57 research outputs found

    Improving Few-Shot Prompts with Relevant Static Analysis Products

    Full text link
    Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU

    Big Data Security (Volume 3)

    Get PDF
    After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology

    Identifying Relevant Evidence for Systematic Reviews and Review Updates

    Get PDF
    Systematic reviews identify, assess and synthesise the evidence available to answer complex research questions. They are essential in healthcare, where the volume of evidence in scientific research publications is vast and cannot feasibly be identified or analysed by individual clinicians or decision makers. However, the process of creating a systematic review is time consuming and expensive. The pace of scientific publication in medicine and related fields also means that evidence bases are continually changing and review conclusions can quickly become out of date. Therefore, developing methods to support the creating and updating of reviews is essential to reduce the workload required and thereby ensure that reviews remain up to date. This research aims to support systematic reviews, thus improving healthcare through natural language processing and information retrieval techniques. More specifically, this thesis aims to support the process of identifying relevant evidence for systematic reviews and review updates to reduce the workload required from researchers. This research proposes methods to improve studies ranking for systematic reviews. In addition, this thesis describes a dataset of systematic review updates in the field of medicine created using 25 Cochrane reviews. Moreover, this thesis develops an algorithm to automatically refine the Boolean query to improve the identification of relevant studies for review updates. The research demonstrates that automating the process of identifying relevant evidence can reduce the workload of conducting and updating systematic reviews

