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Abstract

Program debugging is the process of testing, exposing, reproducing, diagnosing and fixing
software bugs. Many techniques have been proposed to aid developers during software testing and
debugging. However, researchers have found that developers hardly use or adopt the proposed
techniques in software practice. Evidently, this is because there is a gap between proposed methods
and the state of software practice. Most methods fail to address the actual needs of software
developers. In this dissertation, we pose the following scientific question: How can we bridge the
gap between software practice and the state-of-the-art automated testing and debugging techniques?

To address this challenge, we put forward the following thesis: Software testing and debugging
should be driven by empirical evidence collected from software practice. In particular, we posit
that the feedback from software practice should shape and guide (the automation) of testing and
debugging activities. In this thesis, we focus on gathering evidence from software practice by
conducting several empirical studies on software testing and debugging activities in the real-world.
We then build tools and methods that are well-grounded and driven by the empirical evidence
obtained from these experiments.

Firstly, we conduct an empirical study on the state of debugging in practice using a survey
and a human study. In this study, we ask developers about their debugging needs and observe
the tools and strategies employed by developers while testing, diagnosing and repairing real bugs.
Secondly, we evaluate the effectiveness of the state-of-the-art automated fault localization (AFL)
methods on real bugs and programs. Thirdly, we conducted an experiment to evaluate the causes
of invalid inputs in software practice. Lastly, we study how to learn input distributions from
real-world sample inputs, using probabilistic grammars.

To bridge the gap between software practice and the state of the art in software testing and
debugging, we proffer the following empirical results and techniques: (1) We collect evidence on
the state of practice in program debugging and indeed, we found that there is a chasm between
(available) debugging tools and developer needs. We elicit the actual needs and concerns of
developers when testing and diagnosing real faults and provide a benchmark (called DbgBench)
to aid the automated evaluation of debugging and repair tools. (2) We provide empirical evidence
on the effectiveness of several state-of-the-art AFL techniques (such as statistical debugging
formulas and dynamic slicing). Building on the obtained empirical evidence, we provide a hybrid
approach that outperforms the state-of-the-art AFL techniques. (3) We evaluate the prevalence
and causes of invalid inputs in software practice, and we build on the lessons learned from this



experiment to build a general-purpose algorithm (called ddmax ) that automatically diagnoses
and repairs real-world invalid inputs. (4) We provide a method to learn the distribution of input
elements in software practice using probabilistic grammars and we further employ the learned
distribution to drive the test generation of inputs that are similar (or dissimilar) to sample inputs
found in the wild.

In summary, we propose an evidence-driven approach to software testing and debugging,
which is based on collecting empirical evidence from software practice to guide and direct software
testing and debugging. In our evaluation, we found that our approach is effective in improving the
effectiveness of several debugging activities in practice. In particular, using our evidence-driven
approach, we elicit the actual debugging needs of developers, improve the effectiveness of several
automated fault localization techniques, effectively debug and repair invalid inputs, and generate
test inputs that are (dis)similar to real-world inputs. Our proposed methods are built on empirical
evidence and they improve over the state-of-the-art techniques in testing and debugging.

Keywords : Software Testing, Automated Debugging, Automated Fault Localization, Input
Debugging, Grammar-based Test generation



Zusammenfassung

Software-Debugging bezeichnet das Testen, Aufspüren, Reproduzieren, Diagnostizieren und das
Beheben von Fehlern in Programmen. Es wurden bereits viele Debugging-Techniken vorgestellt,
die Softwareentwicklern beim Testen und Debuggen unterstützen. Dennoch hat sich in der
Forschung gezeigt, dass Entwickler diese Techniken in der Praxis kaum anwenden oder adaptieren.
Das könnte daran liegen, dass es einen großen Abstand zwischen den vorgestellten und in der
Praxis tatsächlich genutzten Techniken gibt. Die meisten Techniken genügen den Anforderungen
der Entwickler nicht. In dieser Dissertation stellen wir die folgende wissenschaftliche Frage: Wie
können wir die Kluft zwischen Software-Praxis und den aktuellen wissenschaftlichen Techniken
für automatisiertes Testen und Debugging schließen?

Um diese Herausforderung anzugehen, stellen wir die folgende These auf: Das Testen und
Debuggen von Software sollte von empirischen Daten, die in der Software-Praxis gesammelt
wurden, vorangetrieben werden. Genauer gesagt postulieren wir, dass das Feedback aus der
Software-Praxis die Automation des Testens und Debuggens formen und bestimmen sollte. In
dieser Arbeit fokussieren wir uns auf das Sammeln von Daten aus der Software-Praxis, indem
wir einige empirische Studien über das Testen und Debuggen von Software in der echten Welt
durchführen. Auf Basis der gesammelten Daten entwickeln wir dann Werkzeuge, die sich auf die
Daten der durchgeführten Experimente stützen.

Als erstes führen wir eine empirische Studie über den Stand des Debuggens in der Praxis
durch, wobei wir eine Umfrage und eine Humanstudie nutzen. In dieser Studie befragen wir
Entwickler zu ihren Bedürfnissen, die sie beim Debuggen haben und beobachten die Werkzeuge
und Strategien, die sie beim Diagnostizieren, Testen und Aufspüren echter Fehler einsetzen.
Als nächstes bewerten wir die Effektivität der aktuellen Automated Fault Localization (AFL)-
Methoden zum automatischen Aufspüren von echten Fehlern in echten Programmen. Unser
dritter Schritt ist ein Experiment, um die Ursachen von defekten Eingaben in der Software-Praxis
zu ermitteln. Zuletzt erforschen wir, wie Häufigkeitsverteilungen von Teileingaben mithilfe einer
Grammatik von echten Beispiel-Eingaben aus der Praxis gelernt werden können.

Um die Lücke zwischen Software-Praxis und der aktuellen Forschung über Testen und Debuggen
von Software zu schließen, bieten wir die folgenden empirischen Ergebnisse und Techniken: (1)
Wir sammeln aktuelle Forschungsergebnisse zum Stand des Software-Debuggens und finden in der
Tat eine Diskrepanz zwischen (vorhandenen) Debugging-Werkzeugen und dem, was der Entwickler
tatsächlich benötigt. Wir sammeln die tatsächlichen Bedürfnisse von Entwicklern beim Testen und



Debuggen von Fehlern aus der echten Welt und entwickeln einen Benchmark (DbgBench), um
das automatische Evaluieren von Debugging-Werkzeugen zu erleichtern. (2) Wir stellen empirische
Daten zur Effektivität einiger aktueller AFL-Techniken vor (z.B. Statistical Debugging-Formeln
und Dynamic Slicing). Auf diese Daten aufbauend, stellen wir einen hybriden Algorithmus vor,
der die Leistung der aktuellen AFL-Techniken übertrifft. (3) Wir evaluieren die Häufigkeit und
Ursachen von ungültigen Eingaben in der Softwarepraxis und stellen einen auf diesen Daten
aufbauenden universell einsetzbaren Algorithmus (ddmax ) vor, der automatisch defekte Eingaben
diagnostiziert und behebt. (4) Wir stellen eine Methode vor, die Verteilung von Schnipseln von
Eingaben in der Software-Praxis zu lernen, indem wir Grammatiken mit Wahrscheinlichkeiten
nutzen. Die gelernten Verteilungen benutzen wir dann, um den Beispiel-Eingaben ähnliche (oder
verschiedene) Eingaben zu erzeugen.

Zusammenfassend stellen wir einen auf der Praxis beruhenden Ansatz zum Testen und
Debuggen von Software vor, welcher auf empirischen Daten aus der Software-Praxis basiert, um
das Testen und Debuggen zu unterstützen. In unserer Evaluierung haben wir festgestellt, dass
unser Ansatz effektiv viele Debugging-Disziplinen in der Praxis verbessert. Genauer gesagt finden
wir mit unserem Ansatz die genauen Bedürfnisse von Entwicklern, verbessern die Effektivität
vieler AFL-Techniken, debuggen und beheben effektiv fehlerhafte Eingaben und generieren
Test-Eingaben, die (un)ähnlich zu Eingaben aus der echten Welt sind. Unsere vorgestellten
Methoden basieren auf empirischen Daten und verbessern die aktuellen Techniken des Testens
und Debuggens.

Schlüsselwörter : Testen, Automatisches Debuggen, Automatisches Finden von Fehlern,
Eingabeberichtigung, Grammatikbasiertes Testen
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Chapter 1

Introduction

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

— Donald E. Knuth

Programs often fail. Frequently, programs contain bugs that cause failures and unexpected
behaviors. When a program fails, software developers are saddled with the task of exposing,
reproducing, diagnosing and repairing the bug. Developers first have to test the program with
suitable inputs, then diagnose and fix the failure. Testing is the process of writing or generating
inputs that executes the program code, in order to expose (or reproduce) bugs. Meanwhile,
debugging is the process of diagnosing and fixing such bugs. Both testing and debugging are
arduous tasks, that consume a lot of time and resources.

Several methods have been developed to support developers in software testing and debug-
ging [1, 2, 3, 4, 5, 6, 7, 8]. However, there is a gap between proposed methods and the actual
state of software practice. Most methods lack strong empirical support; they either do not have
any empirical validation at all or have weak evaluations with unrealistic assumptions [9, 10].
Often, researchers have found evidence of assumptions, tools and techniques that do not apply
in practice [11, 12, 13, 14, 15]. This lack of empirical support can be attributed to the cost and
difficulty of experimentation [16, 17, 18].

Consequently, this chasm has created a gap between the state of the art tools and how developers
actually test and debug programs. For instance, a recent survey on debugging cites more than
400 publications on fault localization techniques [1]. However, most developers have never used
an automated fault localization tool in practice [19]. Likewise, many test generation methods
do not generate test inputs that are similar to those written by developers or end-users of the
software [20]. Notably, current approaches ignore how proposed tools address real-world needs.
We know very little about how developers test and debug; we also lack the data and methods to
check (proposed) tools against practitioner’s needs.

How can we bridge this gap? In this thesis, we conduct several empirical studies to gather
evidence from software practice, in order to effectively guide and automate software testing and
debugging. We put forward the thesis that testing and debugging should be driven by empirical
evidence collected from software practice. We posit that the feedback from software practice

1



1. Introduction

should shape and guide software testing and debugging. Thus, we focus on building tools and
methods that are driven by empirical evidence collected from software practice.

1.1 Thesis Statement

In this dissertation, we designed and conducted several experiments to empirically test our thesis
statement. Then, we collect empirical evidence from these experiments to build novel methods for
testing and debugging. We analyze the results of our experiments in order to support the thesis,
we discuss the implications of these experiments and we introduce novel testing and debugging
methods that are built on empirical evidence from software practice.

The rest of this dissertation builds on different aspects of this thesis statement:

Software testing and debugging should be driven
by empirical evidence collected from software practice.

Firstly, we evaluate the state of debugging in practice (Chapter 3). In particular, we evaluate
how developers diagnose and repair bugs in practice. We conducted a retrospective study with
hundreds of developers and an observational study with 12 practitioners, in order to collect
empirical evidence on the state-of-the-practice in debugging. We investigate how developers spend
their time diagnosing and fixing bugs. We also examine the tools and strategies employed by
developers while debugging. Our findings reveal the need for automated assistance to evaluate
and develop realistic debugging aids. Subsequently, we apply the evidence gathered from these
empirical studies to facilitate and guide future research. In particular, we provide DbgBench, a
highly usable debugging benchmark that provides fault locations, patches and explanations for
common bugs as provided by practitioners.

Secondly, we evaluate the effectiveness of the state-of-the-art fault localization methods (Chap-
ter 4). Specifically, we compare the effectiveness of several statistical fault localization methods
against dynamic program slicing in a large study of over 706 faults in 46 open source C programs.
Our findings reveal that dynamic slicing was more effective than the best performing statistical
debugging formula. For most bugs, dynamic slicing will find the fault earlier than the best
performing statistical debugging formula. Consequently, we apply this empirical evidence to
develop a hybrid approach. The hybrid approach leverages the strengths of both dynamic slicing
and statistical fault localization to achieve the best results. Programmers using the hybrid
approach will need to examine fewer lines of code to locate faults.

Thirdly, we evaluate how to debug invalid inputs that occur in software practice (Chapter 5).
We first evaluate the prevalence of invalid inputs in practice, and we found that four percent of
inputs in the wild are invalid. We then build on this empirical evidence to develop a method to
debug inputs — that is, identify which parts of the input data prevent processing, and recover as
much of the (valuable) input data as possible. We present a general-purpose algorithm called
ddmax that addresses these problems automatically, via numerous experiments that maximizes
the subset of the input that can still be processed by the program. Particularly, this is the first
approach that fixes faults in the input data without requiring program analysis.

Lastly, we propose an approach that generates structured inputs that are (dis)similar to real-
world inputs found in the wild (Chapter 6). We first learn the distribution of input elements in

2



1.2. Publications

real-world sample inputs using a probabilistic grammar. We then apply the learned probabilistic
grammar to generate inputs that are similar to the sample. We also generate inputs that
are dissimilar to the sample by inverting the learned probabilities. In addition, this approach
allows to reproduce (or avoid) program failures by learning the distribution of input elements in
failure-inducing inputs.

1.2 Publications

This dissertation builds on the following papers (in chronological order):

• Ezekiel Soremekun. Debugging with probabilistic event structures. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), pages 437–440.
IEEE, 2017.

• Marcel Böhme, Ezekiel Soremekun, Sudipta Chattopadhyay, Emamurho Ugherughe,
and Andreas Zeller. Wo ist der fehler und wie wird er behoben? ein experiment mit
softwareentwicklern. Software Engineering und Software Management (SESWM), 2018.

• Marcel Böhme, Ezekiel Soremekun, Sudipta Chattopadhyay, Emamurho Juliet Ugherughe,
and Andreas Zeller. How developers debug software —the dbgbench dataset. In 2017
IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
pages 244–246. IEEE, 2017.

• Marcel Böhme, Ezekiel Soremekun, Sudipta Chattopadhyay, Emamurho Ugherughe, and
Andreas Zeller. Where is the bug and how is it fixed? an experiment with practitioners.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pages 117–128, 2017.

• Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme, and Andreas Zeller. Locating faults
with program slicing: An empirical analysis. Empirical Software Engineering (EMSE) 26,
51 (2021).

• Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller. Debugging inputs. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 2020.

• Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and Andreas
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1.3 Dissertation Outline

The rest of this dissertation is organized as follows: First, in Chapter 2, we provide background
on the main areas of software testing and debugging that are addressed by this dissertation. In
particular, we discuss the state of the art in program debugging, automated fault localization, input
debugging and grammar-based test generation. In Chapter 3, we present an empirical study on
debugging in practice in which we investigate how developers diagnose and fix real bugs. We
present key findings on the tools and strategies used by developers in practice. We also provide
DbgBench— a benchmark providing empirical data on debugging in practice, in order to aid
future research. Chapter 4 introduces an empirical study of the effectiveness of the state-of-the-art
automated fault localization techniques, in particular, program slicing and several statistical fault
localization methods. We also present a hybrid approach that outperforms the state-of-the-art.
Chapter 5 presents an empirical study of invalid inputs in the wild, where we present key insights
on the prevalence and sources of input invalidity in software practice. Building on this evidence,
we present a black-box approach that repairs and debugs invalid inputs using a maximizing variant
of the delta debugging algorithm. In Chapter 6, we present a grammar-based probabilistic test
generation approach, that allows to generate inputs that are (dis)similar to sample inputs written
by end-users or developers. We further illustrate how our approach allows to generate inputs
that reproduce (or avoid) failures. Finally, we conclude this dissertation with a discussion of the
contributions and future directions in Chapter 7.
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Chapter 2

Background

This chapter is taken, directly or with minor modifications, from our 2017 ICSE paper Debugging
with probabilistic event structures [21] and our 2018 SE paper Wo ist der Fehler und wie wird
er behoben? Ein Experiment mit Softwareentwicklern [22]. My contribution in this work is as
follows: (I) original idea; (II) partial implementation; (III) evaluation.

“If I have seen further, it is by standing on the shoulders of giants.”
— Sir Isaac Newton

2.1 Software Failures

When a program fails, we say the program is buggy. A program can be buggy by construction (e.g.
due to omission errors) or because it contains defects. Invariably, for a software to be considered
buggy, the execution of the software has to result in unexpected behavior(s).

Exposing bugs in programs is non-trivial and determining the presence of a bug is difficult.
In software development, bugs are typically revealed via software testing. Developers have to
construct test input(s) that expose and reproduce the observed unexpected behavior (e.g. a
failure, crash or wrong output). A bug is found or exposed, when a program fails when fed with
a valid test input. The failing test execution confirms that the program is buggy. Test inputs that
cause a program to fail are referred to as failure-inducing input. These failure-inducing inputs
allow developers to reproduce and diagnose the bug.

When a bug is found in a software, developers have to debug the software, i.e. understand,
diagnose and fix the bug. The process of bug diagnosis and fixing is called debugging. Debugging
is a tedious task that involves analyzing the failing program execution(s). When debugging,
developers often employ techniques that aid program understanding, bug analysis and test
execution.

Terminology

In the following, we explain the main debugging terminologies used in this dissertation based
on the IEEE Glossary [23]. We define an error as incorrect program behavior or result, for
instance, when the program prints 0 when it is expected to print 1. A fault is the defect in the
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source code that causes an error, like a missing increment. A bug may be any of the above. An
error’s symptom is the observed unexpected behavior, for instance, the program unexpectedly
printing 0. A failing test case is an input and an assertion of the expected output that fails in the
presence of an error. Debugging is a “post-mortem” activity that follows once an error has been
found and reported, for instance, via testing or by a user. Debugging is the task of identifying
the fault and removing the error completely without introducing new errors. We distinguish
four distinct sub-tasks during debugging: Bug reproduction is the task of reproducing the bug
locally by constructing a test case that fails because of the bug. Bug diagnosis is the task of
understanding and explaining the run-time actions causing the symptom. Fault localization is
the task of identifying the faulty code locations, i.e. the statements responsible for the bug and
(potentially) have to be changed to fix it. Finally, bug fixing or repair is the task of removing the
error by changing the source code.

2.2 Problem Statement

Several techniques have been proposed to support developers during debugging activities [1].
However, evidence has shown that most of these techniques are not widely adopted by developers
in practice [11]. More importantly, the state-of-the-art approaches do not meet the real-world
needs of developers [12]. In this dissertation, we ask the following fundamental question: How
can we bridge the gap between the state-of-the-art debugging methods and the state of debugging
in practice?

Indeed, addressing this question requires analyzing the state of debugging in practice and
the performance of the state-of-the-art debuggers. On one hand, it is pertinent to conduct
empirical studies that sheds light on the nature of debugging and the needs of developers. The
empirical study should address questions such as: How do developers debug programs? And what
do developers need when debugging in practice? The results of the study should provide the
debugging requirements of developers and serve as a baseline to design and evaluate debugging
aids. On the other hand, one needs to evaluate the performance of the state-of-the-art debugging
tools in real world setting. In this context, one needs to address the following fundamental
question: What is the most effective fault localization method on real faults? Subsequently, one
can build methods that address the needs and concerns of developers elicited in the first step, in
order to improve the performance of the state-of-the-art debugging tools in practical settings.

The main goal of this work is to provide methods that meet the actual needs of developers
when debugging in practice. To achieve this goal, we employ an evidence-based approach to
develop techniques which support developers during debugging activities. This is a two-step
approach that proceeds for a debugging challenge or activity as follows: First, 1) conduct realistic
empirical studies that elicit the nature and requirements of the debugging activity in practice,
then 2) develop methods and tools that are based on the evidence (i.e. requirements) gathered
from the empirical studies (in step one). In this dissertation, all empirical studies are based on
the first step (1) of this approach, and all proposed methods in this dissertation are results of the
second step (2) of the evidence-based approach.
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2.3 Debugging Process

The main goal of automated debugging is to support developers during debugging activities.
Debuggers are designed to improve developer’s effectiveness during bug diagnosis and fixing. The
usefulness and applicability of debuggers is vital, considering that about a third of development
time is spent on debugging activities [1]. Thus, software developers can benefit significantly from
techniques that improve productivity during debugging.

Typically, to effectively debug a program, a developer needs to 1) expose or reproduce the bug
(via testing), 2) understand the unexpected program behavior (called bug diagnosis), 3) determine
the fault locations responsible for the observed failing behavior (called fault localization) and (4.)
repair or fix the bug (called program repair). In the following, we discuss these debugging steps:

1. Bug Reproduction: When debugging, developers must first expose or reproduce the failure,
in order to observe the unexpected behavior. This may involve running existing tests or
constructing new tests that reproduce the failure. These tests are expected to accurately and
reliably reveal the unexpected software behavior, this is necessary to establish the presence
of a bug in the software.

2. Bug Diagnosis: Secondly, the developer has to diagnose the bug or failure. The goal of
this step is to comprehend the conditions under which the bug can be observed. This
involves program comprehension (i.e. understanding the program behavior) and analyzing
test executions, for instance, comparing failing and passing executions. Other bug diagnosis
approaches include (dynamic) program analysis, i.e. analyzing program executions in order
to diagnose the conditions (e.g. data or control flow paths) under which the failing behavior
can (not) be observed.

3. Fault Localization: In this step, the developer analyzes the program to determine the faulty
code locations. The fault locations are the program features (e.g. statements or lines of
code) that explains the bug, such features may need to be modified to fix the bug. This
step is often achieved by analyzing the code locations that are executed in the failing (and
passing) execution(s), in order to determine the code point(s) where the executions diverged
from the expected behavior. Fault Localization is a prerequisite step to fix a bug, thus, it is
the first step of most APR tools. Examples of prominent AFL techniques include statistical
debugging, program slicing and mutational AFL.

4. Program Repair: Finally, the developer (or an APR tool) fixes the bug by modifying the
program. This process patches the faulty program (e.g. by removing the error), in order
to ensure that the program behavior matches the expected behavior. However, to make
sure the fix is correct, it is important to ensure that 1) the failing test(s) no longer leads to
a failure in the fixed program (called patch plausibility), 2) the fix is complete, it actually
fixes the bug and not a symptom of the bug (called patch completeness) and 3) the fix (or
program change) does not introduce a new bug or a regression bug that cause other tests to
fail, this step is called regression testing.
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2.4 Debugging Challenges

Let us provide relevant background on the challenges in the major areas of software testing and
debugging that are investigated in this thesis. In particular, we discuss the state of the art in
program debugging, automated fault localization, input debugging and test generation.

2.4.1 Debugging in Software Practice

In 1997, Liebermann introduced the CACM special section on “The Debugging Scandal and What
to Do About It" with the words “debugging is still as it was 30 years ago, largely a matter of trial
and error” [24]. Researchers argue that debugging in practice is an art more than a science [25],
nothing but trial-and-error [24]. Others have gone as far as modelling the way how programmers
debug as a predator that is following scent to find prey [26]. Except, debugging does not need to
be an unpremeditated activity. Today, automated debugging tools hold the promise of providing
guidance during debugging, of an increase of productivity, and of a significant reduction of time
and money spent on debugging; all by the push of a button.

The “debugging scandal” is definitely not due to the lack of tools produced in the outstanding
research of automated software debugging. Researchers have developed tools that can identify
potential fault locations [27, 28], potential fix locations [29, 30], failure-inducing modifications in
updates [31], the chain of events leading up to the error [32], and even potential software patches
[33, 34, 35, 36]. However, empirical evidence shows that most developers have never used an
automated debugging tool [19].

Why would a rational developer forgo the promises of automation in the face of the tediousness
of the manual debugging activity? Andrew Ko writes about his experience as a CTO of a company
and his attempts to bring software engineering research into practice that “most of what I present
just isn’t relevant, isn’t believed, or isn’t ready; honestly, many of our engineering problems
simply aren’t the problems that software engineering researchers are investigating” [37]. Lionel
Briand adds that “the research community had a rather superficial understanding of the problems
facing practitioners while debugging” [38].

In this thesis, we asked ourselves: what is the state of debugging in practice (see Chapter 3)?
Which problems do practitioners have? What do they want? What do practitioners find relevant?
Why do they reject debugging automation? In addition, we collected empirical data from hundreds
of hours of debugging sessions of professional developers: We investigated how developers debug
and repair real software bugs, the tools and strategies applied, the time taken and the bug
diagnoses and patches they provided.

2.4.2 Fault Localization

This section sheds light on the details of automated fault localization (AFL) techniques. AFL
refers to methods that automatically identify the root cause(s) of a bug, i.e. the faulty program
locations (e.g. statements or methods) that triggered an observed failing behavior. The aim
of AFL approaches is to provide developers (and automated tools) with faulty code locations,
in order to aid bug diagnoses and program repair. AFL is an important software engineering
research area, which has provided a wealth of automated tools. Wong et al. [39] surveyed more
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than 60 AFL tools and list 29 as publicly available (e.g., as Eclipse plugin [40]). A recent survey
finds that the majority1 of practitioners considers research on AFL as essential or worthwhile [41].

In this dissertation, we investigate the efficacy of AFL approaches (see Chapter 4). There are
two main AFL approaches, namely program slicing and statistical debugging [39]. In the rest of
this section, we provide background on program slicing and statistical debugging.

Program Slicing

More than three decades ago, Mark Weiser [42, 43] noticed that developers localize the root
cause of a failure by following chains of statements starting from where the failure is observed.
Starting from the symptomatic statement s where the error is observed, developers would identify
those program locations that directly influence the variable values or execution of s. This
traversal continues transitively, until the root cause of the failure (i.e., the fault) is found. This
procedure allows developers to investigate those parts of the program involved in the infected
information-flow in reversed order towards the location where the failure is first observed.

Static Slicing

Weiser developed program slicing as the first automated fault localization technique. A programmer
marks the statement where the failure is observed (i.e., the failure’s symptom) as slicing criterion C.
To determine the potential impact of one statement onto another, the program slicer first computes
the Program Dependence Graph (PDG) for the buggy program. The PDG is a directed graph
with nodes for each statement and an edge from a node s to a node s

0 if

1. statement s
0 is a conditional (e.g., an if-statement) and s is executed in a branch of s

0 (i.e.,
the values in s

0 control whether or not s is executed), or
2. statement s

0 defines a variable v that is used at s and s may be executed after s
0 without v

being redefined at an intermediate location (i.e., the values in s
0 directly influence the value

of the variables in s).

The first condition elicits control dependence while the second elicits data dependence. The PDG
essentially captures the information-flow among all statements in the program. If there is no path
from node n to node n

0, then the values of the variables at n have definitely no impact on the
execution of n

0 or its variable values.
The static program slice [43, 44] computed with respect to C consists of all statements that

are reachable from C in the PDG. In other words, it contains all statements that potentially
impact the execution and program states of the slicing criterion. Note that static slicing only
removes those statements that are definitely not involved in observing the failure at C. The
statements in the static slice may or may not be involved. Static program slices are often very
large [45].

Dynamic, Relevant, and Execution Slicing

A dynamic program slice [47, 48] is computed for a specific failing input t and is thus much
smaller than a static slice. It is able to capture all statements that are definitely involved in

1Majority here means above the median (i.e., 3rd and 4th quartile).
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1. INTRODUCTION
In the past 20 years, the field of automated fault localization has

found considerable interest among researchers in Software Engi-
neering. Given a program failure, the aim of fault localization is
to suggest locations in the program code where a fault in the code
causes the failure at hand. Locating a fault is an obvious prerequi-
site for removing and fixing it; and thus, automated fault localiza-
tion brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite
for automated program repair, as the locations suggested by fault
localization would serve as candidates where to apply synthesized
fixes.

The large majority of today’s publications on automated fault
localization fall into the category of Statistical Debugging, an ap-
proach pioneered more than 15 years ago by both Liblit [?] as well
as Jones, Stasko, and Harrold [?]. Today, a recent survey by Wong
et al. [?] lists more than 100 publications on statistical debugging
in the past 15 years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE 2016 Singapore
c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

⌅: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3
4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4
5 if (x < y) � ⌅ � � � � 5
6 m = y; � ⌅ � � � � 6
7 else if (x < z) ⌅ � � � ⌅ ⌅ 7
8 m = y; ⌅ � � � � ⌅ 8
9 } else { ⌅ � ⌅ ⌅ � � 9

10 if (x > y) � � ⌅ � � � 10
11 m = y; � � ⌅ � � � 11
12 else if (x > z) � � � � � � 12
13 m = x; � � � � � � 13
14 } � � � � � � 14
15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15
16 } 4 4 4 4 4 8

Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards
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Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards

Figure 1: Dynamic slicing illustrated [46]: The middle return value in Line 15 is the slicing
criterion and Line 8 is the faulty statement.

computing the values that are observed at the location where the failure is observed for failing
input t. Specifically, the dynamic slice computed with respect to slicing criterion C for input t

consists of all statements whose instances are reachable from C in the Dynamic Dependence
Graph (DDG) for t. The DDG for t is computed similarly as the PDG, but the nodes are
the statement instances in the execution trace ⇡(t). The DDG contains a separate node for
each occurrence of a statement in ⇡(t) with outgoing dependence edges to only those statement
instances on which this statement instance depends in ⇡(t) [48]. However, an error is not only
explained by the actual information-flow towards C. It is important to also investigate statements
that could have contributed towards an alternative, potentially correct information-flow. This
is the main motivation for relevant slicing. The relevant slice [49, 50] computed for a failing
input t subsumes the dynamic slice for t and also captures the fact that the fault may be in
not executing an alternative, correct path. It adds conditional statements (e.g., if-statements)
that were executed by t and if evaluated differently may have contributed to a different value
for the variables at C. It requires computing (static) potential dependencies. In the execution
trace ⇡(t), a statement instance s potentially depends on conditional statement instance b if there
exists a variable v used in s such that (i) v is not defined between b and s in trace ⇡(t), (ii) there
exists a path � from '(s) to '(b) in the PDG along which v is defined, where '(b) is the node
in the PDG corresponding to the instance b, and (iii) evaluating b differently may cause this
untraversed path � to be exercised. Qi et al. [51] proved that the relevant slice with respect to C

for t contains all statements required to explain the value of C for t.

The approximate dynamic slice [52, 47] is computed with respect to slicing criterion C for
failing input t as the set of executed statements in the static slice with respect to C. The
approximate dynamic slice subsumes the dynamic slice because there can be an edge from an
instance s to an instance s

0 in the DDG for t only if there is an edge from statement '(s) to
statement '(s0) in the PDG. The approximate dynamic slice subsumes the relevant slice because
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Figure 2: Slicing Example: Nodes are statements in each line of the middle program (Figure 1).
Control-dependencies are dashed lines while data dependencies are shown as concrete lines.

it also accounts for potential dependencies: Suppose instance s potentially depends on instance b

in execution trace ⇡(t). Then, by definition there exists a path � from '(s) to '(b) in the PDG
along at least one control and one data dependence edge (via the node defining v); and if '(s) is
in the static slice, then '(b) is as well. Note that the approximate dynamic slice is (1) easier
to compute than dynamic slices (static analysis), (2) significantly smaller than the static slice,
and still (3) as “complete” as the relevant slice. In summary, dynamic slice ✓ relevant slice ✓
approximate dynamic slice ✓ static slice.

Figure 2 (a) and (b) show the static and the dynamic slice for the middle program in Figure 1,
respectively. The slicing criterion was chosen as the return statement of the program—that is the
statement where the failure is observed. As test case, we chose the single failing test case x = 2,
y = 1, and z = 3. In this example, the approximate dynamic slice matches exactly the dynamic
slice. In a debugging setting, programmers would follow dynamic dependencies to find those
lines that actually impact the location of interest in the failing run. In our example (Figure 1),
they could simply follow the dynamic dependency of Line 15 where the value of m is unexpected,
and immediately reach the faulty assignment in Line 8 —which again happens to be the faulty
line. In this dissertation, we evaluated the fault localization effectiveness of dynamic slicing,
we also compare its effectiveness to that of numerous statistical fault localization methods (see
Chapter 4).

Statistical Debugging

Jones et al. introduced the first statistical debugging technique, Tarantula [27], quickly followed
by Liblit et al. [53, 54]. The main idea of statistical debugging is to associate the execution of a
particular program element with the occurrence of failure using so-called suspiciousness measures.
Program elements (like statements, basic blocks, functions, components, etc.) that are observed
more often in failed executions than in correct executions are deemed as more suspicious. A
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1 int middle(x, y, z) { Tarantula Ochiai Naish2

2 int x, y, z; 0.500 0.408 0.167
3 int m = z; 0.500 0.408 0.167
4 if (y < z) { 0.500 0.408 0.167
5 if (x < y) 0.625 0.500 0.500
6 m = y; 0.000 0.000 �0.167
7 else if (x < z) 0.714 0.578 0.667
8 m = y; 0.833 0.707 0.833

9 } else { 0.000 0.000 �0.333
10 if (x > y) 0.000 0.000 �0.333
11 m = y; 0.000 0.000 �0.167
12 else if (x > z) 0.000 0.000 �0.167
13 m = x; 0.000 0.000 0.000
14 } 0.000 0.000 0.000
15 return m; 0.500 0.408 0.167
16 }

Figure 3: Statistical Fault Localization Example: The faulty line 8 and its scores are in bold red

program element with a high suspiciousness score is more likely to be related to the root cause
of the failure. When Tarantula was first introduced, the authors envisioned an integrated
development environment where more suspicious code regions are colored in different shades of
red while less suspicious code regions are colored in shades of green. After the execution of the
test suite, at first glance, the developer can identify likely code regions where the fault might
hide.

An important property of statistical debugging is that apart from measuring coverage, it
requires no specific static or dynamic program analysis. This makes it easy to implement and
deploy, in particular as part of automated program repair. In fact, most popular automated
repair techniques use statistical fault localization to automatically decide where to attempt the
patch [33, 35, 55, 56]. Instead of a visualization that is presented to the developer, statistical fault
localization provides a ranking that is presented to the automated repair technique. The highest
ranked, most suspicious element is considered first as patch location. Using a more effective
debugging technique thus directly increases the effectiveness of any repair technique.

Figure 3 shows the scores computed for the executable lines in our motivating example
(Figure 1). The statement in Line 8 is incorrect and should read m = x; instead. This statement
is also the most suspicious according to all three statistical fault localization techniques in the
example. Notice that only twelve (12) lines are actually executable. Evidently, in this example
from Jones and Harrold [46], the faulty statement is also the most suspicious for these three
statistical fault localization techniques.2

In this dissertation, we investigate the effectiveness of the main families of statistical measures
using 18 statistical fault localization formulas in total. There are four main families of statistical
debugging formulas, namely human-generated optimal measures, most popular measures, genetic
programming (GP) evolved measures and measures targeted at single bug optimality.

2The scores for the faulty statement in Line 8 are tarantula(s8) = 1
1/

�
1
1 + 1

5

�
, ochiai(s8) = 1p

1(1+1)
, and

naish2(s8) = 1 � 1
1+4+1 .
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2.4.3 Input Debugging

Although there are hundreds of automatic fault localization (AFL) and repair techniques [1];
all of these techniques focus on program code, attempting to identify possible fault locations in
the code and synthesizing fixes for this code. However, when a program fails on some input,
it need not be the program code that is at fault. Often, the input may be invalid, e.g. due to
hardware failures, hardware aging, transmission errors that corrupt input data. Input data can
also be corrupted through software bugs, with the processing software writing out malformed or
incomplete data. General-purpose automated debugging techniques (such as AFL) are not useful
to debug inputs, since they focus on faults in code, they would regularly identify the input parser
and its error-handling code as being associated with the fault.

In this dissertation, we investigate the problem of input debugging, i.e. isolating faults in
inputs and recovering as much data as possible from the existing input (see Chapter 5). The
aim is to recover maximal valid data from the failure-inducing input, as well as provide a precise
diagnosis or root cause of the input invalidity. The rest of this section provides background on
input debugging, we discuss the state-of-the-art techniques for identifying or fixing faults in
inputs.

Input Minimization

We discuss the state of the art in input reduction. These techniques aim to produce a subset
of the input that still produces the failure. These approaches isolate the faults in invalid or
failure-inducing inputs, in order to obtain the minimal subset that reproduces a failure.

Researchers have proposed several methods to automatically identify failure causes in input [57,
58, 59, 60]. The Delta Debugging algorithm ddmin [57] reduces inputs by repeatedly removing
parts of the input (first larger ones, then smaller ones) and testing whether running the program
with the reduced input still produces the failure. The result is a so-called 1-minimal input in
which every single element (character) of the input is relevant for producing the failure. Some
approaches employ the input structure to simplify inputs [59] (HDD) and [60]. In particular,
[60] applies the syntactic structure of Java programs to simplify buggy Java programs [60].
Meanwhile, HDD [59] uses an hierarchical input minimization algorithm based on ddmin.

