocks. Deadlocks can occur when
the calculation of an address is delayed so long that all queue entries in the right cluster are
already occupied by younger instructions. Because queue entries are usually deallocated
during the Commit stage and therefore in program order none of the younger memory
instructions will ever deallocate its entry before the waiting instruction. Since a full memory
queue is a precondition for a deadlock, small queues are more prone to deadlocks than large
queues. Recovering from a deadlock is not trivial and we use a pipeline flush to be able to
continue processing.

A DISTRIBUTED MEMORY UNIT	

 57

%234.1.6%20Reservation%20of%20Queue%20Entri
%234.1.6%20Reservation%20of%20Queue%20Entri

We will discuss more sophisticated solutions to handle and prevent deadlocks in the next
chapter. (See Section 5.1 and Section 5.4 in Chapter 5.)

4.1.6 Reservation of Queue Entries

In a traditional organization with ordered queues, the reservation of queue entries is
straightforward. A simple counter is sufficient to assign queue entries to instructions. An
unordered queue requires a different approach. The problem is very similar to the allocation
of physical registers and the corresponding solutions can be adopted for the reservation of
load queue entries. For small queues a bit–vector will require fewer resources than a free list.
However, for larger queues where multiple entries have to be allocated and released in each
cycle a solution applying free lists may be more appropriate.

4.1.7 Release of Queue Entries

When an instruction is committed and subsequently removed from the reorder buffer the
corresponding cluster and the queue entry number must first be identified before the queue
entry can be released.

For this purpose, each cluster of the distributed memory unit contains a table for each
local queue that maps instructions to local queue entries. This table uses the global memory
sequence numbers of the load and store instructions as index and contains the number of the
local queue entry. The global memory sequence number is assigned to each instruction in the
front-end and is used in various places inside the microarchitecture to establish the relative
age of memory instructions. (Load and store instructions are numbered separately.) Whenever
an instruction is inserted into a local queue, its table entry is updated accordingly.

When a memory instruction commits, the ROB broadcasts a message to all clusters of the
distributed memory unit. This message specifies how many load and how many store
instructions are to be committed. Apart from these two numbers, no more information needs
to be sent. The clusters each contain a commit pointer into their tables and therefore have
sufficient information to liberate local queue entries as required. This implementation is
reasonably simple and allows to reserve and release several queue entries per cycle.

Section 5.5 in the next chapter describes an extension to this release mechanism.

4.1.8 Handling Store Data and Store Address Instructions

Store data and store address instructions must be associated in the memory unit to provide the
proper function of the memory system. In a traditional microarchitecture with a single
memory queue this is easy to achieve because the allocation of queue entries occurs when the
instruction stream is still in the original program order and store data and store address
instructions are not yet separated.

58	

 CHAPTER 4

The first problem is to guarantee that store data and store address instructions are routed
to the same cluster of the memory unit. The store address instruction is routed using the result
of its address calculation. The store data instruction should arrive at the same memory
pipeline as the store address instruction. To achieve this we make use of the fact the
microarchitecture supports one register output and up to two register inputs. This allows us to
use a register to pass the cluster number between the two instructions; i.e. the store address
instruction writes the cluster number to a register where the store data instruction picks it up
and follows its sibling to the same memory pipeline.

After the address has been calculated, the store address instruction is the first of the two
sibling instructions that arrives at the destination cluster. Upon arrival, it is inserted into the
store queue as described above. When the store data instruction arrives, it must identify the
store queue entry of its sibling. To associate both instructions we use the same table described
above in Section 4.1.7 that maps global sequence numbers to store queue entries. Once the
corresponding entry in the store queue is identified, the store data is written into the store
queue entry.

4.1.9 Store–to–Load Forwarding

To enable the forwarding of data from a store to a load instruction, load instructions search
the store queue when they are executed. If no match is detected the load obtains its data from
the memory hierarchy (the data cache in most cases). If a single match is detected the age of
the load and store instructions is compared. Store–to–load forwarding is enabled only if the
load is younger than the store (i.e. if the load follows the store in the original instruction
stream). To compare the instruction age the sequence numbers of the two instructions are
subtracted. For the microarchitectural parameters, which we use in our simulations, these
sequence numbers are nine bits long. Consequently, an age comparison requires only a single,
nine–bit–wide subtraction.

If more than a single match is detected the forwarding logic must choose one of the
matches for forwarding. We handle this case using no–hit bits as described in Sections 2.2.4
and 2.2.5. For this scheme a no–hit bit is added to each queue entry. Whenever a store
instruction is inserted into the queue, its address is compared to the addresses of store
instructions already present in the queue. If a store instruction in the queue matches, the no–
hit bit of the older of the two instructions is set. At any point in time, out of several stores in
the queue with matching addresses, all but one will have the no–hit bit set. Instructions with
the no–hit bit set are exempt from all future address comparisons. As a result, load
instructions that search the store queue never match more than a single store instruction.

There is one downside to this technique: if the load instruction hits a store instruction that
is younger (i.e. a store that follows the load in the original instruction stream) there may be
older store instructions present in the queue that are not detected because their no–hit bit is
set. Since this is an infrequent event it is acceptable to simply flush the pipeline to recover.

A DISTRIBUTED MEMORY UNIT	

 59

This condition is detected by comparing the sequence numbers of the load instruction and the
matching store instruction.

In addition to memory address and instruction age, the forwarding logic must take the
access width into account. The Digital Alpha ISA allows accesses of one, two, four, and eight
bytes width. All accesses are aligned, i.e. the memory address is always a multiple of the
access width. The disambiguation logic described above operates at a granularity of 64–bit
words, and the alignment rules of the ISA guarantee that all accesses are fully contained in a
single 64–bit word. Each load and store queue entry contains a bit-mask, which marks the
corresponding bytes inside the 64–word. This bit-mask allows a quick check, if all the
required bytes for the Store–to–Load forwarding are contained in a single store queue entry.
A shifter inside the forwarding logic aligns the data from the store queue for the load
instruction. Load instructions, which cannot obtain their data from the memory hierarchy or
from the Store–to–Load forwarding logic, are delayed until the offending store instructions
commit. In the absence of a structure to hold delayed load instructions (see Section 5.3 in the
next chapter), this delay causes a pipeline flush.

4.1.10 Handling Unresolved Stores

In the scheme described above, load instructions search only for store instructions present at
execution time in the store queue. Store instructions only take part in the disambiguation after
their address is known. The disambiguation of load instructions is therefore speculative. To
check if any dependencies were violated by this speculative disambiguation store instructions
search the load queue for younger loads (i.e. loads, which follow the store in the original
instruction stream) with matching address as soon as they are inserted into the store queue. If
such a load is identified the microarchitecture recovers with a pipeline flush. We provide only
one comparator circuit for this test and use the no–hit bit for load queue entries in a similar
manner as for the store queue described above, i.e. for all the load instructions that match the
address the no–hit bit is used to suppress all but the youngest hit.

To reduce the number of memory dependency violations we include a store wait table
similar to the Alpha EV6 in our microarchitecture, see Section 2.2.4 and Kessler et al.
[Kes98] Load instructions, which are predicted to violate dependencies, are retained in the
issue queue before the address calculation until the addresses of all older store instructions are
known. In Section 5.3 of the following chapter, we will introduce the memory issue queue, a
structure, which can hold these delayed load instructions. Using this queue, we will be able to
avoid wasting expensive issue queue entries. Section 4.2.3 below will give a rationale for this
choice of load issue policy.

60	

 CHAPTER 4

4.1.11 Multiprocessor Memory Consistency

The requirements for multiprocessor memory consistency vary with the instruction set
architecture in question. Since we adopt the Alpha instruction set architecture for our
experiments, we also adopt its memory consistency model.

The consistency model requires that we detect cases where two speculative load
instructions access the same memory location in reverse order, where the younger load (i.e.
the load that follows the other in the original instruction stream) accesses the location before
the other load does.

To test for this condition each load instruction searches the load queue for instructions
with the same address. As mentioned previously this search and the following age comparison
are required to establish the no–hit bits in the load queue. This scheme is modified to detect
the case where the load that is about to be inserted into the queue hits a load instruction in the
queue that has the same address but is younger (i.e. the load in the queue follows the other
load in the original instruction stream). When this case is detected, the pipeline is flushed to
avoid a violation of the memory consistency model.

4.1.12 Recovering From a Pipeline Flush

Sometimes it is necessary to flush the pipeline to recover from an error condition. The most
frequent of these conditions is a failed branch prediction. Some of these events are part of the
instruction set architecture, like external interrupts, floating-point exceptions, memory access
exceptions etc. Some infrequent conditions are handled with flushes to avoid the otherwise
required implantation complexity, some examples are described above in Sections 4.1.5,
4.1.9, 4.1.10 and 4.1.11.

In every pipeline flush, some offending instruction is identified. This instruction and all
instructions following it must be removed from the pipeline while all instructions preceding it
should continue execution in the usual manner. To avoid a complex and slow mechanism that
removes instructions from the memory queues on an individual basis the distributed memory
unit removes all instructions at once. This operation is akin to a reset—after it is performed all
queues are empty. To speed up the process of a pipeline flush the front-end and the back-end
are not flushed at the same time. The front-end is flushed immediately after the pipeline flush
is triggered and then starts operation by fetching the offending instruction again from
memory. The back-end continues normal operation until the offending instruction reaches the
commit stage, but instead of committing the instruction, the back-end is flushed. To guarantee
correct execution no instructions are allowed to pass from the front-end to the back-end
during the time between the flush of the front-end and the flush of the back-end. Flushing the
front-end in advance of the back-end helps to speed up the recovery. Other structures of the
back-end such as issue queues also use the same mechanism. Papworth et al. describe this
technique in more detail. [Pap96]

A DISTRIBUTED MEMORY UNIT	

 61

4.2 Quantitative Design Decisions

In this section, we evaluate design options in a quantitative manner.

4.2.1 Experimental Methodology

To evaluate our microarchitectural proposals we use a simulator, which is based on the
work of Parcerisa, [Par04] which in turn is based on the SimpleScalar toolset. [Aus02] The
simulator uses the Digital Alpha instruction set architecture. We use the SPEC CPU2000
benchmarks to evaluate our architecture proposals. The benchmarks are compiled and
optimized for the Alpha EV6 using the original toolchain from Digital. We simulate the first
100 million instructions after skipping the initialization phase of each benchmark14. Table 4.1
summarizes the most important architectural parameters. This methodology is used for
chapters 4 and 5 of this thesis.15

62	

 CHAPTER 4

14 The initialization phase of each benchmark was determined by inspecting and instrumenting the source code
of each benchmark.

15 With the exception of Section 4.2.2 of chapter 4, which uses a more aggressive configuration.

Frontend (Monolothic, In-Order)
	

 WidthBrei32
	

 Depth
	

 Branch Predictor
	

 Branch Target Buffer
	

 Return Address Stack
	

 Reorder Buffer

8 instructions
9 stages
tournament: bimodal+gshare, 6Kbytes
64K entries, 4ways
64 entries
256 entries

Backend (Clustered, Out-of-Order)
	

 Number of clusters
	

 ALU (per cluster)
	

 	

 units / registers / issue queue size
	

 FPU (per cluster)
	

 	

 units / registers / issue queue size
	

 Interconnection Network
	

 	

 topology / latency per hop

4 clusters

2 units / 56 registers / 16 entries

1 unit / 56 registers / 16 entries

asynchronous ring / 1 cycle

Memory Hierarchy
	

 Level 1 data cache (per cluster)
	

 	

 size / associativity / line size / latency
	

 	

 read / write ports
	

 Level 1 instruction cache (monolithic)
	

 	

 size / associativity / line size / latency
	

 Level 2 unified cache (monolithic)
	

 	

 size / associativity / line size / latency
	

 Main Memory
	

 	

 random / sequential access latency
	

 Bank Predictor

16Kbytes / 2 ways / 32 bytes / 2 cycles
1 port / 1 port

64Kbytes / 2 ways / 32 bytes / 1 cycle

2Mbytes / 16 ways / 32 bytes / 14 cycles

96 cycles / 13 cycles
tournament: gshare+local, 3.3 Kbytes

Table 4.1: Main architectural parameters of the microarchitecture.

4.2.2 Choosing the Interleaving Factor

The interleaving factor decides which bits of the address indicate the cache bank. The
interleaving factor defines the mapping of memory locations to cache banks and therefore to
clusters. We consider factors from eight to 512, smaller factors than eight are not reasonable
because we are using a 64–bit architecture and a smaller factor would spread a single memory
word over several banks. Another important number in this context is the cache line size. If
the cache line size is greater than the interleaving factor, a single cache line is distributed over
several banks. In this case several clusters will require copies of the same tag to detect cache
hits and misses in an autonomous manner without requiring inter–cluster communications.
The extreme case is an interleaving factor of eight, where every 64–bit memory word
possesses a copy of the tag. If a cache line is distributed over several clusters, the mechanisms
for replacing cache lines are significantly more complicated.

Two more observations influence the choice of the interleaving factor. The interleaving
factor defines the mapping of memory locations to clusters. This is of importance to the bank
predictor and impacts the prediction accuracy as illustrated below in Figure 4.2. Finally, the
interleaving factor affects the number of bank conflicts when these banks have a limited
number of ports. In general, smaller factors lead to fewer conflicts as illustrated above in
Figure 4.3.16

Figure 4.2 shows the effect of the interleaving factor on the accuracy of a Tournament
Bank Predictor of 3.3 Kbytes on some selected benchmarks of SpecINT. The arithmetic mean
is shown on the right side of the figure. Each benchmark shows its own characteristic. While
e.g. bzip2 is mostly unaffected by the choice of the interleaving factor, others like perl show
significant differences. In general, higher factors lead to a higher accuracy. However, the
lowest overall accuracy is not produced by the smallest interleaving factors—as might be
expected—but by factor 32 (bits 5:7).

Figure 4.3 shows the effect of the interleaving factor on the relative IPC for a
configuration with a single read and a single write port per bank relative to a configuration
with unlimited ports. The harmonic mean of the benchmarks is shown on the right of the
figure. For this experiment, we used configurations with 8 clusters and a Tournament Bank
Predictor. The results show a steady decrease of performance between 1% and 0.5% for each
bit of the interleaving factor. This decrease in performance is caused by the increased number
of bank conflicts and an increasingly unbalanced distribution of the data.

Considering especially our earlier points on an easy implementation we choose an
interleaving factor that is equal to the cache line size of our architecture, which is 32 bytes.

A DISTRIBUTED MEMORY UNIT	

 63

16 Results shown in Figures 4.2 and 4.3 were obtained with a more aggressive configuration than the one
presented in Section 4.2.1. Instead of 4 this configuration employs 8 clusters and 8 cache banks.

Figure 4.3 also shows that a single read port is sufficient for each cluster (there is a penalty of
only 2%) therefore we provide each cluster with a single read and a single write port.

4.2.3 Load Issue Policy

The architecture described so far disambiguates instructions speculatively, store instructions,
which are not present in the store queue (i.e. stores with unresolved addresses), are ignored by
loads, even if the store is older and a dependency might exist, see Section 4.1.10 above. If
many dependencies are violated and the pipeline has to be flushed often this speculation can
have an overall negative effect on performance. Therefore, we compare in this section four
different load issue policies:

• a conservative policy where loads are only allowed to execute if all older stores are present
in the queue,

• a speculative policy that ignores stores that are not present in the queue,

• a speculative policy with a predictor, a store wait table like the one described by Kessler et
al. [Kes98], and

• a speculative policy with an oracle. The oracle (a perfect predictor) uses Cain and Lipasti’s
value based definition of memory dependencies.17 [Cai04] This configuration serves as a
baseline to normalize results.

64	

 CHAPTER 4

17 By this definition a memory dependency is violated only if a load instruction returns an incorrect value. In
contrast to the classic definition the value based definition allows silent stores (stores, which do not modify
memory contents) to access memory without causing a dependency violation.

Figure 4.2: The effect of the interleaving factor on accuracy. We employ a Tournament Bank Predictor of
3.3 Kbytes.

!

hmeanINT

bank_pred_load_rate

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk
twolf
vortex
vpr

ameanINT

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk

0,75!

0,80!

0,85!

0,90!

0,95!

1,00!

Re
la
%v

e'
IP
C'

Impact'of'Interleaving'Factor'on'IPC'for'SPECint'

3:5! 5:7! 7:9! 9:11!

0!

20!

40!

60!

80!

100!

Ba
nk

'P
re
di
ct
or
'A
cc
ur
ac
y'

Impact'of'Interleaving'Factor'on'Bank'Predictor'Accuracy'
for'SPECint'

3:5! 5:7! 7:9! 9:11!

Figure 4.4 and Figure 4.5 show the results of the experiment. The harmonic mean can be
seen on the right side of the figures.

All configurations include a memory-issue queue, which will be presented in Section 5.3
of the next chapter. This queue can buffer load instructions, which have to wait for the
completion of older stores. Without the memory issue queue these load instructions would
have to wait e.g. in the integer issue queue and would thereby reduce the effective window
size of the out-of-order core. We include the memory issue queue in this experiment to avoid
measuring this type of secondary effects.

The most striking result in above figures is the low performance of the conservative
disambiguation scheme. One of the causes for the low performance is the delay of the
additional communications between clusters, which are required to implement the semantics
of conservative memory disambiguation. Before a conservative disambiguation mechanism
can allow a load instruction to execute, it needs to know the status of all store instructions that
precede the load in program order. The load can be allowed to execute only if all previous
stores either execute in other memory pipelines or can be disambiguated locally using their
address. This requires a broadcast of the status of all store instructions to all memory pipelines
and thereby introduces an additional delay. This delay affects the conservative disambiguation
scheme most.

Another motive for the low performance of the conservative scheme may be the fact that
the binaries for our simulations have been optimized for an Alpha EV6, which uses
speculative load issuing with a predictor similar to the third configuration in our experiment.
This could benefit the configurations, which use speculative load issue. Finally, our

A DISTRIBUTED MEMORY UNIT	

 65

!

hmeanINT

bank_pred_load_rate

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk
twolf
vortex
vpr

ameanINT

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk

0,75!

0,80!

0,85!

0,90!

0,95!

1,00!

Re
la
%v

e'
IP
C'

Impact'of'Interleaving'Factor'on'IPC'for'SPECint'

3:5! 5:7! 7:9! 9:11!

0!

20!

40!

60!

80!

100!

Ba
nk

'P
re
di
ct
or
'A
cc
ur
ac
y'

Impact'of'Interleaving'Factor'on'Bank'Predictor'Accuracy'
for'SPECint'

3:5! 5:7! 7:9! 9:11!

Figure 4.3: The effect of the interleaving factor on performance. The performance shown is for a
configuration with only one read and one write port per cluster relative to a configuration with infinite read and
write ports.

architecture splits store instructions in store address and store data instructions. This allows
store address instructions to participate in the disambiguation even though the respective store
data is not yet known. This is of advantage to conservative as well as speculative schemes.

The results also show that a dependency predictor using a store wait table is very
effective. A relatively simple predictor can achieve a performance, which is very close to the
ideal baseline (within 1% on average) and consistently better than the configuration without a
predictor.