    Evidence-driven testing and debugging of software systems

    Get PDF
    Program debugging is the process of testing, exposing, reproducing, diagnosing and fixing software bugs. Many techniques have been proposed to aid developers during software testing and debugging. However, researchers have found that developers hardly use or adopt the proposed techniques in software practice. Evidently, this is because there is a gap between proposed methods and the state of software practice. Most methods fail to address the actual needs of software developers. In this dissertation, we pose the following scientific question: How can we bridge the gap between software practice and the state-of-the-art automated testing and debugging techniques? To address this challenge, we put forward the following thesis: Software testing and debugging should be driven by empirical evidence collected from software practice. In particular, we posit that the feedback from software practice should shape and guide (the automation) of testing and debugging activities. In this thesis, we focus on gathering evidence from software practice by conducting several empirical studies on software testing and debugging activities in the real-world. We then build tools and methods that are well-grounded and driven by the empirical evidence obtained from these experiments. Firstly, we conduct an empirical study on the state of debugging in practice using a survey and a human study. In this study, we ask developers about their debugging needs and observe the tools and strategies employed by developers while testing, diagnosing and repairing real bugs. Secondly, we evaluate the effectiveness of the state-of-the-art automated fault localization (AFL) methods on real bugs and programs. Thirdly, we conducted an experiment to evaluate the causes of invalid inputs in software practice. Lastly, we study how to learn input distributions from real-world sample inputs, using probabilistic grammars. To bridge the gap between software practice and the state of the art in software testing and debugging, we proffer the following empirical results and techniques: (1) We collect evidence on the state of practice in program debugging and indeed, we found that there is a chasm between (available) debugging tools and developer needs. We elicit the actual needs and concerns of developers when testing and diagnosing real faults and provide a benchmark (called DBGBench) to aid the automated evaluation of debugging and repair tools. (2) We provide empirical evidence on the effectiveness of several state-of-the-art AFL techniques (such as statistical debugging formulas and dynamic slicing). Building on the obtained empirical evidence, we provide a hybrid approach that outperforms the state-of-the-art AFL techniques. (3) We evaluate the prevalence and causes of invalid inputs in software practice, and we build on the lessons learned from this experiment to build a general-purpose algorithm (called ddmax) that automatically diagnoses and repairs real-world invalid inputs. (4) We provide a method to learn the distribution of input elements in software practice using probabilistic grammars and we further employ the learned distribution to drive the test generation of inputs that are similar (or dissimilar) to sample inputs found in the wild. In summary, we propose an evidence-driven approach to software testing and debugging, which is based on collecting empirical evidence from software practice to guide and direct software testing and debugging. In our evaluation, we found that our approach is effective in improving the effectiveness of several debugging activities in practice. In particular, using our evidence-driven approach, we elicit the actual debugging needs of developers, improve the effectiveness of several automated fault localization techniques, effectively debug and repair invalid inputs, and generate test inputs that are (dis)similar to real-world inputs. Our proposed methods are built on empirical evidence and they improve over the state-of-the-art techniques in testing and debugging.Software-Debugging bezeichnet das Testen, Aufspüren, Reproduzieren, Diagnostizieren und das Beheben von Fehlern in Programmen. Es wurden bereits viele Debugging-Techniken vorgestellt, die Softwareentwicklern beim Testen und Debuggen unterstützen. Dennoch hat sich in der Forschung gezeigt, dass Entwickler diese Techniken in der Praxis kaum anwenden oder adaptieren. Das könnte daran liegen, dass es einen großen Abstand zwischen den vorgestellten und in der Praxis tatsächlich genutzten Techniken gibt. Die meisten Techniken genügen den Anforderungen der Entwickler nicht. In dieser Dissertation stellen wir die folgende wissenschaftliche Frage: Wie können wir die Kluft zwischen Software-Praxis und den aktuellen wissenschaftlichen Techniken für automatisiertes Testen und Debugging schließen? Um diese Herausforderung anzugehen, stellen wir die folgende These auf: Das Testen und Debuggen von Software sollte von empirischen Daten, die in der Software-Praxis gesammelt wurden, vorangetrieben werden. Genauer gesagt postulieren wir, dass das Feedback aus der Software-Praxis die Automation des Testens und Debuggens formen und bestimmen sollte. In dieser Arbeit fokussieren wir uns auf das Sammeln von Daten aus der Software-Praxis, indem wir einige empirische Studien über das Testen und Debuggen von Software in der echten Welt durchführen. Auf Basis der gesammelten Daten entwickeln wir dann Werkzeuge, die sich auf die Daten der durchgeführten Experimente stützen. Als erstes führen wir eine empirische Studie über den Stand des Debuggens in der Praxis durch, wobei wir eine Umfrage und eine Humanstudie nutzen. In dieser Studie befragen wir Entwickler zu ihren Bedürfnissen, die sie beim Debuggen haben und beobachten die Werkzeuge und Strategien, die sie beim Diagnostizieren, Testen und Aufspüren echter Fehler einsetzen. Als nächstes bewerten wir die Effektivität der aktuellen Automated Fault Localization (AFL)- Methoden zum automatischen Aufspüren von echten Fehlern in echten Programmen. Unser dritter Schritt ist ein Experiment, um die Ursachen von defekten Eingaben in der Software-Praxis zu ermitteln. Zuletzt erforschen wir, wie Häufigkeitsverteilungen von Teileingaben mithilfe einer Grammatik von echten Beispiel-Eingaben aus der Praxis gelernt werden können. Um die Lücke zwischen Software-Praxis und der aktuellen Forschung über Testen und Debuggen von Software zu schließen, bieten wir die folgenden empirischen Ergebnisse und Techniken: (1) Wir sammeln aktuelle Forschungsergebnisse zum Stand des Software-Debuggens und finden in der Tat eine Diskrepanz zwischen (vorhandenen) Debugging-Werkzeugen und dem, was der Entwickler tatsächlich benötigt. Wir sammeln die tatsächlichen Bedürfnisse von Entwicklern beim Testen und Debuggen von Fehlern aus der echten Welt und entwickeln einen Benchmark (DbgBench), um das automatische Evaluieren von Debugging-Werkzeugen zu erleichtern. (2) Wir stellen empirische Daten zur Effektivität einiger aktueller AFL-Techniken vor (z.B. Statistical Debugging-Formeln und Dynamic Slicing). Auf diese Daten aufbauend, stellen wir einen hybriden Algorithmus vor, der die Leistung der aktuellen AFL-Techniken übertrifft. (3) Wir evaluieren die Häufigkeit und Ursachen von ungültigen Eingaben in der Softwarepraxis und stellen einen auf diesen Daten aufbauenden universell einsetzbaren Algorithmus (ddmax) vor, der automatisch defekte Eingaben diagnostiziert und behebt. (4) Wir stellen eine Methode vor, die Verteilung von Schnipseln von Eingaben in der Software-Praxis zu lernen, indem wir Grammatiken mit Wahrscheinlichkeiten nutzen. Die gelernten Verteilungen benutzen wir dann, um den Beispiel-Eingaben ähnliche (oder verschiedene) Eingaben zu erzeugen. Zusammenfassend stellen wir einen auf der Praxis beruhenden Ansatz zum Testen und Debuggen von Software vor, welcher auf empirischen Daten aus der Software-Praxis basiert, um das Testen und Debuggen zu unterstützen. In unserer Evaluierung haben wir festgestellt, dass unser Ansatz effektiv viele Debugging-Disziplinen in der Praxis verbessert. Genauer gesagt finden wir mit unserem Ansatz die genauen Bedürfnisse von Entwicklern, verbessern die Effektivität vieler AFL-Techniken, debuggen und beheben effektiv fehlerhafte Eingaben und generieren Test-Eingaben, die (un)ähnlich zu Eingaben aus der echten Welt sind. Unsere vorgestellten Methoden basieren auf empirischen Daten und verbessern die aktuellen Techniken des Testens und Debuggens

    Perspectives from University Graduates facing A.I and Automation in Ireland: How do Irish Higher Education’s graduates from Maynooth University perceive AI is going to impact them?

    Get PDF
    Higher Education graduates in Ireland are being poured every year into the workforce with increasing uncertainty due to technological breakthroughs in AI and Automation technologies. The speed of which is hard to keep up for higher education institutions due to the sheer amount of outdated and unengaging practices inside universities not translating into applicable skills in the workplaces. Qualitative semi-structured interviews are used to delve into the perspectives and attitudes of graduates from Maynooth University, a mid-size Irish university. The observed graduate perceptions range from lack of employable skills and practical knowledge plus a widespread culture of instrumental credentialism and lack of assertiveness in cases where the quality of the education is perceived as bad; to positive perspectives surrounding Universities lifestyle and flexible AI-powered ways of learning. Through Interpretative exploratory techniques, this thesis contributes to the discussion of a more sustainable Artificial Intelligence and education system, based on the pursue of new literacies updated to the XXI century
    corecore