In this dissertation, we propose a maximizing variant of the delta debugging algorithm to
provide precise diagnosis of failure-inducing inputs. Our algorithm works at both the lexical and
syntactic levels of the input. In addition, we compare the performance of our proposed algorithm
(ddmax ) to that of ddmin.

Input Repair

The problem of repairing inputs is the inverse of input minimzation. Rather than minimizing
failure-inducing inputs (the reduction problem), users would be interested in maximizing non-
failure-inducing inputs, i.e. recover as much data as possible from the input at hand.

There are a few approaches for repairing failure-inducing inputs. In security-critical applica-
tions, input rectification is employed to transform potentially malicious inputs, in order to ensure
they behave safely. Input rectifiers [61, 62] address this problem by learning a set of constraints
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from typical inputs, then transforming a malicious input into a benign input that satisfies the
learned constraints. Other approaches apply program analysis to repair failure inducing inputs.
In particular, Docovery [63] and S-DAGS [64] are white-box techniques for fixing broken input
documents. Docovery [63] uses symbolic execution to manipulate corrupted input documents
in a manner that forces the program to follow an alternative error-free path. S-DAGS [64] is
a semi-automatic technique that enforces formal (semantic) consistency constraints on inputs
documents in a collaborative document editing scenario. Likewise, data diversity [65] applies
program analysis to transform an invalid input into a valid input that generates an equivalent
result, in order to improve software reliability. This is achieved by finding the regions of the input
space that causes a fault, and re-expressing a failing input to avoid the faulty input regions.

Unlike the aforementioned approaches, in this dissertation, we propose a black-box generic
input repair approach that recovers the maximal passing input data, and provides the minimal
input diagnoses using several test experiments (see Chapter 5).

2.4.4 Test Generation

Generating valid inputs is a challenging testing problem. Software testing aims to generate inputs
that cover program behavior and expose faults. Typical (random) test generation approaches
often produce invalid inputs, such inputs require further input repair before they can be processed
by the intended program. To generate valid inputs and avoid input repair, test generation methods
need to produce valid inputs. Besides, executing the program logic requires valid inputs that pass
the input validation step of the program, since most programs expect structured inputs that meet
specific input specifications (e.g. JSON and JavaScript).

Grammar-based test generation addresses this problem by using input grammars to guide the
generation of valid inputs. This section highlights the state of the art in (grammar-based) test
generation. This lays the foundation for our work on generating inputs that are (dis)similar to
common inputs in the wild (see Chapter 6). In this dissertation, we apply probabilistic grammars
to generate valid software tests. Thus, we also present the background on the interplay of
grammar-based testing and probabilistic grammars.

Generating software tests.

The aim of software test generation is to find a sample of inputs that induce executions that
sufficiently cover the possible behaviors of the program—including undesired behavior. Modern
software test generation relies, as surveyed by Anand et al. [66] on symbolic code analysis to
solve the path conditions leading to uncovered code [67, 68, 69, 70, 71, 72, 73, 74], search-based
approaches to systematically evolve a population of inputs towards the desired goal [75, 76, 77, 78],
random inputs to programs and functions [79, 80] or a combination of these techniques [81,
82, 83, 84, 85]. Additionally, machine learning techniques can also be applied to create test
sequences [86, 87]. All these approaches have in common that they do not require an additional
model or annotations to constrain the set of generated inputs; this makes them very versatile,
but brings the risk of producing false alarms—failing executions that cannot be obtained through
legal inputs.
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Grammar-based test generation.

The usage of grammars as producers was introduced in 1970 by Hanford in his syntax machine [88].
Such producers are mainly used for testing compilers and interpreters: CSmith [89] produces
syntactically correct C programs, and LANGFUZZ [90] uses a JavaScript grammar to parse,
recombine, and mutate existing inputs while maintaining most of the syntactic validity. GENA [91,
92] uses standard symbolic grammars to produce test cases and only applies stochastic annotation
during the derivation process to distribute the test cases and to limit recursions and derivation
depth. Grammar-based white-box fuzzing [93] combines grammar-based fuzzing with symbolic
testing and is now available as a service from Microsoft. As these techniques operate with system
inputs, any failure reported is a true failure—there are no false alarms. None of the above
approaches use probabilistic grammars, though.

Probabilistic grammars.

The foundations of probabilistic grammars date back to the earliest works of Chomsky [94].
The concept has seen several interactions and generalizations with physics and statistics [95].
Probabilistic grammars are frequently used to analyze ambiguous data sequences—in computa-
tional linguistics [96] to analyze natural language, and in biochemistry [97] to model and parse
macromolecules such as DNA, RNA, or protein sequences. Probabilistic grammars have also been
used to model and produce input data for specific domains, such as 3D scenes [98] or processor
instructions [99].

The usage of probabilistic grammars for test generation seems rather straightforward, but
is still uncommon. The Geno test generator for .NET programs by Lämmel and Schulte [100]
allowed users to specify probabilities for individual production rules. Swarm testing [101, 102]
uses statistics and a variation of random testing to generate tests that deliberately targets or
omits features of interest. The approaches by Poulding et al. [103, 104] use stochastic context-free
grammar for statistical testing. The goal of this work is to correctly imitate the operational
profile and consequently the generated test cases are similar to what one would expect during
normal operation of the system. The test case generation [105, 106] and failure reproduction [107]
approaches by Kifetew et al. combine probabilistic grammars with a search-based testing approach.
The results [106] show that the combination produces a large percentage of correct inputs and,
based on the fitness function, produces a high-branch coverage. In particular, StGP [105] learns
stochastic grammars from sample inputs. The authors found that grammar learning from sample
inputs improved code coverage, especially for complex programs, the goal of StGP is to evolve
and mutate learned grammars to improve code coverage.

In this dissertation, we present a grammar-based testing approach to generate (dis)similar
inputs (see Chapter 6). In contrast to our approach, the current state-of-the-art approaches
either do not learn probabilistic grammars from (real-world) sample inputs or are incapable of
generating inputs that are (dis)similar to common inputs in the wild.
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Chapter 3

Debugging in Practice: An Empirical
Study

This chapter is taken, directly or with minor modifications, from our 2017 ICSE paper How
Developers Debug Software—The DBGBENCH Dataset [108] and our 2017 ESEC/FSE paper
Where is the bug and how is it fixed? an experiment with practitioners [109]. My contribution in
this work is as follows: (I) original idea; (II) partial implementation; (III) evaluation.

“The fundamental principle of science, the definition almost, is this:
the sole test of the validity of any idea is experiment.”

— Richard P. Feynman

3.1 Introduction

Research has produced a multitude of automated approaches for fault localization, debugging, and
repair. A recent survey of Wong et al. [39] cites more than 400 publications on fault localization
techniques. Hundreds of approaches have also been proposed for automatic program repair [3].
Besides, several benchmarks have become available for the empirical evaluation of such approaches.
For instance, CoREBench [14] and Defects4J [110] contain a large number of real errors for C
and Java, together with developer-provided test suites and bug fixes. Using such benchmarks,
researchers can make empirical claims about the efficacy of their tools and techniques. For
instance, an effective fault localization technique would rank very high a statement that was
changed in the bug fix [39]. The assumption is that practitioners would identify the same
statement as the fault. Likewise, an effective auto-generated bug fix would pass all test cases [33],
under the assumption that practitioners would accept such fixes.

Unfortunately, debugging is not that simple, particularly not for humans. Recently, several
research assumptions have turned out to be unrealistic [11, 12, 13, 14, 15]. In empirical studies,
the human factor is naturally somewhat left behind. For instance, despite the hundreds of
proposed fault localization techniques [39], most practitioners have never used an automated
fault localization tool [19]. Why is that, and do we really understand how our tools can address
the real-world debugging needs of software engineering professionals at work?
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Do proposed debugging approaches relate to the way practitioners actually locate, understand,
and fix bugs? Given the complexity of the debugging process, one might assume that it would be
standard practice to evaluate novel techniques by means of user studies [111]: Does the tool fit
into the process? Does it provide value? How? Yet, how humans actually debug is still not really
well explored. Between 1981 and 2010, Parnin and Orso [112] identified only a handful of articles
that presented the results of a user study—none of which involved actual practitioners and real
errors. Since the end of 2010 till 2016, we could identify only three (3) papers that evaluated new
debugging approaches with actual practitioners and real errors [113, 114, 115].3

To address this problem, we collect empirical evidence on every-day debugging experience
of software developers. First, we conducted a retrospective survey on debugging practice with
hundreds of developers. Secondly, we conducted an observational study with developers diagnosing
and fixing real bugs, from which we collected empirical data from hundreds of hours of debugging
sessions. Then, we provide another kind of benchmark — DbgBench; one that allows reality
checks for novel automated debugging and repair techniques.

In our retrospective survey, we examine the state-of-the-practice regarding how developers
diagnose and repair bugs in the real world. First, we take stock of the state-of-the-practice by
investigating the nature of debugging in practice. Then, we ask what practitioners want that
would make debugging easier for them, we analyze their responses and determine the properties
of debugging tools and auto-generated patches that practitioners find important to consider
adoption. We also identify several reasons in favor and against the automation of bug diagnosis
and repair. We then discuss implications of these findings for debugging research and training.

In our observational study, we find the first evidence that debugging can actually be automated
and is no subjective endeavor. In our experiment, different practitioners provide essentially the
same fault locations and the same bug diagnosis for the same error. If humans disagreed, how
could a machine ever produce the “correct” fault locations, or the “correct” bug diagnosis? Since,
there is a consensus on bug diagnoses and patching, we collected the data from this observational
study to support the automatic evaluation of debugging and repair tools. We provide these data
and findings as a benchmark called DbgBench.

Our benchmark — DbgBench allows for realistic evaluation of debugging and repair tools.
Since participants agree on essential bug features, it is fair to treat their findings as ground truth.
We have compiled our study data for all 27 bugs into a benchmark named DbgBench [116],
which is the third central contribution of this study. DbgBench can be used in cost-effective user
studies to investigate how debugging time, debugging difficulty, and patch correctness improve
with the novel debugging/repair aid. DbgBench can be used to evaluate without a user study
how well novel automated tools perform against professional software developers in the tasks of
fault localization, debugging, and repair.

The remainder of this chapter is organized as follows: First, we present a retrospective study
investigating the state-of-the-art in debugging practice in Section 3.2. In Section 3.3, we present

3We surveyed the following conference proceedings: ACM International Conference on Software Engineering
(ICSE’11–16), ACM SIGSOFT Foundations of Software Engineering (FSE’11–16), ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’11–16), IEEE/ACM International Conference on Automated
Software Engineering (ASE’11–16), and International Conference on Software Testing, Verification and Validation
(ICST’11–16) and identified 82 papers on automated debugging or software repair only 11 of which conducted user
studies. From these only three (3) involved software engineering professionals and real errors.
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an observational study evaluating how developers debug and fix real bugs. Section 3.4 describes
DbgBench— a benchmark for evaluating automated debugging and automated program repair
tools. We present the limitations of our work in Section 3.5 and closely related work in Section 3.6.
Finally, we close with our interpretation of the results and their implications in Section 3.7.

3.2 Survey

In a survey that ran over 14 months, we collected empirical evidence on the state of debugging in
practice from 212 software engineering professionals in 41 countries. We asked questions about
their present every-day debugging experience and their expectations and beliefs regarding the
future of debugging. We make the questionnaire and response data available on our webpage
[116]. Our insights go a long way towards addressing unwarranted beliefs, building tools that
solve problems that practitioners actually have, and better educating future software engineering
professionals about the pitfalls of manual debugging and about actionable opportunities to make
debugging a more efficient and systematic activity. Specifically, we investigate the following about
debugging practice, what tools do practitioners use?, what tools do practitioners want? and what
do practitioners believe about debugging automation?

This section is structured according to the guidelines for empirical research in software
engineering [117]. After this survey introduction, in Section 3.3.1, we introduce the research
questions, the population and how it was sampled plus which parameters we measured as study
design. The collected data is analyzed and presented in Section 3.3.2 as study results.

3.2.1 Study Design

The study design describes the population of interest, how it was sampled, and demographic
attributes of that sample. The study design also describes the variables of interest and how they
are measured. The goal of the study design is to ensure that the design is appropriate for the
objectives of the study. Since our study is explorative in nature many questions are qualitative
and open-ended. We leverage the standard measures such as the Likert-scale to analyze qualitative
attributes, and grounded theory, specifically open-card sort, as systematic methodology to analyze
the responses to open-ended questions. To assess the reliability of the conclusions drawn from the
self-reports, we measure inter-rater agreement.

Research Questions

The main objective of the survey is to review the state-of-the-practice in debugging and elicit
the expectations and beliefs of software engineering professionals about the automation of their
debugging activities. Thus, we pose the following research questions:

RQ1 How do developers debug? How much time do practitioners spend trying to reproduce,
diagnose, and fix bugs; how familiar are they with the source code? Which debugging tools
and techniques do practitioners use and would they classify their strategy as systematic or
trial-and-error?
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RQ2 What do they want? Given an error and possibly a failing test case, which output do
practitioners expect of an automated bug diagnosis tool that should aid in understanding
how the error comes about? Which criteria do practitioners expect to be satisfied to accept
a patch that is generated by an automated bug fixing tool?

RQ3 Why do they reject automation? Do practitioners believe that the chain of run-time
events leading to the observed error can ever be explained intuitively by the push of a button?
Do practitioners believe that bugs can ever be fixed reliably by the push of a button? Why
do they believe so?

Our insights go a long way towards addressing unwarranted beliefs, building tools that solve
problems that practitioners actually have, and better educating future software engineering
professionals about the pitfalls of manual debugging and actionable opportunities of debugging
automation. We hope that the results of our survey will inspire more research that is grounded
in practice.

Questionnaire and Respondents

Recruitment. We set out to examine broadly all software engineering professionals at any level
of experience that are involved in the development and debugging of industrial-scale software
products. We designed an online questionnaire and sent the link to developers that shared their
email address on the source-code repository platform Github. We also posted the link to several
software development user groups at Meetup.com, on freelancer platforms, such as Freelancer,
Upwork, and Guru, and on social media platforms as well as professional networks, such as
Facebook and LinkedIn. We started three advertisement campaigns in August 2015, March 2016,
and July 2016 following which we had the highest response rate lasting for about one month each.
We received the first response in August 2015 and the most recent response more than one year
later in October 2016.

Questionnaire. The questionnaire takes about 10 minutes to fill and is strictly anonymous.4

It begins with a consent form informing respondents about the goals of our study and some
basic terminology. We assure that all responses are treated as confidential, and in no case will
responses from individual participants be identified; rather, all data will be pooled and published
in aggregate form only. Respondents start by answering a series of simple demographic questions
about occupation, experience, and level of skill as software developers. After that follows a series
of technical questions which investigate our study objectives. The questionnaire is available at
http://bit.do/dbg and on our webpage [116].

Demographics. The questionnaire was filled by 212 respondents. The majority5 of respon-
dents are professional software developers from all over the world with seven (7) years or more
experience in software development rating their level of skill as advanced or expert. 706 candidates
opened the link either directly or from 35 distinct referrer webpages.6 Figure 4 shows the 41 home

4Participation is strictly anonymous if the respondent so wishes. However, we do offer the opportunity to
leave their email address in case they want to be informed about the study outcome or participate in a follow-up
hands-on experiment.

5Majority here means above the median (i.e., 3rd and 4th quartile).
6Statistics are as of 07th Jan’17 and provided at http://bit.do/dbg-. From 706 distinct IP addresses, 14 are

from robots, like the Google web crawler.
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V2

Figure 4: Countries associated with the IP addresses of our survey respondents

countries of the 212 respondents. 116 (55%) respondents categorize themselves as professionals,
47 as students, 32 as researchers, and 6 as professional software tester, the remaining did not
specify. 117 (55%) respondents report to have seven or more years of experience, 53 have three
to six years, 26 have one to two years, and only 16 have no experience or one year or less. 85
(40%) respondents rate their level of skill as advanced, 35 as expert, 70 as intermediate, and 22
as novice.7 We received the first entry in August 2015 and the most recent entry one year later
in October 2016. Hence, the survey is not a snapshot taken at a particular point of time but
sufficiently long-running to reduce potential short-term socio-economic bias.

Variables and Measures

Qualitative Variables. In some cases, we are intested in measuring qualititive properties which
may seem hard to quantify. Variables of interest include the familiarity with the code that is
debugged and the frequency with which certain tools are used. To measure these attributes, we
utilize the 5-point Likert scale which is widely used in studies of sociology and psychology [119].
A 5-point Likert scale allows to measure otherwise qualitative properties on a symmetric scale
where each item takes a value from 1 to 5 and the distance between each item is assumed to be
equal.8 For instance, we ask: “Generally speaking, how familiar are you with the code that you
are debugging?” and provide the following five options:
( ) Not at all familiar = Likert-value 1

( ) Slightly familiar = Likert-value 2

( ) Moderately familiar = Likert-value 3

( ) Very familiar = Likert-value 4

( ) Extremely familiar = Likert-value 5

7Note that self-assessment of level of skill should always be taken with a grain of salt (cf. Dunning-Kruger
effect [118]).

8However, the Likert-scale is robust to violations of the equal distance assumption: Even with larger distortions
of perceived distances between items (e.g., slightly vs. moderately familiar), Likert performs close to where intervals
are perceived equal [120].
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An average code familiarity of 4.7 would indicate that most respondents report to be very to
extremely familiar with the code and only very few report to be not at all familiar. However,
conclusions from such data can be trusted only after demonstrating their reliability. To assess
the reliability of the resulting findings, we measure inter-rater agreement and specifically Fleiss’
kappa  [121]. If respondents are in complete agreement, then  = 1. If there is no agreement
other than what would be expected by chance, then   0.

Time. We are interested in the time that practitioners spend debugging, and the time that
practitioners spend with each of the three sub-tasks of debugging: bug reproduction, diagnosis,
and fixing. We measure debugging time relative to the work time and the time spent on each
sub-task relative to the debugging time spent. We measure time on an interval scale from 0% -
100% in ten percent intervals that is finer-grained on either side (five percent intervals).

Tools and Techniques. We ask respondents about the following set of tools and techniques:
[ ] Trace-based Debugging (using printing; e.g., println, log4c)
[ ] Interactive/Online Debugging (using breakpoints; e.g., gdb, jdb)
[ ] Post-Mortem/Offline Debugging (using core dumps, stack traces)

[ ] Regression Debugging to find faulty changes (e.g., git bisect)

[ ] Statistical/Spectrum-based Debugging to find faulty statements

(e.g., Tarantula)

[ ] Program Slicing (e.g., Frama-C, CodeSurfer)

[ ] Time Travel or Reversible Debugging (e.g., UndoDB)

[ ] Algorithmic or Declarative Debugging (e.g., JavaDD)

Open-ended Questions. Most questions about beliefs and expectations (RQ2, RQ3)
are open-ended in the sense that respondents are asked to fill a text field instead of setting
checkmarks on pre-specified answers. This reduces experimenter bias. To analyze replies, we
borrow a methodology from grounded theory called coding [122]. In the context of software
engineering [123, 124], this methodology is also referred to as open card sort [125]. To derive the
general categories from the responses and sort the responses to these categories, we used the
following coding protocol :

1. Researcher #1 went through all responses and came up with an inital draft of the coding.
The coding comprised of a set of labels that are attached to the responses and a policy that
specifies when to apply which label.

2. Researchers #1, #2, and #3 discussed and amended labels and policy but not the coding
draft by Researcher #1.

3. Researchers #1, #2 and #3 independently produced their own codings according to policy
(Researcher #1 repeated with the updated policy).

4. Researchers #1, #2, and #3 compared their codings and resolve any contention to produce
the final coding.

Notice that the labels had not been predefined but emerged during coding. Independent coding
reduces potential bias. The coding allows to quantify the prevalence of certain “categories” of
responses. The authors spent about half a day in meetings to discuss and amend labels and
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Figure 5: Boxplots of the time spent reproducing, diagnosing, and fixing bugs. The boxplot at
the top shows the reported time spent debugging as a percentage of the development time. The
boxplots below show the reported time spent on each subtask as a percentage of debugging time.

policy (Step-2) and three days resolving contentions (Step-4) in addition to the actual coding
(Step-1&3).

Redundant Questions. Due to the self-reporting nature of a questionnaire it is customary
to reduce cognitive bias with an empirical assessment tool called subject triangulation [126]. We
ask separate questions about the same subject and check the consistency of the replies to assess
the validity of our insights. For instance, we ask how familiar the developers are generally with the
code they debug on a 5-point Likert scale. Several questions later, we ask how often they debug
other peoples code on a 5-point Likert scale. If developers generally feel slightly or moderately
familiar, they should also debug other peoples’ code moderately or very often.

Bias Mitigation. In summary, we use several empirical devices to mitigate sources of
cognitive bias in our self-reporting study. We ask redundant questions for subject triangulation
[126]. We avoid leading questions. We ask many open-ended questions, which allows respondents
to express themselves more holistically than if we used pre-specified answers. We use standard
measures of qualititive attributes [119] and leverage a systematic methodology from grounded
theory to analyze the open-ended questions [122]. To assess the reliability of our conclusions from
this survey data, we leverage a measure of inter-rater agreement [121].

3.2.2 Study Results

The survey ran over 14 months and gathered 212 responses. For the 3392 ratings on all 16
multiple-choice questions, we measure a reasonable, fair agreement amongst the respondents
above the level of agreement expected by chance (Fleiss’  = 0.301). This suggests reliability of
our conclusions from the self-reported data.
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Figure 6: Boxplots of respondent’s familiarity with the code they debug (left) and of the frequency
with which they debug other people’s code (right).

RQ1 What is the State of the Practice?

We examine the time spent by developers when debugging, their familiarity to the code the debug
and the tools employed during debugging.

Time. Respondents reported to spend one-third of their working time debugging. Half the
debugging time is spent trying to understand how an error comes about (bug diagnosis) while
the other half is spent trying to reproduce or patch software errors. As shown in Figure 5, the
middle fifty percent reported to spend between 25% and 45% of their development time with
debugging. This confirms the results that were reported by Perscheid et al. [19]. Moreover, we
found that during debugging, the middle fifty percent reported to spend between 30% and 60%
for bug diagnosis and between 10% and 30% each for bug reproduction and bug fixing.

Familiarity. Most respondents frequently did not write the software they are debugging.
Nevertheless, they feel quite familiar with the code. As shown in Figure 6, the average familiarity
with the code that respondents generally debug is moderate (3.3 on the 5-point Likert scale). The
middle fifty percent is moderately to very familiar with the debugged code. We use the frequency
with which respondents debug other people’s code to triangulate (i.e., confirm) familiarity [126].
The average frequency is sometimes (3.4). The middle fifty percent sometimes or often debug
other people’s code.

Developers spend a third of their time debugging code mostly written by other programmers:
50% of the time is spent on bug diagnosis, and the rest on bug reproduction and patching.

Tools and Techniques. In practice, debugging is still vastly a manual activity. As shown in
Figure 7, the middle fifty percent always or often use trace-based debugging (e.g., println) or
interactive debugging (e.g., gdb). They sometimes use post-mortem debugging (e.g., inspecting
coredump and stack traces). They rarely use regression debugging (e.g., git bisect). The majority
of respondents never used any of the remaining choices. Respondents mentioned memory, coverage,
and performance profiler and analysis tools, such as valgrind, gcov, and gprof as additional tools
which they use, but which are not listed. 60 respondents (30%) admit to trial-and-error versus a
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Statistical Debugging

Algorithmic Debugging

Time Travel Debugging

Program Slicing

Regression Debugging

Post−Mortem Debugging

Interactive Debugging

Trace−based Debugging

0% 25% 50% 75% 100%

Never

Rarely

Sometimes

Often

Always
Frequency

Figure 7: Stacked histograms showing how often respondents use the listed debugging techniques
and associated tools. For instance, the first row can be read as follows: About 5% of respondents
use trace-based debugging never or rarely, 15% sometimes, 50% often, and 30% always.

more systematic approach.

Debugging is still mostly a manual activity in software practice: trace-based (e.g. println)
and interactive debugging (e.g. gdb) are the most used debugging technique.

Our results for RQ1 suggest that debugging is still a largely manual and time-consuming
process. Many developers find their own style of debugging to be trial-and-error rather than
systematic. This is in stark contrast to the many tools and techniques available from many
decades of software engineering research on automated debugging, and directly motivates our
next research question: What do practitioners want?

RQ2-a How to Automate Bug Diagnosis?

In 127 of 156 valid responses (81%),9 practitioners mention they would design automated debugging
aids that do what has already been achieved in automated debugging research. For instance, 69
respondents (44%) would like to use tools that point out suspicious statements. However,
confirming the observation of Kochar et al. [41], we find that practitioners have information
needs that go beyond simple fault localization: 49 of 69 respondents which wanted to be pointed
to suspicious statements (71%), were interested in more information, like actual and expected
variable values, or an English explanation. Automated repair is an active research topic. We
found that 26 of 156 respondents (17%) would output an auto-generated patch as debugging aid.

Figure 8 lists some answers to our open-ended question on the preferred output of an automated
diagnosis tool. To establish the categories and quantify the prevalence of each category, we used
the coding protocol that was discussed in Section 3.3.1. If we did not find any related work that
addresses a practitioners’ need, the concern is shown in bold face. The prevalence of a category
in terms of number of valid responses is shown to the left in grey.

In terms of general program comprehension, we received 33 valid responses. Developers would
design tools that

9We marked responses as invalid that were empty or did not answer the question.
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“List of faulty statements and a brief (approximate) explanation.”
“Report about the danger level, impact, suggest fix.”
“Steps to reproduce, inputs, expected outcome, actual outcome”
“We should be categorizing the bugs based on different types, and the tool should output which
category it closely matches to.”
“Affected files, lines, English explanation of supposed bug (although for some bugs you wouldn’t
be able to pin it to a line). [..] But for example, [..] already a fixed version of the code could be
amazing. (I saw such a project, but never tried it, as it seemed to be an academic project of
unknown maturity, and C only).”
“List of most general causes and environment that leads to bug, brief explanation maybe. [..]
I want it to be useful, but at the same time I don’t want to spend an hour reading a very long
autogenerated bug report just to find out that it’s a 5 minute fix.”

Figure 8: Examples of responses to our Question 16: “If you could design an automated bug
diagnosis tool that explains the reproduced bug to you, what would it output?”

24 visualize data structures and allow to persist, to restore, and to compare their states [127],
8 visualize the value history of a variable [127],
5 help at program understanding, generate documentation [128],
1 uncover “meaning” of variables and value range [129, 130].

In terms of automated bug diagnosis, we received 148 valid responses. Developers themselves
would design tools that

69 point to suspicious functions or program statements [131],
41 generate an English explanation why the error occurs,
37 print the sequence of executed functions for a failing input (as can be obtained automatically

via any online-debugger),
26 generate a patch to assist in understanding the error [115] or generate a suggestion where

and how to patch the bug [132],
21 report most general environment or conditions under which the bug can be

reproduced,
15 visualize divergence from the expected value of a variable,
10 visualize the range of expected values for a given variable.
7 point to the cause-effect chain leading to the symptom [32].

In terms of explaining and classifying symptoms, we received 26 valid responses. Developers are
interested in tools that

17 highlight the symptoms and side-effects of an error,
10 classify the error according to its symptom in a category

(e.g., if nullpointer deref., suggest check or where to init.),
2 evaluate criticality of the symptoms (e.g., security risk),
1 track allocated resources and where they are allocated or used (as can be obtained via tools

like valgrind [133]).

Properties of the Tool. Bug diagnosis tools should enable the practitioner to investigate
properties of the program and the failing execution. 27 of 50 valid responses10 (54%) mention

10Invalid responses are empty or do not pertain to properties of the bug diagnosis tool.
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“Diagnosis tools should help narrow down the list of possible causes, so I can focus my
investigation. [..] Instead of replacing a human, the tool should help the human do their
job faster.”
“I’d expect that tool is easy to use, readable, informative and fast.”
“Somehow you need to be able to teach the tool what constitutes a bug and what does
not.”
“1. Scalability. It should allow me to debug even very large program.
2. The output should be concise, precise and easy to understand.
3. The tool could give some hints to fix the bug if possible.”

Figure 9: Examples of responses to our optional Question 24: ”What do you expect from an
automated diagnosis tool?”

that the diagnosis tool should be able to conduct sophisticated program analysis (beyond fault
localization). Moreover, the tool should be efficient, interactive, easy to use, and support the
execution and construction of a test suite. Figure 9 shows some example responses. Concretely,
practitioners expect a bug diagnosis tool to satisfy the following criteria:
27 Program Analysis: Conduct analyses, such as slicing, as needed.
14 Efficient : Be quick, use few resources, scale to large programs.
8 Interactive: Arrive at the diagnosis with help from the developer.
8 Testing : Execute test cases and collect code coverage as needed.
7 Easy to use: Not too complicated or too extensive.
2 Trainable: Learn from the interaction with the developer.

The most desired functional properties of debuggers are already being provided by the
state-of-the-art debugging tools (e.g. program analysis is desired by 54% of respondents).

Two respondents mentioned that a good integration into existing IDEs, such as Eclipse, would be
preferrable. One would want to integrate it into the existing patch review process if diagnosis
indeed was fully automated.

Properties of a Diagnosis. Most importantly, an auto-generated bug diagnosis should
provide all information that is necessary to understand how the bug is coming about. 32 of 50
valid responses11 (64%) mention that a diagnosis should be comprehensive. Moreover, a diagnosis
should provide the correct diagnosis in an understandable format. Concretely, practitioners expect
an auto-generated bug diagnosis to satisfy the following criteria:

32 Comprehensive: Provide all information that is relevant. For instance, fault locations,
context, and variable values.

16 Accurate: Provide only correct information.
9 Understandable: Provide pertinent information in an intuitive format that is easy to

navigate. Text should be comprehensible.
3 Simple: Provide not more information than necessary.

Most debugging tools do not provide the desired non-functional properties of bug diagnosis:
for instance, 64% of respondents desire comprehensive bug diagnosis.

11Invalid responses are empty or don’t mention properties of auto-generated diagnoses.
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“Understandable, documented, concise.”
“Readable, compact, local, side-effect-free.”
“Accurate, not induce new bugs, minimal code change.”
“Documented, linked with ticked, having an author.”
“Structured, concise, clear, traceable, good explanation on the causes on the bug and what was
changed in the code.”
“It would have to be accompanied by a new unit test that was confirmed to 1) fail with the unpatched
code and 2) pass with the patched code.”
“I would only accept auto-generated bugfix if it was of human-quality i.e. a decent developer would
have created the same fix.”

Figure 10: Examples of responses to our Question 15: ”If you had to review an (auto-generated)
bug fix / software patch, which properties must it have to be acceptable?”

Triangulation. In the questionnaire, we asked two questions about the automation of bug
diagnosis. The first asks concretely about the format and content of the auto-generated diagnosis
(Figure 8) while the other asks more generally about the expectations from a bug diagnosis tool
(Figure 9). Since the questions are open-ended and responses in prose, in many cases, there was
some information in the latter about the former and vice versa. We used these responses to
triangulate the categories established above and found mostly agreement and no contradictions.

RQ2-b How to Automate Bug Fixing?

Most respondents would accept an auto-generated patch only if it is readable, well-documented,
and does not introduce any new bugs. Moreover, an auto-generated patch should be plausible,
minimal, and well-structured. It should provide the context such as a reference to the bug report
and discuss the potential impact of the patch on other parts in the program. The current problem
statement of research in automated program repair is to produce patches that pass all test cases
in a given test suite. However, correctness is not the only concern of practitioners. In fact, only
two respondents would require the patch to fix the error completely. The main concern is that an
auto-generated patch is readable and documents what has been done and why.

For this question, we collected 175 valid responses. Figure 10 shows a few examples. Concretely,
practitioners would agree to accept an auto-generated patch if it satisfies the following properties:

80 Be readable: Self-explanatory, coding standards, variable names.
41 Be documented : An explanation of what has been done and why. Auto-generate a

comprehensive commit log.
36 No new bugs: No tests producible that pass before but fail now. Auto-generate

regression tests.
29 Be plausible: Passes failing test used during bug reproduction.
27 Provide context : Links the bug report, patch reviewer, identifies environment where

it was tested.
24 Be minimal : Local to 1 module, small changes, contained impact.
22 Discuss impact : Explain modules impacted by this patch and how.
21 Be well-structured : Well-formatted, matches existing style and clean.
2 Fix the bug : No tests producible that fail because of this error.
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“Clear indication that the fix correctly accomplishes intended transformation of buggy code without
error or side-effect.”
“Such a tool should never modify my existing code. [Instead it would] allow me to audit the changes
before applying them.”
“[..] find the smallest acceptable modification to the codebase that would make all the provided
tests green.”
“Very verbose information about the fix, and the details of the bug itself. How this won’t cause
issues elsewhere.”
“The tool should give some reason why the fix is generated, [..] generate a test suite to show that
the fix still keeps original functionality of the program and all errors caused by the bug are gone,
[..] provide some fixes so the developer can choose the best one.”

Figure 11: Examples of responses to our Question 25: ”What do you expect from an automated
bug fixing tool?”

Properties of the Tool. On the one hand, 26 of 64 respondents (41%) would not like the
tool to fix a program fully automatically and instead intervene whenever necessary or select from
a ranked choice of patches. On the other hand, 19 respondents (30%) say that such tool would
need to fix a bug on its own. However, most respondents (63%) would like the tool to provide
a proof of correctness (22), an explanation of how the bug is fixed (13), or at least guarantee
correctness (18).12

For this optional question, we collected 64 valid responses. A few examples are shown in
Figure 11. Concretely, practitioners would agree to use an auto-repair tool if it satisfies the
following criteria. The tool should be:

26 Interactive: Arrive at the correct fix with help from developer. For instance, produce several
patches rank in order of quality.

19 Fully automated : Produce and apply bug fix fully automatically.
22 Provide proof of correctness: Generate regression test cases. Show that error was really

fixed and no new errors are introduced.
18 Correct : Does not produce incorrect patches.
13 Provide rationale: Explain the bug and how it is fixed now.
7 Decide degree of automation based on bug type: Some errors may need almost no intervention

and can be auto-corrected.
4 Be efficient : Be quick, use few resources, scale to large programs.
1 Be open-source: So that developers can inspect how it works.

Beyond patch correctness, the most desirable properties of repair tools (e.g. fix explanation and
correctness guarantee) are not provided by the current state-of-the-art repair tools.

Triangulation. In the questionnaire, we asked two questions about the automation of bug
fixing. The first asks concretely about properties of auto-generated patches that are required to
accept the patch (Figure 10) while the other asks more generally about the expectations from an
automated bug fixing tool (Figure 11). We used these responses to triangulate the categories
established above and found mostly agreement and no contradictions.

12Note that a response can be assigned multiple labels.
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No auto-diagnosis —– Neither —– No auto-repair

All respondents

Figure 12: Venn Diagram showing the set of respondents which oppose the full automation of
either bug diagnosis (no auto-diagnosis) or bug fixing (no auto-repair).

RQ3 Why Accept/Reject Automated Debugging?

Most surveyed practitioners do not believe that debugging will ever be fully automated. The Venn
diagram in Figure 12 provides more details. 116 respondents (55%) believe that neither bug
diagnosis nor program repair will ever be fully automated. 165 (78%) believe that bugs will
never be fixed reliably by a machine while 124 respondents (58%) believe that bugs will never be
explained intuitively.
Points in favor of Automation. 33 of 96 proponents13 provide a rationale in favour of the
automation of bug diagnosis, repair, or both. The most prevalent responses cite recent advances
in artificial intelligence as reason why debugging might be fully automated in the future. Others
mention that existing techniques do not sufficiently leverage information that is available, in the
program itself or in lessons-learned from earlier debugging sessions.

Concretely, 33 practitioners explained that debugging might be automated at some point in
the future for the following reasons:
14 Advances in AI : Given the progress of Artificial Intelligence (AI) in other areas, it

may soon also be able to auto-repair programs.
9 Information from program: Stack traces and source code can be mined via program

analysis for information on a bug fix.
5 Information from history : Repositories of human-generated bug reports and patches

can be mined for information on a patch.
3 Information from specifications : Adequate test suites or formal specifications should

contain enough information to fix a bug.
2 Advances in Self-Healing : In future, a software system may test and heal itself and

automatically recover from runtime errors.
2 Advances in Optimisation Algorithms : Genetic algorithms have shown promise, taking

inspiration from natural evolution.
2 Advances in Program Synthesis: If programs are generated from specifications, then

bugs are fixed by changing the specification.