66	

 CHAPTER 4

twolf
vortex
vpr

hmeanINT

ammp
applu
apsi
art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
wupwise

hmeanFP

0!

0,2!

0,4!

0,6!

0,8!

1!

Re
la
%v

e'
IP
C'

Rela%ve'IPC'with'different'Load'Issue'Policies'for'SPECint'

ConservaNve! SpeculaNve! SpeculaNve!with!Predictor! SpeculaNve!with!Oracle!

0!

0,2!

0,4!

0,6!

0,8!

1!

Re
la
%v

e'
IP
C'

Rela%ve'IPC'with'different'Load'Issue'Policies'for'SPECfp'

ConservaNve! SpeculaNve! SpeculaNve!with!Predictor! SpeculaNve!with!Oracle!

Figure 4.4: Relative IPC with four different load issue policies for SPECint. The configuration using
speculative disambiguation with an oracle serves as baseline.

twolf
vortex
vpr

hmeanINT

ammp
applu
apsi
art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
wupwise

hmeanFP

0!

0,2!

0,4!

0,6!

0,8!

1!

Re
la
%v

e'
IP
C'

Rela%ve'IPC'with'different'Load'Issue'Policies'for'SPECint'

ConservaNve! SpeculaNve! SpeculaNve!with!Predictor! SpeculaNve!with!Oracle!

0!

0,2!

0,4!

0,6!

0,8!

1!

Re
la
%v

e'
IP
C'

Rela%ve'IPC'with'different'Load'Issue'Policies'for'SPECfp'

ConservaNve! SpeculaNve! SpeculaNve!with!Predictor! SpeculaNve!with!Oracle!

Figure 4.5: Relative IPC with four different load issue policies for SPECfp. The configuration using
speculative disambiguation with an oracle serves as baseline.

Given above results we include the speculative load issue policy using a store wait table
dependency predictor in our design proposal.

4.3 Conclusions

In this chapter, we presented the design of a distributed memory unit. This memory unit
employs a reservation scheme for the memory queues, which unlike previous proposals does
not depend on a bank predictor. Memory queue entries are reserved just before instructions
issue, which improves the utilization of the queues. As a consequence of the allocation being
late, the allocation is performed out of program order, and the queues are unordered. We show
that such an unordered queue may be implemented with known techniques at a cost
comparable to a traditional age ordered queue.

We outlined the rationale behind our choice of the interleaving factor and showed how it
affects bank predictor and performance. We show that a speculative load issue policy is
essential for performance and that a simple dependency predictor delivers almost the same
performance as a perfect predictor.

We outlined our design decisions and the rationale behind our choices. The memory unit
described in this chapter will serve as a starting point and as a baseline for the proposals of the
next chapter.

A DISTRIBUTED MEMORY UNIT	

 67

Chapter 5. Improvements to the Distributed Memory Unit

CHAPTER 5
IMPROVEMENTS TO THE DISTRIBUTED

MEMORY UNIT

In this chapter, we present techniques to improve the distributed memory unit we presented in
the last chapter.

The distributed memory unit we presented in the last chapter does not attempt to control
the flow of memory instructions in the memory pipeline. This lack of flow control leads to
load and store queue overflows and deadlocks that cause pipeline flushes, which reduce
performance and energy efficiency. Memory instructions are mapped to one of the distributed
queues based on the memory address. Because the address is calculated just before an
instruction is inserted into a memory queue, the mapping is established very late and out of
program order. In comparison, architectures without distributed queues can map memory
instructions to queue entries at early pipeline stages and in program order. The distributed
memory unit on the other hand requires a novel approach to control the flow of instructions.

The dispatch stage is the last pipeline stage of the front-end where instructions are
processed in program order. This property makes it attractive to flow control. In later out-of-
order stages, stalling instructions is more complicated. In Section 5.1, we will describe how
this technique can be used to reduce or even completely eliminate overflows and deadlocks of
the memory queues.

	

 69

Since the essential cause of queue overflows is a lack of free entries, an obvious solution
is to enlarge the queues. While this solution does work, it is also very expensive. Load and
store queues contain content associative memory, which is both slow and energy hungry. So
instead of extending the load and store queues, we use a simple FIFO buffer to hold
instructions until the instruction can be added to the main queue. Because instructions are
simultaneously added to the queues and access the cache, we call this buffer the pre–access
queue. This queue is described in Section 5.2.

The fundamental problem with the pre–access queue is that only the instruction at the
head of the FIFO can issue to memory. It does not allow to choose the next instruction to
issue. This prevents us from prioritizing instructions or from employing an issue policy. E.g.
performance benefits from prioritizing instructions by age and the load issue policies
presented in Section 4.2.3 of the last chapter have a mayor impact on performance. To resolve
this problem we substitute the pre–access queue with a memory issue queue. This queue is
described in Section 5.3.

The pre–access queue and the memory issue queue can avoid overflows of the memory
queues but do not resolve the problem of deadlocks. Deadlocks can occur if an older
instruction finds a full memory queue filled with younger instructions. A very conservative
flow control mechanism in the dispatch stage can avoid deadlocks but seriously affects
performance. The memory issue queue allows us to implement a load issue policy, which
avoids deadlocks without compromising performance. This scheme is called the conservative
deadlock aware entry allocation and is presented in Section 5.4.

Finally, we present a mechanism, which allows load queue entires to be released before
the commit stage under certain circumstances. The early release of load queue entries reduces
the pressure on the load queue. The mechanism is described in Section 5.5.

5.1 Dispatch Throttling

The design of the distributed memory unit presented in the previous chapter suffered from a
large number of pipeline flushes caused by deadlocks and overflows of the memory queues.
(See Figure 5.1)

By limiting the flow of memory instructions in the dispatch stage, a mechanism can
effectively control the number of memory instructions in flight in the out-of-order backend.
Supposing for a moment a design with a single centralized memory queue, if the number of
memory instructions in flight is kept below or equal to the size of the memory queue,
overflows can no longer occur. Deadlocks would also be avoided, since a full memory queue
is a prerequisite for a deadlock.

Unfortunately this idea cannot be applied directly to the proposed distributed design
because it includes multiple address–interleaved memory queues instead of a single

70	

 CHAPTER 5

centralized memory queue, and the addresses—and therefore the mappings of instructions to
queues—are not yet known in the dispatch stage.

The throttling mechanism can however take into account all those instructions that did
already calculate their address. Problematic are instructions with unknown addresses. There
are several ways to handle these instructions. In the following, we will examine three
strategies. The conservative strategy is to plan for the worst case in which all instructions with
unresolved addresses would go the queue with the least free space left. A more optimistic
approach uses the bank predictor to stall the dispatch stage when the predicted mapping
indicates an overflow. Finally, a hybrid method combines the two previous techniques using
the confidence of the bank predictor. If the predictor is confident that its prediction is correct,
the optimistic approach is used, otherwise the conservative method is applied.

Naturally, the conservative strategy avoids overflows and deadlocks completely, while
the number of overflows and deadlocks in the other two schemes depends on the accuracy of
the bank predictor. Consequently, the number of flushes will be less with the conservative
strategy. However, the conservative strategy stalls the dispatch stage more often than the other
two schemes do. This tradeoff between flushes and stalls is present in all three proposed
strategies and is fundamental to the dispatch–throttling scheme.

When a conservative dispatch throttling is used together with the pre–access queues, the
scheme cannot cause overflows but it can still cause deadlocks. Deadlocks can occur, because
the dispatch throttling allows both the memory queue and the pre–access queue to fill up
completely, but does not take the relative distribution of instructions between the two queues
into account. If the memory queue is full and the oldest instruction is not located in the
memory queue, no further progress can be made and a deadlock occurs (see Section 4.1.5 of
the previous chapter).

5.1.1 Dispatch Throttling: Implementation

Dispatch throttling (or flow control at dispatch, FCD for short) can be implemented relatively
straightforward with a set of counters. Each counter corresponds to a memory queue and
determines how many instructions are in flight in the backend that are mapped to this memory
queue. E.g. a design would contain one counter for the load queue and another for the store
queue, with 4 clusters there would be 8 counters in total. If any of the counters is greater than
the queue size, the dispatch stage stalls.

The conservative technique would increment all load queue counters by one for each
load instruction that passes dispatch. Similarly, all store queue counters would be incremented
for each store instruction. When the mapping of an instruction is determined, the
corresponding counter is left unchanged but all other previously incremented counters in other
clusters are decremented. Finally, when an instruction commits or is otherwise removed from
the queue, the counter corresponding to its queue is decremented.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 71

For each instruction that passes the dispatch stage, the optimistic technique increments
only the counter corresponding to the predicted mapping. Once the mapping is known and the
prediction turned out incorrect, the previously incremented counter is decremented and the
counter corresponding to the correct mapping is incremented. When an instruction commits or
is otherwise removed from the queue, its corresponding queue counter is decremented.

The hybrid scheme behaves like the optimistic scheme when the bank predictor is
confident and like the conservative scheme when the bank predictor is not confident. The
confidence predictor we use has the same structure and size as the meta predictor of the
Tournament Predictor. It consists of a single table of 2048 saturated two–bit counters, which
is indexed by the Program Counter of the instruction. Of the four possible values of each
counter the two smaller counter values represent no confidence and the two greater values
represent a confident result. For each misprediction the counter is decremented and for each
correct prediction incremented. Since the confidence predictor is not used by other parts of the
microarchitecture, it must be added especially for this scheme. This adds some overhead
compared to the other two schemes that do not use the confidence of the predictor.

During a pipeline flush, care has to be taken to undo the changes on the counters of each
flushed instruction correctly to guarantee correct behavior of the dispatch throttling
mechanism. If flushes are implemented as we described in Section 4.1.12 it is sufficient to
reset the counters to zero.

5.1.2 Dispatch Throttling: Evaluation

We compare the three FCD schemes with a baseline that does not contain any flow control
scheme. First, we will examine the frequency of flush events for the four configurations. In
our proposal, flush events are caused by four different types of events: memory dependency
violations, memory queue overflows, memory queue deadlocks, and branch mispredictions.

Memory dependency violations cause flush events but are rare, first, because our
configuration includes a store wait table as dependency predictor (see Section 4.2.3 of
Chapter 4), and second, because we split store instructions so that store addresses are
available early to avoid dependency violations (see Section 4.1.8 of Chapter 2).

Overflow events occur when the memory queue is full (see Section 4.1.5 of Chapter 2),
but more instructions arrive at the memory unit. The most frequent events are deadlock
events. Deadlock events occur when the memory queue is full and an instruction that is
entering the memory unit is older than all instructions in the memory queue.

The frequencies of the flush events affect each other mutually. In addition, since we are
interested in the overall effect of our proposals, the diagrams show the sum of all different
types of flush events. We count flush events relative to 100 committed instructions to get
numbers that are more tangible. This metric avoids distortions that might otherwise occur by

72	

 CHAPTER 5

considering dynamic instead of committed instructions. Because we are counting flush events,
this is especially important. The size of the load queue has a major impact on the results and
because the load queue size is an important cost factor, we include the load queue size as an
explicit parameter in all of our graphs. We include smaller and larger than reasonable sizes to
illustrate the impact of the load queue size. The figures show the number of entries per cluster,
e.g. the number 16 denotes 16 entries in each of the four clusters or 64 entries in total.

Figure 5.1 shows the impact of the dispatch throttling schemes on the frequency of flush
events. The integer benchmarks show a higher number of flush events than the floating-point
benchmarks. The baseline behaves as expected. The number of flushes is reduced as the load
queue is increased in size. This reduction is the result of less load queue overflow events.

However, the three dispatch throttling mechanisms show the opposite behavior. Starting
from a lower level of flushes the number increases with load queue size. The dispatch
throttling is especially severe for small load queues. Not only does it stop load instructions
from dispatching, it also impedes the dispatching of all instructions that follow a stopped load
instruction.

Adding throttling to the baseline turns it into a more conservative configuration that
executes significantly less speculative instructions. As a result, all types of flush events are
reduced. For the hybrid and optimistic control flow schemes, larger load queues lead to a
more aggressive dispatching and consequently more flush events. The conservative scheme
shows the same effect, but the increase in flushes is very small. Memory queue overflows and
memory queue deadlocks are eliminated by the conservative control flow scheme, and since
the dispatch rate is lower than for the other configurations, the number of the other flush

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 73

Figure 5.1: Impact of Dispatch Throttling Schemes on the Frequency of Deadlock Events. Events are
measured in events per 100 committed instructions. The baseline configuration includes no throttling scheme.

flush&INT

Baseline
Hybrid
Optimistic
Conservative

dispatched&INT

Baseline
Hybrid
Optimistic
Conservative

IPC&INT

Baseline
Hybrid
Optimistic
Conservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpFmisFc& ConservaFve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpFmisFc& ConservaFve&

0,0&

0,2&

0,4&

0,6&

0,8&

1,0&

1,2&

1,4&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpFmisFc& ConservaFve&

events is reduced too. (The other flush events are memory dependency violations and branch
mispredictions.)

Next, we will look at the ratio between dispatched and committed instructions. This ratio
is an indicator of the amount of speculative activity of the microarchitecture (and to some
degree of the energy efficiency).

74	

 CHAPTER 5

Figure 5.2: Impact of Dispatch Throttling Schemes on the Dispatch Commit Ratio. The Dispatch Commit
Ratio is the number of dispatched instructions divided by the number of committed instructions. The baseline
configuration includes no throttling scheme.

flush&INT

Baseline
Hybrid
Optimistic
Conservative

flush&FP

Baseline
Hybrid
Optimistic
Conservative

dispatched&INT

Baseline
Hybrid
Optimistic
Conservative

dispatched&FP

Baseline
Hybrid
Optimistic
Conservative

IPC&INT

Baseline
Hybrid
Optimistic
Conservative

IPC&FP

Baseline
Hybrid
Optimistic
Conservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

0,0&

0,2&

0,4&

0,6&

0,8&

1,0&

1,2&

1,4&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

Figure 5.3: Impact of Dispatch Throttling Schemes on Performance. The baseline configuration includes no
throttling scheme.

flush&INT

Baseline
Hybrid
Optimistic
Conservative

flush&FP

Baseline
Hybrid
Optimistic
Conservative

dispatched&INT

Baseline
Hybrid
Optimistic
Conservative

dispatched&FP

Baseline
Hybrid
Optimistic
Conservative

IPC&INT

Baseline
Hybrid
Optimistic
Conservative

IPC&FP

Baseline
Hybrid
Optimistic
Conservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

0,0&

0,2&

0,4&

0,6&

0,8&

1,0&

1,2&

1,4&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'FCD'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& Hybrid& OpGmisGc& ConservaGve&

Figure 5.2 visually resembles very much the results from Figure 5.1. The most noticeable
difference is the result of the conservative flow control scheme. While the number of pipeline
flush events is hardly influenced by the load queue size, the dispatch commit ratio is changed
significantly. This means that each pipeline flush evicts more instructions for the conservative
flow control than for the other configurations. The frequent pipeline flushes of the other
configurations likely shadow each other so that their overall negative effect is diminished.

Figure 5.3 illustrates the impact of the throttling schemes on performance. Neither
scheme can convert the lower flush ratio into a significant performance advantage. The
performance of configurations with very small load queues benefits from the control flow
mechanisms. The performance gained by less frequent pipeline flushes is offset almost exactly
by the performance lost due to the throttling of the dispatch stage.

An interesting anomaly in Figure 5.3 is the fact that the best result is not achieved by the
most expensive configuration but by the conservative flow control with a load queue size of
16 entries. For small queues, the reduction in flushes helps performance but is constrained by
excessive dispatch throttling. Larger queues don’t suffer from excessive dispatch throttling
but experience more flushes, which limit performance. In our experiments, a load queue size
of 16 entries happens to offer the best tradeoff and performs better than the largest queue size
(1.8% better for integer and 3.1% better for floating-point).

Even though the schemes presented in this section could not improve performance
significantly (except for very small queues), they significantly reduce the speculative activity
in the out-of-order core of the processor, which results in an improved energy efficiency.

5.2 Pre–Access Queues

We introduce pre–access queues in our memory unit to decouple the execution of memory
instructions from the calculation of memory addresses (see Figure 5.4). This allows us to
delay the execution of memory instructions until the required execution resources (namely a
memory queue entry) are available. If the pre–access queues can hold enough instructions, we
can avoid memory queue overflows and costly pipeline restarts.

The need for pre–access queues arises from overflows of the memory queues. Avoiding
overflows is particularly important for small memory queues, which tend to overflow
frequently. Growing the memory queue solves the problem but this remedy comes at a price.
Memory queues contain expensive CAM structures and larger queues operate slower and
consume more energy. The pre–access queue in comparison is a simple FIFO memory that is
fast and consumes little energy.

We place the pre–access queue directly before the memory access stage in the memory
pipeline. If an instruction cannot access memory (e.g. because the memory queue is full)
instead of causing a pipeline flush the instruction is buffered in the pre–access queue.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 75

Instructions that already reside in the pre–access queue have priority over instructions that
arrive afterwards. Pre–Access queues operate at a different spot in the pipeline than the flow
control techniques described earlier in this chapter. Both mechanisms can be used in
combination to amplify their effect.

However, pre–access queues have some limits. Since they are FIFO memories, at any
point in time there is only one instruction per queue that can issue to a memory pipeline. This
lack of choice makes it difficult to block instructions because circular dependencies may be
present, inhibit the queue from making further progress, and cause a deadlock. (We will look
again at this problem when we introduce memory issue queues in Section 5.3) Therefore, we
block the pre–access queue only on the condition that the memory queue is full. This allows
us to check for only one deadlock condition that arises when the oldest instruction in flight is
located in a blocked pre–access queue. Lastly, pre–access queues entries are no substitute for
memory queue entries. A lack of memory queue entries will withhold instructions from
accessing memory and therefore limit parallelism. In contrast, the primary function of the
pre–access queue is to avoid costly pipeline flushes.

5.2.1 Pre–Access Queues: Implementation

Figure 5.4 shows how the different pre–access queues fit into the design. The load pre–access
queue (LPQ) receives load instructions from the interconnection network (ICN), buffers the
instruction if necessary, and finally issues the instruction for execution in the memory unit.
The store pre–access queue (SPQ) works in a similar way for store address instructions (see
Section 4.1.8 of Chapter 2). The store data pre–access queue (SDPQ) is not an independent

76	

 CHAPTER 5

Figure 5.4: Distributed Memory Unit with Pre–Access Queues. These queues are the Load Pre–Access
Queue (LPQ), the Store Pre–Access Queue (SPQ), and the Store Data Pre–Access Queue (SDPQ).

LD data
to ICN

LD
from ICN

STA
from ICN

SDQSQ

LPQ SDPQSPQ

LQ Data
Cache

STD
from ICN

queue but essentially a buffer that holds store data instructions while their corresponding store
address instruction is waiting in the store pre–access queue.

