2,613 research outputs found

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Higher-Order Termination: from Kruskal to Computability

    Get PDF
    Termination is a major question in both logic and computer science. In logic, termination is at the heart of proof theory where it is usually called strong normalization (of cut elimination). In computer science, termination has always been an important issue for showing programs correct. In the early days of logic, strong normalization was usually shown by assigning ordinals to expressions in such a way that eliminating a cut would yield an expression with a smaller ordinal. In the early days of verification, computer scientists used similar ideas, interpreting the arguments of a program call by a natural number, such as their size. Showing the size of the arguments to decrease for each recursive call gives a termination proof of the program, which is however rather weak since it can only yield quite small ordinals. In the sixties, Tait invented a new method for showing cut elimination of natural deduction, based on a predicate over the set of terms, such that the membership of an expression to the predicate implied the strong normalization property for that expression. The predicate being defined by induction on types, or even as a fixpoint, this method could yield much larger ordinals. Later generalized by Girard under the name of reducibility or computability candidates, it showed very effective in proving the strong normalization property of typed lambda-calculi..

    Modular and Certified Semantic Labeling and Unlabeling

    Get PDF
    Semantic labeling is a powerful transformation technique to prove termination of term rewrite systems. The dual technique is unlabeling. For unlabeling it is essential to drop the so called decreasing rules which sometimes have to be added when applying semantic labeling. We indicate two problems concerning unlabeling and present our solutions. The first problem is that currently unlabeling cannot be applied as a modular step, since the decreasing rules are determined by a semantic labeling step which may have taken place much earlier. To this end, we give an implicit definition of decreasing rules that does not depend on any knowledge about preceding labelings. The second problem is that unlabeling is in general unsound. To solve this issue, we introduce the notion of extended termination problems. Moreover, we show how existing termination techniques can be lifted to operate on extended termination problems. All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    Dependency pairs for proving termination properties of conditional term rewriting systems

    Full text link
    [EN] The notion of operational termination provides a logic-based definition of termination of computational systems as the absence of infinite inferences in the computational logic describing the operational semantics of the system. For Conditional Term Rewriting Systems we show that operational termination is characterized as the conjunction of two termination properties. One of them is traditionally called termination and corresponds to the absence of infinite sequences of rewriting steps (a horizontal dimension). The other property, that we call V-termination, concerns the absence of infinitely many attempts to launch the subsidiary processes that are required to perform a single rewriting step (a vertical dimension). We introduce appropriate notions of dependency pairs to characterize termination, V-termination, and operational termination of Conditional Term Rewriting Systems. This can be used to obtain a powerful and more expressive framework for proving termination properties of Conditional Term Rewriting Systems.Partially supported by the EU (FEDER), Spanish MINECO projects TIN 2013-45732-C4-1-P and TIN2015-69175-C4-1-R, GV project PROMETEOII/2015/013, and NSF grant CNS 13-19109. Salvador Lucas' research was partly developed during a sabbatical year at UIUCLucas Alba, S.; Meseguer, J. (2017). Dependency pairs for proving termination properties of conditional term rewriting systems. Journal of Logical and Algebraic Methods in Programming. 86(1):236-268. https://doi.org/10.1016/j.jlamp.2016.03.003S23626886

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Certifying Confluence of Almost Orthogonal CTRSs via Exact Tree Automata Completion

    Get PDF
    Suzuki et al. showed that properly oriented, right-stable, orthogonal, and oriented conditional term rewrite systems with extra variables in right-hand sides are confluent. We present our Isabelle/HOL formalization of this result, including two generalizations. On the one hand, we relax proper orientedness and orthogonality to extended proper orientedness and almost orthogonality modulo infeasibility, as suggested by Suzuki et al. On the other hand, we further loosen the requirements of the latter, enabling more powerful methods for proving infeasibility of conditional critical pairs. Furthermore, we formalized a construction by Jacquemard that employs exact tree automata completion for non-reachability analysis and apply it to certify infeasibility of conditional critical pairs. Combining these two results and extending the conditional confluence checker ConCon accordingly, we are able to automatically prove and certify confluence of an important class of conditional term rewrite systems

    Mechanising syntax with binders in Coq

    Get PDF
    Mechanising binders in general-purpose proof assistants such as Coq is cumbersome and difficult. Yet binders, substitutions, and instantiation of terms with substitutions are a critical ingredient of many programming languages. Any practicable mechanisation of the meta-theory of the latter hence requires a lean formalisation of the former. We investigate the topic from three angles: First, we realise formal systems with binders based on both pure and scoped de Bruijn algebras together with basic syntactic rewriting lemmas and automation. We automate this process in a compiler called Autosubst; our final tool supports many-sorted, variadic, and modular syntax. Second, we justify our choice of realisation and mechanise a proof of convergence of the sigma calculus, a calculus of explicit substitutions that is complete for equality of the de Bruijn algebra corresponding to the lambda calculus. Third, to demonstrate the practical usefulness of our approach, we provide concise, transparent, and accessible mechanised proofs for a variety of case studies refined to de Bruijn substitutions.Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeitsaufwändig und schwierig. Binder, Substitutionen und die Instantiierung von Substitutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine elegante Formalisierung von Bindern voraus. Wir nähern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusammen mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir automatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler Kompilierer unterstützt Sortenlogik, variadische Syntax und modulare Syntax. Zweitens rechtfertigen wir unsere Repräsentation und mechanisieren einen Beweis der Konvergenz des SP-Kalküls, einem Kalkül expliziter Substitutionen der bezüglich der Gleichheit der puren de Bruijn Algebra des -Kalküls vollständig ist. Drittens entwickeln wir kurze, transparente und leicht zugängliche mechanisierte Beweise für diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir weisen so die praktische Anwendbarkeit unseres Ansatzes nach
    corecore