A third of developers (34%) believe in the (future) automation of debugging or repair
because of advances in artificial intelligence (AI) and program analysis.

13We call as proponent a respondent who believes that diagnosis, repair, or both will be automated at some
point of time in the future (white area in Figure 12). In other words, even if the respondent believes that one task,
e.g., diagnosis, will never be automated, she is still classified as a proponent. Only 32 of 212 respondents (15%)
believe that both, diagnosis and patching may be automated in the future (13 provide a rationale).
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“I believe that in the far future we will have artificial intelligence (AI). In this scenario the AI will
write programs that fit its goals (specification) and refine these programs as the world changes
(e.g. a program will be repaired if an example is found for which it does not meet its specification).”
“I envision a world in which the main concern of a programmer is to write precise specifications,
not precise implementations (which should be auto-generated from the spec).”
“Self correcting systems are achievable in my opinion.”
“I think, most of the bugs that are created are not new and they are generally seen/induced by
programmers previously. It is possible to learn from the past mistakes by proper training data.”
“I do believe that things like using genetic algorithms to automatically fix code could become
mature, practical tools.”

Figure 13: Responses in favour of debugging automation

Points Against Automation. 51 of 116 opponents14 provide a rationale against the automation
of both – diagnosis and repair. The most prevalent reason cited is that some errors are just
too difficult to explain even by humans. Only if there is consensus among developers about the
explanation of how a bug comes about, there can be an auto-generated bug diagnosis that is
agreeable to most developers. However, 156 respondents (72%) believe that there is no single
explanation for a bug. Meaning, practitioners believe the cause of a bug is subjective.

The problem of the difficulty of correct bug diagnosis is exacerbated when it is not clear
whether some behavior is a bug or a feature and the system is too complex that a machine cannot
have complete knowledge of all factors. Moreover, respondents believe that a machine lacks
the experience and ingenuity of the human, specifically in the presence of existing bad coding
practices.

Concretely, practitioners believe that debugging will never be automated for the following
reasons.

22 Complexity of diagnosis: Some errors are difficult to explain even for the human. How
should a machine be ever able to?

19 Absence of specification: Without a complete specification, a machine is unable to distinguish
between bug and feature.

17 Complexity of system: Bugs may result from complex interaction with hardware. Halting
problem prevents reliable analysis.

13 Human Factor : A machine cannot utilize human experience or ingenuity, or human
understanding of the greater context.

8 Difficulty to judge patch quality : There may be several possible fixes. Which one is the
best? According to which criteria?

7 Existing Code Smells: If the program already incorporates coding bad practices, so will the
auto-generated patch.

5 Difficulty to judge patch correctness: How can a machine know the difference between bug
and feature if the human does not even know? How to determine whether the error is really
fixed?

3 Difference in-field vs. in-house: The environment of the auto-repair tool may be different
from the user’s environment.

2 Complexity of patch: Some errors are difficult to patch even for a human. Bug fixes may
span several different modules.

14We call as opponent a respondent who believes that neither diagnosis nor repair will ever be automated in
the future (gray area in Figure 12).
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Two-fifth of developers (41%) are against the automation of debugging or repair,
due to the complexity of bugs or systems, and the absence of (complete) specification.

Interestingly both, the lack and the presence of specifications is cited as reasons against and
in favour of debugging automation, respectively. The opponents argue that current software
systems lack any formal specification which prevents a machine from distinguishing software
bugs from features. Formally, this was dubbed the oracle problem [134, 135]. Just recently,
Elbaum and Rosenblum called for research on testing techniques that work in the presence of
uncertainty [136]. However, the proponents argue that future software systems are fully generated
from specificiations. In other words, any bug in the program originates either in the program
synthesizer or in the specification. Assuming the latter, the bug is fixed simply by changing
the program specification. For instance, an emerging field in program synthesis is inductive
programming which allows to generate programs from examples [137]. When the developer finds
an input that exposes what she perceives to be a bug, the program is fixed when the input is
passed as counter-example to the inductive program synthesizer.

Result Discussion

In the following, we discuss a selection of insights collected from this retrospective survey.
What practitioners use. In the first part of the survey, we find that debugging in practice is

still a largely manual and time-consuming process. Developers report to spend half their working
time debugging source code which they are often not very familiar with. Among the regularly used
techniques are trace-based debugging (i.e., println) and interactive debugging (i.e., gdb). Most
respondents have never used any automated techniques, such as program slicing, automated fault
localization, or algorithmic debugging. After successfully reproducing a reported bug, developers
spend most of their time trying to understand the chain of runtime actions leading to bug (bug
diagnosis). Once the bug is understood, the process of manual patch generation is typically faster
(bug fixing). Most practitioners ensure that a bug has really been fixed by re-executing the failing
test case or re-executing the existing regression test suite. Many practitioners find their own style
of debugging to be trial-and-error rather than systematic.

What practitioners want. In the second part of the survey, we identify the pertinent
properties of practical bug diagnosis and repair assistants. In terms of automated bug diagnosis,
practitioners are looking for a tool that produces simple, yet comprehensive reports, that explain
why the error occurs, that are easy to navigate and to understand. Beyond automatic fault
localization, a bug diagnosis assistant should learn to distinguish actual from expected values,
find out under which most general circumstances the bug can be reproduced, and determine
the side-effects of an error. In terms of automated program repair, the most common problem
statement in research is to produce a patch that passes all failing test cases [33, 35]. While the
auto-generated patch is often plausible (and pass the failing tests), it might not be correct (and
pass the code review) [138]. However, beyond patch correctness practitioners are interested in
properties such as readability or impact.

What practitioners believe. In the third part of the survey, we find that most practitioners
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3.3. Observational Study“Give two developers the same problem and they will most likely come up with different solutions.”
“Defining ’what is a bug’ [..] is often subjective. For some classes of bugs, e.g. segfaults, it’s easy
to mechanically classify them as bugs, but then impossible to mechanically determine what the
CORRECT behavior would be (other than ‘don’t segfault’).”
“Roughly half our bugs are caused by a complex interplay of different modules or components,
which can be hard to find, let alone to get it explained or fixed automatically.”
“Bugs can have very complex reasons. For out of bounds indexing it is probably easy to trace
back to the points where the index was computed, but many bugs are just producing wrong output.
The root cause of latter bugs are harder to pinpoint, because the program as a whole misbehaved
and there is no one location that is suspicious as for segfaults [..]. I as the designer of the program
can figure out by thinking hard or/and looking at the code, but I am unsure in how far this can be
automated.”

Figure 14: Responses against debugging automation.

reject the notion that diagnosis or repair will ever be fully automated. The most cited reason
is that some errors are difficult to understand even by a human, specifically when the system
is too complex (i.e., a machine cannot have access to all relevant information) and when the
correct behavior is unspecified (i.e., a machine cannot distinguish bug from feature). However,
practitioners also provide plenty of reasons why at least some debugging tasks might be fully
automated at some point in the future. Apart from advances in artificial intelligence, practitioners
believe that not every bug is new and common mistakes are repeated, which allows machines to
learn from history. Practitioners also believe that program analysis will improve and allow to
mine more relevant information from the program itself.

At the end of this chapter, we discuss how the community can address the expectations and
beliefs of practitioners and provide actionable suggestions for researchers and educators (see ??).
We hope that the results of our survey will inspire more research in debugging that is grounded
in practice.

3.3 Observational Study

In this section, we collect empirical data on the debugging process of developers; we shed light
on the entire debugging process. Specifically, we investigate how debugging time, difficulty, and
strategies vary across practitioners and types of errors. Using 27 real bugs from CoREBench [14],
we asked 12 software engineering professionals from 6 countries to debug and repair software
errors. For our benchmark, we elicit which fault locations, explanations, and patches practitioners
produce.

Participants received the following for each error

• a small but succinct bug report,

• the buggy source code and executable, and

• a test case that fails because of this error.

We asked participants

• to point out the buggy statements (fault localization),

• to explain how the error comes about (bug diagnosis), and

• to develop a patch (bug fixing).
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We recorded for each error

• their confidence in the correctness of their diagnosis/patch,

• the steps taken, the tools and strategies used, and

• the time taken and difficulty perceived in both tasks.

We analyzed this data and

• derived for each error important fault locations and a diagnosis

• evaluated the correctness of each submitted patch, and

• provide new test cases that fail for incorrect patches.

Thus, we obtained essential data from over 300 individual debugging sessions which can be sliced
by developer or by bug, which can serve as reality check for automated debugging and repair
tools.

3.3.1 Study Design

The study design discusses our recruitment strategy, the objects and infrastructure, and the
variables that we modified and observed in our experiment. The goal of the study design is to
ensure that the design is appropriate for the objectives of the study. We follow the canonical design
for controlled experiments in software engineering with human participants as recommended by
Ko et al. [139].

Research Questions

The main objective of the experiment is to collect empirical data on the debugging process of
developers and construct a benchmark that allows to evaluate automated fault localization, bug
diagnosis, and software repair techniques based on the judgment of actual professional software
developers. We also study the various aspects of debugging in practice and opportunities to
automate diagnosis and repair guided by the following research questions.

RQ1 Time and Difficulty. Given an error, how much time do developers spend understanding
and explaining the error, and how much time patching it? How difficult do they perceive the
tasks of bug diagnosis and patch generation?

RQ2 Fault Locations and Patches. Which statements do developers localize as faulty? How
are the fault locations distributed across the program? How many of the provided patches
are plausible? How many are correct?

RQ3 Diagnosis Strategies. Which strategies do developers employ to understand the runtime
actions leading to the error?

RQ4 Repair Ingredients. What are the pertinent building blocks of a correct repair? How
complex are the provided patches?
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Figure 15: Screenshot of the provided virtual environment.

RQ5 Consensus on Debugging. Is there a consensus among developers during fault localiza-
tion, bug diagnosis and bug fixing?

RQ6 Debugging Automation. Can debugging be automated? Do developers believe that the
diagnosis or repair for an error will ever be automated and why?

Objects and Infrastructure

The objects under study are 27 real software errors systematically extracted from the bug reports
and commit logs of two GNU open-source C projects (find and grep). The infrastructure is a
lightweight Docker container that can quickly be installed remotely on any host OS [140]. The
errors, test cases, bug reports, source code, and the complete Docker infrastructure is available
for download [116].

The objects originate from a larger error benchmark called CoREBench [14]. Errors were
systematically extracted from the 10,000 most recent commits and the bug reports in four projects.
Find and grep are well-known, well-maintained, and widely-deployed open-source C programs
with a codebase of 17k and 19k LoC, respectively. For each error, we provide a failing test case, a
simplified bug report, and a large regression test suite (see Figure 26-a). We chose two subjects
out of the four available to limit the time a participant spends in our study to a maximum of
three working days and to help participants to get accustomed to at most two code bases.

To conduct the study remotely and in an unsupervised manner, we developed a virtual
environment based on Docker [140, 116]. The virtual environment is a lightweight Docker image
with an Ubuntu 14.2 Guest OS containing a folder for each buggy version of either grep or find
(27 in total). A script generates the participant ID for the responses by a participant. This
ensures anonymity and prevents us from establishing the identity of any specific participant.
At the same time we can anonymously attribute a response for a different error to the same
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participant to measure, for instance, how code familiarity increases over time. The same script
does some folder scrambling to randomize the order in which participants debug the provided
errors: The first error for one participant might be the last error for another. The scrambling
controls for learning effects. For instance, if every participant would start with the same error,
this error might incorrectly be classified as very difficult. The docker image contains the most
common development and debugging tools for C, including gdb, vim, and Eclipse. Participants
were encouraged to install their own tools and copy the created folders onto their own machine.
A screenshot of the docker image desktop is shown in Figure 15.

Pilot Studies: Researchers and Students

Ko et al. [139] note that the design of a study with human participants is necessarily an iterative
process. Therefore, a critical step in preparing an experiment is to run pilot studies. Hence, we
first evaluated our design and infrastructure in a sandbox pilot where we, the researchers, were
the participants. This allowed us to quickly catch the most obvious of problems at no extra
cost. Thereupon, we sought to recruit several graduate students from Saarland University for
the pilot study. We advertised the study in lectures, pasted posters on public bulletin boards,
and sent emails to potentially interested students. From 10 interested students, we selected five
(5) that consider their own level of skill in the programming with C as advanced or experts.15

We conducted the pilot study as supervised, observational study in-house, in our computer lab.
After filling the consent form and answering demographic questions, we introduced the errors and
infrastructure in a small hands-on tutorial that lasted about 30 minutes. Then, the students had
eight (8) hours, including a one hour lunch break, to debug as many errors as they could. We
recorded the screen of each student using a screen capturing tool. Independent of the outcome,
all participants received EUR 50 as monetary compensation. While none of the data collected in
the pilot studies was used for the final results, the pilot studies helped us to improve our study
design in several ways:

1) No Students. For the main study, we would use only software engineering professionals. In
seven hours our student participants submitted only a sum total of five patches. On average, a
student fixed one (1) error in eight (8) hours (while in the main study a professional fixed 27
errors in 21.5 hours). The feedback from students was that they under-estimated the required
effort and over-estimated their own level of skill.

2) No Screen Capturing. The video of only a single participant would take several Gigabyte
of storage and it needs to be transferred online to a central storage. This was deemed not
viable.

3) Good Infrastructure. The setup, infrastructure, and training material was deemed appro-
priate.

15Note that self-assessment of level of skill should always be taken with a grain of salt (cf. Dunning-Kruger
effect [118]).
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1. How difficult was it to understand the runtime actions leading to the error?
(Not at all difficult, Slightly difficult, Moderately difficult, Very difficult, Extremely difficult)

2. Which tools did you use to understand the runtime actions leading to the error?
[Textbox]

3. How much time did you spend understanding the runtime actions leading to the error?
(1 minute or less, 2–5 minutes, 5–10 minutes, 10–20 minutes, . . . , 50–60 minutes, 60 minutes or more)

4. Enter 3 to 5 code regions needed to explain the root cause of the error.
[Textbox 1], [Textbox 2], [Textbox 3], [Textbox 4], [Textbox 5]

5. What is the root cause of the error? How does it come about?
[Textbox]

6. How confident are you about the correctness of your explanation?
(Not at all confident, Slightly confident, Moderately confident, Very confident, Extremely confident)

7. If you could not explain the error, what prevented you from doing so?
[Textbox]

8. Which concrete steps did you take to understand the runtime actions?
[Textbox]

9. Do you believe that the root cause of the error can be explained intuitively by the push of a button?
Yes, in principle a tool might be able to explain this error. No, there will never be a tool that can explain this error.

10. Why do you (not) believe so?
[Textbox]

Figure 16: Questions on the fault locations and bug diagnosis

Main Study: Software Professionals

We make available the training material, the virtual infrastructure, the questionnaire that was
provided for each error, the collected data [116]. The experiment procedure specifies the concrete
steps a participant follows from the beginning of the experiment to its end.

Recruitment. We recruited participants from the respondents of our retrospective survey in
Section 3.2. The survey asks general questions about debugging in practice after which developers
have the option to sign up for the experiment. We sent the link to more than 2,000 developers on
Github and posted the link to 20 software development usergroups at Meetup.com, on six (6)
freelancer platforms, including Freelancer, Upwork, and Guru, and on social as well as professional
networks, such as Facebook and LinkedIn. The job postings on the freelancer platforms were
the most effective recruitment strategy. We started three advertisement campaigns in Aug’15,
Mar’16, and July’16 following which we had the highest response rate lasting for about one month
each. We received the first response in Aug’15 and the most recent response more than one year
later in Oct’16. In total, we received 212 responses out of which 143 indicated an interest in
participating in the experiment.

Selection. We selected and invited 89 professional software engineers based on their experience
with C programming. However, in the two years of recruitment only 12 participants actually
entered and completed the experiment. There are several reasons for the high attrition rate.
Interested candidates changed their mind in the time until we sent out the invitation, when they
understood the extent of the experiments (2–3 working days), or when they received the remote
infrastructure and understood the difficulty of the experiment (17k + 19k unfamiliar lines of
code).

Demographics. The final participants were one researcher and eleven professional soft-
ware engineers from six countries (Russia, India, Slovenia, Spain, Canada, and Ukraine). All
professionals had profiles with Upwork and at least 90% success rate in previous jobs.

Training. Before starting with the study, we asked participants to set up the Docker image
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12. How difficult was it to fix the error?
(Not at all difficult, Slightly difficult, Moderately difficult, Very difficult, Extremely difficult)

13. How much time did you spend fixing the error?
(1 minute or less, 2–5 minutes, 5–10 minutes, 10–20 minutes, . . . , 50–60 minutes, 60 minutes or more)

14. IMPORTANT: Copy & paste the generated patch here.
[Textbox]

15. In a few words and on a high level, what did you change to fix for the error?
[Textbox]

16. How confident are you about the correctness of your fix?
(Not at all confident, Slightly confident, Moderately confident, Very confident, Extremely confident)

17. In a few words, how did you make sure this is a good fix?
[Textbox]

18. If you could not fix the bug, what prevented you from doing so?
[Textbox]

19. Do you believe that this error can be fixed reliably by the push of a button?
Yes, in principle a tool could fix this error reliably. No, there will never be a tool that can fix this error reliably.

20. Why do you (not) believe so?
[Textbox]

Figure 17: Questions on generating the software patch

and get familiar with the infrastructure. We made available 1 readme, 34 slides, and 10 tutorial
videos (⇠2.5 minutes each) that explain the goals of our study and provide details about subjects,
infrastructure, and experimental procedure. Participants could watch the slides and the tutorial
videos at their own pace. The training materials are available [116]. Moreover, we informed
them that they could contact us via Email in case of problems. We provided technical support
whenever needed.

Tasks. After getting familiar with the infrastructure and the programs, participants chose a
folder containing the first buggy version to debug. This folder contains a link to the questionnaire
that they are supposed to fill in relation with the current buggy version. The text field containing
the participant’s ID is set automatically. The questionnaire contains the technical questions, is
made available [116], and is discussed in Section 3.3.1 in more details. We asked each participant
to spend approximately 45 minutes per error in order to remain within a 20 hour time frame.
From the pilot study, we learned that incentive is important. So, we asked them to fix at least
80% of the errors in one project (e.g., grep) before being able to proceed to the next project (e.g.,
find).

Debriefing. After the experiment, participants were debriefed and compensated. We
explained how the data is used and why our research is important. Participants would fill a
final questionnaire to provide general feedback on experiment design and infrastructure. For
instance, participants point out that sometimes it was difficult to properly distinguish time spent
on diagnosis from time spent on fixing. Overall, the participants enjoyed the experiment and
solving many small challenges in a limited time.

Compensation. It is always difficult to determine the appropriate amount for monetary
compensation. Some guidelines [141] recommend the average hourly rate for professionals, the
rationale being that professionals in that field cannot or will not participate without pay for
work-time lost. Assuming 20 working hours and an hourly rate of USD 27, each participant
received USD 540 in compensation for their time and efforts. The modalities were formally
handled via Upwork [142].
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Figure 18: Relationship between average time spent and difficulty perceived for patching and
diagnosing a bug. Each point is one of 27 bugs, the shape of which determines its bug type (i.e.,
crash, functional error, infinite loop, or resource leak).

Variables and Measures

The main objective of this study is to collect the fault locations, bug diagnoses, and software
patches that each participant produced for each error. To assess the reliability of their responses,
we use a triangulation question which asks for their confidence in the correctness of the produced
artifacts. In addition to these artifacts, for each error, we also measure the perceived difficulty
of each debugging task (i.e., bug diagnosis and bug fixing), the time spent with each debugging
task, and their opinion on whether bug diagnosis or repair will ever be fully automated for the
given error. The questions that we ask for each error are shown in figures 16 and 17.

To measure qualitative attributes, we utilize the 5-point Likert scale [119]. A 5-point Likert
scale allows to measure otherwise qualitative properties on a symmetric scale where each item
takes a value from 1 to 5 and the distance between each item is assumed to be equal.16 For
instance, for Question 12 in Figure 17, we can assign the value 1 to Not at all difficult up to the
value 5 for Extremely difficult. An average difficulty of 4.7 would indicate that most respondents
feel that this particular error is very to extremely difficult to fix while only few think it was not
at all difficult.

We note that all data, including time, is self-reported rather than recorded during observation.
Participants fill questionnaires and provide the data on their own. This allowed us to conduct the
study fully remotely without supervision while they could work in their every-day environment.
Since freelancers are typically paid by the hour, Upwork provides mechanisms to ensure that
working time is correctly reported. While self-reports might be subject to cognitive bias, they
also reduce observer-expectancy bias and experimenter bias [144]. Perry et al. [145] conducted an
observational study with 13 software developers in four software development departments and
found that the time diaries which were created by the developers correspond sufficiently with the
time diaries that were created by observers. In other words, in the software development domain
self-reports correspond sufficiently with independent researcher observations.

We checked the plausibility of the submitted patches by executing the complete test suite
and the previously failing test case. We checked the correctness of the submitted patches using
internal code reviews. Two researchers spent about two days discussing and reviewing the patches
together. Moreover, we designate a patch as incorrect only if we can provide a rationale. Generally,
every qualitative analysis was conducted by at least one researcher and cross-checked by at least

16However, the Likert-scale is robust to violations of the equal distance assumption: Even with larger distortions
of perceived distances between items (e.g., slightly vs. moderately familiar), Likert performs close to where intervals
are perceived equal [143].
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Figure 19: Boxplots showing the number of contiguous regions per bug diagnosis (left), the
number of statements per diagnosis (middle), and the number of statements per contiguous region
(right). For example, file.c:12-16,20 specifies six statements in two contiguous regions.

one other researcher.

3.3.2 Study Results

Overall, 27 real errors in 2 open-source C programs were diagnosed and patched by 12 participants
who together spent 29 working days.

RQ1 Time and Difficulty

Our data on debugging time and difficulty can be used in cost-effective user-studies that set out
to show how a novel debugging aid improves the debugging process in practice. We also elicit
causes of difficulties during the manual debugging process.

Time and Difficulty. On average, participants rated an error as moderately difficult to
explain (2.8) and slightly difficult to patch (2.3). On average, participants spent 32 and 16 minutes
on diagnosing and patching an error, respectively. There is a linear and positive relationship
between perceived difficulty and the time spent debugging. As we can see in Figure 18, participants
perceived four errors to be very difficult to diagnose. These are three functional errors and
one crash. Participants spent about 55 minutes diagnosing the error that was most difficult to
diagnose. However, there are also nine errors perceived to be slightly difficult to diagnose with
the main cluster situated between 15 and 20 minutes of diagnosis time. Participants perceived
one (functional) error as very difficult to patch and spent about 40 minutes patching it. However,
there are also two bugs perceived to be not at all difficult to patch and took about five minutes.

Bug diagnosis is twice as time-consuming as bug fixing; participants spent two-third of their
time diagnosing the bug and only a third of the time to patch.

Why are some errors very difficult? There are four errors rated as very difficult to
diagnose. In many cases, missing documentation for certain functions, flags, or data structures
were mentioned as reasons for such difficulty. Other times, developers start out with an incorrect
hypothesis before moving on to the correct one. For instance, the crash in grep.3c3bdace is caused
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by a corrupted heap, but the crash location is very distant from the location where the heap is
corrupted. The crash and another functional error are caused by a simple operator fault. Three
of the four bugs which are very difficult to diagnose are actually fixed in a single line. For the only
error that is both very difficult to diagnose and patch, the developer-provided patch is actually
very complex, involving 80 added and 30 deleted lines of code. Only one participant provided a
correct patch.

Developers perceived bug diagnosis to be difficult due to poor code
documentation and incorrect (root cause) hypothesis.

RQ2 Fault Locations and Patches

Our data on those program locations which practitioners need to explain how an error comes about
(i.e., fault locations) can be used for a more realistic evaluation of automated fault localization,
and motivates the development of techniques that point out multiple pertinent fault locations.
Our data on multiple patches for the same error can be used to evaluate auto-repair techniques,
and motivates research in automated repair and its integration with automated regression test
generation to circumvent the considerable human error.

Fault Locations. The middle 50% of consolidated bug diagnoses references three to four
contiguous code regions, many of which can appear in different functions or files. In other words,
practitioners often reference multiple statements to explain an error. A contiguous code region
is a consecutive sequence of program statements. In most cases, the regions for one error are
localized in different functions and files. As shown in Figure 19, the majority of contiguous regions
(below the median) contain only a single statement, the middle 50% contains between 1 and 3
statements. A typical bug diagnosis references 10 statements.

Developers reference multiple (10) statements and multiple
(three to four) code regions to explain an error.

Patches. While 282 out of 290 (97%) of the submitted patches are plausible and pass the
provided test case, only 182 patches (63%) are actually correct and pass our code review.17 A
correct patch does not introduce new errors and does not allow to provide other test cases that fail
due to the same error. We determined correctness by code review and plausibility by executing
the failing test case. For each incorrect patch, we also give a reason as to why it is incorrect
and whether the test case passes. DbgBench provides several examples of correct and incorrect
patches for an error and a high-level description of the changes done to the code. An example is
shown in Figure 26-c.

Figure 20 shows that the median proportional plausibility is 100%, meaning that for the
majority of errors (above the median), all patches that participants submit pass the provided
test case. Even for the middle 50% of errors, more than 90% of patches are plausible. However,
the median proportional correctness is 69%, meaning that for the majority of errors (above the
median), only 69% of patches submitted by participants pass our code review. For the middle
50% of errors only between 45% and 82% of patches are actually correct.

17Note that participants were asked to ensure the plausibility of their submitted patch by passing the provided
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Figure 20: Boxplots showing the proportional patch correctness and plausibility. For instance, if
the proportional patch correctness for an error is 50%, then half of the patches submitted for this
error are correct. The boxplot shows the proportional plausibility and correctness over all 27
errors.
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Figure 21: Histogram showing reasons why 108 of patches that were submitted by participants
failed our code review.

Figure 21 shows that more than half of the incorrect patches (60 of 108) actually introduce
regressions. A regression breaks existing functionality; we could provide a test that fails but
passed before. 22 patches do not fix the error completely. An incomplete fix does not patch the
error completely; we could provide a test that fails with and without the patch because of the
bug. 19 patches are treating the symptom rather than fixing the error. A patch is treating the
symptom if it does not address the root cause. For instance, it removes an assertion to stop it
from failing. Seven (7) patches apply an incorrect workaround than fixing the error. An incorrect
workaround changes an artifact that is not supposed to be changed, like a third-party library.

Most developer-provided patches (97%) are plausible (i.e. pass the provided failing test),
but less than two-third (63%) of these patches are actually correct.

RQ3 Bug Diagnosis Strategies

For each error, we asked participants which concrete steps they took to understand the runtime
actions leading to the error. We analyzed 476 different responses for this question and we observed
the following bug diagnosis strategies.

test case.
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Figure 22: Diagnosis strategies for different error types.

Classification. We extend the bug diagnosis strategies that have been identified by Romero
and colleagues [146, 147]:

• (FR) Forward Reasoning. Programmers follow each computational step in the execution of the failing

test.

• (BR) Backward Reasoning. Programmers start from the unexpected output following backwards to

the origin.

• (CC) Code Comprehension. Programmers read the code to understand it and build a mental

representation.

• (IM) Input Manipulation. Programmers construct a similar test case to compare the behavior and

execution.

• (OA) Offline analysis. Programmers analyze an error trace or a coredump (e.g. via valgrind, strace).

• (IT) Intuition. Developer uses her experience from a previous patch.

Specifically, we identified the Input Manipulation (IM) bug diagnosis strategy. Developers
would first modify the failing test case to construct a passing one. This gives insight into the
circumstances required to observe the error. Next, they would compare the program states in
both executions. IM is reminiscent of classic work on automated debugging [148], which might
again reflect the potential lack of knowledge about automated techniques that have been available
from the research community for over a decade.

Frequency. We discovered that forward reasoning and code comprehension (FR+CC) are
the most commonly used diagnosis strategies in our study. The number of usage of different
bug diagnosis strategies is shown in Figure 22 for the different error types. We observe that
past experience (IT) is used least frequently. Many participants used input modification (IM)
as diagnosis strategy. Therefore, the integration of automated techniques that implement IM
(e.g. [148]) into mainstream debugger will help improve debugger productivity.
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Forward reasoning and code comprehension (FR+CC) are
the most commonly used bug diagnosis strategies among developers.

Error Type. We observe that forward reasoning (FR) is the most commonly used diagnosis
strategy for bugs reflecting infinite loops (26 out of a total 45 responses). Intuitively, there is no
last executed statement which can be used to reason backwards from. Out of a total 137 responses
for crash-related bugs, we found that backward reasoning (BR) was used 55 times. Intuitively, the
crash location is most often a good starting point to understand how the crash came about. For
functional errors, 112 responses, out of a total 270 responses, reflect forward reasoning (FR). If the
symptom is an unexpected output, the actual fault location can be very far from print statement
responsible for the unexpected output. It may be better to start stepping from a location where
the state is not infected, yet. Finally, we observed that input modification (IM) strategy was
used for 31 out of 270 scenarios to diagnose functional errors. This was to understand what
distinguishes the failing from a passing execution.

The choice of diagnosis strategy depends on the error type, for instance,
forward reasoning (FR) was mostly employed to diagnose functional errors and infinite loops.

Tools. Every participant used a combination of trace-based and interactive debugging. For
resource leaks, participants further used tools such as valgrind and strace. We also observed that
participants use bug diagnosis techniques that have been automated previously [148], albeit with
manual effort, to narrow down the pertinent sequence of events.

Developers mostly used interactive or trace-based debuggers (e.g. gdb),
but often used specialized tools (e.g. valgrind) for specific errors (e.g. memory leaks).

RQ4 Repair Ingredients

Out of 290 submitted patches, 100 (34%) exclusively affect the control flow, 87 (30%) exclusively
affect the data flow, while the remaining 103 patches (36%) affect both, control and data flow.

Control Flow. In automated repair research, the patching of control flow is considered
tractable because of the significantly reduced search space [149]: Either a set of statements is
executed or not. The frequency with which participants fix the control flow may provide some
insight about the effectiveness of such an approach for the errors provided with DbgBench. The
control flow is modified by 200 patches (69%). Specifically, a branch condition is changed by 126
patches and the loop or function flow is modified by 38 patches.18 A new if-branch is added by
86 patches whereupon, in many cases, an existing statement is then moved into the new branch
or a new function call is added.19

Data Flow. The data flow is modified by 187 of 290 submitted patches (64%). Specifically,
57 patches modify a variable value or function parameter. GenProg [33] copies, moves, or deletes
existing program statements, effectively relying on the Plastic Surgery Hypothesis (PSH) [150].
In our study, the PSH seems to hold. 44 patches move existing statements while 29 patches delete
existing statements. However, 73 patches add new variable assignments while 40 patches add new

18Examples of changing the loop or function flow are adding a return, exit, continue, or goto statement.
19Note that one patch can modify several statements!
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Figure 23: Proportional agreement on Top-3 most suspicious fault locations showing box plots
with jitter overlay (each shape is one of 27 errors).

function calls, for instance to report an error or to release resources. A completely new variable is
declared in 27 patches. Only 8 patches introduce complex functions that need to be synthesized.

A third (36%) of submitted patches affect both data and control flow, while another third
exclusively affect data flow (30%) or control flow (34%), respectively.

Patch Complexity. On average, a submitted patch contained six (6) Changed Lines of
Code (CLoC). The median patch contained 3 CLoC. The mean being to the far right of the
median points to a skewed distribution. Indeed, many patches are not very complex but there
are a few that require more than 50 CLoC.

Most bug fixes are not very complex, most patches contain three to six CLoC.

RQ5 Consensus on Debugging

We investigate whether there is consensus among the developers during fault localization, diagnosis
and fixing. Suppose, there is not. Then, how should there ever be consensus on whether an
automated debugging technique has produced the correct fault locations, the correct bug diagnosis,
or the correct patch for an error?

Consensus on Fault Locations. For most errors (above the median), more than 75%
of participants independently localize the same location as pertinent to explain the error (Lo-
cation 1). For each error, we count the proportion of participants independently reporting a
fault location. Sorted by proportion, we get the top-most, 2nd-most, and 3rd-most suspicious
locations (Location 1–3). For the middle 50% of errors, between half and two third of participants
independently report the same 2nd-most suspicious location while between one third and half
of participants still independently report the same 3rd-most suspicious location. However, note
that a participant might mention less or more than three locations. The consensus of professional
software developers on the fault locations suggests that every bug in DbgBench is correctly
localized by at least two (2) specific statements. These locations can serve as ground truth for the
evaluation of automated fault localization tools.

Consensus on Bug Diagnosis. 10 of 12 participants (85%) give essentially the same

45



3. Debugging in Practice: An Empirical Study

diagnosis for an error, on average. In other words, there can be consensus on whether an
automated technique has produced a correct bug diagnosis. These participants are very confident
(3.7 on the Likert scale) about the correctness of their diagnosis. On the other hand, participants
who provide a diagnosis that is different from the consensus are only slightly confident (2.4)
about the correctness of their diagnosis. The ability to generate a consolidated, concise bug
diagnosis that agrees with the majority of diagnoses as provided by professional software engineers
shows that understanding and explaining an error is no subjective endeavor. The consolidated
bug diagnoses in DbgBench can serve as the ground truth for information that is relevant to
practitioners.

There is significant consensus on fault locations (75%)
and bug diagnoses (85%) among developers.

Consensus on Bug Fix. For 18 of 27 bugs (67%), there is at least one other correct fix that
conceptually differs from the original developer-provided patch. In other words, often, there are
several ways to patch an error correctly, syntactically and semantically. It might seem obvious that
a correct patch can syntactically differ from the patch that is provided by the developer. However,
we also found correct patches that conceptually differ from the original patch that was provided
by the original developer. For each bug in DbgBench, there are 1.9 conceptually different correct
fixes on average. Five (5) bugs (19%) have at least two other conceptually different but correct
fixes. For instance, to patch a null pointer reference, one participant might initialize the memory
while another might add a null pointer check. To patch an access out-of-bounds, one participant
might double the memory that is allocated initially while others might reallocate memory only
as needed. For the error in grep.9c45c193 (Figure 26), some participants remove a negation to
change the outcome of a branch while others set a flag to change the behavior of the function
which influences the outcome of the branch.

There is no consensus on bug fixing among developers;
two-third (67%) of all bug fixes are conceptually different from that of the original developer.

RQ6 Debugging Automation

We examine if participants believe that the diagnosis and repair of these bugs can be fully
automated and the reasons for their beliefs.

Automation of Bug Diagnosis. Most professional software developers do not believe that
the diagnosis of the errors in DbgBench can be fully automated. The boxplot in Figure 24
provides more details. For the middle 50% of errors, one to two third of participants believe
that bug diagnosis can be automated. However, this varies with bug type. For instance, for 5
of 7 crashes, more than three quarter of participants believe that the crash can be explained
intuitively. Functional bugs seem much more involved and intricate such that for the median
functional bug only one third of participants believe that it will ever be explained intuitively by a
machine.

Automation of Program Repair. For the median bug in DbgBench, only a quarter of
participants believes that it can be fixed reliably by a machine (cf. Figure 25). Again this differs
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Figure 24: Distribution over all errors (of a certain type) of the proportion of participants who
believe that a certain error may ever be explained intuitively by a machine. Each shape in the
jitter plot overlay represents one error.
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Figure 25: Distribution over all errors (of a certain type) of the proportion of participants who
believe that a certain error may ever be fixed reliably by a machine. Each shape in the jitter plot
overlay represents one error.

by bug type. While half the participants would still think that 4 of 7 crashes can be fixed reliably
by a machine, functional bugs are believed to be most difficult to be fixed automatically. The
single resource leak appears to be most easy to fix reliably.

For most bugs, developers believe bug diagnosis can be automated (33 to 67%)
but they believe automatic bug fixing can not be reliably automated (33%).