When there is no space left in the memory queue, instructions wait in the pre–access
queue instead of causing an overflow. Overflows can still occur when the pre–access queue is
full. However, since the pre–access queue contains no CAM structure it is far less problematic
to increase its size. With a reasonable pre–access queue size, the number of overflows is
significantly reduced. To decrease the number of overflows even further, the dispatch stage
could stall when one of the pre–access queue fills up to a certain mark, e.g. half of its entries.
However, we found that this optimization has no measurable effect on performance.

The pre–access queue also assumes the function of decoupling the inter cluster network
(ICN) from the memory pipeline. To reduce the complexity of the memory units we limit
them to execute no more than one load and one store instruction per cycle. This matches the
bandwidth of the address generation units, which are limited in a similar way to calculate the
addresses of only one load and one store instruction per cycle. However, when the distribution
of instructions to memory pipelines is imbalanced, a bandwidth mismatch can occur at the
local level. Each cycle up to four memory instructions may arrive at any given memory unit
(one from each of the two links of the ICN—a bidirectional ring—and two from the address
generation units of the local cluster) but no more than two instructions can execute every
cycle. The pre–access queue substitutes the ICN network buffer to decouple the memory
pipeline from incoming instructions. Therefore, they require a mechanism to decouple the
network from the memory units.

Instructions that arrive from the interconnection network are always inserted into one
pre–access queue, where they remain until they are successfully executed. After a successful
execution, they are removed from the pre–access queue and inserted into the corresponding
memory queue.

If the pre–access queue contains no instructions, any instruction that arrives from the
interconnect network is executed immediately while it is inserted into the pre–access queue as
well as the memory queue. This way any unnecessary delay in a potentially critical instruction
is avoided.

Store data instructions that arrive at the memory unit are associated to their
corresponding store address instructions, as described in Section 4.1.8 of the previous chapter.

5.2.2 Pre–Access Queues: Evaluation

We compare a configuration with pre–access queues, the baseline from Chapter 4, the
conservative flow control scheme, and a combination of the conservative flow control scheme
with pre–access queues. We will use the same methodology as in Section 5.1.2 before. The

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 77

pre–access queues have a size of 16 entries. We found that larger pre–access queues to have
no measurable impact on performance.

Figure 5.5 shows the frequency of flush events. The results for the baseline and
conservative flow control scheme are the same as discussed previously in Section 5.1.2. The
pre–access queue configuration shows consistently less flush events than the baseline. For
load queues bigger than 8 entries it also shows less flush events than the conservative flow
control scheme. The combination of pre–access queue and conservative flow control shows
fewer flushes than any of the other configurations for all load queue sizes.

Comparing the four configurations at the extreme sizes, we observe that for small sizes
the discerning parameter is the throttling mechanism, but for large sizes it is the presence of a
pre–access queue.

Configurations with very small load queues suffer from many load queue deadlocks. The
conservative control flow mechanism avoids all deadlocks in the load queue while a pre–
access queue cannot inhibit this source of pipeline flushes. Consequently, the configurations
with dispatch throttling show less overall flush events for small load queues.

Configurations with a rather aggressive dispatch policy (all configurations except
conservative flow control with small load queues) are more likely to cause bandwidth
imbalances that overflow the ICN network buffers (of two entries). The pre–access queue
instead is larger than an ICN network buffer and does not overflow easily. Consequently the
configurations with a rather aggressive dispatch policy depend primarily on the pre–access
queue to reduce overall flush events.

78	

 CHAPTER 5

flushes&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

DCR&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

IPC&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

0,00&

0,25&

0,50&

0,75&

1,00&

1,25&

1,50&

1,75&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

Figure 5.5: Impact of Pre–Access Queue on the Frequency of Deadlock Events. Events are measured in
events per 100 committed instructions. The baseline configuration includes no pre–access queue or throttling
scheme.

Figure 5.6 shows the ratio of dispatched to committed instructions. The graphs resemble
Figure 5.5 and the configuration that combines the pre–access queue with the control flow has
the best dispatch commit ratio. The effectiveness of the control flow scheme diminishes with
increasing load queue size.

Figure 5.7 shows the impact on performance. The configuration with pre–access queue
but without dispatch throttling achieves the highest performance for all load queue sizes. The

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 79

flushes&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

DCR&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

IPC&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

0,00&

0,25&

0,50&

0,75&

1,00&

1,25&

1,50&

1,75&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

Figure 5.6: Impact of Pre–Access Queue on the Dispatch Commit Ratio. The Dispatch Commit Ratio is the
number of dispatched instructions divided by the number of committed instructions. The baseline configuration
includes no pre–access queue or throttling scheme.

flushes&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

DCR&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

IPC&INT

Baseline
PAQ
FCDMConservative
PAQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

0,00&

0,25&

0,50&

0,75&

1,00&

1,25&

1,50&

1,75&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'PAQ'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& FCDMConservaGve& PAQ&+&FCDMConservaGve&

Figure 5.7: Impact of Pre–Access Queue on Performance. The baseline configuration includes no pre–access
queue or throttling scheme.

performance improvement compared to configurations without pre–access queue is significant
for all load queue sizes. The best configuration with a pre–access queue is 12,5% faster for
integer and 26,7% faster for floating-point than the conservative dispatch throttling. The
integer performance reaches a plateau at a load queue size of 20, floating-point performance
at a size of 24 entries. This improvement in performance is the result of the reduction in flush
events, which we observed earlier combined with a more aggressive dispatch policy
compared to the flow control in dispatch.

The configuration with both, a pre–access queue and the dispatch throttling mechanism,
eventually reaches the same performance plateau as the best configuration but its performance
is inferior for most queue sizes. While this configuration is able to reduce flush events better
than the other configurations, its less aggressive dispatch policy prevents it from exploiting as
much parallelism as the best configuration.

In summary, the pre–access queue increases performance significantly for all benchmarks
and queue sizes over the baseline and the flow control at dispatch. Floating-point performance
is increased significantly, especially for large load queues.

In the next sections, we will propose alternative techniques that are more effective in
avoiding deadlocks without sacrificing performance.

5.3 The Memory Issue Queue

We introduce memory issue queues in our memory unit as a refinement of the pre–access
queues we presented in the last section. Like pre–access queues, memory issue queues
decouple the execution of memory instructions from the calculation of memory addresses (see
Figure 5.9). This allows us to delay the execution of memory instructions until the required
execution resources (e.g. a memory queue entry) are available. If the memory issue queues
can hold enough instructions, we can resolve resource conflicts without costly pipeline
restarts. Furthermore, memory issue queues allow us to establish an issue policy that decides
which instructions are chosen for issue. Issue policies not only can improve performance, they
also provide a basis for a new set of techniques. These techniques selectively block
instructions in the memory issue queue and thereby reduce the frequency of events that cause
expensive pipeline flushes (e.g. deadlocks, memory dependency violations, etc.).

The introduction of the memory issue queues implies that memory instructions will now issue
two times: first to calculate the address and then to access memory. The new queues allow
memory instructions to reissue if an error occurs during their execution. Queue overflows are
one example of such an execution error, but such errors also include for example partial
memory dependencies (where several memory dependencies exist for a single instruction) and
store–load dependencies, where the store data has not yet arrived and the load can therefore
not yet execute successfully. If no mechanism for a reissue exists, a pipeline restart may be

80	

 CHAPTER 5

the only alternative. Providing a reissue scheme allows the architecture to handle these cases
more efficiently.

Some commercial microarchitectures allow instructions to reissue directly from the
memory queue. Examples are the microarchitectures of the P6 [Abr97] (see Section 2.2.3 of
Chapter 2) and the Athlon [AMD02] (see Section 2.2.4 of Chapter 2). In these cases, the
memory issue queue and the memory queue are the same structure, sharing the functionality
of both queues. However, the expensive functionality of a CAM is only required for entries
that hold instructions that did already execute successfully, since only those entries need to be
searched for potential memory dependency violations. On the other hand, once successfully
executed, these instructions do not need to be reissued again; hence they do not require the
functionality of an issue queue. By providing two separate, specialized structures for
searching instructions and for reissuing them, we aim to reduce costs.

The memory issue queue is also the optimal point in the pipeline to enforce issue policies
for load and store instructions, e.g. giving precedence to older instructions to improve
performance. Because the memory issue queue can issue any instructions, it can also
selectively block instructions without blocking the whole queue (and accidentally create a
deadlock in the memory issue queue). This can e.g. be used to avoid deadlocks in the memory
queue (see Section 5.4). While these policies can be implemented in earlier stages of the
pipeline, doing so would unnecessarily create a delay between the decision to issue and the
actual issue, and thereby increase the latency of the delayed instructions. This delay is
minimized by enforcing the issue policy as late as possible–in the memory issue queue.

5.3.1 Memory Issue Queue: Implementation

The memory issue queue is a refinement of the pre–access queue. It serves the same purpose
but adds functionality. The main difference is that the memory issue queue is not a FIFO and
therefore the management of queue entries is slightly more complex. Instructions enter the
memory issue queues as soon as their addresses are calculated by the out-of-order core and
leave the queue once they successfully issue. Therefore, instructions are inserted into and
removed from the queue out of program order. This suggests a similar spatially unordered
implementation as memory queues, i.e. allocation and release of queue entries could be solved
in a similar manner. (See Sections 4.1.4 and 4.1.6 of Chapter 4. Spatially unordered issue
queues have also been proposed by Buyuktosunoglu et al. [Buy02].)18

Instructions that arrive from the interconnection network are always inserted into one
memory issue queue where they remain, until they are successfully executed. The memory
issue queue selects a ready instruction in the queue to be issued in the next clock cycle. After

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 81

18 Other organizations are possible. E.g. instructions could be kept in the order by which they were inserted and
the queue could be compacted when an instruction is released.

a successful execution, they are removed from the memory issue queue and inserted into the
corresponding memory queue.

If the memory issue queue contains no instructions that are ready to issue, any instruction
that arrives from the interconnect network is executed immediately while it is inserted into the
memory issue queue as well as the memory queue. This way any unnecessary delay in a
potentially time critical instruction is avoided. This situation might occur when the issue
queue is empty or all instructions in the issue queue are blocked (e.g. to avoid a deadlock, see
Section 5.4).

Wakeup instructions for reissue

Instructions, which did not execute with success, remain in the memory issue queue, but
are marked as not ready. The queue includes a wakeup mechanism to promote these
instructions again to the ready state. A simple option is to use a small timer per instruction and
promote instructions after a fixed number of clock cycles regardless of the event that
prevented them from executing correctly. Another option is to include a wakeup scheme
where each instruction monitors an event bus to detect events that indicate the absence of the
condition that prevented its successful execution. This second option is similar to the wakeup
phase in a conventional issue queue where instructions monitor an event bus (instead of a
result bus) for event tags (instead of register tags). [Abr97]

Select instruction for issue

While it is not necessary for the correct function of the memory unit to select always the
oldest ready instruction for issue, this policy improves performance because older instructions
are more likely to be in the critical program path. Figure 5.8 shows how a mechanism to
identify the oldest ready instruction in the queue might work.19 While the memory queue
itself is unordered the illustrated mechanism uses a bit vector indexed by the global load or
store sequence number to represent the ready state of each instruction in the queue. This
spatial ordering allows a straightforward identification of the oldest ready instruction.
Whenever the ready state of an entry in the unordered memory queue changes the ready bit
vector is updated accordingly. Initially all instructions are ready and only if issue is aborted
due to a conflict they pass into the not ready state.

The transition from the not ready state to the ready state is triggered by the wakeup logic
and is more complex. More than one instruction may pass from the not ready to the ready
state in a single cycle (in an extreme case all instructions in the queue might pass from not

82	

 CHAPTER 5

19 Other issue policies than oldest first are possible. E.g. instructions could be issued in the order by which they
were inserted into the queue. Such a policy would be cheaper to implement, but performance would be slightly
lower. Whatever the issue policy, the important difference is that unlike a FIFO queue an issue queue allows
ready instructions to issue even if they are not at the tail of the queue (i.e. even if they are not the instruction,
which spent most time in the queue).

ready to ready in a single cycle). Instantly updating the ready vector from the unordered
memory queue could be challenging because the bit position in the ready vector
corresponding to each woken instruction must be identified. An update could be accelerated
by caching the decoded bit–vector of the global sequence number for each memory queue
entry.

However, the update does not have to be instant to guarantee correct operation of the
queue and the extreme case of waking up the entire queue is very infrequent. A simpler
solution to update the ready vector gradually might be preferable; e.g. the global sequence
number of the two instructions can be decoded with two simple decoders, which could
iteratively update the entire queue.

Similar to pre–access queues store data instructions that arrive at the memory unit are
associated to their corresponding store address instructions, as described in Section 4.1.8 of
Chapter 4.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 83

0000000110010 00 0 Ready Vector

HeadOldest Ready

Figure 5.8: Selecting the Oldest Ready Instruction. A ready vector dedicates one bit to each instruction in
flight and is indexed by the global load or store sequence number. The head indicates the oldest memory
instruction in flight. The oldest ready instruction is found by scanning from the position of the head and skipping
all adjacent 0 bits until the first 1 bit is found. This bit indicates the oldest ready instruction in the queue. The
process of scanning is similar to a carry propagating during addition.

LD data
to ICN

LD
from ICN

STA
from ICN

SDQSQ

LIQ SDIQSIQ

LQ Data
Cache

STD
from ICN

Figure 5.9: Distributed Memory Unit with Memory Issue Queues. These queues are the Load Issue Queue
(LIQ), the Store Issue Queue (SIQ), and the Store Data Issue Queue (SDIQ).

5.3.2 Memory Issue Queue: Evaluation

To evaluate the effectiveness of the memory issue queue we will first look at the frequency of
pipeline flush events. Pipeline flushes are an important measure because they do not only
affect performance negatively, but also waste energy executing instructions multiple times.

In the context of the load queue, we distinguish three types of flush events: memory
dependency violations, load queue overflows and load queue deadlocks. Memory dependency
violations cause flush events but are rare, first because our configuration includes a store wait
table as dependency predictor (see Section 4.2.3 of Chapter 4), and second because we split
store instructions so that store addresses are available early to avoid dependency violations
(see Section 4.1.8 of Chapter 2). Overflow events occur when the memory queue as well the
memory issue queue (or the pre–access queue, see Section 4.1.5 of Chapter 2) are full, but
more instructions arrive at the memory unit. Deadlock events occur when the memory queue
is full and the oldest instruction in the memory unit is blocked in the memory issue queue (or
the pre–access queue).

Figure 5.10 shows the frequency of flush events for configurations with a load issue
queue of 16 entries each. For comparison, we also show a pre–access queue of the same size
and combinations with the conservative flow control dispatch mechanism.

Comparing the two configurations without flow control at dispatch, the configuration
with the load issue queue suffers less flush events than the configuration with the pre–access
queue for all simulated load queue sizes. A full load queue is a precondition for a deadlock
flush, and the flush frequency does indeed decline with increasing queue size for both
configurations. Another precondition for a deadlock are younger instructions that occupy all

84	

 CHAPTER 5

Flush&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

DCR&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

IPC&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

1,0&

1,1&

1,2&

1,3&

1,4&

1,5&

1,6&

1,7&

1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Issue'Size'

Impact'of'MIQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

0,0&
0,2&
0,4&
0,6&
0,8&
1,0&
1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'IPC'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

Figure 5.10: Impact of Load Issue Queue on Flush Events. Events are measured in events per 100 committed
instructions. Only the arithmetic mean is shown for each queue size.

load queue entries while an older instruction is still waiting to issue. Because the load issue
queue gives older instructions a higher issue priority than younger instructions, it reduces the
probability of a deadlock. The pre–access queue issues instructions strictly in incoming order
with no respect to age and is therefore more likely to create a deadlock.

The combinations with the conservative flow control dispatch mechanism behave
virtually identically. The number of flush events increases slightly for larger queues. For large
queue sizes, the number of flushes is similar for all four configurations, for all other queue
sizes the flow control at dispatch produces significantly less flush events.

Figure 5.11 shows the dispatch commit ratio as a function of queue size. The results
resemble very much Figure 5.10. The memory issue queue improves the dispatch commit
ratio especially for small load queues.

Figure 5.12 shows the impact of the load issue queue on performance as a function of
queue size. Comparing to the earlier Figure 5.10 we can observe that for the memory issue
queue the reduction of the flush frequency translates directly into an improved performance
for all queue sizes and for integer as well as for floating-point benchmarks. The configuration
with a load issue queue but without dispatch throttling reaches a 1.6% higher plateau at a load
queue size of 20 entries for integer and a 3.1% higher plateau at a size of 24 entries for
floating-point benchmarks.

As already observed in Section 5.1.2 for the flow control at dispatch the reduction in
flush events does not directly translate into higher performance. The reduction of flushes
comes at the price of executing significantly less instructions speculatively. This is especially
evident for small queues.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 85

Figure 5.11: Impact of Load Issue Queue of 16 entries on the Dispatch Commit Ratio. Only the arithmetic
mean is shown for each queue size.

Flush&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

DCR&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

IPC&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

1,0&

1,1&

1,2&

1,3&

1,4&

1,5&

1,6&

1,7&

1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

0,0&
0,2&
0,4&
0,6&
0,8&
1,0&
1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'IPC'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

The memory issue queue can reduce the number of deadlock events and thereby improve
performance. However, especially for smaller load queue sizes deadlocks still occur
frequently and reduce performance. This is the motivation for another mechanism proposed in
the following section. This mechanism will eliminate deadlocks without compromising
performance, as conservative flow control at dispatch does.

5.4 Conservative Deadlock Aware Entry Allocation (CDA)

The memory issue queue presented in the last section enables us to choose an issue policy. In
this section we describe an issue policy that allows us to avoid deadlocks altogether. This
mechanism relies on information that is exchanged between the clusters over the
interconnection network.

To avoid deadlocks completely an instruction may issue only, if all older instructions are
guaranteed to be able to issue too. This includes instructions whose addresses are not yet
calculated. Once instructions calculate their address and hence their mapping to clusters
becomes known, they have to inform all clusters of the mapping. So to decide whether or not
to issue an instruction, all instructions with unknown mappings and all instructions that map
to the same cluster are taken into account. If the number of free entries exceeds the number of
older instructions for the same cluster or with undetermined mapping, then it is completely
safe to issue an instruction.

86	

 CHAPTER 5

Flush&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

DCR&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

IPC&INT

PAQ
PAQ&+&FCDMConservative
MIQ
MIQ&+&FCDMConservative

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

1,0&

1,1&

1,2&

1,3&

1,4&

1,5&

1,6&

1,7&

1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Issue'Size'

Impact'of'MIQ'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

0,0&
0,2&
0,4&
0,6&
0,8&
1,0&
1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'MIQ'on'IPC'
''

SPECint ' ' 'SPECfp'

PAQ& PAQ&+&FCDMConservaGve& MIQ& MIQ&+&FCDMConservaGve&

Figure 5.12: Impact of Load Issue Queue of 16 entries on performance. Only the harmonic mean is shown
for each queue size.