Points in Favor of Automation. Participants believe in automation of bug diagnosis and
repair primarily due to the following reasons: (i) sophisticated static or dynamic analysis, (ii) the
possibility to check contracts at runtime and (iii) the possibility to cross check with a passing
execution. For instance, for the resource leak, where most participants agree that an automated
diagnosis and patch is achievable, they reflect on the possibilities of dynamic or static analysis
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Bug Description: Find “-mtime [+-n]” is broken (behaves as “-mtime n”)

(a) Bug Report and Test

Case

Find “-mtime [+-n]” is broken
(behaves as “-mtime n”)

Lets say we created 1 file each day

in the last 3 days:

$ touch tmp/a -t $(date

–date="yesterday" +"%y%m%d%H%M")

$ touch tmp/b -t $(date –date="2

days ago" +"%y%m%d%H%M")

$ touch tmp/c -t $(date –date="3

days ago" +"%y%m%d%H%M")

Running a search for files younger

than 2 days, we expect

$ ./find tmp -mtime -2

tmp tmp/a

However, with the current

grep-version, I get

$ ./find tmp -mtime -2

tmp/b

Results are the same with +n or n

(b) Bug diagnosis and Fault

Locations

If find is set to print files that
are strictly younger than n days
(-mtime -n), it will instead print
files that are exactly n days old.
The function get_comp_type
actually increments the argument
pointer timearg (parser.c:3175).
So, when the function is called
the first time (parser.c:3109),
timearg still points to ’-’. However,
when it is called the second time
(parser.c:3038), timearg already
points to ’n’ such that it is incor-
rectly classified as COMP_EQ
(parser.c:3178; exactly n days).

(c) Examples of (in)correct

Patches

Example of Correct Patches

• Copy timearg and restore after
first call to get_comp_type.

• Pass a copy of timearg into first
call of get_comp_type.

• Pass a copy of timearg into call
of get_relative_timestamp.

• Decrement timearg after the first
call to get_comp_type.

Example of Incorrect Patch

• Restore timearg only if classi-
fied as COMP_LT (Incomplete
Fix because it does not solve the
problem for -mtime +n).

Figure 26: An excerpt of DbgBench. For the error find.66c536bb, we show (a) the bug report
and test case that a participant receives to reproduce the error, (b) the bug diagnosis that we
consolidated from those provided by participants (including fault locations), and (c) examples of
ways how participants patched the error correctly or incorrectly.

to track the lifetime of resources and to discover the right location in the code to release the
resources. For the seven crashes, many participants believe in automation via systematic analysis
that tracks changes in variable values and explains the crash through these changes. Intuitively,
this captures the mechanism employed in dynamic slicing. Besides, participants think of the
possibility of having contracts (e.g. a range of expected variable values) in the source code and
checking their satisfiability during a buggy execution to explain the error. For functional bugs,
the most common rationale in favor of automation was due to the possibility to compare a buggy
execution with a passing execution.

Points Against Automation. The majority of participants did not believe in automation
due to the lack of a complete specification and due to the difficulty in code comprehension. For
functional bugs, most participants think that an automated tool cannot explain such bugs
intuitively. This is because such tools are unaware of correct behaviours of the respective program.
Similarly, for automated program repair, participants think that it is impossible for a tool to
change or add any functionality to a buggy program. Moreover, even in the presence of a complete
specification, participants do not believe in automated repair due to the challenges involved
in code comprehension (e.g. the meaning of a variable or statement in the code). Finally, the
difficulty to analyze side-effects of a fix is also mentioned as a hindrance for automated bug repair.

Developers do not believe in automatic bug diagnoses and repair,
due to the lack of a complete specification and the difficulty in code comprehension.

3.4 A Benchmark for Debugging Tools

As our study participants agree on so many points (see RQ5 ), one can actually treat their joint
diagnosis and other bug features as ground truth: For each bug, the joint diagnosis and fix is

48



3.4. A Benchmark for Debugging Tools

Ordinal Rank (1) (2) (3) (4) (5) (6)
Line in parser.c 3055 3057 3058 3061 3062 3067

Ochiai Score 0.98 0.98 0.98 0.98 0.98 0.98
Ordinal Rank (7) (8) (9) (10) (11) (12)

Line in parser.c 3094 3100 3103 3107 3109 3112
Ochiai Score 0.98 0.98 0.98 0.98 0.98 0.98

Figure 27: Top-12 most suspicious statements in file parser.c. There are 26 statements with the
same suspiciousness (0.98), including parser.c:3109 mentioned by our participants.

static boolean get_relative_timestamp (const char *str, ...)
3038 if (get_comp_type(&str, ...))
...
static boolean parse_time (...)
3099 const char *timearg = argv[*arg_ptr];
3100 + const char *orig_timearg = timearg;
...
3109 if(get_comp_type(&timearg, &comp))
... ...
3126 + timearg = orig_timearg;
3127 if (!get_relative_timestamp(timearg, ...))
3128 return false;

Figure 28: Original developer-patch for bug in Figure 26.

what a debugging tool should aim to support and produce. To support realistic evaluation of
automated debugging and repair approaches, we have compiled a benchmark named DbgBench,
which encompasses the totality of the data cllected from the debugging sessions of developers. An
excerpt of DbgBench for a specific bug is shown in Figure 26. Using the example in Figure 26,
we illustrate how DbgBench (and thus the results of our study) can be used to evaluate fault
localization and automated repair tools.
Evaluating Automated Fault Localization: Statistical fault localization techniques produce
a list of statements ranked according to their suspiciousness score. We used Ochiai [151] to
compute the suspiciousness score for the statements in the motivating example (Figure 27). In
order to evaluate the effectiveness of a fault localization (FL) technique, researchers first need to
identify the statements which are actually faulty and determine the rank of the highest ranked
faulty statement (i.e.,. wasted effort [39]).

Using DbgBench, researchers can use the actual fault locations that practitioners point out.
For instance, in Figure 26-b, the highest ranked faulty statement in DbgBench is parser.c:3109.
As it turns out, this statement is also within the set of most suspicious statements with an
Ochiai-score of 0.98. Thus, DbgBench provides a useful artifact to validate the effectiveness of
FL techniques.

Without DbgBench, the “faulty” statements are typically identified as those statements
which were changed in the original patch to fix error [39, 14, 110]. However, this assumption may
not always hold [15]. Figure 28 shows the original patch for our example. No statement was
changed in the buggy version. The original patch merely introduced new statements. In fact,
only 200 of 290 patches (69%) submitted by our participants modify at least one statement that
is referenced in the consolidated bug diagnosis.
Evaluating Automated Program Repair: Automated Program Repair (APR) techniques
automatically generate a patch for a buggy program such that all test cases pass. We ran Relifix
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[152] to generate the following patch for our motivating example. The generated patch directly
uses the original value assigned to timearg before calling get_comp_type the second time. This
is in contrast to the developer-provided patch in Figure 28 which copies timearg and restores it
after the first call to get_comp_type. Is the auto-generated patch correct?

static boolean parse_time (...)
3127 - if (!get_relative_timestamp(timearg, ...))
3127 + if (!get_relative_timestamp(argv[*arg_ptr], ...))
3128 return false;

Using DbgBench, we can evaluate the correctness of the auto-generated patch. First, for
many participant-provided patches we provide new test cases that fail for an incorrect patch even
if the original test cases all pass. For instance, we constructed a new test case for the incorrect-
patch-example in Figure 26-c, where the actual output of ./find -mtime +n is compared to the
expected output. Executing it on Relifix’s auto-generated patch above, we would see it passes.
We can say that the auto-generated patch does not make the same mistake. While we can still
not fully ascertain the correctness of the patch, we can at least be confident the auto-repair tool
does not make the same mistakes as our participants.

However, to establish patch correctness with much more certainty and to understand whether
practitioners would actually accept an auto-generated patch, we suggest to conduct a user study.
Within such a user study, DbgBench can significantly reduce the time and effort involved in
the manual code review since the available bug diagnosis, simplified and extended regression
test cases, the bug report, the bug diagnosis, fault locations, and developer-provided patches are
easily available. For instance, while Relifix’s auto-generated patch conceptually differs from the
original in Figure 28, it is easy to determine from the provided material that the auto-generated
patch is in fact correct.

DbgBench includes time taken by professional software engineers to fix real-world software
bugs. We can use these timing information to evaluate the usefulness of an automated program
repair tool. To this end, we can design an experiment involving several software professionals and
measure the reduction in debugging time while using an automated program repair tool.

DbgBench Artifact: DbgBench was given the highest badge by the ESEC/FSE Artifact
Evaluation Committee. DbgBench is the first human-generated benchmark for the qualitative
evaluation of automated fault localization, bug diagnosis, and repair techniques.

Objectives. The objectives of the DbgBench artifact are two-fold:

1. To facilitate the sound replication of our study for other researchers, participants, subjects,
and languages, we publish our battle-tested, formal experiment procedure, and effective
strategies to mitigate the common pitfalls of such user studies. To the same effect, we
publish tutorial material (videos and slides), virtual infrastructure (Docker), and example
questionnaires which elicit the studied debugging artifacts.

2. To facilitate the effective evaluation of automated fault localization, diagnosis, and repair
techniques with respect to the judgement of human experts, we publish all collected data.
This includes the fault locations, bug diagnoses, and patches that were provided by the
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practitioners. For each error, it also includes the error-introducing commit, the original and
a simplified bug report, a test case failing because of the error, and the developer-provided
patch. Moreover, this artifact contains our reconciled bug diagnoses, our classification of
the patches as correct and incorrect together with the general fixing strategies, and which
rationale we have to classify a patch as incorrect.

Provided data. Specifically, we make the following data available:

• The benchmark summary containing the complete list of errors, their average debugging
time, difficulty, and patch correctness, human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average
debugging time.

• The complete raw data containing the responses to the questions in Figure 16 and Figure 17
for each debugging session:

– the error ID to identify error,

– the participant ID to identify participant,

– the timestamp to follow participants accross errors,

– fault Locations, bug diagnosis, and patches,

– the confidence in the correctness of their diagnosis or patch,

– the difficulty to diagnose or patch the error,

– the time taken to diagnose or patch the error,

– what would have helped reducing diagnosis or patch time,

– the steps taken to arrive at the diagnosis or patch,

– the tools used to arrive at the diagnosis or patch,

– the problems if they could not diagnose or patch the error,

– whether he/she believes that generating the diagnosis or patch for this error would
ever be automated,

– why he/she believes so,

– the code familiarity as it increases over time,

– the diagnosis techniques used, and

– how he/she ensured the correctness of the submitted patch,

• The complete cleaned data containing for each error:

– the regression-introducing commit,

– the simplified and original bug reports,

– the important fault locations,

– the reconciled bug diagnosis,
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– the original, developer-provided patch,

– the patches submitted by participants,

– our classification of patches as correct or incorrect,

– our rationale of classifying a patch as incorrect, and

– test cases that expose an incorrect patch.

• An example questionnaire to elicit the raw data above.

• The Docker virtual infrastructure and instructions how to use it.

• The tutorial material, incl. slides, videos, and readme files.

Disclaimer DbgBench is a first milestone towards the realistic evaluation of tools in software
engineering that is grounded in practice. DbgBench can thus be used as necessary reality check
for in-depth studies. When conducting user studies, DbgBench can significantly reduce the time
and cost that is inherent in large user studies involving professional software engineers. In the
absence of user studies, DbgBench allows in-depth evaluations while minimizing the number of
potentially unrealistic assumptions. For example, we found a high consensus among participants
on the location of the faults. They would often point out several contiguous code regions rather
than a single statement. We also found no overlap of fault locations with fix locations. Existing
error-benchmarks might assume that an artificially injected fault (i.e., a single mutated statement)
or fix locations (i.e., those statements changed in the original patch) are representative of realistic
fault locations. DbgBench dispenses with such assumptions and directly provides those fault
locations that practitioners would point out with high consensus. DbgBench allows the realistic
evaluation of automated debugging techniques that is grounded in practice.

However, we would strongly suggest to also utilize other benchmarks, such as CoREBench
[14] or Defects4J [110], for the empirical evaluation. Only an empirical evaluation, the use of
a sufficiently large representative set of subjects, allows to make empirical claims about the
efficacy of an automated debugging technique. Going forward, we hope that more researchers
will produce similar realistic benchmarks which take the practitioner into account. To this end,
we also publish our battle-tested, formal experiment procedure, effective strategies to mitigate
common pitfalls, and all our material. We believe that no single research team can realistically
produce a benchmark that is both representative and reflects the realities of debugging in practice.
Hence, we propose that similar benchmarks be constructed alongside with user studies. Software
engineering research, including debugging research, must serve the needs of users and developers.
User studies are essential to properly evaluate techniques that are supposed to automate tasks
that are otherwise manual and executed by a software professional. Constructing new benchmarks
as artifacts during user studies would allow to build an empirical body of knowledge and at the
same time minimize the cost and effort involved in user studies.

3.5 Limitations and Threats to Validity

Generalizability of Findings. For the results of our experiment we do not claim generalizability
of the findings. We decided on two subjects to limit the time a participant spends in our study
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to a maximum of three working days and to help participants to get accustomed to at most two
code bases. We chose 27 reproducible real errors in single-threaded open-source C projects where
bug reports and test cases are available. Our findings may not apply to (irreproducible) faults
in very large, distributed, multi-threaded or interactive programs, to short-lived errors that do
not reach the code repository, to errors in programs written in other languages, or to errors in
programs developed within a software company. We see DbgBench as an intermediate goal for
the community rather than the final benchmark.

Hence, we encourage fellow researchers to extend and conduct similar experiments in order
to build an empirical body of knowledge and to establish the means of evaluating automated
debugging techniques more faithfully, without having to resort to unrealistic assumptions [11]
during the evaluation of an automated technique. To facilitate replication, the questionnaires,
the virtual infrastructure, and the tutorial material are made available [116]. While we do not
claim generality, we do claim that DbgBench is the first dataset for the evaluation of automated
diagnosis and repair techniques with respect to the judgment of twelve expert developers. In the
future, DbgBench may serve as subject for in-depth experiments.

In empirical research, in-depth experiments may mistakenly be taken to provide little insight
for the academic community. However, there is evidence to the contrary. Beveridge observed
that “more discoveries have arisen from intense observation than from statistics applied to large
groups” [153]. This does not mean that research focusing on large samples is not important. On
the contrary, both types of research are essential [154].

Cognitive Bias. Results may suffer from cognitive bias since participants fill a questionnaire
for each errors, such that all responses are self-reported [155, 156, 118]. However, Perry et al. [145]
found that self-reports produced by the developers, in their case, often corresponded sufficiently
with observations independently recorded by a researcher. As standard mitigation of cognitive
bias,

1. we avoid leading questions and control for learning effects,

2. we reinforce confidentiality for more truthful responses,

3. we use triangulation [126] by checking the consistency of replies to separate questions
studying the same subject,

4. we mostly utilize open-ended questions that provide enough space for participants to expand
on their replies

5. and otherwise utilize standard measures of qualitative attributes, such as the Likert scale
[119].

While our experiment was fairly long-running, we also suggest to replicate our study at a different
point in time with different participants to check whether the responses are consistent.

Observer-Expectancy Bias. To control for expectancy bias where participants might
behave differently during observation, we conducted the study remotely in a virtual environment
with minimal intrusion. Participants were encouraged to use their own tools. We also emphasized
that there was no “right and wrong behavior”.
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Imposed Time Bound. We suggested the participants to complete an error in 45 minutes
so as to remain within a 20 hours time frame. Some errors would take much more time. So, given
more time, the participants might form a better understanding of the runtime actions leading
to the error and produce a larger percentage of correct patches. However, participants told us
that they felt comfortable to diagnose and patch each error within the stipulated time-bound.
They tended to stretch the bounds whenever necessary, taking time from errors that were quickly
diagnosed and patched.

3.6 Related Work

There are several articles exploring the opinions of practitioners on research in automated software
engineering. However, to the best of our knowledge none explores the rationale why practitioners
do not wish to adopt automated debugging techniques, which capabilities an automated bug
diagnosis tool should have beyond simple fault localization, or which qualities an auto-generated
patch must have so that developers would actually accept it.

In 2015, Perscheid et al. [19] set out to determine whether the state-of-practice has since
improved, and conducted a survey involving 303 practitioners to study time spent and tools used
in debugging practice. The middle fifty percent of their respondents spend 20% to 40% of their
work time for debugging while the next largest group reported 40% to 60%. Like our study, most
practitioners reported to only use trace-based (e.g., printf) or interactive debugging (e.g., gdb)
regularly. The authors also find that most respondents have never used any automated technique
such as fault localization, slicing, or likely invariants. However, Perscheid et al. note that the
sample might not be representative to allow a general conclusion whence (as is customary in the
empirical sciences) we replicate and extend their study as part of our larger study.

Begel and Zimmermann [124] conducted a prospective study that investigates potential software
engineering research problems that practitioners find interesting. The authors published 145
questions ranked in the order of importance that professional software engineers would like to
ask a data scientist. These questions were mostly about software users, engineers, processes, and
practices. For instance, the question perceived as most important was: “How do users typically
use my application?” Lo et al. [123] conducted a retrospective study that explores how developers
rate the relevance of 517 actual software engineering research papers. The authors elicite reasons
as to why developers consider certain research as “unwise”: Researchers might overestimate the
relevance of a problem, or fail to consider the cost, side effects, or actionability of a solution. Thus,
it is important to explore practitioners’ expectations and beliefs before attempting to automate a
manual activity.

The bulk of automated debugging research is on Automated Fault Localization (AFL), that is,
techniques that produce a ranked list of suspicious locations in the program. A recent survey
cites more than 400 publications on AFL [39]. This is in stark contrast to the finding of Perscheid
et al. [19] that most practitioners have never used an AFL tool. Parnin and Orso [112] shed
light on this dichotomy and conducted a small user study with an AFL tool. Even when the
fault was ranked artificially high, participants did not find the tool more effective than traditional
debugging. After inspecting the fault in the list of suspicious locations, 9 of 10 participants would
still spend another 10 minutes before stopping to provide a diagnosis. The authors found that
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beyond AFL, developers wanted the relevant context and variable values. More recently, Kochhar
et al. [41] investigated the necessary capababilities of an AFL tool such that practitioners would
consider its adoption. Three quarter of surveyed practitioners would investigate no more than
the Top-5 ranked statements — which should contain the faulty statement at least three out of
four times and take less than one minute to compute.20 Most practitioners find it crucial that
the AFL tool explains the rationale why the user should consider a suspicious location.

Previous work established that practitioners are interested in automated diagnosis tools with
capabilities that go beyond simple AFL [112, 41]. In this work, we follow up and explore which
capabilities both, automated bug diagnosis and repair tools should have. In contrast to previous
work, we want to shed light on Lieberman’s debugging scandal without limiting ourselves to
AFL. We find out exactly what practitioners want that would improve their debugging experience.
We find that most practitioners do not believe that debugging will ever be fully automated and
provide their rationales.

In 2015, Perscheid et al. [19] set out to determine whether the state-of-the-practice had since
improved and could only answer in the negative: Debugging remains what it was 50 years ago,
largely manual, time-consuming, and a matter of trial-and-error rather than automated, efficient,
and systematic. We believe that, at least in part, the debugging scandal is brought about by the
absence of user studies and the assumptions that researchers had to make when evaluating the
output of a machine without involving the human. Only recently, several studies have uncovered
that many of these assumptions are not based upon empirical foundations [11, 12, 13, 14, 15]. In
this work, we attempt to remedy this very problem.

While several researchers investigated debugging strategies that developers generally employ
in practice, it remains unclear whether developers who independently debug the same error
essentially localize the same faulty statements, provide the same explanation (i.e., diagnosis) and
generate the same patch. Perscheid et al. [19] visited four companies in Germany and conducted
think-aloud experiments with a total of eight developers during their normal work. While none
was formally trained in debugging, all participants used a simplified, implicit form of Scientific
Debugging [157]: They mentally formulated hypotheses and performed simple experiments to
verify them. Katz and Anderson [147] classify bug diagnosis strategies broadly into forward
reasoning where the programmer forms an understanding of what the code should do compared
to what it actually does, and backward reasoning where the programmer reasons backwards
starting from the location where the bug is observed (e.g., [158]). Romero et al. [146] explore
the impact of graphical literacy on the choice of strategy. Lawrance et al. [26] model debugging
as a predator following scent to find prey. The authors argue that a theory of navigation holds
more practical value for tool builders than theories that rely on mental constructs. Gilmore et
al. [159] studied different models of debugging and their assumptions. The authors argue that
the success of experts at debugging is not attributed to better debugging skills, but to better
comprehension. Our evaluation of the impact of “Code Comprehension” in this study further
validates these findings.

Several colleagues have investigated debugging as a human activity. Ko et al. [160] observed
how 10 developers understand and debug unfamiliar code. The authors found that developers

20Supposing a tool must have a minimum satisfaction rate of 80%.
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interleaved three activities while debugging, namely, code search, dependency analysis and relevant
information gathering. Layman et al. [161] investigated how developers use information and tools
to debug, by interviewing 15 professional software engineers at Microsoft. The authors found that
the interaction of hypothesis instrumentation and software environment is a source of difficulty
when debugging. Parnin and Orso [112] also conducted an empirical study to investigate how
developers use and benefit from automated debugging tools. The authors found that several
assumptions made by automated debugging techniques do not hold in practice. While these
papers provide insights on debugging as a human activity, none of these studies provides the data
and methods that would allow researchers to evaluate debugging tools against fault locations,
bug diagnosis, and patches provided by actual software engineering professionals.

Many researchers have proposed numerous tools to support developers when debugging, but
only a few have evaluated these tools with user studies, using real bugs and professional developers.
For instance, between 1981 and 2010, Parnin and Orso [112] identified only a handful of articles
[162, 163, 164, 165, 166, 167] that presented the results of a user study: Unlike this study, none of
these studies involved actual practitioners and real errors. In our own literature survey, studying
whether the state-of-the-research has since improved, we could identify only three (3) papers that
conduct user studies with actual practitioners and real errors in the last five years.21 Two articles
employed user studies to evaluate the acceptability of the auto-generated patches [114, 113] while
one had practitioners to evaluate the effectiveness of an auto-generated bug diagnosis [115].22 We
believe that this general absence of user studies is symptomatic of the difficulty, expense, and
time spent conducting user studies. This is the problem we address with DbgBench.

3.7 Discussions and Future Work

In this chapter, we provide empirical evidence on program debugging in software practice, our
evaluation results overwhelmingly reveal that debugging in practice is (still) a largely manual
and time-consuming process. Developers spend half of their working time debugging source code
which they are often not very familiar with. After successfully reproducing a reported bug,
developers spend most of their time trying to understand the chain of runtime actions leading
to bug. Many practitioners find their own style of debugging to be trial-and-error rather than
systematic. Twenty years after “The Debugging Scandal” [24], debugging in practice is still what
it was five decades ago.

The state-of-the-practice is in stark contrast to the many tools and techniques that have been
developed in several decades of software engineering research on automated debugging. For bug
diagnosis, we find that many capabilities that practitioners expect of an automated tool have
been addressed and well-researched by the software engineering research community. For instance,
most practitioners would like a tool that can localize the fault while automated fault localization

21We surveyed the following conference proceedings: ACM International Conference on Software Engineering
(ICSE’11–16), ACM SIGSOFT Foundations of Software Engineering (FSE’11–16), ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’11–16), IEEE/ACM International Conference on Automated
Software Engineering (ASE’11–16), and International Conference on Software Testing, Verification and Validation
(ICST’11–16) and identified 82 papers on automated debugging or software repair only 11 of which conducted user
studies. From these only three (3) involved software engineering professionals and real errors.

22Tao et al. [115] measured debugging time and the percentage of correct repairs provided by the participants,
after they had received an auto-generated patch as bug diagnosis
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is also the most popular and a long-standing topic in research of automated debugging [39]. Then,
why is there little or no adoption of automated debugging and repair tools?

The empirical evidence from out study suggests that most practitioners reject the notion that
bug diagnosis or repair will ever be fully automated. The most cited reason is that some errors
are difficult to understand even by a human, specifically when the system is too complex and the
machine cannot access all relevant information or when the correct behavior is unspecified and
the machine cannot distinguish bug from feature. For instance, if your mobile’s GPS is off by
5km and after debugging it is off by 5m, has the bug really been fixed?

Building on these empirical evidence, we see five clear directions to address the concerns
of practitioners: 1) to assume full automation only for certain types of bugs, 2) to allow more
interaction with the developer, 3) to provide some proof of correctness for the provided diagnosis
or patch, 4) to develop techniques that account for the presence of uncertainty, and 5) to introduce
and improve systematic training in debugging.

Do not Assume Full Automation: Our first recommendation is that researchers should
assume full automation only for certain types of bugs. To this end, researchers could develop an
ontology for prevalent classes of software errors and an automated scheme that classifies an error
as easy or difficult to diagnose or patch with existing debugging tools.

Practitioners accept that certain bugs can be fully automatically diagnosed or fixed. For
instance, if the program crashes because an array is accessed out of bounds, developers would
allow a tool to automatically introduce the required bounds check. Syntactic errors might be
auto-corrected similar to spelling errors on the phone. For other (difficult) errors, more interaction
or some proof of correctness is needed.

Despite their wariness for full automation, practitioners also provide plenty of reasons why at
least some debugging tasks might be fully automated at some point in the future. Apart from
advances in artificial intelligence, practitioners believe that not every bug is new and common
mistakes are repeated, which allows machines to learn from history. Practitioners also believe
that program analysis will improve and allow to mine more relevant information from the faulty
program.

Allow for More Interaction: As our second recommendation, we state that researchers should
investigate how automated debugging tools can interact with the user to access information that
is otherwise inaccessible, such as the developer’s experience with similar bugs, or which program
behavior would be expected. Practitioners would like interactive debugging assistants that render
the developer more efficient in solving a bug, instead of debugging automatons that seek to
substitute the developer, or assistants that slow down the developer with too many false positives
or too much irrelevant information. The most prominent work in this direction is Ko and Meyer’s
WhyLine [163]. Beyond WhyLine, such interaction could enable the assistant to learn from
common bugs and mistakes in earlier debugging sessions.

To support practitioners further, future research thus could investigate intuitive visualizations
of relevant information that can be easily navigated; researchers might want to develop techniques
that produce a natural language explanation (e.g. in English) of pertinent program information to
improve the automation of bug diagnosis; researchers could investigate how a tool can analytically
determine the expected value of a variable (some information should be present in the test suite,
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other could be requested from the user); and researchers should develop techniques that can
determine the most general environment or conditions under which the error can be reproduced.

Context, Rationales, and Correctness: Our third recommendation is that researchers should
develop techniques that explain the process which leads an automated debugging or repair tool to
the specific diagnosis or patch that is provided. They also should integrate automated repair and
regression testing techniques to provide some proof that the patch did not introduce new errors
(e.g., [168, 169]). In general, practitioners would like some evidence that the produced diagnosis
or patch is correct, including simple, yet comprehensive reports, that explain why the error occurs,
that are easy to navigate and to understand.

A deeper understanding of the process that underlies the automated debugging tool and of its
“rationale” would build trust in the correctness of the produced output. Otherwise, practitioners
even explicitly ask for auto-generated test cases that exercise the patch and pass after the patch,
in order to convince the user that the auto-generated patch does not introduce any new bugs.

In terms of automated program repair, a common problem statement in research is to produce
a patch that passes the failing test suite. While the auto-generated patch is plausible, it might
not be correct [138]. However, practitioners are interested in properties of auto-generated patches
beyond patch correctness. In fact, a property that was mentioned twice as often as correctness
was patch readability: An auto-generated patch should appeal to the human, be well-documented,
well-structured, easy to understand, and minimal. As mentioned before, practitioners want some
evidence that the patch really fixes the bug and that it does not introduce new bugs. A bug
fixing tool should document how it fixes the bug, the potential impact of the patch, and relevant
context information.

To further improve automated repair techniques, researchers could investigate a wider variety
of properties of auto-generated diagnoses and patches to increase adoption in the industry. For
instance, researchers could leverage search algorithms from multi-objective search-based software
engineering (e.g., [170]) to produce patches that are not only correct (i.e., pass all test cases)
but also are readable, minimal, and adhere to the existing coding standards. Beyond fault
localization and repair, an automated bug diagnosis tool should be able to distinguish actual from
expected values, find out under which most general circumstances the bug can be reproduced,
and determine the side-effects of an error.

Account for Uncertainty: In our study, developers highlight the frequent absence of speci-
fications and complexity of the system to be debugged as reasons why they do not believe in
automated debugging. This is in contrast to research of automated debugging, where we often
assume 1) access to the complete state of a buggy system and 2) that the test suite or specification
is complete with respect to the buggy behavior. In practice, neither assumption may ever hold.

As our fourth recommendation, we thus state that researchers should investigate automated
debugging in the presence of uncertainty. This is along the lines of the recent work by Elbaum and
Rosenblum, who called for testing techniques that can work in the presence of uncertainty [136].
Our study shows that we may just as well extend this call to the debugging community [21].

Teach Debugging: Finally, our study shows that much more training for systematic debugging
is required: Educators and trainers should teach systematic methods for debugging. Our study
reaffirms that one third of software development time is spent on debugging; yet, the amount of
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space spent on debugging in courses or textbooks is a much lesser fraction, if not zero. Developers
should be formally trained in systematic debugging processes [157] as well as the principles of the
most important debugging and analysis techniques, such that they can deploy them as needed.
This calls for better abstractions and descriptions of debugging processes, as well as evaluating
these with students and practitioners.

Note, though, that better debugging is not just a matter of productivity, it is also a matter
of risk. In our study, 30% of respondents admit to “trial and error” debugging. This effectively
means that they neither understand how the code works nor how the bug came to be. If 30%
of programmers were to confess that they program by trial and error—imagine the uproar this
would cause. Yet, in the end, debugging a program always means to (re)write a program—and
thus, trial-and-error debugging is the same as trial-and-error programming, with all the risks that
follow.

In summary, this study suggests that debugging in practice is still in a deplorable state.
Given how much time practitioners spend on debugging, it is surprising how little we know about
debugging [38]. This study shows that the realities of debugging and the needs of practitioners
are far more complex and fine-grained than what a convenient abstraction (or benchmark) would
cover. With our study, we hope to have shed some light into this under-researched area. This
study provides some insights on what practitioners need and what they believe, we encourage
researchers to investigate and fulfill these needs, in order to challenge these beliefs. With our
DbgBench benchmark, we hope to contribute some ground truth to guide the development and
evaluation of future debugging tools towards the needs and strategies of professional developers.
We encourage researchers to challenge and refine our findings, and possibly repeat and extend
this study as desired. The DbgBench benchmark as well as all other study data is available at
our project site:

https://dbgbench.github.io
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Chapter 4

Locating Faults with Program Slicing:
An Empirical Analysis

This chapter is taken, directly or with minor modifications, from our 2021 EMSE paper Locating
Faults with Program Slicing: An Empirical Analysis [171]. My contribution in this work is as
follows: (I) original idea; (II) partial implementation; (III) evaluation.

“Synergy: The combined effect of individuals in collaboration
that exceeds the sum of their individual effects.”

— Stephen Covey

4.1 Introduction

In the past 20 years, the field of automated fault localization (AFL) has found considerable interest
among researchers in Software Engineering. Given a program failure, the aim of fault localization
is to suggest locations in the program code where a fault in the code causes the failure at hand.
Locating a fault is an obvious prerequisite for removing and fixing it; and thus, automated fault
localization brings the promise of supporting programmers during arduous debugging tasks. Fault
localization is also an important prerequisite for automated program repair, where the identified
fault locations serve as candidates for applying the computer-generated patches [33, 35, 55, 56].

The large majority of recent publications on automated fault localization fall into the cate-
gory of statistical debugging (also called spectrum-based fault localization (SBFL)), an approach
pioneered 15 years ago [27, 54, 53]. A recent survey [172] lists more than 100 publications on
statistical debugging in the past 15 years. The core idea of statistical debugging is to take a set
of passing and failing runs, and to record the program lines which are executed (“covered”) in
these runs. The stronger the correlation between the execution of a line and failure (say, because
the line is executed only in failing runs, and never in passing runs), the more we consider the line
as “suspicious”.

As an example, let us have a look at the function middle, used in [27] to introduce the
technique (see Figure 29). The middle function computes the middle of three numbers x, y, z;
Figure 29 shows its source code as well as statement coverage for few sample inputs. On most
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⌅: covered statements x 3 1 3 5 5 2

1 int middle(x, y, z) { y 3 2 2 5 3 1

2 int x, y, z; z 5 3 1 5 4 3

3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3

4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4

5 if (x < y) ⌅ ⌅ ⇤ ⇤ ⌅ ⌅ 5

6 m = y; ⇤ ⌅ ⇤ ⇤ ⇤ ⇤ 6

7 else if (x < z) ⌅ ⇤ ⇤ ⇤ ⌅ ⌅ 7

8 m = y; ⌅ ⇤ ⇤ ⇤ ⇤ ⌅ 8

9 } else { ⇤ ⇤ ⌅ ⌅ ⇤ ⇤ 9

10 if (x > y) ⇤ ⇤ ⌅ ⌅ ⇤ ⇤ 10

11 m = y; ⇤ ⇤ ⌅ ⇤ ⇤ ⇤ 11

12 else if (x > z) ⇤ ⇤ ⇤ ⌅ ⇤ ⇤ 12

13 m = x; ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 13

14 } ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 14

15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15

16 } 4 4 4 4 4 8

Figure 29: Statistical debugging illustrated [46]: The middle function takes three values and
returns that value which is greater than or equals the smallest and less than or equals the biggest
value; however, on the input (2, 1, 3), it returns 1 rather than 2. Statistical debugging reports
the faulty Line 8 (in bold red) as the most suspicious one, since the correlation of its execution
with failure is the strongest.

inputs, middle works as advertised; but when fed with x = 2, y = 1, and z = 3, it returns 1
rather than the middle value 2. Note that the statement in Line 8 is incorrect and should read m
= x. Given the runs and the lines covered in them, statistical debugging assigns a suspiciousness
score to each program statement—a function on the number of times it is (not) executed by
passing and failing test cases. The precise function it uses differs for each statistical debugging
technique. Since the statement in Line 8 is executed most often by the failing test case and least
often by any passing test case, it is reported as most suspicious fault location.

Statistical debugging, however, is not the first technique to automate fault localization. In his
seminal paper titled “Programmers use slices when debugging” [42], Mark Weiser introduced the
concept of a program slice composed of data and control dependencies in the program. Weiser
argued that during debugging, programmers would start from the location where the error is
observed, and then proceed backwards along these dependencies to find the fault. In a debugging
setting, programmers would follow dynamic dependencies to find those lines that actually impact
the location of interest in the failing run. In our example (Figure 30), they could simply follow
the dynamic dependency of Line 15 where the value of m is unexpected, and immediately reach
the faulty assignment in Line 8. Consequently, on the example originally introduced to show the
effectiveness of statistical debugging (Figure 29), the older technique of dynamic slicing is just as
effective (see Figure 30).

Thus, in this chapter, we investigate the fault localization effectiveness of the most effective
statistical debugging formulas against dynamic program slicing (both introduced in Chapter 2).
A few researchers have empirically evaluated the fault localization effectiveness of different slicing
algorithms [173, 174]. However, they did not compare the effectiveness of slicing to that of
statistical debugging. To the best of our knowledge, this is the first empirical study to evaluate
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In the past 20 years, the field of automated fault localization has

found considerable interest among researchers in Software Engi-
neering. Given a program failure, the aim of fault localization is
to suggest locations in the program code where a fault in the code
causes the failure at hand. Locating a fault is an obvious prerequi-
site for removing and fixing it; and thus, automated fault localiza-
tion brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite
for automated program repair, as the locations suggested by fault
localization would serve as candidates where to apply synthesized
fixes.

The large majority of today’s publications on automated fault
localization fall into the category of Statistical Debugging, an ap-
proach pioneered more than 15 years ago by both Liblit [?] as well
as Jones, Stasko, and Harrold [?]. Today, a recent survey by Wong
et al. [?] lists more than 100 publications on statistical debugging
in the past 15 years.
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Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards
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for automated program repair, as the locations suggested by fault
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Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards

Figure 30: Dynamic slicing illustrated [46]: The middle return value in Line 15 can stem from
any of the assignments to m, but only those in Lines 3 and 8 are executed in the failing run.
Following back the dynamic dependency immediately gets the programmer to Line 8, the faulty
one.

the fault localization effectiveness of program slicing versus (one of) the most effective statistical
debugging formulas. This is also one of the largest empirical studies of fault localization techniques,
evaluating hundreds of faults (706) in C programs.