5.4.1 Conservative Deadlock Aware Entry Allocation: Implementation

The deadlock–aware entry allocation mechanism is built around a permission bit–vector (PV).
This vector is indexed by the load sequence number or store sequence number and contains
one bit for each dispatched, in-flight load instruction. (In the following discussion we will
refer to the load queue only, however the same arguments apply to the implementation of the
mechanism for the store queue.) Each memory issue queue has its own permission vector and
each load instruction in-flight in the out-of-order core owns a bit in the permission vector. An
instruction is allowed to issue, if its corresponding permission bit is set. The initial state after
reset is a permission vector that contains all zeros except for the first Nqueue positions, where
Nqueue refers to the size of the load queue. Figure 5.13 a) shows an example for a queue size of
four. This configuration allows the four oldest instructions in-flight to issue but denies issue to
all other instructions.

As more instructions are executed, the more information is known about the mapping of
load instructions to clusters. Whenever a load instruction calculates its address, the instruction
is sent to the corresponding cluster. Additionally, a NACK message containing the load
sequence number is sent to all other clusters to inform them about the new mapping. Upon
receiving the messages, the other clusters update their permission vectors in the following
way: Figure 5.13 b) shows the example of a NACK message that is received for an instruction
that had no prior permission to issue. In this case, its corresponding permission bit is set in the
vector. Figure 5.13 c) shows the case of a NACK for a load that did have prior issue
permission. In this case, the permission is passed along to the oldest instruction without issue
permission. This is accomplished by passing the permission bit to the left until the first zero-
bit is encountered, somewhat similar to carry propagation.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 87

Figure 5.13: Updates of the Permission Vector (PV).

The number of one–bits in the permission vector at any time is equal to the number of
received NACK messages plus Nqueue. The mechanism gives issue permission to the first
Nqueue instructions out of all instructions that did not send a NACK message. Notice that the
instructions that did not send a NACK message are exactly those, which are known to map to
the local cluster or whose mapping is not yet known. By choosing the first Nqueue instructions
out of these instructions, deadlocks are completely avoided as we explained earlier.

To allow continuous operation the permission vector is organized as a circular buffer and
the permission bits may pass from the leftmost to the rightmost bit. Upon commit of an
instruction the corresponding permission bit is cleared in the remote clusters as shown in
Figure 5.13 d). If the commit liberates an instruction in the local load queue, the next
youngest load is given permission to issue, see Figure 5.13 e). Again, this is implemented by a
carry–alike mechanism that traverses the permission bits to the left until a zero bit is
encountered.

To guarantee the correct behavior of this mechanism, the size of the permission vector is
defined to be equal to the maximum number of load instructions in-flight in the out-of-order
core plus Nqueue bits. These Nqueue additional bits are necessary to handle extreme cases, for
example, when a single cluster receives NACKs for all in-flight loads.

Since all clusters can calculate load addresses in parallel, there can be many NACK
messages generated in a single cycle. To limit the complexity of the deadlock–aware entry
allocation we limit the generation of load addresses in our experiments to one address per
cluster per cycle. The generation of store addresses is also limited in the same way. The
bandwidth of the address generation is matched by the cache bandwidth of one load and one
store per cluster.

5.4.2 Conservative Deadlock Aware Entry Allocation: Evaluation

Figure 5.14 shows the impact of the technique on the frequency of flush events. For integer as
well as for floating-point, the number of flush events is reduced significantly. Unlike the other
configurations, the number of flushes for the conservative deadlock aware entry allocation
does hardly depend on the size of the load queue. Since queue overflow events are handled by
the memory issue queue and deadlocks by the allocation mechanism, these two sources of
flush events are practically eliminated. The remaining sources—memory dependency
violations and branch mispredictions—are mainly independent of the load queue size.

Figure 5.15 shows the dispatch commit ratio for the conservative deadlock aware entry
allocation. Like the number of flush events, it is hardly affected by the size of the load queue.
The conservative deadlock aware entry allocation shows a better ratio than all other
configurations, the advantage is especially significant for small queue sizes.

88	

 CHAPTER 5

Figure 5.16 shows the IPC as a function of load queue size. The technique has a significant
effect on the performance of the configurations with small queues. The performance of
configurations with large queues reaches a plateau and improvements are smaller. This is the
expected result, because large queues incur very little deadlock events, so there is little
potential for this technique. Little queues on the other hand suffer from deadlocks and benefit
from conservative deadlock aware entry allocation. Nonetheless, the performance plateau is
reached with smaller load queues (16 entries for integer and 24 entries for floating-point). A

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 89

Flush&INT

Baseline
PAQ
MIQ
MIQ+CDA

DCR&INT

Baseline
PAQ
MIQ
MIQ+CDA

IPC&INT

Baseline
PAQ
MIQ
MIQ+CDA

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

0&
0,2&
0,4&
0,6&
0,8&
1&

1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

Title'

Figure 5.15: Impact of Conservative Deadlock Aware Entry Allocation on Dispatch Commit Ratio. Only
the arithmetic mean is shown for each queue size.

Flush&INT

Baseline
PAQ
MIQ
MIQ+CDA

DCR&INT

Baseline
PAQ
MIQ
MIQ+CDA

IPC&INT

Baseline
PAQ
MIQ
MIQ+CDA

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

0&
0,2&
0,4&
0,6&
0,8&
1&

1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

Title'

Figure 5.14: Impact of Conservative Deadlock Aware Entry Allocation on Flush Events. Only the arithmetic
mean is shown for each queue size.

load queue size of 12 entries can achieve integer performance within 1.9% of the largest load
queues and with 20 entries within 1.3% of the best floating-point performance.

5.5 Early Release of Load Queue Entries

To maximize the effective load queue size, instructions should occupy load queue entries no
longer than required. Traditionally, instructions liberate their load queue entries when they
commit. By liberating entries earlier, we can make better use of the load queue. Depending on
the design in question the load queue can serve different purposes. The two most common
uses are the detection of data dependency misspeculations and the enforcement of memory
consistency [Gha95] in the context of multiprocessors.

Data Dependency Speculation

Memory units that use data dependency speculation usually employ the load queue to detect
misspeculations. These misspeculations are store–load ordering violations, which occur when
a load was reordered with respect to a store and both instructions access a common memory
location. This verification is required to guarantee correct memory semantics.

Example 5.1 illustrates the problem. Because the load instruction follows the store
instruction in the original program order and both instructions access the same memory
location, the value in register r0 must be the same as the value of register r1 at the end of the
instruction sequence. However, if the out-of-order core decides to execute the load instruction
before the store instruction, a stale value will end up in register r0. Later, when the store
instruction is executed by the out-of-order core (more precisely: when it is inserted into the

90	

 CHAPTER 5

Flush&INT

Baseline
PAQ
MIQ
MIQ+CDA

DCR&INT

Baseline
PAQ
MIQ
MIQ+CDA

IPC&INT

Baseline
PAQ
MIQ
MIQ+CDA

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ev
en

ts
'p
er
'1
00
'In

st
ru
c/
on

s'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Flush'Events'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Di
sp
at
ch
'C
om

m
it'
Ra

/o
'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'Dispatch'Commit'Ra/o'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

0&
0,2&
0,4&
0,6&
0,8&
1&

1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'CDA'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ& MIQ+CDA&

Title'Figure 5.16: Impact of Conservative Deadlock-Aware Entry Allocation on Performance. Only the harmonic
mean is shown for each queue size.

store queue), it will search the load queue and encounter the load instruction that is both
younger and accesses the same memory location.

In our architecture, a pipeline flush will force the load and all instructions that depend on
it to re-execute with the correct register values. A more sophisticated (and more complex)
architecture might choose to selectively re-issue only those instructions that depend on the
erroneous result of the load instruction. [Rot97]

Multiprocessor Memory Consistency

Shared memory multiprocessor systems may require further verifications of the memory
ordering. Exactly which verifications are required, depends on the memory consistency model
used for the multiprocessor system in question. The following examples illustrate the
involvement of the load queue.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 91

Before:	

register values identical on both processors,
	

 register r1 contains value one,
	

 memory location (r0) contains value zero.

Before:	

register values identical on both processors,
	

 register r1 contains value one,
	

 memory location (r0) contains value zero.

Before:	

register values identical on both processors,
	

 register r1 contains value one,
	

 memory location (r0) contains value zero.

Before:	

register values identical on both processors,
	

 register r1 contains value one,
	

 memory location (r0) contains value zero.

Processor 1 Processor 2

stl r1, (r0) A: ldl r2, (r0)

B: ldl r3, (r0)

After:	

 registers r2 and r3 of processor 2 contain values one
	

 and zero respectively. (incorrect)
After:	

 registers r2 and r3 of processor 2 contain values one
	

 and zero respectively. (incorrect)
After:	

 registers r2 and r3 of processor 2 contain values one
	

 and zero respectively. (incorrect)
After:	

 registers r2 and r3 of processor 2 contain values one
	

 and zero respectively. (incorrect)

Example 5.2: Load Ordering. The reversed order of execution of the
load instructions, the execution of the store instruction inbetween and the
aliasing of the three instructions lead to an incorrect result.

Example 5.1: Read-after-Write Dependency. The reversed order of
execution and the aliasing of the two instructions lead to an incorrect
result.

Before:	

register r1 contains value one,
	

 memory location (r2) contains value zero.
Before:	

register r1 contains value one,
	

 memory location (r2) contains value zero.
Before:	

register r1 contains value one,
	

 memory location (r2) contains value zero.

stl r1,(r2) ; executes later

ldl r0,(r2) ; executes first

After:	

 register r0 contains value zero. (incorrect)After:	

 register r0 contains value zero. (incorrect)After:	

 register r0 contains value zero. (incorrect)

Example 5.2 shows an instruction sequence that violates the memory ordering model of
all architectures we considered, Alpha [Alpha], x86 [IA32], Itanium [IA64M], SPARC TSO
[Wea94], PowerPC [Fre05], and IBM z/Architecture [ESA390].

The two load instructions A and B access the same memory location. In this example, the
two load instructions were executed out of program order. Instruction A observes the memory
value written by processor 1 while instruction B observes the original memory value. This
combination of results is not allowed by memory ordering models.

The situation described above in Example 5.2 occurs only if two load instructions access
the same memory location and execute out-of-order. Therefore, some microprocessors like the
Alpha EV6 [Kes98] and the Power4 [Ten01] search the load queue to detect this condition.

Example 5.3 describes another case that violates the memory ordering scheme of some
architectures (x86, IBM z/Architecture, Itanium, SPARC TSO) but not the model of others
(Alpha, PowerPC).

Here instructions access two different memory locations. Load instruction A observes the
value written by processor 1 while load instruction B observes the original memory value.
Again, the load instructions A and B were executed out of program order.

This problem can be circumvented by intercepting snoop requests that conflict with
instructions, which were executed speculatively out of program order. These instructions are
typically held in the load queue. In the example above, processor 1 will send snoop requests
for both stores to the system memory bus. Processor 2 will receive these snoop requests and
search its load queue for any speculatively executed load instructions that access the same
memory location. If any matching loads are found these loads and any dependent instructions
are re-executed and the incorrect result illustrated in Example 5.3 is thereby avoided. It should
be noted that this technique also solves the problems described in Example 5.2.

92	

 CHAPTER 5

Example 5.3: Load/Store Ordering. The reversed order of execution of the
load instructions, the execution of the store instructions inbetween and the
aliasing of the four instructions lead to an incorrect result.

Before:	

register values identical on both processors,
	

 register r0 contains the value one,
	

 memory locations (r1) and (r2) contain value zero.

Before:	

register values identical on both processors,
	

 register r0 contains the value one,
	

 memory locations (r1) and (r2) contain value zero.

Before:	

register values identical on both processors,
	

 register r0 contains the value one,
	

 memory locations (r1) and (r2) contain value zero.

Before:	

register values identical on both processors,
	

 register r0 contains the value one,
	

 memory locations (r1) and (r2) contain value zero.

Processor 1 Processor 2
stl r0, (r1) A: ldl r3, (r2)

stl r0, (r2) B: ldl r4, (r1)

After:	

 registers r3 and r4 of processor 2 contain values one
	

 and zero respectively. (incorrect for some
	

 architectures)

After:	

 registers r3 and r4 of processor 2 contain values one
	

 and zero respectively. (incorrect for some
	

 architectures)

After:	

 registers r3 and r4 of processor 2 contain values one
	

 and zero respectively. (incorrect for some
	

 architectures)

After:	

 registers r3 and r4 of processor 2 contain values one
	

 and zero respectively. (incorrect for some
	

 architectures)

Which mechanism is preferable depends on the memory ordering model in question. E.g.
architectures like x86, IBM z/Architecture, Itanium, and SPARC TSO would implement the
solution of Example 5.3. For other architectures like Alpha and PowerPC, the solution of
Example 5.2 is sufficient. The solution of Example 5.3 will also give correct results for these
two architectures, but will hurt performance because more instructions will be re-executed
than is actually necessary.

Notice that the mechanism from Example 5.2 can be refined by combining it with the
mechanism from Example 5.3. Considering Example 5.2, a pipeline flush is only required if a
load instruction is both hit by an older load instruction and an external store instruction. This
refinement increases the implementation complexity slightly, but avoids the performance loss
of unnecessarily re-executed instructions. [Ten01]

Until now, we assumed that load queue entries are allocated when the load instruction is
speculatively executed and released when the load instruction commits (or a pipeline flush
occurs). However, the time frame during which a load instruction must be present in the load
queue is often shorter.

Consider Example 5.1 of the last section: Let’s assume a load instruction, which is
present in the load queue. Suppose that all store instructions, which are older than this load
instruction, have already searched the load queue for conflicts. Then this load instruction can
no longer cause store–load conflicts and does no longer need to participate in these searches.

A similar argument holds for Example 5.2. Let’s assume a load instruction, which is
present in the load queue. If all load instructions, which are older than this load instruction,
did already search the load queue, then this load instruction can no longer cause a conflict and
does no longer need to participate in these searches.

These two observations enable us to propose a scheme to remove load instructions from
the load queue without impacting the functionality of the queue. We call this scheme early
release of load queue entries or ERLQ for short. The scheme can be applied to conventionally
centralized as well as to distributed memory pipelines.

In case of a centralized memory pipeline a load instruction must comply to the following
condition: All load and store instructions, which are older than the load in question, did
already search the load queue. In a typical microarchitecture, load and store instructions
search the load queue as they are inserted into the load and store queues. In this case, the
condition is equivalent to the condition that all older load and store instructions are either
present in the load or store queue or were already released or committed.

In case of a distributed memory pipeline, we must also consider instructions that are
mapped to other pipelines. The condition to release a load queue entry is modified as follows:

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 93

All load and store instructions which are older than the load in question did already search the
load queue or are known to execute in other pipelines.

The technique used to resolve Example 5.3 (intercepting snoop requests) requires the
presence of all load instructions in the load queue. However, it seems reasonable to assume
that snoop events compared to local stores are rather infrequent. (The appropriateness of this
assumption depends on the nature of the software used and the scale of the multiprocessor.) If
one structure is used to disambiguate local load instructions and another structure for external
snoop requests the technique outlined above could still be applied to the first structure. Only
the less frequently accessed structure, which handles external snoops, would have to
accommodate all loads up to the commit stage.

5.5.1 Early Release of Load Queue Entries: Implementation

The early release mechanism checks periodically if the oldest instruction in the load queue
meets the necessary conditions to be released early from the queue. There are two conditions
to be met. First, all in–flight load instructions that are older than the candidate must either
map to another cluster or have been already released from the load queue. This guarantees
that there are no outstanding address comparisons for the candidate in question. Second, all
store instructions older than the candidate must either map to another cluster or be present in
the store queue (i.e. the addresses of the stores are known and all possible dependencies with
the candidate load have already been resolved). If these conditions are fulfilled the candidate
load is removed from the load queue.

The mechanism for the early release of load queue entries is built around two bit–vectors
called the allocation vector and the unknown vector. There are two sets of these vectors in
each cluster, one for the store queue and one for the load queue. Each load and store
instruction in the out-of-order core owns one bit in each vector. This bit is accessed by
indexing the vector with the load (or respectively store) sequence number.

To find the oldest load in the local load queue we use an allocation vector, which is
indexed by the load sequence number just as the vectors in the previous section. The load
queue allocation vector contains a one–bit if the corresponding instruction is present in the
local load queue or a zero–bit otherwise. Starting from the head of the allocation vector (the
head corresponds to the oldest in-flight load in any cluster) the vector is searched to the left
until a one–bit is found. This bit marks the oldest instruction already present in the load
queue. This procedure is illustrated in Figure 5.17 a).

Once the oldest load instruction in the queue is identified, the mechanism has to check
for instructions that are older than the load in question but are not present in the queue. Figure
5.17 b) illustrates the process of identifying these unknown predecessors. In a step similar to
the one used to identify the oldest load, a predecessor mask is generated. This mask marks all
predecessors with a one–bit in the corresponding position. This step may be performed in

94	

 CHAPTER 5

parallel with the previous step a). The unknown vector shown contains a one–bit for all
instructions whose mapping is not yet known. These are all loads, which did not send a
NACK message and are not present in the local load queue. The logical AND of the
predecessor mask and the unknown vector generates a vector that indicates the position of any
unknown predecessors. If any of the bits in this vector is set, the early release is not possible.

To be able to identify unknown older store instructions, each valid entry of the load
queue allocation vector contains the store sequence number of its closest store predecessor. A
process similar to the one described in the last paragraph and illustrated in Figure 5.17 b) is
performed for the store queue of the local cluster using the sequence number of the closest
store predecessor of the candidate load.

The candidate load can only be released if the unknown predecessor vectors for both load
and store queue contain only zeros.

The allocation vector is updated whenever an instruction is inserted or removed from the
local queues. It directly reflects the contents of the local queues. If an entry is allocated the
corresponding bit is set, if an entry is released, the bit is cleared.

The unknown vectors for both load and store queue are as well updated whenever the
allocation vector is updated. However it takes the opposite action, if an entry is allocated the
corresponding bit is cleared and if an entry is released a bit is set. The unknown vector is also
updated when a NACK or remote commit is received. Upon a NACK the corresponding bit is
cleared, upon a remote commit the corresponding bit is set.

NACK and remote commit messages are also used by the Conservative Deadlock Aware
Entry Allocation mechanism described in Section 5.4 of this chapter. Since both mechanisms,

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 95

Figure 5.17: How to Find a) the Oldest Load and b) Unknown Predecessors.

ERLQ and CDA, can be used in conjunction, analyze the same messages and use bit–vectors
to manage internal information, they can share part of the implementation.

5.5.2 Early Release of Load Queue Entries: Evaluation

Figure 5.18 shows the impact of ERLQ on performance. To demonstrate the cumulative effect
of the techniques presented in this chapter, we include configurations with an increasing
number of features starting with a basic configuration with a pre–access queue, with a
memory issue queue, then adding the CDA mechanism and finally adding the ERLQ.

For small queue sizes, there is a significant benefit of applying ERLQ. Middle queue
sizes see some gain. Larger queue sizes (from 16 entries on upward for integer and 24 entries
on upward for floating-point) see only a marginal improvement in performance, because the
performance ultimately reaches a plateau and is no longer influenced by the queue size.
However, using ERLQ this plateau can be reached with smaller queues. In the case of an
integer workload, a configuration with only 6 queue entries achieves performance within
3.8% of the largest configuration (and with 8 entries within 2.2%). The floating-point
benchmarks show even greater improvements in IPC and reach the performance plateau later.
A configuration with 16 queue entries achieves floating-point performance within 2.3% of the
largest configuration.