To ascertain the fault localization effectiveness of these AFL techniques (program slicing and
statistical debugging), firstly, we conducted an evaluation using 457 bugs from four benchmarks.
We collect empirical evidence from the performance of both techniques using real world programs
and faults. Secondly, using the evidence from this evaluation, we proposed a hybrid strategy where
programmers first examine the top (five) most suspicious locations from statistical debugging,
and then switch to dynamic slices. Next, we evaluate the effectiveness of the hybrid approach, as
well as the influence of other factors such as error type and the number of faults on the fault
localization effectiveness of all three techniques. In our evaluation, we use four benchmarks with
35 tools, 46 programs and 457 bugs to compare fault localization techniques against each other.
This set of bugs comprises of 295 real single faults, 74 injected single faults, and 88 injected
multiple faults containing about four faults per program, on average. In total, we had 709 program
faults. Our takeaway findings are as follows:

1. Top ranked locations in statistical debugging can pinpoint the fault. If one is only
interested in a small set of candidate locations, statistical debugging frequently pinpoints
the faults, it correctly localizes 33% of faults after inspecting only the single most suspicious
code location. It outperforms dynamic slicing in the top 5% of the most suspicious locations,
by localizing faults in twice as many buggy programs as dynamic slicing. In our experiments,
looking at only the top 5% of the most suspicious code locations, statistical debugging
would reveal faults for 6% of all buggy programs, twice as many as slicing (3% of buggy
programs). This result is important for automatic program repair (APR) techniques, as the
search for possible repairs can only consider a limited set of candidate locations; also, the
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repair attempt is not necessarily expected to succeed.

2. If one must fix a (single-fault) bug, dynamic slicing is more effective.23 In our
experiments, dynamic slicing is 62% more likely to find the fault location earlier
than statistical debugging, for single faults. In absolute terms, locating faults along
dynamic dependencies requires programmers to examine on average 21% of the code (40
LoC); whereas the most effective statistical debugging techniques require 26% (51 LoC).
Not only is the average better; the effectiveness of dynamic slicing also has a much lower
standard deviation and thus is more predictable. Both features are important for human
debuggers, as they eventually must find and fix the fault: If they follow the dynamic slice
from the failing output, they will find the fault quicker than if they examine locations whose
execution correlates with failure. Moreover, dynamic slicing needs only the failing run,
whereas statistical debugging additionally requires multiple similar passing runs. Although
dynamic slicing is more effective on single faults, statistical debugging performs better on
multiple faults (see RQ7 ).

3. Programmers can start with statistical debugging, but should quickly switch
to dynamic slicing after a few locations. In our experiments, it is a hybrid strategy
that works best: First consider the top locations of statistical debugging (if applicable),
and then proceed along the dynamic slice. In our experiments, the hybrid approach is
significantly more effective than both slicing and statistical debugging. For most errors (98%),
the hybrid approach localizes the fault within the top-20 most suspicious statements, in
contrast, both slicing and statistical debugging will localize faults for most errors (98%) after
inspecting about five times as many statements (100 LoC). Notably, the hybrid approach is
more effective than statistical debugging and dynamic slicing, regardless of the error type
(real/artificial) and the number of faults (single/multiple) in a buggy program, (see RQ6
and RQ7 ).

The remainder of this chapter is organized as follows:

1. Section 4.2 presents an approach that merges both dynamic slicing and statistical debugging
into a hybrid strategy, where the developer switches to slicing after investigating a handful
of the most suspicious statements reported by statistical debugging.

2. We describe our evaluation setup (see Section 4.3) and empirically evaluate the fault
localization effectiveness of dynamic slicing, statistical debugging and our hybrid approach
(RQ1 to RQ5 in Section 4.4).

3. We conduct an empirical study on the effect of error type and the number of faults on the
effectiveness of AFL techniques. We examine the difference between evaluating an AFL
technique on real vs. artificial faults (RQ6 in Section 4.4), as well as single vs. multiple
faults (RQ7 in Section 4.4).

23In our evaluation, dynamic slicing is more effective than SBFL for single faults. However, other factors
such as multiple faults (see RQ7), test generation [175], test reduction [176] and program sizes may influence its
effectiveness (see Section 4.5).
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4.2. A Hybrid Approach

In Section 4.5, we discuss the limitations and threats to the validity of this work. Section 4.6
presents closely related work. Finally, Section 4.7 closes with consequences and future research
directions.

The contributions and findings of this chapter are important for debugging and program
repair stakeholders. Programmers, debugging tools and automated program repair (APR) tools
need effective fault localization techniques, in order to reduce the amount of time and effort
spent (automatically) diagnosing and fixing errors. In particular, these findings enable APR tools,
debuggers and programmers to be effective and efficient in bug diagnosis and bug fixing.

4.2 A Hybrid Approach

Even though dynamic slicing is generally more effective than statistical debugging, we observe
that statistical debugging can be highly effective for some bugs, especially when inspecting only
the top most suspicious statements. For instance, statistical debugging can pinpoint a single
faulty statement as the most suspicious statement for about 40% of the errors in IntroClass and
SIR, i.e. a developer can find a faulty statement after inspecting only one suspicious statement
(see Figure 36). This is further illustrated by the clustering of some points in the rightmost corner
below the diagonal line of the comparison charts (see Figure 35).

In this work, we assume that a programmer in the end has to fix a bug, and a viable “alternative”
method is following the dependencies by (dynamic) slicing. To this end, we investigate a hybrid
fault localization approach which leverages the strengths of both dynamic slicing and statistical
debugging. The goal is to improve on the effectiveness of both approaches by harnessing the
power of statistical correlation and dynamic program analysis. The hybrid approach first reports
the top most suspicious statements (e.g. top five statements) before it reports the statements in
the dynamic slice computed w.r.t. the symptomatic statement.

The concept of examining only the top most suspicious statements is also backed by user
studies on statistical fault localization. In a recent survey [177], Kochhar et al. found that three
quarter of surveyed practitioners would investigate no more than the top-5 ranked statements—
which should contain the faulty statement at least three out of four times—before switching to
alternative methods. This is also confirmed by the study of Parnin and Orso [178], who observed
that programmers tend to transition to traditional debugging (i.e., finding those statements that
impact the value of the symptomatic statement) after failing to locate the fault within the first N

top-ranked most suspicious statements. This transition is exactly what the hybrid approach
provides.

Specifically, the hybrid approach proceeds in two phases. In the first phase, it reports the top
N (e.g. N = 5) most suspicious statements, obtained from the ordinal ranking24 of a statistical
fault localization technique. Then, if the fault is not found, it proceeds to the second phase where
it reports the symptom’s dynamic backward dependencies. In the second phase, we only report
statements that have not already been reported in the first phase.25

Weakness of Statistical Debugging: The hybrid approach is capable of overcoming the
weaknesses of statistical debugging. Statistical fault localization techniques are sensitive to the

24In ordinal ranking, lines with the same score are ranked by line number.
25This is to avoid duplication of inspected statements, i.e. avoid double inspection.
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⌅: covered statements x 3 2

1 int middle(x, y, z) { y 3 1

2 int x, y, z; z 5 3 Tarantula Ochiai Naish2

3 int m = z; ⌅ ⌅ 0.500 0.707 0.500

4 if (y < z) { ⌅ ⌅ 0.500 0.707 0.500

5 if (x < y) ⌅ ⌅ 0.500 0.707 0.500

6 m = y; ⇤ ⇤ 0.000 0.000 0.000

7 else if (x < z) ⌅ ⌅ 0.500 0.707 0.500

8 m = y; ⌅ ⌅ 0.500 0.707 0.500

9 } else { ⇤ ⇤ 0.000 0.000 0.000

10 if (x > y) ⇤ ⇤ 0.000 0.000 0.000

11 m = y; ⇤ ⇤ 0.000 0.000 0.000

12 else if (x > z) ⇤ ⇤ 0.000 0.000 0.000

13 m = x; ⇤ ⇤ 0.000 0.000 0.000

14 } ⇤ ⇤ 0.000 0.000 0.000

15 return m; ⌅ ⌅ 0.500 0.707 0.500

16 } 4 8

Figure 31: Test suite sensitivity of statistical debugging. Let us consider the middle function
with fault in line 8 (in bold red), given a small test suite containing two test cases (3, 3, 5) and
(2, 1, 3). Then, statistical debugging reports all executed lines 3, 4, 5, 7, 8, and 15 as the “most”
suspicious statements, since they are all strongly correlated to the failure.

size and variance of the accompanying test suites [179]. Statistical debugging is less efficient
when the accompanying test suite is small or achieves low or similar coverage. To reduce the
time wasted in search of the fault in these cases, the hybrid approach reports only the Top-N
most suspicious statements, then proceeds to dynamic slicing. For instance, Figure 31 depicts
for our motivating example how the effectiveness of statistical fault localization depends on the
provided test suite. Given one passing and one failing test case, statistical debugging correlates
all six executed statements for the failing test case (2, 3, 4, 7, 8, 15), as the most suspicious ranked
statements. Conservatively, the programmer needs to inspect half the program statements before
finding the fault. Although a large test suite and high coverage is desirable for statistical fault
localization, for real programs this is not always available. Often only one or two failing test
cases are actually available [14].

Meanwhile, the hybrid approach with the same test suite improves the programmer’s effec-
tiveness. Assuming N = 2, the programmer inspects the first two statements before following
the dependency from the symptomatic statement in Line 15. She finds the fault after inspecting
only three statements. In contrast, using statistical debugging she would find the fault after
investigating five statements (using ordinal ranking).

Weakness of Dynamic Slicing: Program slices can become very large [45]. Generally, pro-
grammers using dynamic slicing become ineffective when the fault is located relatively far away
from the symptomatic statement. However, our proposed hybrid approach can overcome this
limitation by leveraging statistical debugging which can point to any statement in the program
however far from the symptomatic statement. This improves the chances of finding the fault
quickly by first applying statistical correlation before dynamic analysis.

Figure 32 illustrates this weakness. This modified variant of the middle function contains
another fault (in Line 5) which is exposed by the same test suite. Since the return value for the
failing test case (1,2,3) is unexpected, we mark Line 15 as the slicing criterion. In this example,
the operator fault is located relatively far from the slicing criterion. The programmer following
backward dependencies from the symptom has to inspect three statements (lines 8, 7, and 5) in
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4.3. Evaluation Setup

⌅: covered statements x 3 1 3 5 5 2

1 int middle(x, y, z) { y 3 2 2 5 3 1

2 int x, y, z; z 5 3 1 5 4 3

3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3

4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4

5 if (x > y) ⌅ ⌅ ⇤ ⇤ ⌅ ⌅ 5

6 m = y; ⇤ ⇤ ⇤ ⇤ ⌅ ⌅ 6

7 else if (x < z) ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ 7

8 m = x; ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ 8

9 } else { ⇤ ⇤ ⌅ ⌅ ⇤ ⇤ 9

10 if (x > y) ⇤ ⇤ ⌅ ⌅ ⇤ ⇤ 10

11 m = y; ⇤ ⇤ ⌅ ⇤ ⇤ ⇤ 11

12 else if (x > z) ⇤ ⇤ ⇤ ⌅ ⇤ ⇤ 12

13 m = x; ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 13

14 } ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 14

15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15

16 } 4 8 4 4 8 8

Figure 32: Weakness of dynamic slicing: long dependence chain between fault and symptom.
This is a variant of the faulty middle function with an operator fault in Line 5 (in bold red).
Following back the dynamic dependency gets the programmer to Line 5 (the fault) after inspecting
2–3 statements—(5,6) or (5,7,8) depending on the failing test case.

addition to the slicing criterion. On the other hand, our hybrid approach with N � 1 has to
inspect only a single statement before the fault is located.

4.3 Evaluation Setup

Let us evaluate the effectiveness of all three fault localization techniques and the influence of the
number of faults and error type on the effectiveness of AFL techniques. Specifically, we ask the
following research questions:

RQ1 Effectiveness of Dynamic Slicing: How effective is dynamic slicing in fault localization,
i.e. localizing fault locations in buggy programs?

RQ2 Effectiveness of Statistical Debugging: Which statistical formula is the most effective
at fault localization?

RQ3 Comparing Statistical Debugging and Dynamic Slicing: How effective is the most
effective statistical formula in comparison to dynamic slicing?

RQ4 Sensitiveness of the Hybrid Approach : How many suspicious statements (reported
by statistical debugging, i.e. Kulczynski2) should a tool or developer inspect before switching
to slicing?

RQ5 Effectiveness of the Hybrid Approach: Which technique is the most effective in fault
localization? Which technique is more likely to find fault locations earlier?

RQ6 Real Errors vs. Artificial Errors: Does the type of error influence the effectiveness of
AFL techniques? Is there a difference between evaluating an AFL technique on real or
artificial errors?

RQ7 Single Fault vs Multiple Faults: What is the effect of the number of faults on the
effectiveness of AFL techniques? Is there a difference between evaluating an AFL technique
on single or multiple fault(s)?
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In this chapter, we evaluate the performance of statistical debugging, dynamic slicing and
the hybrid approach in the framework of Steimann, Frenkel, and Abreu [180] where we fix the
granularity of fault localization at statement level and the fault localization mode at one-at-a-
time (except for multiple faults in RQ7). In this setting with real errors and real test suites,
the provided test suites may not be coverage adequate, e.g. they may not execute all program
statements. Fault localization effectiveness is evaluated as relative wasted effort based on the
ranking of units in the order they are suggested to be examined (see Section 4.3.4 for more
details).

4.3.1 Implementation

Let us provide implementation details for each AFL technique.
Dynamic Slicing Implementation: The approximate dynamic slice is computed using Frama-C,26

gcov, git-diff, gdb, and several Python libraries. Given the preprocessed source files of a C
program, Frama-C computes the static slices for each function and their call graphs as DOT files.
The gcov-tool determines the executed/covered statements in the program. The git-diff-tool
determines the changed statements in the patch and thus the faulty statements in the program.
The gdb-tool allows to derive coverage information even for crashing inputs and to determine the
slicing criterion as the last executed statement. Our Python script intersects the statements in
the static slice and the set of executed statements to derive the approximate dynamic slice. We
use the Python libraries pygraphviz27, networkx,28 and matplotlib29 to process the DOT files
and compute the score for the approximate dynamic slice.
Statistical Debugging Implementation: The statistical debugging tool was implemented
using two bash scripts with several standard command line tools, notably gcov,30 git-diff31

and gdb32. The differencing tool git-diff identifies those lines in the buggy program that were
changed in the patch. If the patch only added statements, we cannot determine a corresponding
faulty line. Some errors were thus excluded from the evaluation. The code coverage tool, gcov
identifies those lines in the buggy program that are covered by an executed test case. When the
program crashes, gcov does not emit any coverage information. If the crash is not caused by an
infinite loop, it is sufficient to run the program under test in gdb and force-call the gcov-function
from gdb to write the coverage information once the segmentation fault is triggered. This was
automated as well. However, for some cases, no coverage information could be generated due to
infinite recursion. Gcov also gives the number of executable statements in the buggy program
(i.e., |P |).33 Finally, our Python implementation of the scores is used to compute the fault
localization effectiveness.
Hybrid Approach Implementation: The hybrid approach is implemented simply as a com-
bination of both tools. If the top-N most suspicious statements do not contain the fault, the

26http://frama-c.com/
27https://pygraphviz.github.io/
28https://networkx.github.io/
29http://matplotlib.org/
30https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
31https://git-scm.com/docs/git-diff
32https://www.gnu.org/software/gdb/documentation/
33The executable statements refers to statements for which coverage information are obtainable by Gcov, in

particular, all program statements except spaces, blanks and comments.
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dynamic slicing component is informed about the set of statements already inspected in the first
phase. Given the unranked suspiciousness score of every executable statement in the program,
the hybrid fault localizer performs an ordinal ranking of all statements. It then determines
the proportion of the top N rank of suspicious statements, based on the N value of the hybrid
approach. For instance, an hybrid approach with N = 5 takes the five topmost suspicious
statements. Then, it determines the highest ranked faulty statement in the rank of all suspicious
statements. If the faulty statement is in the top N suspicious positions (e.g. third position), then
it reports the number of statements in the top ranked positions up till the faulty statement, as a
proportion of all executable program statements.

In the case that the suspicious statement is not in the top N suspicious positions (e.g. seventh
position), then it proceeds to slicing and reports the cardinality of the set union of all N top
ranked statements and the number of inspected statements in the slice before the first faulty
statement.

4.3.2 Metrics and Measures

Odds Ratio  . To establish the superiority of one technique A over another technique B, it is
common to measure the effect size of A w.r.t. B. A standard measure of effect size and widely
used is the odds ratio [181]. It “is a measure of how many times greater the odds are that a
member of a certain population will fall into a certain category than the odds are that a member
of another population will fall into that category” [181]. In our case, let “A is successful ” mean
that fault localization technique A is more effective than fault localization technique B and let a

be the number of successes for A, b the number of successes for B, and n = a+ b the total number
of successes. Then, the odds ratio  is calculated as

 =

 
a + ⇢

n + ⇢� a

!, 
b + ⇢

n + ⇢� b

!

where ⇢ is an arbitrary positive constant (e.g., ⇢ = 0.5) used to avoid problems with zero successes.
There is no difference between the two algorithms when  = 1, while  > 1 indicates that
technique A has higher chances of success. For example, an odds ratio of five means that fault
localization technique A is five times more likely to be successful (i.e., more effective as compared
to B) at fault localization than B.

The Mann-Whitney U -test is used to show whether there is a statistical difference between
two techniques [182]. In general, it is a non-parametric test of the null hypothesis that two
samples come from the same population against an alternative hypothesis, especially that a
particular population tends to have larger values than the other. Unlike the t-test it does not
require the assumption that the data is normally distributed. More specifically, it shows whether
the difference in performance of two techniques is actually statistically significant.

A cumulative frequency curve is a running total of frequencies. We use such curves to show
the percentage of errors that require examining up to a certain number of program locations.
The number of code locations examined is plotted on a log-scale because the difference between
examining 5 to 10 locations is more important than difference between examining 1005 to 1010
locations.
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Table 1: Details of Subject Programs

Benchmark Tool Avg. Size #Errors #Failing #Passing
(Error Type) (Program) (LoC) Tests Tests

SIR
(Artificial)

tcas 65.1 37 1356 58140
print_tokens 199 3 184 12206
print_tokens2 199.5 8 2031 30889
tot_info 125 18 1528 17408
schedule 160.5 4 690 9910
schedule2 139.2 4 116 10724

IntroClass
(Real;

Students)

checksum 11.3 3 7 41
digits 17.4 3 16 32
grade 16.1 8 30 114
median 13.5 2 8 18
smallest 13.2 2 16 16
syllables 11.6 2 12 20

Codeflaws
(Real;

Competitions)

WTLW (71A) 10.3 11 60 61
HQ9+ (133A) 10.9 18 270 1260
AG (144A) 24.5 13 302 202
IB (478A) 8.6 20 31 329
TN (535A) 61.2 9 118 778
Exam (534A) 17.5 12 108 68
Holidays (670A) 12.8 9 662 1118
DC (495A) 14.5 13 96 279
VBT(336A) 13.6 14 108 309
PP(509B) 21.2 16 84 98
DHHF (515B) 29.5 15 127 707
HVW2 (143A) 17.5 16 124 707
Ball Game (46A) 10 8 114 148
WE (31A) 14.4 14 187 200
LM (146B) 29.5 11 116 355
SG (570B) 7.5 11 69 531
WD (168A) 7.7 9 132 254
Football (417C) 13.2 13 64 352
MS (218A) 16.5 10 156 156
Joysticks (651A) 12.6 8 66 246

CoREBench
(Real;

Developers)

core. (cut) 306 4 4 6
core. (rm) 110 1 1 63
core. (ls) 1605.5 2 2 73
core. (du) 315 1 1 28
core. (seq) 219.7 3 3 5
core. (expr) 321 1 1 1
core. (copy) 897 1 1 59
find (parser) 119.3 3 3 286
find (ftsfind) 211.5 2 2 183
find (pred) 825 2 2 235
grep (dfasearch) 181.5 2 2 46
grep (savedir) 64 1 1 15
grep (kwsearch) 77 2 2 46
grep (main) 853.5 2 2 45

Total 35 (46) 369 9012 148767
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4.3.3 Objects of Empirical Analysis

Programs and Bugs: We evaluated each fault localization technique using 45 C programs containing
hundreds of (369) errors and thousands of (9012) failing tests (cf. Table 1). These programs
were collected from four benchmarks, in particular, three benchmarks containing real world
errors, namely IntroClass, Codeflaws and CoREBench, and one benchmark with artificial faults,
namely the Software-artifact Infrastructure Repository (SIR). We selected these benchmarks of C
programs to obtain a large variety of bugs and programs. Each benchmark contains a unique
set of programs containing errors introduced from different sources such as developers, students,
programming competitions and fault seeding (e.g. via code mutation). These large set of bugs
allows us to rigorously evaluate each fault localization technique. The following briefly describes
each benchmark used in our evaluation:

1. Software-artifact Infrastructure Repository (SIR) is a repository designed for the evaluation
of program analysis and software testing techniques using controlled experimentation [183].
It contains small C programs, with seeded errors and test suites containing thousands of
failing tests. In particular, this benchmark allows for the controlled evaluation of the effects
of large test suites on debugging activities.

2. IntroClass is a collection of small programs written by undergraduate students in a pro-
gramming course [184]. It contains six C programs, each with tens of instructor-written
test suites. This benchmark allows for the evaluation of factors that affect debugging in a
development scenario, especially for novice developers.

3. Codeflaws is a collection of programs from online programming competitions held on
Codeforces.34 These programs were collected for the comprehensive evaluation of debugging
tools using different types of errors. It contains 3902 errors classified across 40 defect classes
in total [185]. In particular, this benchmark allows for the evaluation of fault localization
techniques on different defect types.

4. CoREBench is a collection of 70 real errors that were systematically extracted from the
repositories and bug reports of four open-source software projects: Make, Grep, Findutils,
and Coreutils [14].35 These projects are well-tested, well-maintained, and widely-deployed
open source programs for which the complete version history and all bug reports can be
publicly accessed. All projects come with an extensive test suite. CoREBench allows for the
evaluation of fault localization techniques on real world errors (unintentionally) introduced
by developers.

Table 1 lists all the programs and bugs investigated in our study. We use six programs
each from the SIR and IntroClass benchmarks. This includes tcas – this program is the most
well-studied subject according to a recent survey on fault localization [172]. We selected 20
programming competitions from Codeflaws, including popular and difficult contests, such as
“Tavas and Nafas (535A)” and “Lucky Mask (146B)”. From CoREBench, we used three projects,

34https://codeforces.com/
35http://www.comp.nus.edu.sg/~release/corebench/
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Table 2: Details of Multiple Faults

Benchmark Tool # Buggy #Faults #Failing #Passing
(Error Type) Programs Tests Tests

SIR
(Mutated)

tcas 37 144 19973 39523
print_tokens 3 11 12074 316
print_tokens2 8 28 27630 5290
tot_info 18 64 16667 2269
schedule 4 17 9673 927
schedule2 4 16 8616 2224

IntroClass
(Mutated)

checksum 1 4 15 1
digits 2 7 30 2
grade 5 22 67 23
median 2 8 13 13
smallest 1 4 8 8
syllables 3 13 34 14

Total 88 338 94800 50610

namely the Coreutils, Grep and Find project. Notably, all projects in CoREBench come from
the GNU open source C programs, in particular, these three projects contain a total of 103 tools.
Due to code modularity, the program size for a single tool (e.g. cut in coreutils) contain a
few hundred LoC (about 306 LoC), however, the entire code base for CoREBench is fairly large.
For instance, Coreutils, Grep and Find have 83k, 18k and 11k LoC, respectively [14]. For each
benchmark, we exempted programs where Frama-C could not construct the Program Dependence
Graph (PDG). For instance, because it cannot handle some recursive or variadic method calls. In
addition, we excluded an error if no coverage information could be generated (e.g., infinite loops)
or the faulty statement could not be identified (e.g., omission faults where the patch only added
statements).

Single Faults: For our evaluation (all RQs except RQ7), we used buggy programs collected
from benchmarks where each program contained only a single fault, for most programs. To
determine single faults in our bug dataset, for each program, we executed all tests available for a
project on the fixed version of the program, in order to determine if there are any failing test
cases that are unrelated to the bug at hand. Our evaluation revealed that our dataset contained
mostly single bugs (368/369=99.7%). Almost all buggy program versions had exactly one fault,
except for a single program – Codeflaws version DC 495A. For all benchmarks, only this program
contained multiple faults, i.e. more than one fault. This distribution of single faults portrays the
high prevalence of single faults and single-fault fixes in the wild [186].

Multiple Faults: To evaluate the effectiveness of all three fault localization techniques on
multiple faults (see RQ7), we automatically curated a set of multiple faults using mutation-based
fault injection, in line with the evaluation of multiple bugs in previous works [187, 188, 189, 190,
191].36 We automatically mutated the original passing version of each program until we have a
buggy version containing between three to five faults. In particular, we performed logical and
arithmetic operator mutation on each passing version of the programs contained in the SIR and
IntroClass benchmarks. Table 2 provides details of the buggy programs with multiple faults,
the number of faults, as well as the number of failing and passing test cases. For each fault

36To the best of our knowledge, there is no known benchmark of real-world multiple bugs.
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contained in the resulting program, we store the failing test case(s) that expose the bug, as well
as the corresponding patches for each fault and all faults. In total, we collected 88 programs with
multiple faults containing 338 injected faults, in total. Each program in this dataset contained
about four unique faults, on average. Specifically, we collected 74 and 14 programs from the
SIR and IntroClass benchmarks, and injected a total of 280 and 58 faults in each benchmark,
respectively. The programs with multiple faults are called SIR-MULT and IntroClass-MULT,
respectively.

Minimal Patches: The user-generated patches are used to identify those statements in the
buggy version that are marked faulty. In fact, Renieris and Reiss [192] recommend identifying as
faulty statements those that need to be changed to derive the (correct) program that does not
contain the error. For each error, only patched statements are considered faulty. All bugs in our
corpus are patched with at least one statement changed in the buggy program, all omission bugs
are exempted. Omission bugs require special handling since they are quite difficult to curate,
localize and fix. Collecting patches and fault locations for omission bugs is difficult because their
patches are similar to the implementation of new features. Thus, a faulty code location is unclear
for these bugs in the (failing commit), this makes them even more difficult to evaluate for typical
AFL techniques, including statistical debugging and dynamic slicing [193].

Slicing Criterion: All aspects of dynamic slicing can be fully automated. To this end, as
the slicing criterion we chose the last statement that is executed or the return statement of
the last function that is executed. For instance, when the program crashes because an array is
accessed out of bounds, the location of the array access is chosen as the slicing criterion. In our
implementation, the slicing criterion is automatically selected by a bash script running gdb.

Passing and Failing Test Cases: All programs in our dataset come with an extensive test
suite which checks corner cases and that previously fixed errors do not re-emerge. For statistical
debugging, we execute each of these (passing) test cases individually to collect coverage information.
For dynamic slicing, we perform slicing for each failing test case.

In summary, for our automated evaluation, we used 457 errors in dozens of programs from four
well-known benchmarks (see Table 1 and Table 2). Our corpus contained 46 different programs in
35 software tools. Each faulty program in our corpus had about 11 bugs, 257 failing test cases and
thousands (4250) of passing test cases, on average. For single faults, we have 295 real faults and
74 injected faults. Meanwhile, we have 88 buggy programs for multiple faults, each containing
about four faults, on average.

4.3.4 Measure of Localization Effectiveness

We measure fault localization effectiveness as the proportion of statements that do not need
to be examined until finding the first fault. This allows us to assign a score of 0 for the worst
performance (i.e., all statements must be examined) and 1 for the best. More specifically, we
measure the score = 1 � p where p is the proportion of statements that needs to be examined
before the first faulty statement is found. Not all failures are caused by a single faulty statement.
In a study of Böhme and Roychoudhury, only about 10% of failures were caused by a single
statement, while there is a long tail of failures that are substantially more complex [14]. Focusing
on the first faulty statement found, the score measures the effort to find a good starting point
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to initiate the bug-fixing process rather than to provide the complete set of code that must be
modified, deleted, or added to fix the failure. [172] motivates this measure of effectiveness and
presents an overview of other measures.
General Measures

Ranking. All three fault localization techniques presented in this chapter produce a ranking.
The developer starts examining the highest ranked statement and goes down the list until reaching
the first faulty statement. To generate the ranking for statistical debugging, we list all statements
in the order of their suspiciousness (as determined by the technique), most suspicious first. To
generate the ranking for approximate dynamic slicing, given the statement c where the failure
is observed, we rank first those statements in the slice that can be reached from c along one
backward dependency edge. Then, we rank those statements that can be reached from c along
two backward dependency edges, and so on. Generally, for all techniques, the score is computed
as

score = 1 � |S|
|P |

where S are all statements with the same rank or less as the highest ranked faulty statement
and P is the set of all statements in the program. So, S represents the statements a developer
needs to examine until finding the first faulty one.37.

Multiple Statements, Same Rank. In most cases there are several statements that have the
same rank as the faulty statement. For all our evaluations, we employ ordinal ranking, in order to
effectively determine the top N most suspicious statements for each technique. This is necessary
to evaluate the fault localization effectiveness of each technique, if a developer is only willing to
inspect N most suspicious statements [177]. In ordinal ranking, lines with the same score are
re-ranked by line numbers.38 This is in agreement with evaluations of fault localization techniques
in previous work [172, 194, 177].

Multiple Faults, Expense Score. For multiple faults, we measure fault localization effectiveness
using the expense score [176]. The expense score is the percentage of the program (statements)
that must be examined to find the first fault, in particular, the first faulty statement in the first
localized fault using the ranking given by the fault localization technique. It is similar to the score
employed for single faults, and it has been employed in previous evaluations of multiple faults,
such as [191, 190]. Formally:

expense score =
|S|
|P | ⇤ 100

where S are all statements with the same rank or less as the highest ranked faulty statement for
the first fault found and P is the set of all executable statements in the program. So, S represents
the statements a developer needs to examine until finding the first faulty statement, for the first
localized fault. The assumption is that it is the first fault that the developer would begin fixing,
thus, finding the first statement suffices for the diagnosis of all faults [176]. In our evaluation of
multiple faults, the fault localization effectiveness score is computed similarly to single faults as

scoremult = 1 � (expense score/100)

37Note that all executable program statements are ranked in the suspiciousness rank, executable statements
that are not contained in the dynamic slice are ranked lowest.

38Ranking ties are broken in ascending order, i.e. if both lines 10 and 50 have the same score, then line number
10 is ranked above line number 50.
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Dynamic Slicing Effectiveness: We define the effectiveness of approximate dynamic slicing,
the scoreads according to Renieris and Reiss [192] as follows. Given a failing test case t, the
symptomatic statement c, let P be the set of all statements in the program, let ⇣ be the
approximate dynamic slice computed w.r.t. c for t, let kmin be the minimal number of backward
dependency edges between c and any faulty statement in ⇣, and let DS⇤(c, t) be the set of
statements in ⇣ that are reachable from c along at most kmin backward dependency edges. Then,

scoreads = 1 � |DS⇤(c, t)|
|P |

Algorithmically, the scoreads is computed by (i) measuring the minimum distance kmin from the
statement c where the failure is observed to any faulty statement along the backward dependency
edges in the slice, (ii) marking all statements in the slice that are at distance kmin or less from c,
and (iii) measuring the proportion of marked statements in the slice. This measures the part of
code a developer investigates who follows backward dependencies of executed statements from
the program location where the failure is observed towards the root cause of the failure.

In the approximate dynamic slice in our motivating example (Figure 2), we have scoreads =

1 � 1
12 = 0.92. The slicing criterion is c = s15. The program size is |P | = 12. The faulty

statement s8 is ranked first. Statements s7 and s2 are both ranked third according to modified
competition ranking39. Statements s5 and s4 are ranked fourth and fifth, respectively, while the
remaining, not executed (but executable) statements are ranked 12th.
Statistical Debugging Effectiveness: We define the effectiveness of a statistical fault local-
ization technique, the scoresfl as follows. Given the ordinal ranking of program statements in
program P for test suite T according to their suspiciousness as determined by the statistical fault
localization method, let rf be the rank of the highest ranked faulty statement and P is the set of
all statements in the program. Then,

scoresfl = 1 �
rf

|P |

Note that scoresfl = 1 � EXAM-score where the well-known EXAM-score [46, 179] gives the
proportion of statements that need to be examined until the first fault is found. Intuitively, the
scoresfl is its complement assigning 0 to the worst possible ranking where the developer needs to
examine all statements before finding a faulty one.

For instance, scoresfl = 1� 1
12 = 0.92 for our motivating example and all considered statistical

debugging techniques. All statistical debugging techniques identify the faulty statement in Line 8
as most suspicious. So, there is only one top-ranked statement (Rank 1). But there are six
statements with the lowest rank (Rank 12). If the fault was among one of these statements, the
programmer might need to look at all statements of our small program middle before localizing
the fault.
Hybrid Approach Effectiveness: We define the effectiveness of the hybrid approach, the
scorehyb as follows. Let R be the set of faulty statements, H be the N most suspicious statements
– sorted first by suspiciousness score and then by line numbers and P is the set of all statements

39In this case, when several statements have the same rank as the faulty statement, we made the conservative
assumption that a developer finds the faulty statement among other statements with the same rank.
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Table 3: Effectiveness of Dynamic Slicing on Single Faults

Benchmark Score

% Errors Localized

if developer inspects N

most suspicious LoC

5 10 20 30

IntroClass 0.83 70.00 100 100 100

Codeflaws 0.78 75.30 92.71 98.79 100

CoREBench 0.85 18.52 18.52 29.63 40.74

Real 0.79 69.73 86.39 92.52 94.56

Artificial (SIR) 0.79 32.43 44.59 55.41 60.81

Avg. (Bugs) 0.774 62.23 77.99 85.05 87.77

in the program. Given the failing test case t and a statement c that is marked as symptomatic,
we have

scorehyb =

8
<

:
min(scoresfl, N) if R \ H 6= ;

1 � |H [ DS⇤(c, t)| / |P | otherwise

Essentially, scorehyb computes the score for the statistical fault localization technique if the faulty
statement is within the first N most suspicious statements, and the score for approximate dynamic
slicing while accounting for the statements already reported in the first phase. For instance, for
N = 2 we have scorehyb = 1 � 1

12 = 0.92 for the motivating example in Figure 29 since the fault
is amongst the N most suspicious statements.
Infrastructure: We performed the experiments on a virtual machine (VM) running Arch Linux.
The VM was running on a Dell Precision 7510 with a 2.7GHz Intel Core i7-6820hq CPU and
32GB of main memory.

4.4 Experimental Results

Let us discuss the results of our evaluation and their implications. All research questions (RQs)
are evaluated using single faults, except for RQ7 which is also evaluated on multiple faults.

RQ1 Effectiveness of Dynamic Slicing

How effective is dynamic slicing in fault localization? To investigate the fault localization
effectiveness of dynamic slicing, we examined the proportion of statements a developer would
not need to inspect after locating the faulty statement (score in Table 3). Then, we examine
the percentage of errors for which a developer can effectively locate the faulty statement, if she
inspects only N most suspicious statements reported by dynamic slicing for N 2 {5, 10, 20, 30}
(% Errors Localized in Table 3).

Overall, a single faulty statement is ranked within the first quarter of the most suspicious
program statements reported by dynamic slicing, on average (cf. Table 3). This implies that a
developer (using dynamic slicing) inspects only 21% (about 40 LoC) of the executable program
statements before locating the fault, on average (i.e., equal to 1 � score). This performance was
independent of the source or type of the errors (i.e., real or seeded errors). Dynamic slicing was
particularly highly effective in locating faults for errors in CoREBench and errors in IntroClass,
where it ranks the faulty statements within the top 15% (81 LoC) and 17% (3 LoC) of the
program statements, respectively (cf. Table 3).
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Table 4: Statistical Debugging Effectiveness on Single Faults. Best scores for each (sub)category
are in bold; higher scores are better. For instance, Kulczynski2 is the best performing (single
bug optimal) formula for all programs (0.737), on average.

SBFL Formula SIR
Intro Code Core Average

Family Class flaws bench (Bugs) (Prog.)

Popular
Tarantula 0.78 0.76 0.70 0.79 0.709 0.732
Ochiai 0.83 0.76 0.69 0.79 0.709 0.735
Jaccard 0.80 0.76 0.69 0.79 0.702 0.728

Human
Generated

Naish_1 0.83 0.74 0.69 0.79 0.710 0.733
Naish_2 0.81 0.74 0.69 0.79 0.709 0.731
Russel_Rao 0.67 0.59 0.57 0.77 0.602 0.611
Binary 0.69 0.59 0.57 0.77 0.603 0.614
Wong_1 0.67 0.59 0.57 0.77 0.602 0.611
D

2 0.73 0.62 0.56 0.80 0.598 0.618
D

3 0.75 0.62 0.56 0.80 0.601 0.622

GP
Evolved

GP_02 0.75 0.72 0.66 0.69 0.668 0.688
GP_03 0.77 0.68 0.63 0.63 0.643 0.663
GP_13 0.81 0.74 0.69 0.79 0.709 0.731
GP_19 0.56 0.69 0.65 0.75 0.631 0.649

Single Bug
Optimal

PattSim_2 0.85 0.68 0.69 0.76 0.705 0.721
lex_Ochiai 0.83 0.74 0.69 0.79 0.710 0.733
m9185 0.83 0.74 0.70 0.79 0.715 0.735
Kulczynski2 0.83 0.76 0.70 0.79 0.713 0.737

For all programs, dynamic slicing reports the faulty statement within the top 21% (40 LoC)
of the most suspicious statements, on average.