5.6 Quantitative Comparison to Previous Work

In this section we will compare our quantitative results to previous works, which distribute
the disambiguation logic over several clusters, where each cluster contains a cache bank.

96	

 CHAPTER 5

Flush&INT

Baseline
PAQ
MIQ+CDA
MIQ+CDA+ERLQ

DCR&INT

Baseline
PAQ
MIQ+CDA
MIQ+CDA+ERLQ

IPC&INT

Baseline
PAQ
MIQ+CDA
MIQ+CDA+ERLQ

0,0&

0,5&

1,0&

1,5&

2,0&

2,5&

3,0&

3,5&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ti
tle

'

Title'

Title'

Baseline& PAQ& MIQ+CDA& MIQ+CDA+ERLQ&

1,0&
1,1&
1,2&
1,3&
1,4&
1,5&
1,6&
1,7&
1,8&
1,9&
2,0&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

Ti
tle

'

Title'

Title'

Baseline& PAQ& MIQ+CDA& MIQ+CDA+ERLQ&

0,0&
0,2&
0,4&
0,6&
0,8&
1,0&
1,2&
1,4&
1,6&
1,8&

4& 6& 8& 12& 16& 20& 24& 28& 4& 6& 8& 12& 16& 20& 24& 28&

IP
C'

'Load'Queue'Size ' ' ''Load'Queue'Size'

Impact'of'ERLQ'on'IPC'
''

SPECint ' ' 'SPECfp'

Baseline& PAQ& MIQ+CDA& MIQ+CDA+ERLQ&

Figure 5.18: Impact of Early Release of Load Queue Entries (ERLQ) on Performance.

The most straightforward way to distribute the memory queues over several clusters are
replicated queues where an entry is reserved for each instruction in each queue. This
reservation can happen in-order while the instruction is being processed in the front-end of the
processor. Only one entry in one cluster will be actually used by the instruction. Because the
instructions in the queues must remain in program order and because a compacting queue is
overly complex, the entries, which were reserved in other clusters for the same instruction,
remain unused.

Yoaz et al. [Yoa99] propose to utilize a bank predictor for two tightly coupled memory
pipelines. Zyuban and Kogge [Zyu01] extend this scheme to multiple more loosely coupled
memory pipelines. This extended scheme reserves only one entry in one queue for an
instruction if the bank predictor can deliver a confident prediction. Otherwise, the scheme
falls back to replication and reserves entries in all queues. Hence, we will refer to this as
predicted replication. It reserves queue entries in program order and allows the queue entries
to stay physically ordered by age. This works fine as long as all confident predictions are
correct. However, when a confident prediction turns out wrong, the affected instruction has to
be inserted into another queue out of program order. We know of no way to insert an
instruction out-of-order into an age–ordered queue, a pipeline flush may be the most realistic
method to recover from this situation. To approximate the performance of this method we
evaluate two variants of the scheme: an ideal variant, which can insert the instruction into the
queue out-of-order, and a realistic variant, which has to recover from the situation with a
pipeline flush.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 97

Figure 5.19: Performance Compared to Previous Work, IPC as a Function of Load Queue Size. Notice that
the load queue size progresses exponentially rather than linearly as in previous figures.

0,00#

0,20#

0,40#

0,60#

0,80#

1,00#

1,20#

0# 10# 20# 30# 40# 50# 60# 70#

Chart&Title&

#Fully#Replicated# #Semi:Interleaved,#Realis@c#

#Semi:Interleaved,#Idealized# #Fully#Interleaved#

0,00#

0,20#

0,40#

0,60#

0,80#

1,00#

1,20#

0# 10# 20# 30# 40# 50# 60# 70#

Performance&Compared&to&Previous&Work&

#Semi:Interleaved,#Realis@c# #Semi:Interleaved,#Idealized#

#REF!# #Fully#Interleaved#

0,0#

0,2#

0,4#

0,6#

0,8#

1,0#

1,2#

1,4#

1,6#

1,8#

4# 6# 8# 12# 16# 24# 32# 44# 64# 4# 6# 8# 12# 16# 24# 32# 44# 64#

IP
C&

&Load&Queue&Size & & &&Load&Queue&Size&

Performance&Compared&to&Previous&Work&
&&

SPECint & & &SPECfp&

Replica@on# Predicted#Replica@on,#Realis@c# Predicted#Replica@on,#Idealized# Late#Alloca@on#

4#

8#

16#

32#

64#

0,5# 0,6# 0,7# 0,8# 0,9# 1,0# 1,1#

Lo
ad

&Q
ue

ue
&S
iz
e&

IPC&

SPECint&

0,5# 0,7# 0,9# 1,1# 1,3# 1,5# 1,7#
IPC&

SPECfp&

Replica?on&

Late&
Alloca?on&

Predicted&Replica?on,&
Realis?c&

Predicted&Replica?on,&
Idealized&

Late&
Alloca?on&

Predicted&Replica?on,&
Realis?c&

Predicted&Replica?on,&
Idealized&

Replica?on&

In addition we show our own proposal, the distributed memory unit including unordered
queues, late allocation, the memory issue queue, the conservative deadlock aware entry
allocation and the early release of load queue entries. (The illustrations refer to this scheme as
Late Allocation.)

Figure 5.19 shows the IPC of the different proposals as a function of load queue size. The
first bar shows the performance of a scheme, which fully replicates the load queue. The
second and third bar show the two variants of the predicted replication scheme. The
performance of the realistic variant is severely constrained by the high number of pipeline
flushes caused by a considerable number of incorrect confident bank predictions. The ideal
variant shows much better performance, consistently higher than the fully replicated scheme.
Our proposal (labeled Late Allocation) shows the best performance of all schemes and also
reaches a slightly higher performance plateau. This is due to the impact of the memory issue
queue and its issue policy giving priority to older instructions, which are more likely to be
critical.

To illustrate the relation between performance and queue size better, we show the same
data again in Figure 5.20. This time we plot the minimum load queue size required to attain a
certain performance. Compared to the unordered queue the fully replicated scheme requires
about three to four times as large queues to achieve the same performance. The ideal variant
without pipeline flushes of the predicted replication scheme comes closer to our proposal and

98	

 CHAPTER 5

Figure 5.20: Performance Compared to Previous Work, Load Queue Size as a Function of IPC. This graph
shows the same data as Figure 5.19 above. Notice the logarithmic scale of the y-axis. Colors of bars in Figure
5.19 are shown as lines of the same color in this figure. For each IPC the figure shows the minimum load queue
size required. The end of the curve denotes the highest performance attainable by the scheme. The curves have
the form of staircases because we didn’t simulate all queue sizes (and because queue sizes are always discrete).

0,00#

0,20#

0,40#

0,60#

0,80#

1,00#

1,20#

0# 10# 20# 30# 40# 50# 60# 70#

Chart&Title&

#Fully#Replicated# #Semi:Interleaved,#Realis@c#

#Semi:Interleaved,#Idealized# #Fully#Interleaved#

0,00#

0,20#

0,40#

0,60#

0,80#

1,00#

1,20#

0# 10# 20# 30# 40# 50# 60# 70#

Performance&Compared&to&Previous&Work&

#Semi:Interleaved,#Realis@c# #Semi:Interleaved,#Idealized#

#REF!# #Fully#Interleaved#

0,0#

0,2#

0,4#

0,6#

0,8#

1,0#

1,2#

1,4#

1,6#

1,8#

4# 6# 8# 12# 16# 24# 32# 44# 64# 4# 6# 8# 12# 16# 24# 32# 44# 64#

IP
C&

&Load&Queue&Size & & &&Load&Queue&Size&

Performance&Compared&to&Previous&Work&
&&

SPECint & & &SPECfp&

Replica@on# Predicted#Replica@on,#Realis@c# Predicted#Replica@on,#Idealized# Interleaving#

4#

8#

16#

32#

64#

0,5# 0,6# 0,7# 0,8# 0,9# 1,0# 1,1#

Lo
ad

&Q
ue

ue
&S
iz
e&

IPC&

SPECint&

0,5# 0,7# 0,9# 1,1# 1,3# 1,5# 1,7#
IPC&

SPECfp&

Replica?on&

Late&
Alloca?on&

Predicted&Replica?on,&
Realis?c&

Predicted&Replica?on,&
Idealized&

Late&
Alloca?on&

Predicted&Replica?on,&
Realis?c&

Predicted&Replica?on,&
Idealized&

Replica?on&

requires only about two to three times as large queues. The realistic variant doesn’t reach
comparable performance due to the high number of flush events.

We conclude this section with an estimation of performance and energy. In contrast to the
estimations in Sections 1.2 and 3.6, for this evaluation we base our calculations on data from
the microarchitectural simulation. We measure the performance in instructions per cycle. To
estimate the energy of the memory unit we assign energy quantities to microarchitectural
events and sum the quantities over the curse of the simulation. We count dynamic energies
related to the memory unit including the data caches, the disambiguation logic, the bank
predictors, and the inter-cluster communication. The individual energy quantities are
calculated using CACTI. Appendix A contains the details of this experiment.

Figure 5.21 shows the results of this estimation. For SPECint as well as SPECfp the
distributed configurations achieve higher performance and at the same time consume
significantly less energy. The higher performance is due to the lower latency of load
instructions. Both, the cache access latency and the average inter-cluster communication
latency favor the distributed configuration. The centralized cache is four times bigger than the
distributed cache and has a higher latency. Based on CACTI’s cache model, we assume three
cycles access latency for the centralized cache and two cycles for the distributed cache. The

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 99

Figure 5.21: Energy and Performance for Centralized and Distributed Configurations. Only the energy
usage of the memory unit and related inter-cluster communications are considered. The numbers near each data
point indicate the sizes of the load/store queues. In case of the distributed configuration the sizes refer to one
cluster (of four). The graph shows the results for a 32nm process, the scale on the left indicates picojoule per
committed instruction. Graphs for 90nm, 65nm, and 45nm processes are very similar to the above and are not
shown.

1,74221,5#

6,5#

11,5#

16,5#

21,5#

26,5#

31,5#

36,5#

41,5#

0,94# 0,96# 0,98# 1# 1,02# 1,04# 1,06# 1,08# 1,1# 1,12# 1,14#

En
er
gy
&

Energy&vs&Performance&
SPECint & & &&&SPECfp&

Centralized# Distributed#

15#

20#

25#

30#

35#

40#

0,9# 0,95# 1# 1,05# 1,1# 1,15#

En
er
gy
&

IPC&
1,2# 1,3# 1,4# 1,5# 1,6# 1,7# 1,8#

IPC&

4/8# 6/8# 8/8#12/8#
16/8#
20/8#
24/8#

16/16#
24/16#

32/20#
48/24#
64/24#

16/16# 24/16# 32/20#
48/24#

64/24#

4/8# 6/8# 8/8# 12/8#16/8# 20/8#
24/8#

distributed cache exposes locality using the bank predictor while the centralized cache allows
local cache accesses only for one of the four clusters.

As the sizes of load and store queues are increased, at some point, only the energy usage
increases and the gains in performance become minuscule. This can be observed in the integer
part of the figure. The floating-point benchmarks can make use of larger queues and the effect
is not as visible because we did not include huge queue sizes to illustrate this point.

The increased queue size affects primarily the cost of disambiguation. Since the
centralized configuration contains larger queues it is affected more by each size increase and
the slope of the curve is higher than for the distributed configuration.

Figure 5.22 shows the energy components and the trend for shrinking process
technologies. The relative advantage of the distributed configuration increases slightly with
smaller process technologies while the distribution of energy usage between the components
remains stable. Not included in Figure 5.21 and 5.22 is the increase in latency with smaller
process technologies of the centralized cache relative to the distributed cache. For 90nm the
centralized cache is 1.2 times slower than the distributed cache, for 32nm it is 1.7 times
slower.

100	

 CHAPTER 5

Figure 5.22: Dynamic Energy by Components for Centralized and Distributed Configurations. The
centralized configuration shown includes a load queue of 64 entries and a store queue of 24 entries. The
distributed configuration shown includes a load queue of 24 entries and a store queue of 8 entries, these sizes
refer to one cluster (of four). The data is normalized for the centralized configuration and each process
technology.

Dist5245/58 134,459588 31,5281046 10,7508282 22,6756384 Dist5245/58

LDQ/STQ comm cache bank5pred disam LDQ/STQ
Cent5165/516 19,4927616 11,9636113 0 3,35260855 Cent5165/516
Cent5245/516 19,6025365 12,1473035 0 3,85919555 Cent5245/516
Cent5325/520 19,6472094 12,235244 0 4,60197482 Cent5325/520
Cent5485/524 19,6662614 12,2880964 0 5,80061929 Cent5485/524
Cent5645/524 19,6200535 12,3001599 0 6,72459433 Cent5645/524
Dist545/58 17,7664452 5,17219449 0,93242781 2,17307297 Dist545/58
Dist565/58 17,5648183 5,21296779 0,92799692 2,30299922 Dist565/58
Dist585/58 17,6260833 5,25395926 0,93040944 2,4375582 Dist585/58
Dist5125/58 17,4064271 5,26553544 0,92286219 2,66989893 Dist5125/58
Dist5165/58 17,4509542 5,28008908 0,93157699 2,9082344 Dist5165/58
Dist5205/58 17,5064004 5,28078211 0,92783269 3,13503615 Dist5205/58
Dist5245/58 17,5137015 5,28387508 0,92769038 3,36502825 Dist5245/58

CommunicationCache Bank5PredictorDisambiguation
Cent 56% 28% 0% 16%
Dist 50% 12% 4% 8%
Cent 58% 28% 0% 15%
Dist 51% 11% 4% 7%
Cent 50% 31% 0% 19%
Dist 45% 12% 5% 9%
Cent 51% 32% 0% 17%
Dist 45% 14% 2% 9%

65nm

45nm

32nm

Integer

32nm5Integer 32nm5Floating5Point

90nm

0%5
20%5
40%5
60%5
80%5
100%5

Ce
nt
5

Di
st
5

Ce
nt
5

Di
st
5

Ce
nt
5

Di
st
5

Ce
nt
5

Di
st
5

90nm5 65nm5 45nm5 32nm5

Dynamic(Energy(by(Components(
((

((((((((Integer ((((((((((((((((((((((((((Floa6ng(Point(

CommunicaMon5 Cache5 Bank5Predictor5 DisambiguaMon5

0%5

20%5

40%5

60%5

80%5

100%5

Cent5 Dist5 Cent5 Dist5 Cent5 Dist5 Cent5 Dist5

90nm5 65nm5 45nm5 32nm5

0%5

20%5

40%5

60%5

80%5

100%5

Cent5 Dist5 Cent5 Dist5 Cent5 Dist5 Cent5 Dist5

90nm5 65nm5 45nm5 32nm5

Comparing the energy usage of the different components, we observe that the distributed
configuration uses less energy for each single component with the obvious exception of the
bank predictor.

5.7 Conclusion

The techniques presented in this chapter improve the distributed memory unit introduced in
the last chapter by increasing performance and decreasing the amount of speculatively
executed instructions, thus improving the energy efficiency.

The flow control at dispatch and pre–access queue were able to remedy some
shortcomings of our initial proposal. But the best results are achieved by a combination of the
remaining three techniques—the memory issue queue, the conservative deadlock aware entry
allocation and the early release of load queue entries. These three techniques form a symbiotic
relationship. The memory issue queue allows an issue policy and thereby lays the basis for the
conservative deadlock aware entry allocation. In addition, the mechanisms for entry allocation
and release are based on the same concepts and can share part of their implementation.

IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT	

 101

Chapter 6. Conclusions

CHAPTER 6
CONCLUSIONS

This chapter presents the main conclusions of the thesis and points out some open research
areas, which may indicate directions for future work.

6.1 Conclusions

The first main proposal is a collection of cache bank predictors. We derive the bank predictors
from well-known branch predictors as well as address/value predictors. The difference
between these predictors and a bank predictor is primarily the size of the prediction. While
branch predictors deliver just 1 bit and address/value predictors 32 or even 64 bits, our bank
predictors have to deliver predictions of 3 bits to indicate the cache bank and an additional bit
which indicates the confidence in the prediction.

We evaluate the bank predictors and compare them based on their accuracy and size. The
most promising bank predictors are Gshare for small predictor sizes and a Tournament
Predictor consisting of a Gshare and a Local predictor for larger predictors sizes. A
Tournament Predictor of infinite size can reach more than 95% accuracy for SPECint
benchmarks. A more reasonably sized Tournament Predictor of 3.3Kbytes still reaches 84%
accuracy. Below this mark, a Gshare predictor is more attractive. At a size of 3.0Kbytes, it
reaches 82% accuracy. While the predictors deliver satisfying accuracies, they are unable to

	

 103

reduce the number of confident mispredictions to an acceptable level. This inability affected
design decisions on our next proposal.

The second main proposal is the design of the distributed memory unit. Based on our
experience with bank predictors we choose a design, which does not deploy confidence for
bank predictions. Instead, we propose a novel steering scheme, which takes advantage of the
bank predictor to reduce global communications. Because the distribution of memory
instructions to clusters is based on the memory address, the precise mapping is unknown until
late in the out-of-order stages of the pipeline. To solve this problem we allocate memory
queue entries late and out-of-order. Allocating entries late has the additional benefit that it
reduces the lifetime of each queue entry compared to standard early allocation. The out-of-
order allocation turns out to be unsuited for ordinary age–ordered memory queues and we
propose unordered memory queues to overcome this problem. Although our design attempts
to limit speculation in order to increase its energy efficiency, to avoid a serious loss of
performance we find it necessary to allow load instructions to issue before the addresses of all
preceding store instructions are known.

The third main proposal is a collection of mechanisms to control the instruction flow.
These mechanisms solve a problem, which is not present in conventional microarchitectures
and which is related to the late allocation of memory queue entries. Traditionally entries in the
memory queues are allocated in in-order pipeline stages before instructions enter the out-of-
order core. If the memory queue runs out of free entries, the allocation stage stalls. Because
we allocate queue entries out-of-order, this approach doesn’t work, and our base architecture
makes no attempt to control the instruction flow, which leads to frequent memory queue
overflows and flush events. To overcome this problem we propose Dispatch Throttling, a
scheme to control the instruction flow in the early in-order stages using three different
heuristics as well as Pre–Access Queues a scheme to accommodate memory instructions near
the memory queue to avoid overflows.

Our evaluations show that Dispatch Throttling reduces the number of flush events
significantly—especially for smaller queues—but hardly affects performance. Throttling the
dispatch stage reduces the number of instructions in the out-of-order core and limits
parallelism. The gain by less frequent flush events is offset by this loss in parallelism. The
Pre–Access Queue reduces flush events significantly and significantly improves performance
for all benchmarks and queue sizes. The performance improves by 12% and 27% for SPECint
and SPECfp respectively. The combination of both mechanisms slightly degrades
performance and reduces the number of flush events further compared to the Pre–Access
Queue alone.