A developer or tool using dynamic slicing will locate the faulty statement after inspecting only
a handful of suspicious statements. In our evaluation, for most errors, the faulty statement can be
identified after inspecting only five to ten most suspicious statements reported by dynamic slicing.
Specifically, the faulty statement is ranked within the top five to ten most suspicious statements
for 62% to 78% of all errors, respectively (cf. Table 3). Notably, a developer will locate the faulty
statement for 55% of artificial errors and 92% of real errors if she inspects only the top 20 most
suspicious statements. Overall, most programs (85%) can be debugged by inspecting the top 30%
(58 LoC, on average) of the statements reported by dynamic slicing. These results demonstrate
the high effectiveness of dynamic slicing in fault localization.

Dynamic slicing reports a single faulty statement within the top 5–10 most suspicious
statements for most errors (62% to 78%, respectively).

RQ2 Effectiveness of Statistical Debugging

Which statistical formula is the most effective at fault localization? First, we investigate the
effectiveness of 18 statistical formulas using four benchmarks containing 369 errors (cf. Table 1).
To determine the most effective statistical formula, for each formula, we examined the proportion
of statements a developer would not need to inspect after locating a single faulty statement
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Figure 33: Effectiveness of each statistical debugging formula: (a) results are grouped into bars
for each family, and (b) cumulative results for all benchmarks (stacked for all families)
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Table 5: Effectiveness of Kulczynski2 on single faults, i.e. the most effective statistical formula

Benchmark Score

% Errors Localized

if developer inspects N

most suspicious LoC

5 10 20 30

IntroClass 0.76 80.00 85.00 100 100

Codeflaws 0.69 64.37 86.23 97.57 99.19

CoREBench 0.79 22.22 25.93 37.04 48.15

Real 0.72 61.56 80.61 92.18 94.56

Artificial (SIR) 0.83 35.14 41.89 68.92 71.62

Avg. (Bugs) 0.713 56.25 72.83 87.50 89.95

(score in Table 4). Figure 33 (a) and (b) further illustrate the effectiveness of the SBFL formulas.
Then, for the best performing statistical formula, we inspected the percentage of errors for which
a developer can effectively locate the faulty statement, if she inspects only N most suspicious
statements for N 2 {5, 10, 20, 30} (% Errors Localized in Table 5).

Overall, the single bug optimal formulas are the most effective family of statistical formulas,
they are the best performing formulas across all errors and programs. In particular, on average,
PattSim2 performed best for injected errors (i.e. SIR), while Kulczynski2 outperformed all other
formulas for real errors, especially for IntroClass (cf. Table 4). Bold values in Table 4 indicate
the best performing formula for each family and (sub)category. For instance, Kulczynski2 is
the best performing (single bug optimal) formula for all programs (0.737). The performance of
single-bug optimal formulas supports the results obtained in previous works [195]. This family of
statistical formulas are particularly effective because they are optimized for programs containing
a single bug; based on the observation that if a program contains only a single bug, then all
failing traces cover that bug [196].

The single bug optimal statistical formulas outperformed all other SBFL formulas,
for both injected and real errors, on average.

The most effective statistical formula is Kulczynski2, it outperformed all other formulas in
our evaluation (see Table 4 and Figure 33 (a) and (b)). The most effective statistical formula
for each family are Ochiai, Naish_1, GP_13 and Kulczynski2 for the popular, human-generated,
genetically-evolved and single bug optimal families, respectively. Figure 34 (a) and (b) compares
the performance of the most effective formula in each family. For instance, in the popular
statistical family, Ochiai is the best performing formula, both for all errors (0.709) and all
programs (0.735) (cf. Table 4). Meanwhile, in the single bug optimal family, Kulczynski2 is the
best performing formula for all programs (0.737) (cf. Table 4).

Indeed, a developer using Kulczynski2 will inspect the least number of suspicious program
statements before finding the faulty statement. On average, Kulczynski2 required a developer to
inspect about 26% (51 LoC) of the program code before finding the faulty statement. Among all
statistical formulas, it has the highest suspiciousness rank for 40% (14 out of 35) of the programs
and 72% (265 out of 369) of all errors. It is also the most effective statistical formula for localizing
real errors.40

40Further evaluations in this chapter use Kulczynski2 as the default “statistical debugging” formula.
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Figure 35: Direct comparison of fault localization effectiveness between statistical debugging
(Kulczynski2) and dynamic slicing (on single faults) in each benchmark

Kulczynski2 is the most effective statistical formula, on average, requiring a developer to
inspect only 26% (51 LoC) before finding the fault.

A tool or developer using Kulczynski2 will locate the faulty statement after inspecting five
to ten most suspicious statements. The faulty statement is ranked within the top five to ten most
suspicious statements for most errors, i.e. 56% to 73% of all errors, respectively (cf. Table 5).
Overall, most programs (60%) can be debugged by inspecting the top 30% (58 LoC) of the
suspicious statements reported by Kulczynski2.

Kulczynski2 reports the faulty statements within the top 5–10 most suspicious statements for
56% to 72% of all errors, respectively.

Is the difference in the performance of Kulczynski2 statistically significant, in comparison to
the best performing formula for each statistical debugging family? In our evaluation, the difference
in the performance of Kulczynski2 (i.e. the best performing formula) is not statistically significant.
Table 6 highlights the statistical tests comparing Kulczynski2 to the best performing statistical
formula in each family, i.e. Kulczynski2 vs. {Ochiai, Naish1, GP13}. Notably, the performance
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Table 6: Statistical Tests for the most effective Statistical Debugging Formulas; Odds ratio  (all
ratios are statistically significant Mann-Whitney U -test< 0.05 for all tests)

Odds Ratio  (Mann Whitney test score U)
Benchmark Kulczynski2 Kulczynski2 Kulczynski2

vs. Ochiai vs. Naish1 vs. GP_13
SIR 0.2985 (0.0002) 0.0004 (0) 0.0004 (0)

IntroClass 0.0006 (0) 0.0183 (0) 0.0059 (0)
Codeflaws 0.0013 (0) 0.0005 (0) 0.0002 (0)
CoREBench 0.0003 (0) 0.0003 (0) 0.0003 (0)
All Bugs 0.0106 (0) 0.0006 (0) 0.0002 (0)

of Kulczynski2 is not statistically significant, in comparison to the the best statistical formula
for each family. This is evident from the fact that the odds ratio is less than one ( < 1) for all
test comparisons (see Table 6). This suggests that Kulczynski2 has no statistically significant
advantage over the best performing statistical formulas in each family; despite the fact that, in
absolute terms, Kulczynski2 outperforms the best formula in each family.

Kulczynski2 has no statistically significant advantage over the best formula in other SBFL
families (i.e., Ochiai, Naish1 and GP13).

RQ3 Comparing Statistical Debugging and Dynamic Slicing

How effective is the most effective statistical formula in comparison to dynamic slicing? We
compare the performance of the most effective statistical formula (Kulczynski2) to that of
dynamic slicing (cf. Figure 35 and Figure 36).

We find that on average, dynamic slicing is more effective than statistical debugging at fault
localization. Slicing is about eight percentage points more effective than the best performing
statistical formula for all programs in our evaluation (cf. Figure 36, Table 3 and Table 5). For all
errors in our study, a programmer using dynamic slicing needs to examine about three-quarters
(78%) of those statements that she would need to examine if she used statistical debugging.41

This result is independent of the type of errors or program. Figure 36 shows that dynamic
slicing consistently outperforms statistical debugging for each benchmark, with slicing consistently
localizing all faults ahead of statistical debugging.

Overall, dynamic slicing was eight percentage points more effective than the best performing
statistical debugging formula, i.e. Kulczynski2.

For two-third of bugs (66%, 243 out of 369 errors), dynamic slicing will find the fault earlier
than the best performing statistical debugging formula. Figure 35 shows a direct comparison
of the scores computed for slicing and statistical debugging. Each scatter plot shows for each
error the effectiveness score of statistical debugging on the x-axis and the effectiveness score of
slicing on the y-axis. Errors plotted above the diagonal line are better localized using dynamic
slicing. For all benchmarks, the majority of the points are above the diagonal line which indicates

41Percentage improvement is measured as 1�0.794
1�0.737 . Note that score by itself gives the number of statements

that need not be examined.
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Figure 36: Cumulative frequency of the locations to be examined, for dynamic slicing vs. statistical
debugging vs. the hybrid approach (on single faults) in each benchmark

that slicing outperforms statistical debugging in most cases. We can see that dynamic slicing
consistently outperforms statistical debugging across all benchmarks.

For two-third (66%) of bugs, dynamic slicing locates the fault earlier than the best performing
statistical debugging formula, i.e. Kulczynski2.

To compare the significance of dynamic slicing and statistical debugging, we compute the
odds ratio and conduct a Mann-Whitney U -test (cf. Slicing vs. Kulczynski2 in Table 7). The
odds ratio is in favor of dynamic slicing ( > 1) for all projects. In particular, slicing is 62%
more likely to find a faulty statement earlier than statistical debugging, this likelihood is also
statistically significant according to the Mann-Whitney test. The statistically significant odds
ratio is explained by slicing being more effective than statistical debugging in most cases. For
instance, slicing is more effective than statistical debugging for 50 out of 74 bugs in the SIR
benchmark and for 18 out of 27 bugs in CoREBench.

Dynamic slicing is significantly more likely to find a faulty statement
earlier than statistical debugging.
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Table 7: Statistical Tests for all three Fault Localization Techniques: Odds ratio  (Mann-Whitney
U -test p-values (U) are in brackets), odds ratio with statistically significant p-values determined
by Mann-Whitney (U -test ) are in bold

Benchmark Odds Ratio  (Mann whitney test score)
Slicing Slicing Hybrid-2

vs. Kulczynski2 vs. Hybrid-2 vs. Kulczynski2
SIR 4.25 (0.0000) 0.81 (0.2568) 5.44 (0.0000)

IntroClass 2.16 (0.1087) 0.68 (0.2713) 0.68 (0.2713)
Codeflaws 1.16 (0.2094) 0.41 (0.0000) 1.05 (0.3938)
CoREBench 2.06 (0.0904) 0.06 (0.0000) 16.74 (0.0000)
All Bugs 1.62 (0.0006) 0.42 (0.0000) 1.69 (0.0002)

RQ4 Sensitiveness of the Hybrid Approach

How many suspicious statements (reported by statistical debugging, i.e. Kulczynski2) should a
tool or developer inspect before switching to slicing? We examine the sensitiveness of the hybrid
approach to varying absolute values of N . We evaluate how the number of suspicious statements
inspected before switching to slicing influences the effectiveness of the hybrid approach. In
particular, we investigated the effect of N values (2, 5, 10, 15, 20) on the performance of the
hybrid approach, in order to determine the optimal number of suspicious statements to inspect
before switching to slicing.

A programmer that switches to slicing after investigating the top five most suspicious statements
can localize more errors than if switching after investigating more suspicious statements. Figure 37
shows the impact of other values of N on the effectiveness of the hybrid approach. Note that the
hybrid approach degenerates to dynamic slicing when N = 0 and to statistical debugging when N

is large (e.g., program size). We see that Kochhar’s suggestion of N = 5 is a good value for our
subjects, in particular inspecting at most five statements before switching to slicing outperforms
both slicing and statistical debugging. As we see in Figure 38, the hybrid approach with N = 2

and N = 5 outperforms both slicing and statistical debugging (Kulczynski2). Hence, a developer
is most effective if she inspects at most five most suspicious statements reported by statistical
debugging before switching to slicing.

A tool using our hybrid approach is most effective when inspecting only the top two most
suspicious statements (N = 2) reported by statistical debugging, before switching to slicing.
Hence, we recommend the use of the hybrid approach (with N = 2) for fault localization, and at
most five suspicious statements should be inspected before switching to slicing.42

The hybrid approach is most effective when a programmer inspects at most two statements
(N = 2) before switching to slicing.

RQ5 Effectiveness of the Hybrid Approach

Which technique is the most effective in fault localization? Which technique is more likely to find
fault locations earlier? We now investigate the effectiveness of the hybrid approach, in comparison
to slicing and statistical debugging. First, we examine the number of program statements that

42We use the best values of N (i.e. N = 2 and N = 5) to for the rest of our evaluation.
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Figure 37: Hybrid sensitiveness to different values of N 2 {2, 5, 10, 15, 20} showing (a) the
cumulative frequency of locations to be examined for all errors (left), and (b) the effectiveness
score for each benchmark using the hybrid approach (right).

Table 8: Effectiveness of the Hybrid approach with N = 2

Benchmark Score

% Errors Localized

if developer inspects N

most suspicious LoC

5 10 20 30

IntroClass 0.83 90.00 100 100 100

Codeflaws 0.80 83.00 97.57 100 100

CoREBench 0.97 59.26 70.37 85.19 85.19

Real 0.83 81.29 95.24 98.64 98.64

Artificial (SIR) 0.94 50.00 72.97 97.30 100

Avg. (Bugs) 0.844 75.00 90.76 98.37 98.91

need to be inspected to localize all faults for each technique (Figure 38), as well as the absolute
effectiveness score of each technique (Table 3, Table 5 and Table 8). Then, we evaluate the
likelihood of each technique to find the fault locations earlier than the other two techniques
(Table 7).

Notably, if the programmer is willing to inspect no more than 20 statements, the hybrid
approach will localize the fault location for almost all (98%) of the bugs (cf. Table 8 and Figure 38).
In contrast, both statistical debugging and slicing can only localize almost all (98%) faults after
inspecting about five times as many statements, i.e. 100 LoC. In fact, if the programmer inspects
only 20 LoC, slicing and statistical debugging would only find the fault location for about 85%
and 88% of the bugs, respectively.

The hybrid approach localizes the fault location for almost all (98%) of the bugs after inspecting
no more than 20 LoC.

In absolute numbers, the hybrid approach is the most effective fault localization technique,
followed by slicing, which is more effective than statistical debugging (see Table 8, Figure 36
and Figure 38). The hybrid approach (N = 2) is about seven percentage points more effective
than slicing, and about fifteen percentage points more effective than statistical debugging (cf.
Table 3, Table 5 and Table 8). Overall, it improves the performance of both slicing and statistical
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debugging. For instance, a programmer using the hybrid approach needs to examine only about
half (58%) and three-quarter (75%) of those statements that she would need to examine if she
used slicing and statistical debugging, respectively.

The hybrid approach is significantly more effective than slicing and statistical debugging,
respectively.

We compute the odds ratio and conduct a Mann-Whitney U -test, in order to determine the
significance of the hybrid approach. The odds ratio for all projects is strictly in favor of the
hybrid approach ( > 1 in Table 7). Specifically, the hybrid approach is (69%) more likely to find
a faulty statement earlier than statistical debugging (cf. “Hybrid-2 vs. Kulczynski2” in Table 7).
Moreover, a programmer is (42%) less likely to find the fault location early if she localizes with
dynamic slicing instead of the hybrid approach (cf. “Slicing vs. Hybrid-2” in Table 7).

The statistically significant odds ratio is explained by the hybrid approach being more effective
than slicing and statistical debugging in most cases. The majority of bugs is best localized by
the hybrid approach. For more than half of the bugs (56%, 208 out of 369 errors), the hybrid
approach will find the fault earlier than both slicing and statistical debugging. In particular, for
CoREBench, the hybrid approach is more effective than both techniques for 19 out of 27 bugs, as
well as for 33 out of 74 bugs in SIR.

The hybrid approach is significantly more likely to find a faulty statement earlier than dynamic
slicing and statistical debugging.

RQ6 Real Errors vs. Artificial Errors

In this section, we evaluate the effect of error type on the effectiveness of an AFL technique, in
particular, the difference between evaluating AFL techniques on artificial errors (i.e., SIR43) versus
real errors (i.e., IntroClass, Codeflaws and CoREBench). We examine the performance of each
technique on each error type and portray the bias and differences in such evaluations. Figure 35
and Figure 36 highlight the difference between evaluating a fault localization technique on real or
artificial errors. Table 9 summarizes the difference in the effectiveness of each AFL technique
when using real or artificial faults. Table 3, Table 5 and Table 8 also quantify the difference in
the effectiveness of all three AFL techniques (i.e., dynamic slicing, statistical debugging and the
hybrid approach, respectively) on real and artificial faults.

What is the most effective statistical debugging formula for artificial or real faults? In our
evaluation, the error type influences the effectiveness of a statistical debugging formula. PattSim_2
is the most effective statistical formula for artificial faults (score=0.85 ), this is closely followed
by Ochiai and Naish_1 with score = 0.83 (see Table 4). Meanwhile, for real faults, the most
effective statistical formulas are Kulczynski2 and Tarantula with scores 0.76, 0.70 and 0.79 for
IntroClass, Codeflaws and CoREBench, respectively (see Table 4).44Notably, the most effective

43The SIR benchmark is the most used subject for the evaluation of AFL techniques, especially statistical fault
localization [172].

44Even among real faults, the most effective formula depends on the benchmark. For instance the DStar algorithm
slightly outperforms Kulczynski2 and Tarantula on CoREBench, despite performing worse on IntroClass and
Codeflaws.
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Figure 38: Cumulative frequency of the locations to be examined for the hybrid approach, in
comparison to statistical debugging (Kulczynski2) and dynamic slicing, for all (Single) Faults.
Inspecting only the top two suspicious code locations, Hybrid-2 and dynamic slicing perform
similarly (localizing about 47% of errors each); they outperform statistical debugging (39% of
errors localized). However, inspecting only the top five locations, Hybrid-2 clearly outperforms
slicing and dynamic slicing by localizing 75% of errors, while slicing performs better than statistical
debugging (62% vs. 56% of errors).

Table 9: Real vs. Artificial faults

Percentage (# LoC)
Benchmark Statements Inspected before locating fault

Slicing Kulczynski2 Hybrid
IntroClass 17% (3) 24% (4) 17% (3)
Codeflaws 23% (4) 31% (5) 20% (3)
CoREBench 15% (80) 21% (112) 3% (14)
Real 18% (29) 25% (40) 13% (7)
Artificial (SIR) 21% (31) 18% (26) 6% (9)
All Bugs 21% (40) 26% (51) 15% (30)

formula for artificial faults is different from the most effective formula for real faults. This implies
that the error type can influence the performance of an AFL technique. Thus, we recommended
to always evaluate debugging aids using real faults.

The effectiveness of a statistical debugging formula depends on the error type: the most effective
formula differs for artificial (PattSim_2) and real faults (Kulczynski2 and Tarantula).

How does the effectiveness of statistical debugging compare to that of dynamic slicing, for
artificial and real faults? On one hand, dynamic slicing performs worse than statistical debugging
on artificial faults (SIR): A developer (or tool) has to inspect 21% of the program to find the
fault, in contrast to 18% for Kulczynski2, on average (see Table 9). On the other hand, dynamic
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Figure 39: Cumulative frequency of the locations to be examined for (a) single-fault and (b)
multiple-fault versions of the SIR and IntroClass, using the hybrid approach, statistical debugging
(Kulczynski2 and Tarantula) and dynamic slicing

slicing performs better than statistical debugging on real faults (i.e., IntroClass, Codeflaws and
CoREBench). For real errors, a developer has to inspect (7%) less statements when using dynamic
slicing (18%) compared to slicing (25%). Again, this shows that the error type has a significant
influence on the effectiveness of an AFL technique.

Statistical debugging performs better on artificial faults, while dynamic slicing performs better
on real faults.

What is the most effective AFL approach on artificial and real faults? The hybrid approach is
the most effective AFL approach, outperforming both dynamic slicing and statistical debugging
(see Table 9). In particular, depending on the error type, a developer or tool using the hybrid
approach inspects only one-third to less than three-quarter (0.3 to 0.7) of the statements inspected
when using dynamic slicing or statistical debugging. This shows that the effectiveness of the
hybrid approach is independent of error type.

The hybrid approach is the most effective approach, regardless of error type, i.e. artificial or real
faults.

We observed that fault localization effectiveness on artificial errors does not predict results on
real faults. In our evaluation, the performance of dynamic slicing and statistical debugging are
different depending on the error type. For instance, Table 9 clearly shows that dynamic slicing
performs better on real faults, while statistical debugging performs better on artificial faults. This
result illustrates that the performance of an AFL technique on artificial faults is not predictive
of its performance in practice. Hence, it is pertinent to evaluate AFL techniques on real faults
rather than artificial faults, this is in line with the findings of previous studies [194].

The effectiveness of an AFL technique on artificial faults does not predict its effectiveness on
real faults.
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Table 10: Effectiveness of all AFL techniques on Single and Multiple Faults for SIR and IntroClass
benchmarks. Single Fault Scores are in italics and bracketed, i.e. (Single), while Multiple Fault
Scores are in normal text. For multiple faults, the best scores for each (sub)category are in bold;
higher scores are better. For instance, Tarantula is the best performing (popular) statistical
debugging formula for all programs with multiple faults with score 0.8269, on average.

AFL Formula/
Approach

SIR
MULT (Single)

IntroClass
MULT (Single)

Average
Technique (Prog.) (Vers.)

Popular
SBFL

Tarantula
0.8214 0.8324 0.8269 0.7878
(0.6907 ) (0.7464 ) (0.7186 ) (0.6266 )

Ochiai
0.7796 0.7747 0.7772 0.7560

(0.7337 ) (0.7464 ) (0.7401 ) (0.6514 )

Jaccard
0.7720 0.7747 0.7734 0.7532

(0.7029 ) (0.7464 ) (0.7247 ) (0.6342 )

Human
Generated

SBFL

Naish_1
0.7215 0.7638 0.7426 0.7136

(0.7399 ) (0.7448 ) (0.7423 ) (0.6682 )

Naish_2
0.7484 0.7747 0.7615 0.7404

(0.7207 ) (0.7464 ) (0.7336 ) (0.6596 )

Russel_Rao
0.7350 0.7586 0.7468 0.7185

(0.6088 ) (0.6394 ) (0.6241 ) (0.6051 )

Binary
0.7125 0.7553 0.7339 0.6975

(0.6283 ) (0.6378 ) (0.633 ) (0.6129 )

Wong_1
0.7350 0.7586 0.7468 0.7185

(0.6088 ) (0.6394 ) (0.6241 ) (0.6051 )

D
2 0.7718 0.7747 0.7732 0.7553

(0.7345 ) (0.7464 ) (0.7404 ) (0.6523 )

D
3 0.7680 0.7747 0.7714 0.7553

(0.7484 ) (0.7464 ) (0.7474 ) (0.6611 )

GP
Evolved
SBFL

GP_02
0.7633 0.7747 0.7690 0.7498
(0.6725 ) (0.7157 ) (0.6941 ) (0.6133 )

GP_03
0.7473 0.7747 0.7610 0.7402

(0.6813 ) (0.6169 ) (0.6491 ) (0.6285 )

GP_13
0.7456 0.7747 0.7602 0.7398

(0.7211 ) (0.7464 ) (0.7338 ) (0.6606 )

GP_19
0.7629 0.7558 0.7593 0.7279

(0.4673 ) (0.6237 ) (0.5455 ) (0.4876 )

Single Bug
Optimal
SBFL

PattSim_2
0.7608 0.7747 0.7677 0.7301

(0.7537 ) (0.6544 ) (0.704 ) (0.6506 )

lex_Ochiai
0.7532 0.7747 0.7640 0.7396

(0.7356 ) (0.7464 ) (0.741 ) (0.6646 )

m9185
0.8183 0.8315 0.8249 0.7664
(0.7570 ) (0.7225 ) (0.7397 ) (0.6646 )

Kulczynski2
0.7885 0.7747 0.7816 0.7588

(0.7572 ) (0.7464 ) (0.7518 ) (0.6689 )
Program
Slicing

Dynamic
Slicing

0.8357 0.5487 0.6922 0.7840
(0.7935 ) (0.8602 ) (0.8269 ) (0.7535 )

Hybrid
Approach

Hybrid-2
0.9627 0.9057 0.9342 0.9457
(0.9358 ) (0.888 ) (0.9119 ) (0.9237 )

Hybrid-5
0.9505 0.8406 0.8955 0.9206

(0.9397 ) (0.814 ) (0.8768 ) (0.8974 )

88



4.4. Experimental Results

Slicing Kulczynski2 Tarantula Hybrid
0.5

0.6

0.7

0.8

0.9

1.0
S
co

re

E�ectiveness of the best-performing techniques

SIR single-fault

SIR multi-fault

IntroClass single-fault

IntroClass multi-fault

Slicing Kulczynski2 Tarantula Hybrid
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
co

re

E�ectiveness single vs. multiple faults

SIR single-fault

SIR multi-fault

IntroClass single-fault

IntroClass multi-fault

(a) Each Benchmark (b) Cumulative Score

Figure 40: Effectiveness of each technique for Single and Multiple Fault(s) in SIR and IntroClass:
(a) Scores for each benchmark and (b) Scores for both benchmarks

RQ7 Single Fault vs. Multiple Faults

In this section, we compare the effectiveness of all three AFL techniques on programs with multiple
faults. Then, we examine the effect of multiple faults on the performance of each technique and the
difference between evaluating an AFL technique on single or multiple fault(s). In this experiment,
we employ the original single-fault versions of the SIR and IntroClass benchmarks, as well
as the multiple-fault versions of the same benchmarks, called SIR-MULT and IntroClass-MULT,
respectively. Table 10 highlights the results for single and multiple fault(s) for all AFL techniques,
including statistical debugging, hybrid and dynamic slicing. Figure 39, Figure 40 and Figure 41
illustrate the difference in the performance of each technique when given programs with a single
fault or multiple faults.

What is the most effective statistical debugging formula for multiple faults? In our evaluation,
the most effective statistical debugging formula for multiple faults is Tarantula (0.8269), from the
popular statistical debugging family. It outperforms the other statistical debugging formulas (cf.
Table 10 and Figure 40). For the other statistical debugging families, the most effective formula
for multiple faults are DStar (D2 and D

3), GP02 and m9185 for the popular, human-generated and
genetically evolved families, respectively (cf. Table 10). The performance of Tarantula is closely
followed by that of the single-bug optimal formulas m9185 (0.8249). However, the difference in
the performance of m9185 and Tarantula is not statistically significant, i.e.  < 1 (odds ratio
 = 0.14, Mann-Whitney U -test p-value U = 0). Notably, the most effective single-bug optimal
formulas (i.e. m9185) outperformed the human-generated and genetically evolved formulas (cf.
Table 10). This illustrates that single bug optimal formulas are also effective for multiple faults,
despite being specialized for single faults.

Tarantula is the most effective statistical debugging formula for multiple faults;
it outperforms all other statistical debugging formulas.
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Figure 41: Effectiveness of each technique on Single and Multiple Faults compared by benchmark
SIR and IntroClass

For multiple faults, how does the effectiveness of statistical debugging (Tarantula) compare to
that of dynamic slicing and hybrid? Tarantula performs better than dynamic slicing (0.8269 vs.
0.6922) for multiple faults, our results show that the effectiveness of slicing is 16% worse than that
of Tarantula on multiple faults in the SIR-MULT and IntroClass-MULT programs (see Table 10).
This is despite the fact that dynamic slicing (0.8269) outperforms Tarantula (0.7186) by 15% on
single fault programs (i.e., in SIR and IntroClass benchmarks). Indeed, there is a 13% decrease
in the performance of dynamic slicing on multiple faults. This is evident in Figure 40 (a) where
the performance of dynamic slicing drops for multiple faults for IntroClass-MULT. This shows
that it is beneficial for an AFL technique to employ coverage data from (numerous) failing test
cases when diagnosing programs with multiple faults. As expected, it is more difficult for dynamic
slicing to diagnose multiple faults: Since a dynamic slice is constructed for only a single failing
test case, it is difficult to account for the effect of multiple faults. Overall, the performance of the
hybrid approach remains superior to that of dynamic slicing and statistical debugging, regardless
of the number of faults present in the program (cf. Table 10, Figure 39 and Figure 40).

Statistical debugging performs better on multiple faults:
Tarantula is 19% more effective than dynamic slicing on multiple faults.

Given single or multiple faults, does the effectiveness of an AFL technique improve or worsen?
Figure 40 (a) illustrates the difference in the performance of all techniques for single and multiple
faults. Results show that all techniques (except dynamic slicing) perform better on multiple faults
in comparison to single faults, improvements range from two to 11 percentage points. Notably,
Tarantula’s performance improved by 11% on multiple faults. Meanwhile, other approaches
improved by two to three percentage points, in particular, the hybrid approach, Kulczynski2
and DStar (D2 and D

3). This illustrates that most AFL approaches (, especially SBFL) perform
better on multiple faults than single faults (see Figure 40 (a) and Figure 41).
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Statistical debugging is better suited for diagnosing multiple faults,
while dynamic slicing is more effective at localizing single faults.

Generally, we found that the performance of a technique on programs containing single
faults does not predict its performance on multiple faults. For instance, although Kulczynski2
outperformed the other statistical formulas for single faults (0.7518), it is outperformed by m9185
for multiple faults (0.7816 vs. 0.8249) (cf. Table 10). This result is also evident from Figure 40
(a) and Table 10, where dynamic slicing outperforms statistical debugging (Kulczynski2) for
SIR single faults (0.8269 vs. 0.7518), but statistical debugging (m9185 and Kulczynski2) clearly
outperform dynamic slicing for multiple faults. These results suggest that the number of faults in
the program influences the effectiveness of an AFL technique.

The effectiveness of an AFL technique on single faults does not
predict its effectiveness on multiple faults.

4.5 Threats to Validity

We discuss the threats to validity for this fault localization study within the framework of [180].
External Validity: refers to the extent to which the reported results can be generalized to other
objects which are not included in the study. The most immediate threats to external validity are
the following:

• EV.1) Heterogeneity of Probands. The quality of the test suites provided by the object of
analysis may vary greatly which hampers the assessment of accuracy for practical purposes.
However, in our study the test suites are well-stocked and maintained. All projects are
open source C programs which are subject to common measures of quality control, such as
code review and providing a test case with bug fixes and feature additions.

• EV.2) Faulty Versions and Fault Injection. For studies involving artificially injected faults,
it is important to control the type and number of injected faults. Test cases become subject
to accidental fault injection. Some failures may be spurious. However, in our study we also
use real errors that were introduced (unintentionally) by real developers. Failing test cases
are guaranteed to fail because of the error.

• EV.3) Language Idiosyncrasies. Indeed, our objects contain well-maintained open-source C
projects with real errors typical for such projects. However, for instance errors in projects
written in other languages, like Java, or in commercially developed software may be of
different kind and complexity. Hence, we cannot claim generality for all languages and
suggest reproducing our experiments for real errors in projects written in other languages
as well.

• EV.4) Test Suites. The size of a test suite can influence the performance of an AFL
technique. Testing strategies that reduce or increase test suite size such as test reduction
or test generation methods (i.e. removing tests or generating new tests) have been shown
to improve the performance of some AFL techniques [175, 176]. We mitigate the effect of
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test suite size by employing projects with varying test suite sizes (ranging from tens to
tens of thousands of test cases) as provided by our subject programs. In our evaluation, we
do not generate additional tests or remove any tests from the test suite provided by the
benchmarks, in order to simulate the typical debugging scenario for the software project.

• EV.5) Missing Statements in Slices. Although, there is a risk of discarding faulty state-
ments during program slicing, dynamic slicing rarely miss faulty statements during fault
localization [197]. [197] found that dynamic slicing reports the faulty statement in the
top-ten most suspicious statement 91% of the time. We further mitigate this risk by first
inspecting statements in the dynamic slice before inspecting other executable statements.
Thus, dynamic slicing (eventually) finds the faulty statement for all bugs in our evaluation.

Construct Validity: refers to the degree to which a test measures what it claims to be measuring.
The most immediate threats to construct validity are the following:

• CV.1) Measure of Effectiveness. Conforming to the standard [172], we measure fault
localization effectiveness as ranking-based relative wasted effort. The technique that
ranks the faulty statement higher is considered more effective. Parnin and Orso find that
“programmers will stop inspecting statements, and transition to traditional debugging,
if they do not get promising results within the first few statements they inspect” [178].
However, [180] insist that one may question the usefulness of fault locators, but measures of
ranking-based relative wasted effort are certainly necessary for evaluating their performance,
particularly in the absence of the subjective user as the evaluator.

• CV.2) Implementation Flaws. Tools that we used for the evaluation process may be
inaccurate. Despite all care taken, our implementation of the 18 studied statistical fault
localization techniques, or of approximate dynamic slicing, or of the empirical evaluation
may be flawed or subject to random factors. However, we make all implementations and
experimental results available online for public scrutiny.

4.6 Related Work

Evaluation of Fault Localization Techniques: The effectiveness of various fault localization
approaches have been studied by several colleagues, see Wong et al. [172]. Most papers investigated
the effects of program, test and bug features on the effectiveness of statistical debugging. Abreu
et al. [179] examined the effects of the number of passing and failing test cases on the effectiveness
of statistical debugging, they established that the suspiciousness scores stabilize starting from an
average six (6) failing and twenty (20) passing test cases. [194] evaluated the difference between
evaluating fault localization techniques on real faults versus artificial faults, using two main
techniques, namely statistical debugging and mutation-based fault localization. Notably, their
evaluation results shows that results on artificial faults do not predict results on real faults for
both techniques, and a hybrid technique is significantly better than both techniques. Keller et
al. [198] and Heiden et al. [199] evaluated the effectiveness of statistical fault localization on real
world large-scale software systems. The authors found that, for realistic large-scale programs,
the accuracy of statistical debugging is not suitable for human developers. In fact, the authors
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emphasize the obvious need to improve statistical debugging with contextual information such
as information from the bug report or from version history of the code lines. In contrast to our
work, none of these papers evaluated the fault localization effectiveness of program slicing, nor
compare the effectiveness of slicing to that of statistical debugging.

A few approaches have evaluated the effectiveness of dynamic slices in fault localization [173,
174]. In particular, Zhang et al. [174] evaluated the effectiveness of three variants of dynamic
slicing algorithms, namely data slicing, full (dynamic) slicing, and relevant slicing. Like our
study, the authors found that slicing considerably reduces the number of program statements
that need to be examined to locate faulty statements. In contrast to our study, the authors have
not empirically compared the performance of slicing to that of statistical debugging.

Improvements of Statistical Fault Localization: Several authors have proposed approaches
to improve statistical fault localization (SBFL). Most approaches are focused on reducing the
program spectra (i.e. the code coverage information) fed to statistical debugging, sometimes
by using delta debugging [200], program slicing [201, 202, 203], test generation [204], test
prioritization [205] or machine learning [206, 207]. In particular, some techniques apply program
slicing to reduce the program spectra fed to statistical debugging formulas [208, 201, 209, 201, 202,
203]. The popular page rank algorithm has been used to boost statistical debugging effectiveness
by estimating the contributions of different tests to re-compute program spectral [205]. Machine
learning algorithms (such as learning to rank) also improves the effectiveness of statistical
debugging [207, 206]. In addition, BARINEL employs a combination of bayesian reasoning and
statistical debugging to improve fault localization effectiveness, especially for programs with
multiple faults [187]. BARINEL combines statistical debugging and model-based diagnosis (MBD),
i.e., logic reasoning over a behavioral model to deduce multiple-fault candidates: The goal is to
overcome the high computational complexity of typical MBD. Search-based test generation has
also been combined with SBFL, in order to improve the performance of statistical debugging
for Simulink models [204]. However, none of these papers localize faults by following control
and data dependencies in the program, i.e. they do not directly use program slicing as a fault
localization technique.