The fourth main proposal is a mechanism to issue memory instructions using a Memory
Issue Queue. This queue assumes the role of the Pre–Access Queue and extends its
functionality. In contrast to the Pre–Access Queue, which acts as a FIFO, an issue queue can

104	

 CHAPTER 6

apply a policy to select an instruction to issue. Selecting the oldest instruction in the queue
improves performance because older instructions are more likely to be critical. To avoid
frequent violations of memory dependencies the architecture includes a predictor, which
indicates load instructions that should not execute speculatively. An issue queue allows these
instructions to wait their turn in the issue queue while other instructions can continue to issue.

The fifth main proposal is a mechanism to intelligently issue instructions from the
memory issue queue only if there is no danger of creating a deadlock in the memory queue.
Deadlocks are a consequence of the out-of-order allocation of queue entries. They occur when
younger instructions prevent older instructions from allocating a queue entry. The younger
instructions do not release their queue entry until commit and the commit is delayed until all
older instructions committed. This can lead to circular dependencies and prevent any forward
progress—a deadlock. The proposed Conservative Deadlock Aware Entry Allocation delays
the issue and allocation of queue entries until no deadlock can result.

Our evaluations show that this mechanism eliminates all deadlock events. This reduces
the number of flush events especially for smaller memory queue sizes. Together with the
Memory Issue Queue the Conservative Deadlock Aware Entry Allocation enables the use of
small memory queues without causing a multitude of overflow and deadlock events. Both
mechanisms improve performance and reduce the queue size required to achieve peak
performance. For SPECint a load queue size of 12 entries (48 total) delivers the same
performance as a queue with 24 entries (96 total) without the two mechanisms. For SPECfp a
load queue size of 16 entries (64 total) delivers the same performance as a queue with 28
entries (96 total) without the two mechanisms.

The sixth main proposal is a mechanism to release load queue entries before the commit
stage. Load queue entries are usually not freed until the commit stage. They take part in the
disambiguation process and help to detect dependency violations with respect to older
memory instructions. Once all older instructions have been verified, the entries no longer
serve a useful purpose and can be freed. This mechanism may be applied to architectures with
weak memory ordering like Alpha or PowerPC. Our evaluations show that this proposal
increases the effective size of the load queue by 2 to 4 entries (8 to 16 total). This increase in
effective size leads to a performance increase and a smaller queue size is required to reach
peak performance.

This thesis demonstrated that a distributed memory unit is an attractive option for
clustered microarchitectures. Compared to a centralized memory unit it uses significantly less
energy and at the same time improves performance. This is possible because the distributed
organization reduces the complexity of the disambiguation logic as well as the data cache. In
addition, the communication between clusters can be optimized using a bank predictor,
further decreasing energy consumption and latency. The proposals presented here identify and
solve problems to which no solutions were previously described in the literature. We

CONCLUSIONS	

 105

demonstrated that these proposals lead to significant energy savings and performance
increases.

6.2 Open Research Areas

In this thesis, we assumed that each backend is associated to exactly one memory unit.
However, other scenarios are possible. E.g. for workloads (or workload phases) with little
parallelism it may be advantageous to temporarily switch off one or more clusters to save
energy, and in effect change the ratio of backends to memory units. Some physical layouts
might also benefit from a different ratio as well as from a different topology of the
interconnection network. Closely related to the topology are the communication protocols.
Some optimizations are possible, considering both together. E.g. in a ring topology the
broadcast messages required for some of our proposals can be combined with messages
carrying load and store addresses from cluster to cluster. This would result in less total
messages and save energy and possibly latency.

106	

 CHAPTER 6

Appendix A. Energy Estimation

APPENDIX A
ENERGY ESTIMATION

This Appendix details the calculation used to generate Figure 5.21 in Chapter 5. To estimate
the energy of the memory unit we assign energy quantities to microarchitectural events and
sum the quantities over the curse of the simulation. We count dynamic energies related to the
memory unit including the data caches, the disambiguation logic, the bank predictors, and the
inter-cluster communication. The individual energy quantities are calculated using CACTI.
For the sake of simplicity, we do not take into account memory issue queues, the translation
look–aside buffer, cache misses, or external snoop events.

We use the same cache configurations as in the calculations in Section 1.2 of Chapter 1
and Section 3.6 of Chapter 3. The centralized configuration uses a cache of 64 Kbytes size,
two ports, and 3 cycles access time. The distributed configuration uses four caches of
16 Kbytes size each, two ports each, and 2 cycles access time. The distributed configuration
possesses a bank predictor, which is used to minimize communication between clusters.

Store queue size

The experiment requires a size of the store queue to calculate the energy cost of the
disambiguation logic. Since the load queue size is our primary parameter for complexity, we
set the store queue to a reasonable size depending on the load queue size. Overflows of the
store queues are avoided either by memory queues in the case of the distributed memory unit

	

 107

and by reserving the store queue entries in dispatch in case of the centralized memory unit.
The primary effect of a small store queue is that not all stores can forward their data to load
instructions. Missed store load forwards cause pipeline flushes, but can be avoided sometimes
by the dependency predictor, see Section 4.2.3 in Chapter 4. We choose the store queue size
for each configuration such that a missed store load forward happens about every 2000
instructions on average. For convenience, we select the nearest multiple of four as the store
queue size. Choosing a comparatively low frequency of one flush every 2000 instructions
assures that memory dependence flushes are much less frequent than branch prediction
misses, which occur approximately every 200 instructions.

Disambiguation

When a load instruction issues it searches the store queue to find any memory dependencies.
This search has to be fast so that the forwarding equals the speed of a cache access. Therefore,
the search is not performed with the entire load address but a subset of 15 bits of the
untranslated virtual address. Afterwards the search is performed again with the full address.
This second search is not as time critical and serves to verify the correctness of the first search
results. It is performed with the full physical address of 52 bits, which was not yet available at
the time of issue. Load instructions also have to search the load queue to detect load-load
dependencies. This search is not time critical and is performed with the physical address of
52 bits.

When a store instruction issues it searches the load queue to verify there are no violated
memory dependencies. This search is not time critical and is performed with the physical
address of 52 bits. Stores also search the store queue upon issue to update the no–hit–bit. (See
Section 2.2.4 in Chapter 2 for an explanation of the no–hit–bit.) This search is performed with
15 bits of the virtual address to match the fast search for store load forwards.

Frequency of Microarchitectural Events

The following tables show the frequencies of some microarchitectural events relative to 100
committed instructions. The configurations are labeled to indicate a centralized or distributed
memory unit, SPECint or SPECfp benchmarks, and the load queue size.

Loads Decoded Load Addresses
Calculated

Store Addresses
Calculated

Loads Issued Stores Issued

Cent Int 16
Cent Int 24
Cent Int 32
Cent Int 48
Cent Int 64
Cent FP 16
Cent FP 24
Cent FP 32
Cent FP 48
Cent FP 64

41,039 33,275 12,007 30,017 10,901
41,079 33,221 11,984 30,600 10,884
41,108 33,167 11,947 30,879 10,893
41,044 33,153 11,825 31,047 10,925
41,125 33,126 11,950 31,085 10,921
28,638 26,428 8,394 25,243 8,152
28,707 26,465 8,381 25,375 8,138
28,761 26,497 8,389 25,475 8,149
28,703 26,473 8,361 25,471 8,122
28,736 26,488 8,383 25,491 8,143

108	

 BIBLIOGRAPHY

Loads Decoded Load Addresses
Calculated

Store Addresses
Calculated

Loads Issued Stores Issued

Dist Int 4
Dist Int 6
Dist Int 8
Dist Int 12
Dist Int 16
Dist Int 20
Dist Int 24
Dist FP 4
Dist FP 6
Dist FP 8
Dist FP 12
Dist FP 16
Dist FP 20
Dist FP 24

43,010 33,893 12,433 29,863 10,937
42,908 33,575 12,325 30,181 10,885
43,080 33,570 12,315 30,500 10,915
42,833 33,141 12,096 30,590 10,902
43,408 33,194 12,177 30,704 10,958
43,194 33,120 12,126 30,709 10,933
43,182 33,124 12,133 30,733 10,936
29,066 26,381 8,411 25,215 8,163
29,080 26,370 8,395 25,286 8,147
29,064 26,370 8,388 25,333 8,143
29,035 26,363 8,376 25,382 8,139
28,981 26,356 8,366 25,407 8,136
28,955 26,353 8,359 25,419 8,132
28,905 26,333 8,356 25,416 8,132

Stores
Committed

Load Adress
Hops

Load Data Hops Store Address
Hops

Store Data Hops

Cent Int 16
Cent Int 24
Cent Int 32
Cent Int 48
Cent Int 64
Cent FP 16
Cent FP 24
Cent FP 32
Cent FP 48
Cent FP 64
Dist Int 4
Dist Int 6
Dist Int 8
Dist Int 12
Dist Int 16
Dist Int 20
Dist Int 24
Dist FP 4
Dist FP 6
Dist FP 8
Dist FP 12
Dist FP 16
Dist FP 20
Dist FP 24

9,677 32,785 29,734 11,917 11,917
9,677 32,706 30,313 11,910 11,910
9,677 32,701 30,528 11,904 11,904
9,677 32,649 30,693 11,889 11,889
9,677 32,665 30,724 11,764 11,764
7,997 26,250 25,011 8,420 8,420
7,997 26,256 25,137 8,436 8,436
7,998 26,274 25,234 8,395 8,395
7,998 26,375 25,222 8,383 8,383
7,999 26,282 25,246 8,360 8,360
9,677 33,906 9,617 11,652 11,652
9,677 33,365 9,632 11,523 11,523
9,677 33,587 9,643 11,544 11,544
9,677 33,225 9,601 11,342 11,342
9,677 32,887 9,884 11,452 11,452
9,677 33,113 9,924 11,457 11,457
9,677 33,135 9,922 11,462 11,462
7,998 27,067 3,815 7,268 7,268
7,998 27,068 3,812 7,240 7,240
7,999 27,018 3,831 7,275 7,275
7,998 27,004 3,883 7,270 7,270
7,998 27,046 3,915 7,255 7,255
7,997 26,982 3,901 7,263 7,263
7,997 26,989 3,901 7,264 7,264

The following table shows energy quantities, which we will later assign to microarchitectural
events. The quantities are given for four different process technologies in picojoule. These
values have been obtained with CACTI 6.5. [Mur09]

BIBLIOGRAPHY	

 109

Bank
Predictor

Read

Bank
Predictor

Write

Unit
Distance

Cache Read
Centralized

Cache
Write

Centralized

Cache Read
Distributed

Cache
Write

Distributed
90nm
65nm
45nm
32nm

15,877 11,759 1,481 187,627 178,766 78,910 75,192
8,344 5,764 0,861 104,839 96,236 41,203 38,358
5,036 3,451 0,365 57,436 50,172 22,800 21,571
1,430 0,936 0,193 31,497 25,927 12,834 13,843

The following table shows the cost searching the load and store queues. A fast search refers to
a CAM search, which is only 15 bits wide, all other searches are 52 bits wide. All energies are
in picojoule. These values have been obtained with CACTI 6.5. [Mur09]

90nm 65nm 45nm 32nm
STQ Fast Search 8
STQ Fast Search 16
STQ Fast Search 20
STQ Fast Search 24
STQ Slow Search 8
STQ Slow Search 16
STQ Slow Search 20
STQ Slow Search 24
LDQ Search 4
LDQ Search 6
LDQ Search 8
LDQ Search 12
LDQ Search 16
LDQ Search 20
LDQ Search 24
LDQ Search 32
LDQ Search 48
LDQ Search 64

6,396 3,146 1,954 0,931
9,153 4,528 2,819 1,351

10,531 5,220 3,252 1,562
11,910 5,911 3,684 1,772
19,566 9,677 5,961 2,854
26,579 13,273 8,162 3,947
30,085 15,071 9,262 4,494
33,592 16,868 10,363 5,040
16,059 7,879 4,861 2,307
17,812 8,778 5,411 2,580
19,566 9,677 5,961 2,854
23,072 11,475 7,061 3,400
26,579 13,273 8,162 3,947
30,085 15,071 9,262 4,494
33,592 16,868 10,363 5,040
40,605 20,464 12,563 6,134
54,631 27,656 16,965 8,320
68,657 34,847 21,367 10,507

The following table shows the energy estimation for the bank predictor. We assign the energy
of a predictor read to each decoded load instruction and the energy of a predictor write to each
calculated load address. The table shows the average energy in picojoule for each committed
instruction.

LDQ/STQ
IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point

90nm 65nm 45nm 32nm 90nm 65nm 45nm 32nm
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

10,814 5,542 3,336 0,932 7,717 3,946 2,374 0,663
10,760 5,516 3,319 0,928 7,718 3,946 2,374 0,663
10,787 5,530 3,328 0,930 7,715 3,945 2,374 0,663
10,697 5,484 3,301 0,923 7,710 3,942 2,372 0,662
10,795 5,535 3,331 0,932 7,700 3,937 2,369 0,661
10,752 5,513 3,318 0,928 7,696 3,935 2,368 0,661
10,751 5,512 3,318 0,928 7,686 3,930 2,364 0,660

The following table shows the energy estimation for the cache accesses. We assign the energy
of a cache read to each issued load and the energy of a cache write to each committed store.
The table shows the average energy in picojoule for each committed instruction.

110	

 BIBLIOGRAPHY

IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point
LDQ/STQ
Cent 16 / 16
Cent 24 / 16
Cent 32 / 20
Cent 48 / 24
Cent 64 / 24
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

90nm 65nm 45nm 32nm 90nm 65nm 45nm 32nm
73,620 40,783 22,096 11,964 61,659 34,160 18,511 10,024
74,714 41,394 22,431 12,147 61,906 34,299 18,587 10,066
75,238 41,687 22,591 12,235 62,095 34,404 18,645 10,098
75,553 41,863 22,688 12,288 62,088 34,400 18,642 10,096
75,625 41,903 22,710 12,300 62,127 34,422 18,654 10,103
30,841 16,016 8,896 5,172 25,910 13,457 7,474 4,343
31,092 16,147 8,969 5,213 25,966 13,486 7,490 4,352
31,344 16,279 9,042 5,254 26,005 13,506 7,501 4,359
31,415 16,316 9,062 5,266 26,043 13,526 7,512 4,365
31,505 16,363 9,088 5,280 26,062 13,536 7,518 4,368
31,509 16,365 9,089 5,281 26,071 13,541 7,521 4,369
31,528 16,375 9,095 5,284 26,069 13,540 7,520 4,369

The following table shows the energy estimation for the disambiguation. To each issued load
instruction we assign the energy of a fast and a slow store queue search as well as a load
queue search. To each issued store instruction we assign the energy of a fast store queue
search and a load queue search.

IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point
LDQ/STQ
Cent 16 / 16
Cent 24 / 16
Cent 32 / 20
Cent 48 / 24
Cent 64 / 24
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

90nm 65nm 45nm 32nm 90nm 65nm 45nm 32nm
22,599 11,268 6,943 3,353 18,642 9,295 5,727 2,766
25,865 12,938 7,966 3,859 21,069 10,538 6,489 3,143
30,651 15,382 9,466 4,602 24,858 12,475 7,677 3,732
38,358 19,326 11,884 5,801 30,909 15,572 9,576 4,674
44,286 22,365 13,744 6,725 35,661 18,008 11,067 5,415
15,004 7,388 4,561 2,173 12,428 6,120 3,778 1,800
15,846 7,817 4,824 2,303 13,041 6,433 3,970 1,895
16,719 8,262 5,096 2,438 13,647 6,744 4,160 1,990
18,212 9,026 5,564 2,670 14,844 7,357 4,535 2,176
19,745 9,811 6,045 2,908 16,032 7,966 4,908 2,361
21,200 10,557 6,501 3,135 17,213 8,571 5,278 2,545
22,676 11,314 6,964 3,365 18,387 9,174 5,647 2,728

The following table shows the energy estimation for the communication. To each hop of load/
store data/address, we assign the energy for a unit distance multiplied by 78 bits (to account
for 64 bits of address/data and 14 bits of overhead like instruction type, destination cluster,
sequence number, access size, etc.) and multiplied by a factor of 1.5. The connection between
the left and right cluster is physically three times larger than the connections between
neighboring clusters. (Compare Figure 1.1 in Chapter 1.) We assume that messages are
distributed equally to all connections. The average physical distance therefore is 1.5 unit
distances.

IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point
LDQ/STQ
Cent 16 / 16
Cent 24 / 16
Cent 32 / 20

90nm 65nm 45nm 32nm 90nm 65nm 45nm 32nm
149,654 86,943 36,880 19,493 118,021 68,566 29,084 15,373
150,496 87,433 37,087 19,603 118,309 68,733 29,155 15,410
150,839 87,632 37,172 19,647 118,362 68,764 29,168 15,417

BIBLIOGRAPHY	

 111

IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point
Cent 48 / 24
Cent 64 / 24
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

150,986 87,717 37,208 19,666 118,476 68,830 29,196 15,432
150,631 87,511 37,121 19,620 118,276 68,714 29,147 15,406
136,400 79,243 33,614 17,766 94,172 54,710 23,207 12,266
134,852 78,344 33,232 17,565 94,060 54,645 23,179 12,252
135,322 78,617 33,348 17,626 94,124 54,682 23,195 12,260
133,636 77,638 32,932 17,406 94,166 54,707 23,206 12,265
133,978 77,836 33,017 17,451 94,234 54,746 23,222 12,274
134,404 78,084 33,122 17,506 94,120 54,680 23,194 12,259
134,460 78,116 33,135 17,514 94,125 54,683 23,196 12,260

The following table shows the resulting total energy estimation for each configuration. The
unit is picojoule per committed instruction.

IntegerIntegerIntegerInteger Floating-PointFloating-PointFloating-PointFloating-Point
LDQ/STQ
Cent 16 / 16
Cent 24 / 16
Cent 32 / 20
Cent 48 / 24
Cent 64 / 24
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

90nm 65nm 45nm 32nm 90nm 65nm 45nm 32nm
245,872 138,994 65,919 34,809 198,321 112,021 53,323 28,162
251,076 141,765 67,484 35,609 201,284 113,570 54,230 28,619
256,728 144,701 69,230 36,484 205,316 115,644 55,490 29,247
264,896 148,905 71,780 37,755 211,472 118,803 57,415 30,202
270,541 151,778 73,574 38,645 216,064 121,145 58,868 30,923
193,060 108,190 50,406 26,044 140,227 78,233 36,833 19,072
192,551 107,824 50,344 26,009 140,784 78,511 37,014 19,162
194,173 108,688 50,814 26,248 141,491 78,878 37,230 19,271
193,961 108,465 50,860 26,265 142,763 79,533 37,625 19,468
196,023 109,546 51,481 26,571 144,028 80,186 38,017 19,664
197,865 110,519 52,030 26,850 145,100 80,728 38,361 19,835
199,414 111,317 52,512 27,090 146,267 81,326 38,727 20,017

We obtained the performance data from our microarchitectural simulations and show the data
in instructions per cycle. The two numbers in the name of each configuration indicate the size
of the load / store queue respectively. Results are for SPECint and SPECfp.