Zou et al. [206] found that the combination of fault localization techniques improves over
individual techniques, the authors recommend that future fault localization techniques should
be evaluated in the combined setting. For instance, slicing hitting set computation (SHSC) is
a combination of model-based debugging and program slicing that has been applied for fault
localization [210]. In contrast to our work, SHSC combines slices of faulty variables, which causes
undesirable high ranking of statements executed in many test cases [211]. To address this, Hofer
and Wotawa also proposed SENDYS – a combination of statistical debugging and SHSC to
improve the ranking of faulty statements [211]. The focus of this work is to provide fault locations
at a finer granularity than program blocks. In contrast to typical dynamic slicing, SENDYS
analyzes the execution information from both passing and failing test cases and uses statistical
debugging results as a-priori fault probabilities of single statements in SHSC [211].
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4.7 Discussions and Future Work

The empirical results from this chapter shows that dynamic slicing remains the technique of choice
for programmers and debuggers. Suspicious statements, as produced by statistical debugging,
can provide good starting points for an investigation; but beyond the top-ranked statements,
following dependencies is much more likely to be effective. We therefore recommend that following
dependencies should remain the primary method of fault localization—it is a safe and robust
technique that will get programmers towards the goal.

Dynamic slicing as a fault localization technique can be further improved, in order make it
more effective and efficient in software practice. Building on the empirical results from our study
(in Chapter 4), we consider the following improvements:

Cognitive load. In our investigation, we did not consider or model the cognitive load it takes
to understand the role of individual statements in context. Since following dependencies
in a program is much more likely to stay within same or similar contexts than statistical
debugging, where the ranked suspicious lines can be strewn arbitrarily over the code, we would
expect dependency-based techniques to take a lead here. The seminal study of Parnin and
Orso [178] found that ranked lists of statements are hardly helping human programmers—let
us find out which techniques work best for humans.

Alternate search techniques. There are other search strategies along program dependencies
(for instance, starting with the input, and progressing forward through a program; starting
at some suspicious or recently changed location; or moving along coarse-grained functions
first, and fine-grained lines later) that may be even more efficient both in terms of nodes
visited as well as from the assumed cognitive load. Again, this calls for more human studies
in debugging.

Experimental techniques. For instance, input minimization techniques (such as delta debug-
ging [212]) offer another means to reduce the cognitive load—by systematically narrowing
down the conditions under which a failure occurs. The work of Burger and Zeller [213] on
minimization of calling sequences with delta debugging showed dramatic improvements over
dynamic slicing, reducing “the search space to 13.7% of the dynamic slice or 0.22% of the
source code”. In a recent human study, delta debugging “significantly increased programmers
efficiency in failure detection, fault localization and fault correction.” [214].

Symbolic techniques. Finally, following dependencies is still one of the simplest methods to
exploit program semantics. Applying symbolic execution and constraint solving would narrow
down the set of possible faults. Model-based debugging [215] was one of the first to apply
this idea in practice; the more recent bugassist work of Jose and Majumdar “quickly and
precisely isolates a few lines of code whose change eliminates the error.” [216].

To summarize, the fault localization techniques proposed for future work can profit from
wider evaluations and assessments. In addition, they can also be joined and combined similarly
to our hybrid approach (in Section 4.2). For instance, one could start with suspicious statements
as indicated by statistical fault localization, follow dependencies from there, and skip influences
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deemed impossible by symbolic analysis. The key challenge of automated fault localization will
be to bring the best of the available techniques together in ways that are applicable to a wide
range of programs and useful for real programmers, who must fix their bugs by the end of the
day. Finally, we encourage the use of true defects to compare AFL techniques and a willingness
to actually compare to the state of the art techniques, as we do in this work. All of our scripts,
tools, benchmarks and results are freely available to support scrutiny, evaluation, reproduction
and extension:

https://tinyurl.com/HybridFaultLocalization
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Chapter 5

Debugging Failure-Inducing Inputs

This chapter is taken, directly or with minor modifications, from our 2020 ICSE paper De-
bugging Inputs [217]. My contribution in this work is as follows: (I) original idea; (II) partial
implementation; (III) evaluation.

“Every failure carries with it the seed of an equal or greater benefit.”
— Napoleon Hill

5.1 Introduction

In the last decade, techniques for automated debugging and repair have seen great interest
in research and practice. A recent survey [1] lists more than 100 papers on automatic fault
localization and repair. Recently, social networking giant Facebook provided developers with
automatically generated repair suggestions for every failure report of its apps [218]. Almost all of
these techniques focus on program code, attempting to identify possible fault locations in the code
and synthesizing fixes for this code. However, when a program fails on some input, it need not be
the program code that is at fault. Hardware failures, hardware aging, transmission errors may all
cause data to get corrupted. In computer hardware, radiation can impact memory cells, leading
to bit flips and again data corruption. And finally, data can be corrupted through software bugs,
with the processing software writing out malformed or incomplete data. If data is corrupted, the
easiest remedy is to use a backup. But if a backup does not exist (or is too old, or fails to be
processed), one may want to recover as much data as possible from the existing data—or in other
words, debug the data.

Some programs come with application-specific means to recover data. Input parsers can
recover from syntactical errors by applying sophisticated recovery strategies; in a programming
language, this may involve skipping the current statement or function and resuming with the next
one [219]. When detecting a corrupted or incomplete file, Microsoft Office programs may attempt
to recover from the error, using a number of undisclosed approaches [220]. When a program
does not implement a good recovery strategy, though, users are left to their own devices, using
general-purpose editors to identify file contents and possible corrupted parts.

As listed above, general-purpose automated debugging techniques focus on faults in code and
do not provide much help in such situations, as they would regularly identify the input parser
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{ "item": "Apple", "price": **3.45 }

Figure 42: Failing JSON input

{

Figure 43: Failing input reduced with ddmin

{ "item": "Apple", "price": 3.45 }

Figure 44: Failing input repaired with ddmax

and its error-handling code as being associated with the fault. The delta debugging (ddmin)
algorithm [57], however, focuses on identifying error causes in the input; in repeated runs with
reduced inputs, it simplifies a failure-inducing input down to a minimum that reproduces the
error. Unfortunately, delta debugging is not a good fit: applied to invalid inputs, it produces the
smallest subset of the input that also produces an input error—typically a single character. As
an example, consider Figure 42, a JSON input with a syntax error; ddmin produces the reduced
input in Figure 43, consisting of a single { character, which also produces a syntax error. This is
neither helpful for diagnosis nor a basis for data recovery.

In this chapter, we first investigate the relevance of invalid inputs in software practice and
collect empirical evidence on the prevalence and causes of invalid inputs. Secondly, we introduce
a generic input repair method that automatically (1) identifies which parts of the input data
prevent processing, and (2) recovers as much of the (valuable) input data as possible. Like
ddmin, our approach runs the program under test repeatedly with different subsets of the input,
assessing whether the subset can be processed or not. Also, it does not need any kind of program
analysis and can thus be used in a wide range of settings. Unlike ddmin, however, which aims at
minimizing the failure-inducing input, our ddmax algorithm aims at maximizing the passing input.
Its result is a subset of the input that (1) can be successfully processed and (2) is 1-maximal: no
further element from the failing input can be added without causing the input to become invalid
again.

Applied on our example from Figure 42, ddmax produces the “repaired” (passing) input subset
in Figure 44, in which the confounding ** characters (and nothing else) are removed. The
difference between the original input (Figure 42) and the repaired input (Figure 44), listed in
Figure 45, actually makes a precise diagnosis of the failure cause and can be given to developers
for further debugging steps.

Note that while ddmax recovers a maximum of data, it does not recover a maximum of
information; in our example, we do not know whether 3.45 actually is the correct price. However,
the repaired input can now be read and processed by the program at hand, enabling humans to
read and check their document and engage into additional recovery steps.

Although, many applications produce error messages when processing invalid inputs, most
error mesages are vague. Often, applications simply report that an input is corrupted, without
repairing the input or providing the reason for the invalidity. However, ddmax identifies the
invalid input fragment quickly (for debuggers) while also preserving a maximum of content (for
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**

Figure 45: Difference between failing and repaired input

end users).
The remainder of this chapter makes the following contributions:

An empirical study of invalid inputs in practice. We evaluate the prevalence of invalid
input in the wild (Section 5.2). We crawled thousands of input files from github and
determine the set of valid and invalid files. We find that invalid inputs are common in
practice, about four percent (295 files) of all input files (7835 files) crawled from github were
invalid.

Generic input repair with minimal data loss. We introduce the ddmax algorithm, auto-
matically recovering a maximum of data from a given failure-inducing input (Section 5.3).
To the best of our knowledge, ddmax is the first input repair technique that can be applied
to arbitrary inputs and programs without additional knowledge on input formats or program
code. In its evaluation on eight subjects and three input formats, using real-world invalid
inputs as well as synthetic corruptions, we find that ddmax is effective: It repairs 69% of
corrupted inputs and recovers about 78% of data, within a time budget of one minute per
input.

An efficient syntactical input repair technique. We introduce a variant of ddmax that
makes use of a grammar to parse inputs into derivation trees and to maximize inputs by
pruning parts of the tree that could not be read (Section 5.4); this vastly speeds up input
repair. In its evaluation, syntactic ddmax is faster and more efficient than the lexical variant.

Identifying faults in input data. The difference between the “repaired” input by ddmax and
the original input contains all parts of the input that prevented the data from being processed
in the first place. Section 5.5 shows that this difference precisely characterizes the fault in
the input.

After discussing the threats to validity (Section 5.6) and limitations (Section 5.7), we discuss
closely related work (Section 5.8). Lastly, we close with discussions and future work (Section 5.9).

5.2 Prevalence of Invalid Inputs

Before we start repairing inputs, let us first answer the question of how relevant the problem is.
Is it actually possible that some application cannot open or process a data file? And would there
be files claiming to adhere to some format if in fact, they are not? To answer such questions, we
mine some invalid inputs from the wild.

Evaluation Setup

Subject Programs

In this study, we use eight programs as test subjects, namely Blender [221], Assimp [222],
Appleseed [223], JQ [224], JSON-Simple [225], Minimal-JSON [226], Graphviz [227], and finally
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Table 11: Subject Programs

Subject Input Prog. Size Maturity
Program Format Lang. (in KLoC) (1st Commit)
Blender OBJ C/C++ 1800 Jan. 1994
Assimp OBJ C++ 88.9 July 2002
Appleseed OBJ C++ 600.1 May 2009
JQ JSON C 20.2 July 2012
JSONSimple JSON Java 2.6 Nov. 2008
Minimal-JSON JSON Java 6.4 Feb. 2013
Graphviz DOT C 1140 Sep. 1991
Gephi DOT Java 166.1 July 2008

Table 12: Input Grammar Details

Grammar Size (LoC) #ParserRules #LexerRules
JSON 79 5 9

Wave. OBJ 271 13 42
DOT 181 14 15

Gephi [228]. Each input format was evaluated with three subjects, except for DOT which was
evaluated with two programs. All our subject programs are open source C, C++ or Java programs.
On average, these programs have 478 KLoC and a maturity of over 14 years. Table 11 highlights
the properties of our subject programs.

Grammars

We have collected the grammars for our subjects from the ANTLR Grammar repository [229].
We chose complex and large grammars for data-rich input formats used in two popular domains,
namely graphics domain (i.e. Wavefront OBJ (OBJ) and DOT) and data exchange domain (i.e.
JSON). To ensure the grammars were sound, we tested them with 50 valid crawled files for each
input format. We modified the Wavefront OBJ grammar since its ANTLR grammar was only a
subset of the official Wavefront OBJ specificiation [230]. The JSON and DOT grammars were used
unmodified since they matched the official specifications [231, 232]. On average, the grammars
are written in 177 LoC, with 11 parser rules and 22 lexer rules (cf. Table 12).

Mining and Filtering Input Files.

Table 13 highlights the details of the input files in our corpus. We crawled for a specific file format
using the file extension (e.g. “.json” for the JSON input format). In total, we collected a corpus of
9544 input files (cf. #Crawled Files in Table 13) using the Github API for crawling [233]. Then,
we deleted all files that are empty or duplicated, as well as the input files that have a different input
format despite having the intended file name suffix (e.g. a Wavefront OBJ file has the same suffix
(“.obj”) as a binary OBJ file that was created by a compiler). This resulted in 7835 unique input
files (cf. #Unique files). We also separated files that contain unsupported grammar extensions.
In particular, for JSON and DOT, we removed 166 input files (cf. #Files Rejected by A) that
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5.2. Prevalence of Invalid Inputs

Table 13: Details of Mined Input Files. We report the cause of input invalidity by showing the
number of files rejected by (A) the input grammar, (B) at least one subject program and (C) all
subject programs

Input #Crawled #Unique #Valid #Invalid #Files Rejected by Mean File Size (KiB)
Format Files Files Files Files A B C Valid Invalid

JSON 8654 7006 6948 222 164 58 52 12.84 0.78
OBJ 509 480 455 25 0 25 0 401.57 64.15
DOT 381 349 303 48 2 46 4 4.74 2.88

only contain literals like a number or a string (e.g. which are invalid JSON [231]) and JSON files
that contain multiple JSON files appended to each other, as written by some programs.

To determine actual invalid input files (cf. #Invalid), we filter out the valid input files
from the set of unique files by checking that (1) the file does not lead to a lexing/parsing error
when parsed by ANTLR and (2) the file was successfully opened by all subject programs (of
the input format) without crashing (using the test oracle in Section 5.2). In total, 7702 input
files (cf. #Valid Files) passed the check of the filtering process and the remaining 295 input files
represent our set of real-world invalid files (cf. #Invalid Files). Exactly 166 inputs were rejected
by ANTLR, this is shown in Table 3 (cf. #Files Rejected by A).

In the set of invalid input files, 129 input files specifically failed to be processed by at least
one of the subject programs (cf. #Files Rejected by B), while 56 input files failed for all subject
programs (cf. #Files Rejected by C ). In addition, we modified all valid files by removing additional
white spaces in each, in order to accurately determine the data loss incurred by our approaches
during evaluation.

Test Oracle

In our setup, the test oracle for ddmax is a crashing oracle. An input is treated as invalid if it
crashes the subject program, or the result of the subject is empty, or the subject takes more than
10 seconds to process the input45. A program run is considered a crash if the subject program
returns a non-zero exit value. Even if a subject reports an error, it is only considered a crash if it
also returns a non-zero exit value. Opening a valid file, however, produces a non-empty output
after 10 seconds and does not crash the subject program. The test oracle does not use ANTLR as
an invalidity criterium for (lexical) ddmax , because the goal is to repair an input with feedback
from a subject program, without the knowledge of the input grammar. Although, syntactic ddmax
employs ANTLR to build its initial AST, it does not obtain feedback from ANTLR during repair,
i.e. when the AST is being modified.

To automate tests, we ensure that all subject programs have a full command-line interface
(CLI) support or a Java/Python API. The test oracle was implemented in 890 LoC of Java and
412 LoC of Python code.

45This execution time of 10 seconds was determined as a maximum opening time to successfully process all
valid input files in our evaluation corpus.
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5. Debugging Failure-Inducing Inputs

Experimental Results

RQ1: How prevalent are invalid inputs in practice?

Invalid input files are common. About four percent of all inputs in our corpus (295 files) were
invalid (cf. Table 13); they were either rejected by subject program(s) or the input grammar.
Specifically, about two percent of the input files (129 files) in our sample were rejected by at least
one subject program; however, less than 1% (56 files) were rejected by all subject programs in
our evaluation setup.

A common cause of invalidity is wrong syntax, missing or non-conforming elements. Many
input files were invalid because of single character errors, such as a deleted character, a missing
character or an extraneous character. For instance, some JSON inputs were invalid due to
deletions of characters such as quotes, parentheses and braces. These errors are difficult to find
because they are often hidden in large documents. For example, our set of crawled OBJ files
contained many files of about 300KiB with one corrupted line (e.g. an invalid character inside a
“usemtl” statement). To fix such an error by hand, one would have to scroll through thousands
of lines of code and find this single corrupted character. Other sources of invalidity include the
addition of elements that do not conform with the input specification. Some JSON files contained
comments that begin with the "$" character. Comments are not permitted in JSON, however,
this was common practice in some JSON files and a few parsers support comments (e.g. Google
Gson).

In our sample of GitHub files, four percent could not be processed either by
the input grammar or at least one subject program.

5.3 Lexical Repair

Now that we have established that there are actually files that cannot be properly parsed or
opened, let us introduce the ddmax algorithm for recovering and repairing invalid input. This
variant of ddmax works on a character-by-character basis; we thus call it lexical ddmax .

Delta Debugging

Our ddmax technique can be seen as a variation on the minimizing delta debugging algorithm, a
technique for automatically reducing failure-inducing inputs by means of systematic tests. The
reduction problem is modeled as follows: Configurations consisting of individual (input) elements
which may or may not be present. There are two configurations: a passing configuration c4 and
a failing configuration c8. The passing configuration c4 typically stands for an empty or trivial
input (c4 = ;), and the failing configuration c8 � c4 stands for the failure-inducing input in
question. In our example from Section 5.1, the failing configuration would be

c8 = { "item": "Apple", "price": **3.45 } (1)

Zeller et al. [57] define the ddmin algorithm as follows. ddmin produces one set c
0
8 with

c4 ⇢ c
0
8 ✓ c8, where c

0
8 has a minimal size overall. It works by testing sets c

0 that lie between c4
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Maximizing Delta Debugging Algorithm

Let test and c8 be given such that test(;) = 4 ^ test(c8) = 8 hold.
The goal is to find c

0
4 = ddmax(c8) such that c

0
4 ⇢ c8, test(c04) = 4,

and � = c8 � c
0
4 is 1-minimal.

The maximizing Delta Debugging algorithm ddmax(c) is

ddmax(c8) = ddmax2(;, 2) where

ddmax2(c
0
4, n) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

ddmax2(c8 � �i, 2) if 9i 2 {1, . . . , n} · test(c8 � �i) = 4

(“increase to complement”)
ddmax2

�
c
0
4 [ �i, max(n � 1, 2)

�
else if 9i 2 {1, . . . , n} · test(c04 [ �i) = 4

(“increase to subset”)
ddmax2

�
c
0
4, min(|c8|, 2n)

�
else if n < |c8 � c

0
4|

(“increase granularity”)
c
0
4 otherwise (“done”).

where � = c8 � c
0
4 = �1 [ �2 [ · · · [ �n, all �i are pairwise disjoint,

and 8�i · |�i| ⇡ |c8 � c
0
4|/n holds.

The recursion invariant (and thus precondition) for ddmax2 is test(c04) = 4 ^ n  |�|.

Figure 46: Maximizing Lexical Delta Debugging algorithm

and c8 (i.e., c4 ✓ c
0 ✓ c8). A test involves running the original program on the newly synthesized

input c
0. The outcome test(c0) of the test—either 4 (passing), 8 (failing), or (unresolved)—

determines algorithm progress: Whenever a subset c
0 ✓ c8 fails (test(c0) = 8), ddmin further

narrows down the difference between c
0 and c4. In our example from Section 5.1, Figure 43 shows

a typical ddmin output c
0
8: The one character in the input suffices to cause the (syntax) error.

When choosing a new candidate c
0, ddmin initially splits the sets to be tested in half; as

long as tests always pass or fail, this is as efficient as a binary search. If tests are unresolved
(say, because the input is invalid), ddmin resorts to cutting quarters, eighths, sixteenths of the
input (ddmin). Eventually, ddmin tests each remaining element (character) for its relevance in
producing the failure.

The ddmax Algorithm

Our definition of ddmax is shown in Figure 46. ddmax uses the same setting as ddmin; however,
rather than minimizing the failure-inducing input c8, it starts with a passing input c

0
4 = c4;

like ddmin, it assumes for simplicity that c4 = ; holds. It then maximizes c
0
4, systematically

minimizing the difference between c
0
4 and c8 using the same techniques as ddmin (first progressing

with large differences, then smaller and smaller differences), until every remaining difference
would cause c

0
4 to fail. This makes ddmax act in exact symmetry to ddmin, and complements the

original definitions of dd and ddmin [57].
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5. Debugging Failure-Inducing Inputs

A ddmax Example

How does ddmax work? Let us illustrate it on the example from Section 5.1. We have c8 defined
as in Equation (1), above, and evaluate ddmax(c8) to obtain c

0
4, the maximal subset of c8 that

passes the test (i.e., that can be still be processed by our JSON application at hand). We now
invoke ddmax(c8) and get ddmax2(;, 2)—that is, c

0
4 = ; and n = 2. The set c

0
4 will continually

hold more and more characters, and n will hold the current granularity.
ddmax2 determines � = c8 � c

0
4 = c8 � ; = c8, and splits it into two parts �1 [ �2 = �:

�1 = "price": **3.45 }

�2 = { "item": "Apple",

As part of “increase to complement”, ddmax2 first tests c8��1 (which is �2) and then c8 = �2

(which is �1). Neither of both is a valid JSON input, hence the tests do not pass. In “increase
to subset”, the sets to be tested are c

0
4 [ �1 = (; [ �1) = �1 and c

0
4 [ �2 = (; [ �2) = �2;

we already know that these tests do not pass. Hence, we “increase granularity” and double n to
n = 4.

With n = 4, we now split � into four parts �1 [ · · · [ �4 = �:

�1 = { "item": �2 = "Apple",

�3 = "price": �4 = **3.45 }

In “increase to complement”, the tests run on the failing set c8 without the individual �i—that is:

c8 � �1 = "Apple", "price": **3.45 }

c8 � �2 = { "item": "price": **3.45 }

c8 � �3 = { "item": "Apple", **3.45 }

c8 � �4 = { "item": "Apple", "price":

None of these inputs is syntactically valid JSON, and no test passes; so ddmax further increases
granularity to n = 8. In this round, again none of the �i pass; but one of the complements does:

c8 � �6 = { "item": "Apple", "price":45 }

with �6 = **3.

The set c8 ��6 is indeed a syntactically valid JSON input, and test(c8 ��6) passes (“increase
to complement”). At this point, we have recovered 31

36 = 86% of the input data already.
Can we add more characters? Following the ddmax definition, we reinvoke ddmax2 with

c
0
4 = c8 � �6. Now, the remaining difference between c

0
4 and c8 is �6 as above. We restart with

n = 2 and decompose the remaining � = c8 � c
0
4 = �6 into �61 and �62 :

�61 = ** �62 = 3.
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Figure 47: Workflow of the ddmax evaluation

Now, c8 � �61 passes, yielding the syntactically correct input:

c8 � �61 = { "item": "Apple", "price":3.45 }

A further iteration will also recover the space character before the number, eventually yielding
the repaired input in Figure 44 and the remaining difference � in Figure 45.

The example demonstrates two important properties of ddmax:

• ddmax is thorough. Its result c
0
4 is 1-maximal—that is, adding any further character from

c8 will no longer pass. Formally, this means that 8�i 2 c8 � c
0
4 · test

�
c
0
4 [ {�i}

�
6= 4 holds.46

• ddmax can be slow. The complexity of ddmax is the same as ddmin—in the worst case, the
number of tests carried out by ddmax(c8) is |c8|2 + 3|c8|; and in the best case—if there is
only one failure-inducing change �i 2 c8, and all cases that do not include �i pass, then
the number of tests t is limited by t  2 log2(|c8|).

In practice, as with ddmin, things will be somewhere between the two extremes; but keep
in mind that at maximum granularity, ddmax runs at least |c8 � c

0
4| tests—that is, one test

for every character that possibly still could be restored.

With these properties, what we get with ddmax is an algorithm that guarantees a maximum
of data recovery, albeit at the price of possibly running a large number of tests.

Evaluation Setup

Workflow

Figure 47 shows the workflow of our evaluation. First, we collect real-world invalid input files from
the set of crawled files, according to Section 5.2. Those files are then filtered into a set of valid
files and a set of invalid files (Step 1) and duplicates and files with a wrong format are deleted.

46Both maximality and complexity properties are proven in a way analogous to the properties of ddmin in [57].
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5. Debugging Failure-Inducing Inputs

Secondly, we select and mutate 50 valid crawled files to produce an additional set of corrupted
input files (Step 2). Then, we feed a invalid file to each subject program, and the ANTLR parser
framework (Step 3). ANTLR executes its default error recovery strategy while generating a
parse tree for the input. Next, we feed the invalid file to lexical ddmax (Step 4). Lexical ddmax
tests the input under repair repeatedly using the feedback from the subject program (Step 5).
Then, we feed the original crawled files and the resulting repaired file from each technique to the
differencing framework (Step 6), which computes the change in file size, Levenshtein distance
and perceptive hash value for both files. We save the feedback from our subject program (Step 7).
Finally, to ensure the quality of our approach, we also execute ddmin on the real-world invalid
inputs (Step 8) and report the content and size of the result.

Lexical ddmax was implemented in 595 LoC of Java code. ANTLR also implements an
inbuilt error recovery strategy which is designed to recover from lexing or parsing errors (e.g.
missing/wrong tokens or incomplete parse trees) [234].

Mutations

In addition to the real-world invalid inputs (cf. Section 5.2), we also simulate real-world data
corruption by applying byte-level mutations on valid input files. These mutations were chosen
because they are similar to the corruptions observed in real-world invalid files (see Section 5.2 and
Section 5.5). We perform the following mutations at a random position in each valid input file:
byte insertion, byte deletion and byte flip. To simulate single data corruption, we randomly choose
one of these mutations and apply it once on the valid input file. For multiple data corruptions,
we perform up to 16 random mutations on each input file. A mutation is only successful (for an
input format), if at least one of the subject programs (that passes before) fails after the mutation.
These criteria is similar to how we collected invalid input files in the wild.

Metrics and Measures

In order to determine the quality of ddmax repair, we use the following metrics and tools:

1. File Size: We measure the file size of the inputs recovered by ddmax and the difference in
file size between the original valid input and the repaired file. We use these measurements
to account for the amount of data recovered by ddmax as well as the amount of data loss
incurred.

2. Levenshtein Distance: Additionally, we measure data loss using the Levenshtein distance
metric [235], measuring the edit distance between valid input and repaired file.

3. Perceptive Image Difference: In order to measure the (semantic) information loss
incurred by ddmax , we calculate the hash value of our 3D images, i.e. Wavefront OBJ
format. We compute the image distance of our 3D image files by rendering both the
repaired image and the original valid image into several 2D images from three different
camera angles and three scales, then measuring the 2D image distance of all nine images.
We compare these images using the Python ImageHash library [236] in order to obtain
a good approximation of the real image difference between those two 3D models as a
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Figure 48: Number of Repaired Files for Each Technique

perceptive image difference between both images. In our setup, we use two rendering engines
(Blender [221] and Appleseed [223]) to render the images.

Research Protocol

For each input format, we collect real-world invalid input files. Secondly, we perform single and
multiple mutations on 50 valid input documents. Then, we execute all files on the different subject
programs, in order to determine the number of input files which fail for each subject program.
We proceed to run lexical ddmax on each invalid or mutated input file. In particular, we are
interested in determining the following: (1.) Baseline: the number of invalid input files which
are accepted by a subject program as valid inputs (i.e. non-failure-inducing inputs processed by
the program without leading to a crash), in order to measure the effectiveness of the built-in
error recovery feature of the program; and (2.) ANTLR: the number of invalid inputs which are
repaired by ANTLR inbuilt error recovery strategy ; (3) Lexical: the number of invalid inputs
which are repaired by lexical DDMax.

All experiments were conducted on a Lenovo Thinkpad with four physical cores and 8GB of
RAM, specifically an Intel(R) Core i7 2720qm @ 2.20GHz, 8 virtual cores, running 64-bit Arch
Linux. All our prototypes are single-threaded.

Experimental Results

RQ2: How effective is lexical ddmax in repairing invalid input documents within a
time budget of one minute per file?

Lexical ddmax repaired about two-thirds (66%) of all invalid inputs (cf. Table 14). It also
outperformed both the in-built repair strategy of the subject programs (Baseline) and the
ANTLR error recovery strategy (ANTLR), both of which repaired 14% and 40% of all invalid
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5. Debugging Failure-Inducing Inputs

Table 14: ddmax Effectiveness on All Invalid Inputs

Type of Format #Possible # repaired input files
Invalidity (#subjects) Repairs Baseline ANTLR Lexical Syntactic

Real
World

JSON (3) 167 0 40 38 62
OBJ (3) 33 1 8 24 25
DOT (2) 64 24 25 30 31

Single
Mutation

JSON (3) 150 4 80 115 127
OBJ (3) 150 34 82 146 144
DOT (2) 100 43 66 92 82

Multiple
Mutation

JSON (3) 150 4 45 79 112
OBJ (3) 150 3 29 127 126
DOT (2) 100 40 47 51 63

Total (3) 1064 153 422 702 772
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input files respectively. Specifically, lexical ddmax repaired over four times as many invalid
input files as the Baseline and 66% more invalid input files than ANTLR (cf. Figure 48). The
performance of lexical ddmax was significantly better for both real-world invalid files and mutated
invalid files.

Lexical ddmax repaired about two-thirds of all invalid inputs and significantly
outperforms both the baseline and ANTLR.

RQ3: How much data is recovered by lexical ddmax and how much is the data loss
incurred by lexical ddmax?

In terms of recovery rate, lexical ddmax performs slightly worse than the other techniques, with a
recovery rate of 75% on real-world invalid inputs, 86% on single data corruption, and about 43%
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Table 15: ddmax Efficiency on All Invalid Inputs for each technique (A) Baseline, (B) ANTLR,
(C) Lexical ddmax , (D) Syntactic ddmax .

Type of Input Runtime (sec.) #Runs
Invalidity Format A B C D C D

Real
World

JSON 2 2 1227 153 341525 6029
OBJ 44 47 2065 1279 6253 3164
DOT 48 166 3828 3018 2783 1162

Single
Mutation

JSON 4 4 1584 1065 45651 129659
OBJ 491 672 6151 4083 3809 1352
DOT 58 60 1239 1244 6077 4565

Multiple
Mutation

JSON 10 10 5903 2153 1194577 448801
OBJ 624 728 9938 8132 8577 5043
DOT 60 60 3365 2241 34876 11956

Mean 153 200 3981 2624 72296 70049

on multiple data corruption (see Figure 49). For both types of data invalidity, the baseline and
ANTLR maintain an almost perfect data recovery rate (approximately 100%).

Lexical ddmax recovered most (75% and 65%) of the input data in real-world invalid inputs
and mutated input files (, respectively).

In theory, lexical ddmax is guaranteed to ensure minimal data loss for all repairs. However,
due to large file sizes and timeout constraints in our experimental setup, lexical ddmax often
halts before the maximal valid data is recovered. In our experiment, lexical ddmax had timed out
for 163 input files during repair. In order to inspect the data recovery rate of each approach in a
more balanced setting, we examined the set of input files that were repaired by both ANTLR and
lexical ddmax , before lexical ddmax timed out. In total, 109 repairs were accomplished by both
lexical ddmax and ANTLR, before a time out. The data loss of lexical ddmax is minimal and
comparable to ANTLR, this holds for both real-world and mutated invalid files for the intersecting
set before timeout. In fact, on average, lexical ddmax recovered 1.724 KiB of data, and ANTLR
recovered 1.548 KiB.

Overall, lexical ddmax incurs minimal data loss during repair:
It recovers a similar amount of data from invalid input files, in comparison to ANTLR.

RQ4: How efficient is lexical ddmax in repairing invalid input documents?

On average, it took less than two minutes (1.3 minutes) to repair a file (cf. Figure 54). In
comparison, both the Baseline and ANTLR had an execution time of 3 and 4 seconds per input
file respectively. This indicates that lexical ddmax is more time-consuming than both the Baseline
and ANTLR. This is expected since ddmax requires multiple executions of the subject programs
(as indicated in lexical #Runs in Table 15).

Lexical ddmax is relatively fast in repairing an invalid input file:
It takes less than two minutes (78 seconds) on average.
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{ "item": "Apple", "price" 3.45 }

Figure 50: Failing JSON input with missing colon

{ "item": "Apple" }

Figure 51: Repaired JSON input by ddmax

5.4 Syntactic Repair

We have seen that ddmax is general, but also slow: If one wants to recover a maximum of data,
it runs a single test for every candidate character that can be recovered. Is it possible to speed
things up, possibly by leveraging information on the input format? To this end, we introduce the
syntactic ddmax algorithm, which improves the performance of ddmax using the knowledge of
the input grammar.

The key insight is to execute ddmax on the parse tree of the input, instead of the input
characters. Here, we analyze the input at the syntactical level, rather than the lexical level. This
improves the runtime and general performance of the ddmax algorithm. The main benefit of
the approach is that it enables ddmax to reason at a more coarse-grained level by testing on the
input structure. Lexical ddmax may take thousands of test runs, depending on the size of the
input, in fact its number of runs is bound to the number of characters in the input. However,
syntactic ddmax is bound to the number of terminal nodes in the parse tree, which is typically
smaller than the number of characters in the input. Thus, syntactic ddmax can easily exclude
corrupted parse tree nodes or subtrees during test runs. Additionally, the knowledge of the input
structure ensures that the resulting recovered inputs are syntactically valid. This helps in the
case of syntax errors, large corrupted input region(s) and multiple data corruptions on the input
(structure).

Specifically, the syntactic ddmax algorithm takes as input a parse tree for the corrupted input
file (see Figure 52) and obtains a pre-order list of terminals in the parse tree. For instance,
consider the corrupted JSON input in Figure 50. Repairing this input using the lexical ddmax
algorithm results in the JSON input in Figure 51, which would take over 100 test runs. Even for
this small example, syntactic ddmax enhances the performance of ddmax with the input grammar,
reducing the number of test runs of ddmax to nine (9) and improving performance by ten fold
(10x).

To repair the input (cf. Figure 50), syntactic ddmax first parses the input into a parse tree47,
shown in Figure 52. Next, we run the ddmax algorithm on the parse tree, removing terminal
nodes (instead of single characters) in each iteration of ddmax 48. We define c8 as our failing
configuration, which contains the terminal nodes of the parse tree from Figure 52.

Let us run the ddmax algorithm on our example terminal nodes. We invoke ddmax(c8) which
results in ddmax2(;, 2), so inside ddmax2, we have c

0
4 = ; and n = 2. At first, our � is split into

47ANTLR is capable of generating a parse tree for corrupted input files, it summarizes syntactically wrong
symbols or trees into error nodes (similar to Figure 52).

48Removing only the error node in the parse tree does not necessarily result in a non-failure-inducing input.

110



5.4. Syntactic Repair

hJSONi

{ hdicti

hstringi

"item" : "Apple"

, Error

}

Figure 52: Parse tree of Figure 50

two parts49:

�1 = { "item" : "Apple"

�2 = , Error }

Running test(c8 � �1) and test(c8 � �2) both fail (= 8). We are at the first run, so with c
0
8 = ;,

c
0
4 [ �1 = c8 � �2 and c

0
4 [ �2 = c8 � �1 which also both fail in the “increase to subset” step.

Next, we set n = 4 and restart ddmax2(c04, n).
With n = 4, in the “increase to complement” and “increase to subset” steps, we get

�1 = { "item" �2 = : "Apple"

�3 = , Error �4 = }

In the “increase to complement” step, we find that test(c8 � �3) = 4, so we repeat our
algorithm with c

0
4 = c8 � �3 and n = 2, getting

�1 = , �2 = Error

Since neither test(c8 � �i) nor test(c04 [ �i) passes for any i and n = |c8 � c
0
4| = 2, we are done

and end up with the remaining input seen in Figure 51. For this example, the syntactic ddmax
run needed only 9 test runs of the subject program to repair the faulty input.

Let us now take a look at the complexity of our algorithm. As mentioned in Section 5.3,
ddmax has a worst-case complexity of t = |c8|2 + 3|c8| test runs and a best-case complexity of
t  2 log2(|c8|). Intuitively, the complexity of syntactic ddmax is similar to the complexity of
ddmax, except that it is bounded by the number of terminal nodes instead of the number of
characters. In the worst case, an input’s parse tree has as many terminal nodes as characters.
However, real-world input formats have keywords, data types and character classes to aggregrate
group of characters into terminals (e.g. string and integers). This reduces the number of terminal
nodes and the required number of test runs for syntactic ddmax . It therefore speeds up ddmax by
decreasing the number of elements to maximize with ddmax . Consider the example in Figure 50,
there are 33 single characters to search with lexical ddmax , which are parsed into 7 terminal
nodes for syntactic ddmax . In general, we can assume that with an average terminal node length

49Note that checking for only syntactically valid subsets of the programs (e.g. using the grammar only) is not
sufficient to repair the input. We leverage the application, since the semantics and intended use of the input file
are encoded in the logic of the applcation.
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of n characters, we have a worst-case complexity of
⇣
|c8|
n

⌘2
+ 3 |c8|

n test runs and a best-case

complexity of t  2 log2(
|c8|
n ) test runs.