Integer Floating-
Point

Cent 16 / 16
Cent 24 / 16
Cent 32 / 20
Cent 48 / 24
Cent 64 / 24
Dist 4 / 8
Dist 6 / 8
Dist 8 / 8
Dist 12 / 8
Dist 16 / 8
Dist 20 / 8
Dist 24 / 8

1,003 1,248
1,035 1,367
1,054 1,432
1,067 1,565
1,068 1,596
0,953 1,397
1,079 1,522
1,096 1,583
1,111 1,657
1,119 1,707
1,120 1,732
1,120 1,742

112	

 BIBLIOGRAPHY

BIBLIOGRAPHY
[Abr97]	

 J.M. Abramson, H. Akkary, A.F. Glew, G.J. Hinton, K.G. Konigsfeld, P.D.

Madland, “Method and apparatus for performing load operations in a computer

system”, United States Patent no. 5694574, 1997.

[Aga00]	

 V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock rate versus IPC: the

end of the road for conventional microarchitectures,” International Symposium on

Computer Architecture, 2000, ISCA–27, pp. 248–259.

[Agg05]	

 A. Aggarwal, “Reducing latencies of pipelined cache accesses through set

prediction,” International Conference on Supercomputing, 2005, ICS–19, pp. 2–

11.

[Alpha]	

 “Alpha Architecture Reference Manual”, Compaq Computer Corporation, Version

4, Order Number EC–QD2KC–TE, 1998.

[AEV6]	

 “Alpha 21264 Microprocessor Hardware Reference Manual,” Compaq Computer

Corporation, Order Number: EC–RJRZA–TE, Version 1, 1999.

[AMD02]	

 “AMD Athlon Processor x86 Code Optimization Guide”, Appendix A

“Microarchitecture” and Appendix B “Pipeline and Execution Unit Resources

Overview,” AMD Publication no. 22007, 2002, pp 203–228.

[Amd67]	

 G.M. Amdahl, "Validity of the Single–Processor Approach to Achieving Large–

Scale Computing Capabilities," American Federation of Information Processing

Societies Conference, AFIPS Press, 1967, pp. 483–485.

[And67]	

 D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo, “The IBM System/360 Model

91: Machine Philosophy and Instruction–Handling,” IBM Journal of Research and

Development, vol. 11, no. 1, 1967, pp. 8–24.

[Aus02]	

 T. Austin, E. Larson, D. Ernst, “SimpleScalar: an infrastructure for computer

system modeling,” IEEE Computer, Volume 35, Issue 2, 2002, pp. 59–67.

[Bal02]	

 R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Microarchitectural

Trade-offs in the Design of a Scalable Clustered Microprocessor,” University of

Rochester, URCS Technical Report 771, 2002.

[Bal03]	

 R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dynamically managing

the communication–parallelism trade-off in future clustered processors,”

International Symposium on Computer Architecture, 2003, ISCA–30, pp. 275–

287.

BIBLIOGRAPHY	

 113

[Bal04]	

 R. Balasubramonian, “Cluster prefetch: tolerating on-chip wire delays in clustered

microarchitectures,” International Conference on Supercomputing, 2004, ICS–18,

pp. 326–335.

[Bal05]	

 S. Balakrishnan, Ravi Rajwar, M. Upton, and K. Lai, “The impact of performance

asymmetry in emerging multicore architectures,” International Symposium on

Computer Architecture, 2005, ISCA–32, pp. 506–517.

[Ban00]	

 A. Baniasadi and A. Moshovos, “Instruction distribution heuristics for quad–

cluster, dynamically–scheduled, superscalar processors,” International Symposium

on Microarchitecture, 2000, MICRO–33, pp. 337–347.

[Bed03]	

 M. Bedford Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar operand

networks: on-chip interconnect for ILP in partitioned architectures,” International

Symposium on High–Performance Computer Architecture, 2003. HPCA–9, pp.

341–353.

[Bek99]	

 M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and

U. Weiser, “Correlated load–address predictors,” International Symposium on

Computer Architecture, 1999, ISCA–26, pp. 54–63.

[Bek00]	

 M. Bekeman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen, “Early

load address resolution via register tracking,” International Symposium on

Computer Architecture, 2000, ISCA–27, pp. 306–315.

[Ber03]	

 K. Bernstein, “Microarchitecture on the MOSFET diet,” International Symposium

on Microarchitecture, 2003. MICRO–36,p. 3.

[Bha03]	

 R. Bhargava and L. John, “Improving dynamic cluster assignment for clustered

trace cache processors,” International Symposium on Computer Architecture,

2003, ISCA–30, pp. 264–274.

[Bie05]	

 S. Bieschewski, J. Parcerisa, and A. Gonzalez, “Memory bank predictors,”

International Conference on Computer Design, 2005, ICCD–23, pp. 666–668.

[Bie07]	

 S. Bieschewski, J.-M. Parcerisa, A. González, “A Fully–Distributed First Level

Memory Architecture,” Technical Report UPC–DAC–RR–ARCO–2007–3,

Universitat Politècnica de Catalunya, 2007.

[Boh95]	

 M.T. Bohr, “Interconnect scaling—the real limiter to high performance ULSI,”

International Electron Devices Meeting, 1995, IEDM, pp. 241–244.

114	

 BIBLIOGRAPHY

[Bol67]	

 L.J. Boland, G.D. Granito, A.U.Marcotte, B.U. Messina, and J.W. Smith, “The

IBM System/360 Model 91: Storage System,” IBM Journal of Research and

Development, vol. 11, no. 1, 1967, pp. 54–68.

[Buy02]	

 A. Buyuktosunoglu, D.H. Albonesi, P. Bose, P.W. Cook, S.E. Schuster, “Tradeoffs

in Power–Efficient Issue Queue Design,” Low Power Electronics and Design,

ISLPED, pp. 184–189.

[Cai04]	

 H. Cain and M. Lipasti. “Memory Ordering: A Value Based Approach,”

International Symposium on Computer Architecture, ISCA–31, 2004, pp. 90–101.

[Can00]	

 R. Canal, J. Parcerisa, and A. Gonzalez, “Dynamic cluster assignment

mechanisms,” International Symposium on High–Performance Computer

Architecture, 2000, HPCA–6, pp. 133–142.

[Cas06]	

 F. Castro, L. Pinuel, D. Chaver, M. Prieto, M. Huang, and F. Tirado, “DMDC:

Delayed Memory Dependence Checking through Age–Based Filtering,”

International Symposium on Microarchitecture, 2006, MICRO–38, pp. 297–308.

[Cez07]	

 L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: bulk enforcement of

sequential consistency,” , International Symposium on Computer Architecture,

2007, ISCA–34, pp. 278–289.

[Che04]	

 L. Chen, D.H. Albonesi, and S. Dropsho, “Dynamically Matching ILP

Characteristics Via a Heterogeneous Clustered Microarchitecture,” IBM Watson

Conference on the Interaction Between Architectures, Circuits, and Compilers,

2004, pp. 136–143.

[Chi03]	

 Z. Chishti, M. Powell, and T. Vijaykumar, “Distance associativity for high–

performance energy–efficient non-uniform cache architectures,” International

Symposium on Microarchitecture, 2003, MICRO–36, pp. 55–66.

[Chr98]	

 G. Chrysos and J. Emer, “Memory dependence prediction using store sets,”

International Symposium on Computer Architecture, 1998, ISCA–25, pp. 142–

153.

[Dav01]	

 J. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. Souri, K. Banerjee, K.

Saraswat, A. Rahman, R. Reif, and J. Meindl, “Interconnect limits on gigascale

integration (GSI) in the 21st century,” Proceedings of the IEEE, vol. 89, iss. 3,

2001, pp. 305–324.

BIBLIOGRAPHY	

 115

[Dav05]	

 J. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP throughput with

mediocre cores,” International Conference on Parallel Architectures and

Compilation Techniques, 2005, PACT–14, pp. 51–62.

[Den74]	

 R. H. Dennard, F. H. Gaensslen, Hwa-Nien. Yu, V. L. Rideout, E. Bassous, and A.

R. LeBlanc, "Design of ion–implanted MOSFETS with very small physical

dimensions," IEEE Journal of Solid State Circuits, Vol. SC–9, 1974, pp. 256–268.

[Die98]	

 K. Diefendorff, “K7 Challenges Intel—New AMD Processor Could Beat Intel’s

Katmai,” Microprocessor Report, vol. 12, no. 14, 1998, pp 1–7.

[Dro04]	

 S. Dropsho, G. Semeraro, D. Albonesi, G. Magklis, and M. Scott, “Dynamically

Trading Frequency for Complexity in a GALS Microprocessor,” International

Symposium on Microarchitecture, 2004, MICRO–37, pp. 157–168.

[Eic93]	

 R. J. Eickemeyer and S. Vassiliadis, “A load instruction unit for pipelined

processors,” IBM Journal of Research and Development, vol. 37, 1993, pp. 547–

564.

[ESA390]	

 “Enterprise Systems Architecture/390 Principles of Operation”, International

Business Machines, 9th edition, Document Number SA22–7201–08, 2003.

[Fan06]	

 C. Fang, S. Carr, S. Önder, and Z. Wang, “Feedback–directed memory

disambiguation through store distance analysis,” International Conference on

Supercomputing, 2006, ICS–20, pp. 278–287.

[Far97]	

 K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The multicluster architecture:

reducing cycle time through partitioning,” International Symposium on

Microarchitecture, 1997, MICRO–30, pp. 149–159.

[Fis83]	

 J.A. Fisher, “Very Long Instruction Word architectures and the ELI–512”,

International Symposium on Computer Architecture, 1983, ISCA–10, pp 140–150.

[Fra96]	

 M. Franklin and G.S. Sohi, “ARB: a hardware mechanism for dynamic reordering

of memory references,” IEEE Transactions on Computers, vol. 45, iss. 5, 1996,

pp. 552–571.

[Fre05]	

 B. Frey, “PowerPC Architecture Book”, International Business Machines, Version

2.02, 2005.

[Ful11]	

 S. H. Fuller and L. I. Millett (Editors), “The Future of Computing Performance:

Game Over or Next Level?” The National Academy Press, 2011.

116	

 BIBLIOGRAPHY

[Gan05]	

 A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasasn, and K. Lai, “Scalable load and

store processing in latency tolerant processors,” ACM SIGARCH Computer

Architecture News, vol. 33, iss. 2, 2005, pp. 446–457.

[Gar06]	

 A. Garg, M.W. Rashid, and M. Huang, “Slackened Memory Dependence

Enforcement: Combining Opportunistic Forwarding with Decoupled Verification,”

International Symposium on Computer Architecture, 2006, ISCA–33, pp. 142–

154.

[Gha95]	

 K. Gharachorloo, “Memory Consistency Models for Shared–Memory

Multiprocessors,” Technical Report: CSL–TR–95–685, Stanford University, 1995.

[Gib10]	

 D. Gibson, D. A. Wood, “Forwardflow: A Scalable Core for Power–Constrained

CMPs,” International Symposium on Computer Architecture, 2010, ISCA–37,

pp. 14–25.

[Goe01]	

 B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential FCM:

Increasing Value Prediction Accuracy by Improving Table Usage Efficiency,”

International Symposium on High–Performance Computer Architecture, 2001,

HPCA–7, pp. 207–216.

[Gun07]	

 E. Gunadi and M. Lipasti, “A position-insensitive finished store buffer,”

International Conference on Computer Design, 2007, ICCD-25, pp. 105–112.

[Gwe95]	

 L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,” Microprocessor

Report, vol. 9, no. 2, MicroDesign Resources, 1995.

[Gwe96]	

 L. Gwennap, “Digital 21264 Sets New Standard,” Microprocessor Report, vol. 10,

no. 14, MicroDesign Resources, 1996.

[Har03]	

 A. Hartstein and T. Puzak, “Optimum power/performance pipeline depth,”

International Symposium on Microarchitecture, 2003. MICRO–36, pp. 117–125.

[Hil08]	

 M. D. Hill, M. R. Marty, “Amdahl’s Law in the Multicore Era,” IEEE Computer

July 2008, pp. 33–38.

[Hu06]	

 S. Hu, I. Kim, M. Lipasti, and J. Smith, “An approach for implementing efficient

superscalar CISC processors,” International Symposium on Computer

Architecture, 2006, ISCA–29, pp. 41–52.

[Hua94]	

 A.S. Huang, G. Slavenburg, and J.P. Shen, “Speculative disambiguation: a

compilation technique for dynamic memory disambiguation,” International

Symposium on Computer Architecture, 1994, ISCA–21, pp. 200–210.

BIBLIOGRAPHY	

 117

[Hua06]	

 R. Huang, A. Garg, and M. Huang, “Software–hardware cooperative memory

disambiguation,” International Symposium on High–Performance Computer

Architecture, 2006, HPCA–12, pp. 244–253.

[Hug02]	

 W.A. Hughes, and J.S. Roberts, “Load/store unit employing last–in–buffer

indication for rapid load–hit–store”, United States Patent no. 6393536, 2002.

[Huh05]	

 J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S.W. Keckler, “A NUCA

substrate for flexible CMP cache sharing,” International Conference on

Supercomputing, 2005, ICS–19, pp. 31–40.

[Hun95]	

 D. Hunt, “Advanced Performance Features of the 64–bit PA–8000”, COMPCON

95 Technologies for the Information Superhighway, 1995, COMPCON–95, pp.

123–128.

[IA32]	

 “Intel® 64 and IA–32 Architectures Software Developer's Manual, System

Programming Guide,” Intel Corporation, Order Number 325384, Version 039,

2011.

[IA64M]	

 “A Formal Specification of Intel® Itanium® Processor Family Memory

Ordering,” Intel Corporation, Application Note, Order Number 251429, Version

001, 2002.

[Ipe07]	

 E. Ipek, M. Kirman, N. Kirman, and J.F. Martinez, “Core fusion: accommodating

software diversity in chip multiprocessors,” International Symposium on

Computer Architecture, 2007, ISCA–34, pp. 186–197.

[Iri05]	

 H. Irie, N. Hattori, M. Takada, N. Hatta, T. Toyoshima, and S. Sakai, “Steering

and forwarding techniques for reducing memory communication on a clustered

microarchitecture,” International Workshop on Innovative Architecture for Future

Generation High–Performance Processors and Systems, 2005, IWIA–05, pp. 13–

18.

[Jal05]	

 J. Jaleel and B. Jacob, “Using virtual load/store queues (VLSQs) to reduce the

negative effects of reordered memory instructions,” International Symposium on

High–Performance Computer Architecture, 2005, HPCA–11, pp. 191–200.

[Kes98]	

 R.E. Kessler, E.J. McLellan, and D.A. Webb, “The Alpha 21264 Microprocessor

Architecture,” International Conference on Computer Design, 1998, ICCD–16, pp.

90–95.

118	

 BIBLIOGRAPHY

[Kim02]	

 H.S. Kim and J. Smith, “An instruction set and microarchitecture for instruction

level distributed processing,” International Symposium on Computer Architecture,

2002, ISCA–29, pp. 71–81.

[Kim04]	

 I. Kim and M. Lipasti, “Understanding scheduling replay schemes,” International

Symposium on High Performance Computer Architecture, 2004, HPCA–10, pp.

198–209.

[Kir05]	

 N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, “Checkpointed early load

retirement,” International Symposium on High–Performance Computer

Architecture, 2005, HPCA–11, pp. 16–27.

[Kur03]	

 R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single–ISA

heterogeneous multi–core architectures: the potential for processor power

reduction,” International Symposium on Microarchitecture, 2003, MICRO–36, pp.

81–92.

[Kum04a]	

 R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas, “Single–ISA

heterogeneous multi–core architectures for multithreaded workload performance,”

International Symposium on Computer Architecture, 2004, ISCA–31, pp. 64–75.

[Kum04b]	

 R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined–Core Chip Multiprocessing,”

International Symposium on Microarchitecture, 2004, MICRO–37, pp. 195–206.

[Kum05]	

 R. Kumar, V. Zyuban, and D. Tullsen, “Interconnections in multi–core

architectures: understanding mechanisms, overheads and scaling,” International

Symposium on Computer Architecture, 2005, ISCA–32, pp. 408–419.

[Kum06]	

 R. Kumar, D.M. Tullsen, and N.P. Jouppi, “Core architecture optimization for

heterogeneous chip multiprocessors,” International Conference on Parallel

Architectures and Compilation Techniques, 2006, PACT–16, pp. 23–32.

[Lat04]	

 F. Latorre, J. González, and A. González, “Back-end assignment schemes for

clustered multithreaded processors,” International Conference on

Supercomputing, 2004, ICS–18, pp. 316–325.

[Lep00a]	

 K. Lepak and M. Lipasti, “On the value locality of store instructions,”

International Symposium on Computer Architecture, 2000, ISCA–27, pp. 182–

191.

[Lep00b]	

 K. Lepak and M. Lipasti, “Silent stores for free,” International Symposium on

Microarchitecture, 2000, MICRO–33, pp. 22–31.

BIBLIOGRAPHY	

 119

[Lia07]	

 X. Liang, K. Turgay, and D. Brooks, “Architectural Power Models for SRAM and

CAM Structures Based on Hybrid Analytical/Empirical Techniques,” International

Conference on Computer Aided Design, 2007, ICCAD–07, pp. 824–830.

[Loh02]	

 G. H. Loh, R. Sami, and D. H. Friendly, “Memory Bypassing: Not Worth the

Effort,” Workshop on Duplicating, Deconstructing, and Debunking, 2002,

WDDD–1, pp. 71–80.

[McF93]	

 S. McFarling, “Combining Branch Predictors,”, Technical Report TN–36, Western

Research Lab, 1993.

[Mei02]	

 J.D. Meindl, J.A. Davis, P. Zarkesh-Ha, C.S. Patel, K.P. Martin, and P.A. Kohl,

“Interconnect opportunities for gigascale integration,” IBM Journal of Research

and Development, vol. 46, iss. 2.3, 2002, pp. 245–263.

[Mic97]	

 P. Michaud, A. Seznec, and R. Uhlig. “Trading conflict and capacity aliasing in

conditional branch predictors,” International Symposium on Computer

Architecture, 1997, ISCA–24, pp. 292–303.

[Mos97a]	

 A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi, “Dynamic Speculation And

Synchronization Of Data Dependence,” International Symposium on Computer

Architecture, 1997, ISCA–24, pp. 181–193.

[Mos97b]	

 A. Moshovos and G. Sohi, “Streamlining inter–operation memory communication

via data dependence prediction,” International Symposium on Microarchitecture,

1997, MICRO–30, pp. 235–245.

[Mos99]	

 A. Moshovos and G. Sohi, “Read–after–read memory dependence prediction,”

International Symposium on Microarchitecture, 1999, MICRO–32, pp. 177–185.

[Mos00]	

 A. Moshovos and G. Sohi, “Memory dependence speculation tradeoffs in

centralized, continuous–window superscalar processors,” International

Symposium on High–Performance Computer Architecture, 2000, HPCA–6, pp.

301–312.

[Mur07]	

 N. Muralimanohar and R. Balasubramonian, “Interconnect design considerations

for large NUCA caches,” International Symposium on Computer Architecture,

ISCA–34, 2007, pp. 369–380.

[Mur09]	

 N. Muralimanohar, R. Balasubramonian, N. P. Jouppi, “CACTI 6.0: A Tool to

Model Large Caches,” Technical Report HPL–2009–85, HP Laboratories, 2009.

120	

 BIBLIOGRAPHY

[Nag01]	

 R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A design space

evaluation of grid processor architectures,” International Symposium on

Microarchitecture, 2001, MICRO–34, pp. 40–51.

[Nag04]	

 R. Nagarajan, S. Kushwaha, D. Burger, K. McKinley, C. Lin, and S. Keckler,

“Static placement, dynamic issue (SPDI) scheduling for EDGE architectures,”

International Conference on Parallel Architecture and Compiler Techniques, 2004,

PACT–13, pp. 74–84.

[Nag11]	

 T. Nagatsuka, Y. Sakaguchi, T. Matsumura, and K. Kise, “CoreSymphony: an

efficient reconfigurable multi–core architecture,” ACM SIGARCH Computer

Architecture News, vol. 39, iss. 4, 2011, pp. 32–37.

[Nee00]	

 H. Neefs, H. Vandierendonck, and K. De Bosschere, “A technique for high

bandwidth and deterministic low latency load/store accesses to multiple cache

banks,” International Symposium on High–Performance Computer Architecture,

2000, HPCA–6, pp. 313–324.

[Ond99]	

 S. Onder and R. Gupta, “Dynamic memory disambiguation in the presence of out-

of-order store issuing,” International Symposium on Microarchitecture, 1999,

MICRO–32, pp. 170–176.

[Pag06]	

 K. Pagiamtzis and A. Sheikholeslami, “Content–addressable memory (CAM)

circuits and architectures: a tutorial and survey,” IEEE Journal of Solid–State

Circuits, vol. 41, iss. 3, 2006, pp. 712–727.

[Pal97]	

 S. Palacharla, N. Jouppi, and J. Smith, “Complexity–Effective Superscalar

Processors,” International Symposium on Computer Architecture, 1997, ISCA–24,

pp. 206–218.

[Pap96]	

 D. B. Papworth and G. J. Hinton, “Method and Apparatus for State Recovery

Following Branch Misprediction in an Out-of-Order Microprocessor,” United

States Patent no. 5586278, 1996.

[Par00]	

 J.M. Parcerisa and A. Gonzalez, “Reducing wire delay penalty through value

prediction,” International Symposium on Microarchitecture, 2000, MICRO–33,

pp. 317–326.

[Par03]	

 I. Park, C.L. Ooi, and T. Vijaykumar, “Reducing design complexity of the load/

store queue,” International Symposium on Microarchitecture, 2003, MICRO–36,

pp. 411–422.

BIBLIOGRAPHY	

 121

[Par04]	

 J.M. Parcerisa, “Design of Clustered Superscalar Microarchitectures,” Polytechnic

University of Catalonia, Department of Computer Architecture, Ph.D. Thesis,

2004.

[Pat85]	

 Y.N. Patt, S.W. Melvin, W.W. Hwu, and M. Shebanow, “Critical Issues Regarding

HPS, High Performance Microarchitecture,” Workshop on Microprogramming,

1985, MICRO–18, pp. 109–116.

[Rac03]	

 P. Racunas and Y.N. Patt, “Partitioned first–level cache design for clustered

microarchitectures,” International Conference on Supercomputing, 2003, ICS–17,

pp. 22–31.

[Rei98]	

 G. Reinman and B. Calder, “Predictive techniques for aggressive load

speculation,” International Symposium on Microarchitecture, 1998, MICRO–31,

pp. 127–137.

[Rot97]	

 E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace processors,”

International Symposium on Microarchitecture, 1997, MICRO–30, pp. 138–148.

[Rot05]	

 A. Roth, “Store vulnerability window (SVW): re-execution filtering for enhanced

load optimization,” International Symposium on Computer Architecture, 2005,

ISCA–32, pp. 458–468.

[Saz97]	

 Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” International

Symposium on Microarchitecture, 1997, MICRO–30, pp. 248–258.

[Sal05]	

 P. Salverda and C. Zilles, “A criticality analysis of clustering in superscalar

processors,” International Symposium on Microarchitecture, 2005, MICRO–38, p.

12 pp.

[Sub06a]	

 S. Subramaniam and G. H. Loh, “Fire–and–Forget: Load/Store Scheduling with

No Store Queue at All,” International Symposium on Microarchitecture, 2006,

MICRO–39, pp. 273–284.

[Sub06b]	

 S. Subramaniam and G. H. Loh, “Store vectors for scalable memory dependence

prediction and scheduling,” International Symposium on High–Performance

Computer Architecture, 2006, HPCA–12, pp. 65–76.

[San03]	

 K. Sankaralingam, S. Keckler, W. Mark, and D. Burger, “Universal mechanisms

for data–parallel architectures,” International Symposium on Microarchitecture,

2003, MICRO–36, pp. 303–314.

[San03]	

 K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, Jaehyuk Huh, D. Burger, S.

Keckler, and C. Moore, “Exploiting ILP, TLP, and DLP with the polymorphous

122	

 BIBLIOGRAPHY

TRIPS architecture,” International Symposium on Computer Architecture, 2003,

ISCA–30, pp. 422–433.

[Sat06]	

 Y. Sato, K. Suzuki, and T. Nakamura, “Power and Performance Advantages of the

Highly Clustered Microarchitecture,” International Workshop on Advanced Low

Power Systems, 2006.

[Set03]	

 S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and S. Keckler, “Scalable

hardware memory disambiguation for high ILP processors,” International

Symposium on Microarchitecture, 2003, MICRO–36, pp. 399–410.

[Set07]	

 S. Sethumadhavan, F. Roesner, J.S. Emer, D. Burger, and S.W. Keckler, “Late–

binding: enabling unordered load–store queues,” International Symposium on

Computer Architecture, 2007, ISCA–34, pp. 347–357.

[Sez99]	

 A. Seznec and P. Michaud, “De-aliased hybrid branch predictors,” Technical

Report RR–3618, Inria, 1999.

[Sha05]	

 T. Sha, M. Martin, and A. Roth, “Scalable store–load forwarding via store queue

index prediction,” International Symposium on Microarchitecture, 2005, MICRO–

38, pp. 12.

[Sha06]	

 T. Sha, M. Martin, and A. Roth, “NoSQ: Store–Load Communication without a

Store Queue,” International Symposium on Microarchitecture, 2006, MICRO–39,

pp. 285–296.

[Sim95]	

 M. Simone, A. Essen, A. Ike, A. Kishamoorthy, T. Maruyama, N. Patkar, M.

Ramaswami, M. Shebanow, V. Thirumalaiswamy, and D. Tovey, “Implementation

Trade-offs in Using a Restricted Data Flow Architecture in a High Performance

RISC Microprocessor,” International Symposium on Computer Architecture,

1995, ISCA–22, pp. 151–162.

[Ska03]	

 K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D.

Tarjan, “Temperature–aware microarchitecture,” International Symposium on

Computer Architecture, 2003, ISCA–30, pp. 2–13.

[Ska97]	

 K. Skadron and D. Clark, “Design issues and tradeoffs for write buffers,”

International Symposium on High–Performance Computer Architecture, 1997,

HPCA–3, pp. 144–155.

[Smi81]	

 J. E. Smith, “A study of branch prediction strategies,” International Symposium on

Computer Architecture, 1981, ISCA–8, pages 135–148.

BIBLIOGRAPHY	

 123

[Sri02]	

 V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. Strenski, and P.

Emma, “Optimizing pipelines for power and performance,” International

Symposium on Microarchitecture, 2002, MICRO–35, pp. 333–344.

[Sta00]	

 J. Stark, M. D. Brown, and Y.N. Patt, “On Pipelining Dynamic Instruction

Scheduling Logic,” International Symposium on Microarchitecture, 2000,

MICRO–33, pp. 57–66.

[Sto05]	

 S. Stone, K. Woley, and M. Frank, “Address–indexed memory disambiguation and

store–to–load forwarding,” International Symposium on Microarchitecture, 2005,

MICRO–38, pp. 12.

[Ten01]	

 J. M. Tendler, S. Dodson, S. Fields, Hung Le, B. Sinharoy, “POWER4 System

Microarchitecture,” International Business Machines, Technical White Paper,

2001.

[Tor05]	

 E. Torres, P. Ibanez, V. Vinals, and J. Llaberia, “Store buffer design in first–level

multibanked data caches,” International Symposium on Computer Architecture,

2005, ISCA–32, pp. 469–480.

[Tse06]	

 J.H. Tseng, “Banked Microarchitectures for Complexity–Effective Superscalar

Microprocessors,” Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, Ph.D. Thesis, 2006.

[Tys97]	

 G. Tyson and T. Austin, “Improving the accuracy and performance of memory

communication through renaming,” International Symposium on

Microarchitecture, 1997, MICRO–30, pp. 218–227.

[Vij04]	

 T. Vijaykumar and Z. Chishti, “Wire delay is not a problem for SMT (in the near

future),” International Symposium on Computer Architecture, 2004, ISCA–31, pp.

40–51.

[Viv07]	

 R. Vivekanandharn and R. Govindarajan, “A Scalable Low Power Store Queue for

Large Instruction Window Processors,” International Conference on Parallel

Architecture and Compilation Techniques, 2007, PACT–16, p. 430.

[Wat05]	

 S. Watanabe, H. Irie, M. Takada, and S. Skai, “Reducing Issue Delay of Store

Instructions on A clustered Microarchitecture,” Information Processing Society of

Japan SIG Technical Reports, vol. 2005, no. 19, 2005–ARC–162, 2005–HPC–101,

2005, pp. 199–204.

124	

 BIBLIOGRAPHY

[Wat10]	

 Y. Watanabe, J. D. Davis, D. A. Wood, “WiDGET: Wisconsin Decoupled Grid

Execution Tiles,” International Symposium on Computer Architecture, 2010,

ISCA–37, pp. 2–13.

[Wea94]	

 D. L. Weaver,T. Germond, “The SPARC Architecture Manual, Version 9”, SPARC

International, 1994.

[Web02]	

 D. A. Webb, J.B. Keller, and D.R. Meyer, “Data cache having store queue bypass

for out–of–order instruction execution and method for same,” United States Patent

no. 6360314, 2002.

[Wen07]	

 T.F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms for store–

wait–free multiprocessors,” International Symposium on Computer Architecture,

2007, ISCA–34, pp. 266–277.

[Woo08]	

 Dong Hyuk Woo and Hsien-Hsin S. Lee, "Extending Amdahl’s Law for Energy–

Efficient Computing in the Many–Core Era," IEEE Computer December 2008, pp.

24–31.

[Yeh92]	

 T. Y. Yeh and Y. N. Patt. “Alternative implementations of two–level adaptive

branch prediction,” International Symposium on Computer Architecture, 1992,

ISCA–19, pp 124–134.

[Yin05]	

 Yingmin Li, K. Skadron, D. Brooks, and Zhigang Hu, “Performance, energy, and

thermal considerations for SMT and CMP architectures,” International

Symposium on High Performance Computer Architecture, 2005, HPCA–11, pp.

71–82.

[Yoa99]	

 A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques for

improving load related instruction scheduling,” International Symposium on

Computer Architecture, 1999, ISCA–26, pp. 42–53.

[You95]	

 C. Young, N. Gloy, and M.D. Smith, “A comparative analysis of schemes for

correlated branch prediction.” International Symposium on Computer

Architecture, 1995, ISCA–22, pp. 276–286.

[Zha05]	

 M. Zhang and K. Asanovic, “Victim replication: maximizing capacity while

hiding wire delay in tiled chip multiprocessors,” International Symposium on

Computer Architecture, 2005, ISCA–32, pp. 336–345.

[Zyu00]	

 V.V. Zyuban, “Inherently Lower–Power High–Performance Superscalar

Architectures,” Ph.D. dissertation, CSE Dept., Univ. of Notre Dame, 2000.

BIBLIOGRAPHY	

 125

[Zyu01]	

 V.V. Zyuban and P.M. Kogge, “Inherently Lower–Power High–Performance

Superscalar Architectures,” International Symposium on High Performance

Computer Architecture, 2001, HPCA–10, pp. 268–285.

126	

 BIBLIOGRAPHY

LIST OF FIGURES
CHAPTER 1. INTRODUCTION

..Figure 1.1:	

 Example layouts for the back-end.	

 5
...Figure 1.2:	

 Normalized Access Time and Dynamic Energy.	

 7

CHAPTER 2. PREVIOUS RELATED WORK
...Figure 2.1:	

 Simplified Schema of the P6 Memory Unit.	

 17

..Figure 2.2:	

 Simplified Schema of the EV6 Memory Unit.	

 21
..Figure 2.3:	

 Simplified Schema of the K7 Memory Unit.	

 24

..............Figure 2.4:	

 Different Memory Pipeline Organizations, Illustration from Yoaz et al.	

 25

CHAPTER 3. BANK PREDICTORS
..Figure 3.1:	

 Last Bank Predictor.	

 35

..Figure 3.2:	

 Accuracy of the Last Bank Predictor.	

 35
..Figure 3.3:	

 Global Bank Predictor.	

 37

.....................Figure 3.4:	

 Accuracy of the Global Bank Predictor using speculative updates.	

 37
..Figure 3.5:	

 Calculation of index for Gshare Bank Predictor.	

 38

..Figure 3.6:	

 Gshare Bank Predictor.	

 38
.................................Figure 3.7:	

 Accuracy of Gshare as a function of history and table size.	

 39

......................Figure 3.8:	

 Accuracy of the Gshare Bank Predictor with optimal history size.	

 39
...Figure 3.9:	

 Local History Bank Predictor.	

 41

..Figure 3.10:	

Accuracy of the Local History Bank Predictor.	

 41
..Figure 3.11:	

Comparison of Hashed and Local History Predictor.	

 42

...Figure 3.12:	

Stride Predictor.	

 43
..Figure 3.13:	

Accuracy of the Stride Predictor.	

 43

...Figure 3.14:	

Local Stride Predictor.	

 44
..Figure 3.15:	

Accuracy of the Local Stride Predictor.	

 44

.................................Figure 3.16:	

Comparison of Local Predictor and Local Stride Predictor.	

 45
...Figure 3.17:	

Gskew Predictor.	

 46

...Figure 3.18:	

Accuracy of the Gskew Bank Predictor.	

 46
..Figure 3.19:	

Tournament Bank Predictor.	

 48

...Figure 3.20:	

Accuracy of the Tournament Predictor.	

 48
..............................Figure 3.21:	

Accuracy of all predictors as a function of the predictor size.	

 49

...Figure 3.22:	

Revisiting Access Time and Dynamic Energy.	

 52

CHAPTER 4. A DISTRIBUTED MEMORY UNIT
......................................Figure 4.1:	

 Example of a load instruction that travels three clusters.	

 56

...Figure 4.2:	

 The effect of the interleaving factor on accuracy.	

 64
...Figure 4.3:	

 The effect of the interleaving factor on performance.	

 65

........................Figure 4.4:	

 Relative IPC with four different load issue policies for SPECint.	

 66

	

 127

.........................Figure 4.5:	

 Relative IPC with four different load issue policies for SPECfp.	

 66

CHAPTER 5. IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT
.Figure 5.1:	

 Impact of Dispatch Throttling Schemes on the Frequency of Deadlock Events.	

 73

.............Figure 5.2:	

 Impact of Dispatch Throttling Schemes on the Dispatch Commit Ratio.	

 74
....................................Figure 5.3:	

 Impact of Dispatch Throttling Schemes on Performance.	

 74

..Figure 5.4:	

 Distributed Memory Unit with Pre–Access Queues.	

 76
..................Figure 5.5:	

 Impact of Pre–Access Queue on the Frequency of Deadlock Events.	

 78

.............................Figure 5.6:	

 Impact of Pre–Access Queue on the Dispatch Commit Ratio.	

 79
...Figure 5.7:	

 Impact of Pre–Access Queue on Performance.	

 79

..Figure 5.8:	

 Selecting the Oldest Ready Instruction.	

 83
..Figure 5.9:	

 Distributed Memory Unit with Memory Issue Queues.	

 83

..Figure 5.10:	

Impact of Load Issue Queue on Flush Events.	

 84
..........Figure 5.11:	

Impact of Load Issue Queue of 16 entries on the Dispatch Commit Ratio.	

 85

.................................Figure 5.12:	

Impact of Load Issue Queue of 16 entries on performance.	

 86
..Figure 5.13:	

Updates of the Permission Vector (PV).	

 87

.......Figure 5.14:	

Impact of Conservative Deadlock Aware Entry Allocation on Flush Events.	

 89
Figure 5.15:	

Impact of Conservative Deadlock Aware Entry Allocation on Dispatch Commit

...	

 Ratio.	

 89
......Figure 5.16:	

Impact of Conservative Deadlock-Aware Entry Allocation on Performance.	

 90

.........................Figure 5.17:	

How to Find a) the Oldest Load and b) Unknown Predecessors.	

 95
.........Figure 5.18:	

Impact of Early Release of Load Queue Entries (ERLQ) on Performance.	

 96

Figure 5.19:	

Performance Compared to Previous Work, IPC as a Function of Load Queue
...	

 Size.	

 97

Figure 5.20:	

Performance Compared to Previous Work, Load Queue Size as a Function of
..	

 IPC.	

 98

..........Figure 5.21:	

Energy and Performance for Centralized and Distributed Configurations.	

 99
Figure 5.22:	

Dynamic Energy by Components for Centralized and Distributed

..	

 Configurations.	

 100

CHAPTER 6. CONCLUSIONS

128	

 LIST OF FIGURES

LIST OF TABLES
CHAPTER 1. INTRODUCTION

CHAPTER 2. PREVIOUS RELATED WORK
...Table 3.1:	

 Optimal history size for Gshare Bank Predictor.	

 39
...Table 3.2:	

 Optimal history size for Gskew Bank Predictor.	

 46

CHAPTER 3. BANK PREDICTORS

CHAPTER 4. A DISTRIBUTED MEMORY UNIT
......................................Table 4.1:	

 Main architectural parameters of the microarchitecture.	

 62

CHAPTER 5. IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT

CHAPTER 6. CONCLUSIONS

	

 129

LIST OF EXAMPLES
CHAPTER 1. INTRODUCTION

CHAPTER 2. PREVIOUS RELATED WORK
...Example 2.1:	

 Store-Load Dependency.	

 12
...Example 2.2:	

 Store-Store Dependency.	

 14
...Example 2.3:	

 Load-Store Dependency.	

 15

CHAPTER 3. BANK PREDICTORS

CHAPTER 4. A DISTRIBUTED MEMORY UNIT

CHAPTER 5. IMPROVEMENTS TO THE DISTRIBUTED MEMORY UNIT
..Example 5.1:	

 Read-after-Write Dependency.	

 91

..Example 5.2:	

 Load Ordering.	

 91
...Example 5.3:	

 Load/Store Ordering.	

 92

CHAPTER 6. CONCLUSIONS

130