Evaluation Setup

Implementation

Syntactic ddmax was implemented in 1084 LoC of Java code, this implementation is built on
top of the ANTLR 4.5 parser generator framework [237] for each input grammar. Overall, the
implementation of syntactic ddmax differs from that of lexical ddmax in Section 5.3, because of
its use of the input grammar and parse tree. Specifically, Syntactic ddmax uses the ANTLR parse
tree (from Step 3 in Figure 47) to repair invalid inputs. In our evaluation, we feed the invalid
real-world files into our syntactic ddmax, we proceed to run syntactic ddmax on each invalid
input file and evaluate the change in file size (i.e. the data loss on byte-level). Syntactic ddmax
tests the input under repair repeatedly using the feedback from the subject program (Step 5). In
addition to the research protocol in Section 5.3, we feed all invalid input files to syntactic ddmax
and measure the number of invalid files which are repaired by our syntactic DDMax using the
input grammar, this measure is termed Syntactic.

Experimental Results

RQ5: How effective is syntactic ddmax in repairing invalid input documents within
a time budget of one minute per file?

Syntactic ddmax repaired about three-quarters (73%) of all invalid inputs in our evaluation,
within a time budget of one minute per input (cf. Table 14). Overall, it is about 10% more
effective than lexical ddmax (cf. Figure 48). It significantly outperformed both the built-in repair
strategies of the subject programs and ANTLR, it repaired five times as many files as the subject
programs, and almost twice as many files as ANTLR (cf. Table 14). This confirms our hypothesis
(in RQ2 ) that ddmax can benefit from the knowledge of the input grammar.

Syntactic ddmax repaired about three-quarters of all invalid inputs (within one minute per input)
and it is more effective than lexical ddmax, for all invalid inputs.

RQ6: How much data is recovered by syntactic ddmax and how much is the data
loss incurred by syntactic ddmax ?

On average, syntactic ddmax (89%) has a higher data recovery rate in comparison to lexical
ddmax (58%) for all invalid inputs. For single data corruption, the data recovery rate of syntactic
ddmax is similar to that of ANTLR and the baseline, when using mean file size as a metric. On
multiple data corruption, syntactic ddmax recovered about 84% of the data in the input files
(cf. Figure 49). For all invalid inputs, the baseline and ANTLR maintain an almost perfect data
recovery rate (approximately 100%). Evidently, the data loss incurred by both ANTLR and the
baseline is negligible.
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Figure 53: Data Loss Incurred for Invalid Files

Syntactic ddmax has a high data recovery rate,
recovering most (89%) of the data in invalid input files.

The data loss incurred by syntactic ddmax is very low, in terms of the edit distance between
the recovered file and the valid file. For all invalid inputs, it is less than 50% worse off than
ANTLR, as captured by the Levenshtein distance (cf. Figure 53). In particular, the mean
edit distance of the repaired file and the originally valid input file is less than four for the
baseline and about 24 for ANTLR. As expected, the Levenshtein distance is lower (21–28) for
single data corruptions for lexical and syntactical ddmax respectively, and higher for multiple
corruptions (76–77). On inspection, we found that the high loss of ddmax is due to early timeouts
for large input files, indeed, ddmax finds a valid subset, but times out before the maximal subset
is reached. For Wavefront OBJ files, the perceptive image difference shows us similar scaling
result as the Levenshtein distance. While it shows small results for Baseline and ANTLR (0.1
and 29.7, respectively), the results for lexical and syntactical ddmax are higher (76.4 and 51.9),
thus the difference between the unmodified image and the repaired image is larger.

We conduct our evaluation of minimal data loss similarly to the setting in RQ3 (cf. Section 5.3).
As expected, syntactic ddmax recovered slightly less data than lexical ddmax , exactly 1.720 KiB
on average. This is because syntactic ddmax removes terminal nodes, a terminal node may contain
more characters than the number of mutated characters in the node. In summary, with a high
enough timeout lexical ddmax is guaranteed to achieve minimal data loss, this guarantee does
not hold for syntactic ddmax , since it operates at the parse tree level rather than the byte level.

Syntactic ddmax incurs comparatively
similar data loss during repair as lexical ddmax.
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RQ7: How efficient is syntactic ddmax in repairing invalid input documents?

Syntactic ddmax improves over the runtime performance of lexical ddmax (cf. RQ4 Section 5.3).
It improves over lexical ddmax by 34%, its execution time is about two-third of the running time
of lexical ddmax. Specifically, syntactic ddmax is quicker, it took approximately one minute to
repair a single file, but requires a grammar and a parse tree50.

Syntactic ddmax is faster in repairing an invalid input file:
It takes less than one minute to repair a file on average.

5.5 Diagnostic Quality

Even though ddmax is primarily meant for repairing data, its maximized input can also be useful
for diagnostics and debugging. In particular, ddmax diagnosis is the difference (�) between the
failing and maximal passing input. This is a minimal failure cause, which is necessary to debug
the input. Most notably, the � from ddmax includes all input characters that are failure-inducing,
whereas ddmin include only a minimal subset.

Evaluation Setup

To evaluate the diagnostic utility of ddmax , we compare ddmax diagnoses to the established
state of the art input diagnosis approach ddmin. In our evaluation, we compare ddmax diagnosis
to that of ddmin, we do not compare to the general delta debugging (DD) algorithm. This is
because DD is not suited for repairing inputs. Although, DD would produce a passing and a
failing input with a minimal difference between them. This DD difference could be as small as

50Depending on the grammar and on the input file size, generating a parse tree should take less than a second.
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Table 16: Diagnostic Quality on Real-World Invalid Inputs for A○ ddmin and B○ ddmax diagnoses,
and C○ ddmax repair.

Format Diagnosis (B) Repair (B) Intersection (%)
(#inputs) A B C A \ B A \ C
JSON (21) 2.909 19.095 103.476 13.88 23.18
OBJ (18) 2.722 1.000 189.000 18.03 11.46
DOT (27) 376.654 1.115 675.346 5.76 54.64
Mean 155.754 6.804 360.747 11.69 32.85

the ddmax difference between the maximal passing input and the original failing input, and have
similar diagnostic quality; also, DD would likely be faster. However, DD does not have the goal
of minimizing data loss, and thus the passing input resulting from general DD may actually be
close to a minimal input cutting away all the original context.

By construction, DD (and ddmin) can minimize (and thus lose) all the context of the original
failure. For instance, if there is a flag in the input that activates the faulty function, and DD
(and ddmin) will remove that flag, causing the program to pass, then this single flag will end
up as failure-inducing input. On the other hand, ddmax would preserve as much of the original
context as possible by construction. It is these experiences that have driven us to experiment
with DD alternatives such as ddmax and ddmin.

We implemented a ddmin algorithm following the delta debugging algorithm in [57] in 450
LoC of Java code. Our ddmin implementation uses both the subject program and ANTLR as
oracles to minimize an invalid input, in order to ensure that ddmin diagnosis is syntactically
valid. This ensures that ddmin does not report a valid subset that may trigger a failure due to
syntactic invalidity (e.g. in cf. Figure 43 in Section 5.1), since ANTLR can parse the ddmin
diagnosis, but the subject program crashes. Then, we feed the real-world invalid files into our
ddmin implementation (as seen in Figure 47 Step 8) and compare the diagnosis generated by
ddmin to that of ddmax .

We are interested in evaluating the soundness and completeness of ddmin diagnosis, using
ddmax diagnoses as the “ground truth”. To be fair to both approaches, we consider the intersection
of the diagnoses for both ddmin and ddmax that finished execution before a time-out, this a set
of 66 input files in total (cf. Table 16).

Experimental Results

RQ8: How effective is ddmax in diagnosing the root cause of invalid inputs,
especially in comparison to ddmin?

Given that ddmax was completely executed without a timeout, the repair of ddmax is the maximal
passing input and ddmax diagnosis is the minimal failure cause. As expected ddmin diagnosis is
significantly larger (21 times more) than the ddmax diagnosis, hence, it contains a significant
amount (33%) of the maximal passing input, which is considered noise in the diagnosis (cf. A
\ C in Table 16). Additionally, ddmin diagnosis only contains a small portion (12%) of the
minimal failure cause required to diagnose the input invalidity (cf. A \ B in Table 16). This
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result shows that ddmax diagnosis is more effective for input debugging in comparison to the
state of the art, ddmin.

Only one-eighth (12%) of a ddmin diagnosis contains the minimal failure cause and about
one-third (33%) of ddmin diagnosis contains the maximal passing input, on average.

5.6 Threats to Validity

Our evaluation is limited to the following threats to validity:

External validity refers to the generalizability of our approach and results. We have evaluated
our approach on a small set of applications and input grammars. There is a threat that
ddmax does not generalize to other applications and grammars. However, we have mitigated
this threat by evaluating ddmax using mature subject programs with varying input sizes.
Our subjects have 478 KLoC and 14 years maturity, on average, making us confident that
our approach will work on a large variety of applications and invalid inputs.

Internal validity is threatened by incorrectness of our implementation, specifically whether
we have correctly adapted ddmin to ddmax for input repair. We mitigate this threat by
testing our implementation on smaller inputs and simpler grammars, in order to ensure our
implementation works as expected.

Construct validity is threatened by our test oracle, and consequently the error-handling im-
plementation of the subject. For instance, an application which silently handles exceptions
would not provide ddmax with useful feedback during test runs. We checked that the
rendered input produced by the subject is non-empty, after a 10 second timeout, which was
sufficient to identify failure-inducing inputs.

5.7 Limitations

Both ddmax variants are limited in the following ways:

Repair to subsets only. Both ddmax variants will return a strict lexical or syntactical subset of
the original failure-inducing input. The assumption is that only data should be restored that
already is there (rather than synthesizing new data, for instance). If the input format has
several context-sensitive dependencies, such as checksums, hashes, encryption, or references,
a strict lexical or syntactical subset might be small to the point of being useless.

Data repair, not information repair. Both ddmax variants are set to recover as much data
as possible, but not necessarily information. Even though the repaired input may be lexically
or syntactically close to the (presumed) original input, it can have very different semantics.
Users therefore are advised to thoroughly check the repaired input for inconsistencies; the
goal of this work is to enable users to load the input into their program such that they can
engage in this task.
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Input Semantics. Although, ddmax obtains some “semantic” information from the feedback of
the subject program itself, this feedback is limited to failure characteristics, i.e. “pass” or
“fail”. However, it is possible to extend ddmax to include (domain-specific) semantic checks,
which could either be defined as the execution of specific program artifacts such as a specific
branch, or programmatically defined by a developer (e.g. as an expected program output).

Multiple errors and multiple repairs. If there are multiple errors in an input, ddmax will
produce a maximum input that repairs all of them. However, if there are multiple ways
to repair the input, ddmax will produce only one of them. This property is shared with
delta debugging and its variants, which also pick a local minimum rather than searching for
a global one. However, it would be easy to modify ddmax to assess all alternative repairs
rather than the first repair.

5.8 Related Work

There is a large body of work concerning the interplay of program, inputs, and faults. We discuss
the most important related works.

Document Recovery attempts to fix broken input documents. Docovery [63] uses symbolic
execution to manipulate corrupted input documents in a manner that forces the program to
follow an alternative error-free path. In contrast to ddmax , this is a white-box approach
that analyzes the program paths executed by the failure-inducing inputs. S-DAGS [64] is a
semi-automatic technique that enforces formal (semantic) consistency constraints on inputs
documents in a collaborative document editing scenario. Both of these approaches require
program analysis.

Input Rectification aims at transforming invalid inputs into inputs that behave acceptably.
Input rectifiers [61, 62] address this problem by learning a set of constraints from typical
inputs, then transforming a malicious input into a benign input that satisfies the learned
constraints. In contrast, ddmax does not learn constraints but rather employs the feedback
from the program’s execution (and a grammar) to determine an acceptable subset of the
input. In comparison to security-critical rectification, its goal is maximal data recovery.

Input Minimization Numerous researchers have examined the problem of simplifying failure-
inducing inputs [57, 58, 59, 60]. In particular, [59] (HDD) and [60] are closely related to
ddmax . Both approaches use the input structure to simplify inputs, albeit without an input
grammar. Unlike ddmax , these approaches do not recover maximal valid data from the
failure-inducing input, but rather minimize the input like ddmin.

Data Diversity [65] transforms an invalid input into a valid input that generates an equivalent
result, in order to improve software reliability. This is achieved by finding the regions of the
input space that causes a fault, and re-expressing a failing input to avoid the faulty input
regions. In contrast, ddmax does not require program analysis; it only needs a means to
assess whether the program can process the input or not.
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Data Structure Repair iteratively fixes corrupted data structures by enforcing that they con-
form to consistency constraints [238, 239, 240, 241]. These constraints can be extracted,
specified and enforced with predicates [242], model-based systems [238], goal-directed rea-
soning [239], dynamic symbolic execution [240] or invariants [241]. On the one hand, the
goal of data structure repair is to ensure a program executes safely and acceptably, despite
data structure corruption. On the other hand, the goal of ddmax is to repair the input in
order to avoid the corruption of the program’s internal data structure.

Syntactic Error Recovery. Parsers and compilers implement numerous syntax error recovery
schemes [219, 243]. Most approaches involve a plethora of operations including insertion,
deletion and replacement of symbols [244, 245, 246], extending forward or backwards from a
parser error [247, 248], or more general methods of recovery and diagnosis [249, 250]. Unlike
ddmax , these schemes ensure the compiler does not halt while parsing, however, the invalid
input is not automatically fixed.

Data Cleaning and Repair. Several researchers have addressed the problem of data cleaning
of database systems. Most approaches automatically analyse the database to remove noisy
data or fill in missing data [251, 252]. Other approaches allow developers to write and apply
logical rules on the database [253, 254, 255, 256, 257, 258]. In contrast to ddmax , all of these
approaches repair database systems, not raw user inputs.

Data Testing and Debugging aims to identify system errors caused by well-formed but in-
correct data while a user modifies a database [259]. For instance, continuous data testing
(CDT) [260] identfies likely data errors by continuously executing domain-specfic test queries,
in order to warn users of test failures. DATAXRAY [261] also investigates the underlying
conditions that cause data bugs, it reveals hidden connections and common properties among
data errors. In contrast to ddmax , these approaches aim to guard data from new errors by
detecting data errors in database systems during modification.

5.9 Discussions and Future Work

This chapter has provided empirical evidence on the relevance, causes and prevalence of invalid
inputs in software practice. For instance, we found that four (4) percent of inputs in the wild
are invalid. Evidently, debugging and repairing invalid inputs is a relevant and challenging
problem. Thus, with ddmax , we have presented the first generic technique for automatically
repairing failure-inducing inputs—that is, recovering a maximal subset of the input that can still
be processed by the program at hand. Our approach (i.e. ddmax) is a variant of delta debugging
that maximizes the passing input, both at a lexical and a syntactical level; it requires nothing
more than the ability to automatically run the program with a given input. In our evaluation,
we find that ddmax fully repairs 79% of invalid input files, within a one (1) minute time budget.
Both variants of ddmax can be easily implemented and deployed in a large variety of contexts as
they do not require any kind of program analysis.

This work opens the door for a number of exciting research opportunities, our future work
will focus on the following issues:
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Synthesizing input structures. Going for a strict lexical or syntactical subset of the failure-
inducing input is a conservative strategy; yet, there can be cases where adding a small
amount of lexical or syntactical elements can help to recover even more information. We are
investigating appropriate grammar-based production strategies as well as hybrid strategies
that leverage both syntactical and lexical progression.

Learned grammars. Right now, our syntactical variant of ddmax requires an input grammar
to start with. We are investigating whether such a grammar can also be inferred from
the program at hand [262, 263], thus freeing users or developers from having to provide a
grammar.

From input repair to code repair. A minimal difference (�) between a maximized passing
and a full failure-inducing input also brings great opportunities for fault localization and
repair. For instance, what is the code executed by the failure-inducing input, but not by the
maximized passing input? What are the differences in variable values? Such differences in
execution can help developers to further narrow down failure causes as well as synthesizing
code repairs.

End-user debugging. Our input repair technique needs no specific knowledge on program code,
and could thus also be applied by end users. We are investigating appropriate strategies to
communicate the results of our repair and information about conflicting document parts to
end users, such that they can fix the problem without having to fix the program.

Hybrid repair. Lexical and syntactic ddmax can be combined such that after syntactic ddmax
is executed on the parse tree, lexical ddmax further repairs the text in the faulty nodes.
This combination reduces the number of iterations and the execution time, in comparison to
lexical ddmax . Moreover, it improves on the effectiveness of syntactic ddmax .

Semantic Input Repair. It is possible to extend the ddmax test oracle to include checks for
desirable “semantic” properties other than failure characteristics (i.e. pass or fail). For
instance, the test oracle can be extedned to check if some function is triggered or some
specific output is produced, such “semantic” checks would ensure that the resulting maximized
passing input is semantically similar to the original input and avoids the failure.

Fuzzing. Both variants of ddmax can be applied to improve software fuzzing. For instance,
mutational fuzzing techniques often modify seed inputs to find bugs in the program. Often,
these inputs become malformed after mutation, ddmax can be applied to repair such inputs,
in order to ensure that they are valid, and consequently, cover program logic.

The implementation of ddmax and the experimental data are available as a replication package:

https://tinyurl.com/debugging-inputs-icse-2020
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Chapter 6

Learning Input Distributions for
Grammar-Based Test Generation

This chapter is taken, directly or with minor modifications, from our 2020 TSE paper Inputs from
Hell: Learning Input Distributions for Grammar-Based Test Generation [20]. My contribution
in this work is as follows: (I) original idea; (II) partial implementation; (III) evaluation.

“A pinch of probability is worth a pound of perhaps.”
— James Thurber

6.1 Introduction

During the process of software testing, software engineers typically attempt to satisfy three goals:

1. First, the software should work well on common inputs, such that the software delivers its
promise on the vast majority of cases that will be seen in typical operation. To cover such
behavior, one typically has a set of dedicated tests (manually written or generated).

2. Second, the software should work well on uncommon inputs. The rationale for this is that
such inputs would exercise code that is less frequently used in production, possibly less
tested, and possibly less understood [70].

3. Third, the software should work well on inputs that previously caused failures, such that it
is clear that previous bugs have been fixed. Again, these would be covered via specific tests.

How can engineers obtain such inputs? In this chapter, we propose an approach that learns
the distribution of input elements from typical inputs found in software practice, in order to drive
test generation. Firstly, our approach learns the distribution of input elements from a set of
sample inputs found in software practice. The learned input distribution is then used to drive
the generation of new test inputs. Specifically, we introduce a novel test generation method that
produce additional inputs that are markedly similar or dissimilar to the sample. By learning
from past failure-inducing inputs, we can create inputs with similar features; by learning from
common inputs, we can create uncommon inputs with dissimilar features not seen in the sample.
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The key ingredient to our approach is a context-free grammar that describes the input
language to a program. Using such a grammar, we can parse existing input samples and count
how frequently specific elements occur in these samples. Armed with these numbers, we can
enrich the grammar to become a probabilistic grammar, in which production alternatives carry
different likelihoods. Since these probabilities come from the samples used for the quantification,
such a grammar captures properties of these samples, and producing from such a grammar
should produce inputs that are similar to the sample. Furthermore, we can invert the learned
probabilities in order to obtain a second probabilistic grammar, whose production would produce
inputs that are dissimilar to the sample. We thus can produce three kinds of inputs, covering the
three testing goals listed above:

1. “Common inputs”. By learning from common samples, we obtain a “common” probability
distribution, which allows us to produce more “common” inputs. This is useful for regression
testing.

2. “Uncommon inputs”. Learning from common samples, the resulting inverted grammar
describes in turn the distribution of valid, but uncommon inputs. This is useful for
completing test suites by testing uncommon features.

3. “Failure-inducing inputs”. By learning from samples that caused failures in the past, we
can produce similar inputs that test the surroundings of the original inputs. This is useful
for testing the completeness of fixes.

Both the “uncommon inputs” and “failure-inducing inputs” strategies have high chances of
triggering failures. Since they combine features rarely seen or having caused issues in the past,
we gave them the nickname “inputs from hell”. As an example, consider the following JavaScript
input generated by focusing on uncommon features:

var { a: {} = ’b’ } = {};

This snippet is valid JavaScript code, but causes the Mozilla Rhino 1.7.7.2 JavaScript engine
to crash during interpretation.51 This input makes use of so-called destructuring assignments : In
JavaScript, one can have several variables on the left hand side of an assignment or initialization.
In such a case, each gets assigned a part of the structure on the right hand side, as in

var [one , two , three] = [1, 2, 3];

where the variable one is assigned a value of 1, two a value of 2, and so on. Such destructuring
assignments, although useful in some contexts, are rarely found in JavaScript programs and tests.
It is thus precisely the aim of our approach to generate such uncommon “inputs from hell”.

This chapter makes the following contributions:

1. We use context-free grammars to determine production probabilities from a given set of
input samples.

51We have reported this snippet as Rhino issue #385 and it has been fixed by the developers.
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2. We use mined probabilities to produce inputs that are similar to a set of given samples.
This is useful for thoroughly testing commonly used features (regression testing), or to
test the surroundings of previously failure-inducing inputs. Our approach thus leverages
probabilistic grammars for both mining and test case generation. In our evaluation using
the JSON, CSS and JavaScript formats, we show that our approach repeatedly covers the
same code as the original sample inputs; learning from failure-inducing samples, we produce
the same exceptions as the samples as well as new exceptions.

3. We use mined probabilities to produce inputs that are markedly dissimilar to a set of given
samples, yet still valid according to the grammar. This is useful for robustness testing, as
well as for exploring program behavior not triggered by the sample inputs. We are not
aware of any other technique that achieves this objective. In our evaluation using the same
subjects, we show that our approach is successful in repeatedly covering code not covered
in the original samples.

The remainder of this chapter is organized as follows. After giving a motivational example
in Section 6.2, we detail our approach in Section 6.3. Section 6.4 evaluates our three strategies
(“common inputs”, “uncommon inputs”, and “failure-inducing inputs”) on various subjects. We
then discuss the threats to validity and limitations in Section 6.5 and Section 6.6. Finally, we
conclude by discussing related work and future work in Section 6.7 and Section 6.8, respectively.

6.2 Overview

To demonstrate how we produce both common and uncommon inputs, let us illustrate our
approach using a simple example grammar. Let us assume we have a program P that processes
arithmetic expressions ; its inputs follow the standard syntax given by the grammar G below.

Expr ! Term | Expr "+" Term | Expr "-" Term;
Term ! Factor | Term "*" Factor | Term "/" Factor;
Factor ! Int | "+" Factor | "-" Factor | "(" Expr ")";
Int ! Digit Int | Digit;
Digit ! "0" | "1" | "2" | "3" | ... | "9";

Let us further assume we have discovered a bug in P : The input I = 1 * (2 + 3) is not
evaluated properly. We have fixed the bug in P , but want to ensure that similar inputs would
also be handled in a proper manner.

To obtain inputs that are similar to I, we first use the grammar G to parse I and determine
the distribution of the individual choices in productions. This makes G a probabilistic grammar Gp

in which the productions’ choices are tagged with their probabilities. For the input I above, for
instance, we obtain the probabilistic rule

Digit ! 0% "0" | 33.3% "1" | 33.3% "2" | 33.3% "3" | 0% "4" | 0% "5"
| 0% "6" | 0% "7" | 0% "8" | 0% "9";
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Figure 55: Derivation tree representing "1 + (2 * 3)"

Expr ! 66.7% Term | 33.3% Expr "+" Term | 0% Expr "-" Term;
Term ! 75% Factor | 25% Term "*" Factor | 0% Term "/" Factor;
Factor ! 75% Int | 0% "+" Factor | 0% "-" Factor | 25% "(" Expr ")";
Int ! 0% Digit Int | 100% Digit;
Digit ! 0% "0" | 33.3% "1" | 33.3% "2" | 33.3% "3" | 0% "4" | 0% "5"

| 0% "6" | 0% "7" | 0% "8" | 0% "9";

Figure 56: Probabilistic grammar Gp, expanding G

(2 * 3)
2 + 2 + 1 * (1) + 2
((3 * 3))
3 * (((3 + 3 + 3) * (2 * 3 + 3))) * (3)
3 * 1 * 3
((3) + 2 + 2 * 1) * (1)
1
((2)) + 3

Figure 57: Inputs generated from Gp in Figure 56
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Expr ! 0% Term | 0% Expr "+" Term | 100% Expr "-" Term;
Term ! 0% Factor | 0% Term "*" Factor | 100% Term "/" Factor;
Factor ! 0% Int | 50% "+" Factor | 50% "-" Factor | 0% "(" Expr ")";
Int ! 100% Digit Int | 0% Digit;
Digit ! 14.3% "0" | 0% "1" | 0% "2" | 0% "3" | 14.3% "4" | 14.3% "5" | 14.3% "6"

| 14.3% "7" | 14.3% "8" | 14.3% "9";

Figure 58: Grammar Gp�1 inverted from Gp in Figure 56

which indicates the distribution of digits in I. Using this rule for production, we would obtain
ones, twos, and threes at equal probabilities, but none of the other digits. Figure 56 shows the
grammar Gp as extension of G with all probabilities as extracted from the derivation tree of I

(Figure 55). In this derivation tree we see, for instance, that the nonterminal Factor occurs 4
times in total. 75% of the time it produces integers (Int), while in the remaining 25%, it produces
a parenthesis expression ("(" Expr ")"). Expressions using unary operators like "+" Factor and
"-" Factor do not occur.

If we use Gp from Figure 56 as a probabilistic production grammar, we obtain inputs according
to these probabilities. As listed in Figure 57, these inputs uniquely consist of the digits and
operators seen in our sample 1 * (2 + 3). All of these inputs are likely to cover the same
code in P as the original sample input, yet with different input structures that trigger the same
functionality in P in several new ways.

When would one want to replicate the features of sample inputs? In the “common inputs”
strategy, one would create test cases that are similar to a set of common inputs; this is helpful
for regression testing. In the more interesting “failure-inducing inputs” strategy, one would learn
from a set of failure-inducing samples to replicate their features; this is useful for testing the
surroundings of past bugs.

If one only has sample inputs that work just fine, one would typically be interested in inputs
that are different from our samples—the “uncommon inputs” strategy. We can easily obtain such
inputs by inverting the mined probabilities: if a rule previously had a weight of p, we now assign
it a weight of 1/p, normalized across all production alternatives. For our Digit rule, this gives
the digits not seen so far a weight of 1/0 = 1, which is still distributed equally across all seven
alternatives, yielding individual probabilities of 1/7 = 14.3%. Proportionally, the weights for
the digits already seen in I are infinitely small, yielding a probability of effectively zero. The
“inverted” rule reads now:

Digit ! 14.3% "0" | 0% "1" | 0% "2" | 0% "3" | 14.3% "4" | 14.3% "5" | 14.3% "6"
| 14.3% "7" | 14.3% "8" | 14.3% "9";

Applying this inversion to rules with non-terminal symbols is equally straightforward. The
resulting probabilistic grammar Gp�1 is given in Figure 58.

This inversion can lead to infinite derivations, for example, the production rule in Gp�1 for
generating Expr is recursive 100% of the time, expanding only to Expr "-" Term, without chance
of hitting the base case. As a result, we take special measures to avoid such infinite productions
during input generation (see Section 6.3.3).
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+5 / -5 / 7 - +0 / 6 / 6 - 6 / 8 - 5 - 4
-4 / +7 / 5 - 4 / 7 / 4 - 6 / 0 - 5 - 0
+5 / ++4 / 4 - 8 / 8 - 4 / 8 / 7 - 8 - 9
-6 / 9 / 5 / 8 - +7 / -9 / 6 - 4 - 4 - 6
+8 / ++8 / 5 / 4 / 0 - 5 - 4 / 8 - 8 - 8
-9 / -5 / 9 / 4 - -9 / 0 / 5 - 8 / 4 - 6
++7 / 9 / 5 - +8 / +9 / 7 / 7 - 6 - 8 - 4
-+6 / -8 / 9 / 6 - 5 / 0 - 5 - 8 - 0 - 5

Figure 59: Inputs generated from Gp�1 from Figure 58

If we use Gp�1 as a production grammar—and avoiding infinite production—we obtain inputs
as shown in Figure 59. These inputs now focus on operators like subtraction or division or
unary operators not seen in our input samples. Likewise, the newly generated digits cover the
complement of those digits previously seen. Yet, all inputs are syntactically valid according to
the grammar.

In summary, with common inputs as produced by Gp, we can expect to have a good set of
regression tests—or a set replicating the features of failure-inducing inputs when learning from
failure-inducing samples. In contrast, uncommon inputs as produced by Gp�1 would produce
features rarely found in samples, and thus cover complementary functionality.

6.3 Approach

In order to explain our approach in detail, we start with introducing basic notions of probabilistic
grammars.

6.3.1 Probabilistic Grammars

The probabilistic grammars that we employ in this chapter are based on the well-known context-
free grammars (CFGs) [264].

Definition 1 (Context-free grammar). A context-free grammar is a 4-tuple (V, T, P, S0), where
V is the set of non-terminal symbols, T the terminals, P : V ! (V [ T )⇤ the set of productions,
and S0 2 V the start symbol.

In a non-probabilistic grammar, rules for a non-terminal symbol S provide n alternatives Ai

for expansion:
S ! A1 | A2 | . . . | An (2)

In a probabilistic context-free grammar (PCFG), each of the alternatives Ai in Equation (2) is
augmented with a probability pi, where

Pn
i=1 pi = 1 holds:

S ! p1 A1 | p2 A2 | . . . | pn An (3)

If we are using these grammars for generation of a sentence of the language described by the
grammar, each alternative Ai has a probability of pi to be selected when expanding S.
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By convention, if one or more pi are not specified in a rule, we assume that their value
is the complement probability, distributed equally over all alternatives with these unspecified
probabilities. Consider the rule

Letter ! 40.0% "a" | "b" | "c"

Here, the probabilities for "b" and "c" are not specified; we assume that the complement of "a",
namely 60%, is equally distributed over them, yielding effectively

Letter ! 40.0% "a" | 30.0% "b" | 30.0% "c"

Formally, to assign a probability to an unspecified pi, we use

pi =
1 �

P
{pj |pj is specified for Aj}

number of alternatives Ak with unspecified pk
(4)

Again, this causes the invariant
Pn

i=1 pi = 1 to hold. If no pi is specified for a rule with n

alternatives, as in Equation (2), then Equation (4) makes each pi = 1/n, as intended.

6.3.2 Learning Probabilities

Our aim is to turn a classical context-free grammar G into a probabilistic grammar Gp capturing
the probabilities from a set of samples—that is, to determine the necessary pi values as defined
in Equation (3) from these samples. This is achieved by counting how frequently individual
alternatives occur during parsing in each production context, and then to determine appropriate
probabilities.

In language theory, the result of parsing a sample input I using G is a derivation tree [265],
representing the structure of a sentence according to G. As an example, consider Figure 55,
representing the input "1 + (2 * 3)" according to the example arithmetic expression grammar
in Section 6.2. In this derivation tree, we can now count how frequently a particular alternative
Ai was chosen in the grammar G during parsing. In Figure 55, the rule for Expr is invoked
three times during parsing. This rule expands once (33.3%) into Expr "+" Term (at the root);
and twice (66.7%) into Term in the subtrees. Likewise, the Term symbol expands once (25%)
into Term "*" Factor and three times (75%) into Factor . Formally, given a set T of derivation
trees from a grammar G applied on sample inputs, we determine the probabilities pi for each
alternative Ai of a symbol S ! A1 | . . . | An as

pi =
Expansions of S ! Ai in T

Expansions of S in T
(5)

If a symbol S does not occur in T , then Equation (5) makes pi = 0/0 for all alternatives Ai; in
this case, we treat all pi for S as unspecified, assigning them a value of pi = 1/n in line with
Equation (4). In our example, Equation (5) yields the probabilistic grammar Gp in Figure 56.

6.3.3 Inverting Probabilities

We turn our attention now to the converse approach; namely producing inputs that deviate from
the sample inputs that were used to learn the probabilities described above. This “uncommon
input” approach promises to be useful if we accept that our samples are not able to cover all the
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possible system behavior, and if we want to find bugs in behaviors that are either not exercised
by our samples, or do so rarely.

The key idea is to invert the probability distributions as learned from the samples, such that
the input generation focuses on the complement section of the language (w.r.t. the samples and
those inputs generated by the probabilistic grammar). If some symbol occurs frequently in the
parse trees corresponding to the samples, this approach should generate the symbol less frequently,
and vice versa: if the symbol seldom occurs, then the approach should definitely generate it often.

For a moment, let us ignore probabilities and focus on weights instead. That is, the absolute
(rather than relative) number of occurrences of a symbol in the parse tree of a sample. We start
by determining the occurrences of a symbol A during a production S found in a derivation tree T :

wA,S =
Occurrence count of A in the
expansions of symbol S in T

(6)

To obtain inverted weights w
0
A,S , a simple way is to make each w

0
A,S based on the reciprocal

value of wA,S , that is

w
0
A,S = wA,S

�1 =
1

wA,S
(7)

If the set of samples is small enough, or focuses only on a section of the language of the
grammar, it might be the case that some production or symbol never appears in the parsing
trees. If this is the case, then the previous equations end up yielding wA,S = 0. We can compute
wA,S

�1 = 1, assigning the elements not seen an infinite weight. Consequently, all symbols B

that were indeed seen before (with wB,S > 0) are assigned an infinitesimally small weight, leading
to w

0
B,S = 0. The remaining infinite weight is then distributed over all of the originally “unseen”

elements with original weight wA,S = 0. Recall the arithmetic expression grammar in Section 6.2;
such a situation arises when we consider the rule for the symbol Digit : the inverted probabilities
for the rule focus exclusively on the complement of the digits seen in the sample.

All that remains in order to obtain actual probabilities is to normalize the weights back into
a probability measure, ensuring for each rule that its invariant

Pn
i=1 p

0
i = 1 holds:

p
0
i =

w
0
iPn

i=1 w
0
i

(8)

6.3.4 Producing Inputs from a Grammar

Given a probabilistic grammar Gp for some language (irrespective of whether it was obtained by
learning from samples, by inverting, or simply written that way in the first place), our next step
in the approach is to generate inputs following the specified productions. This generation process
is actually very simple, since it reduces to produce instances by traversing the grammar, as if it
were a Markov chain. However, this generation runs the serious risk of probabilistically choosing
productions that lead to an excessively large parsing tree. Even worse, the risk of generating
an unbounded tree is very real, as can be seen in the rule for the symbol Int in the arithmetic
expression grammar in Section 6.2. The production rule for said symbol triggers, with probability
1.0, a recursion with no base case, and will never terminate.
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Figure 60: Workflow for the generation of “common inputs” and “uncommon inputs”

Our inspiration for constraining the growth of the tree during input generation comes from
the PTC2 algorithm [266]. The main idea of this algorithm is to allow the expansion of not-
yet-expanded productions, while ensuring that the number of productions does not exceed a
certain threshold of performed expansions. This threshold would be set as parameter of the input
generation process. Once this threshold is exceeded, the partially generated instance cannot be
truncated, as that would result in an illegal input. Alternatively, we choose to allow further
expansion of the necessary non-terminal symbols. However, from this point on, expansions are
not chosen probabilistically. Rather, the choice is constrained to those expansions that generate
the shortest possible expansion tree. This ensures both termination of the generation procedure,
as well as trying to keep the input size close to the threshold parameter. This choice, however,
does introduce a bias that may constitute a threat to the validity of our experiments that we
discuss in Section 6.5.

6.3.5 Implementation

As a prerequisite for carrying out our approach, we only assume we have the context-free grammar
of the language available for which we are interested in generating inputs, and a collection (no
matter the size) of inputs that we will assume are common inputs. Armed with these elements,
we perform the workflow detailed in Figure 60.

The first step of the approach is to obtain a counting grammar from the original grammar.
This counting grammar is, from the parsing point of view, completely equivalent to the original
grammar. However, it is augmented with actions during parsing which perform all necessary
counting of symbol occurrences parallel to the parsing phase. Finally, it outputs the probabilistic
grammar. Note that this first phase requires not only the grammar of the target language, but
also the grammar of the language in which the grammar itself is written. That is, generating
the probabilistic grammar not only requires parsing sample inputs, but also the grammar itself.
In the particular case of our implementation, we make use of the well-known parser generator
ANTLR [237].

Once the probabilistic grammar is obtained, we derive the probabilistically-inverted grammar
as described in this section. Armed with both probabilistically annotated grammars, we can
continue with the input generation procedure.
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Table 17: Depth and size of derivation trees for “common inputs” (PROB) and “uncommon inputs”
(INV)

Grammar Mode Depth of derivation tree Nodes
min max avg. median avg.

JSON PROB 14 2867 96 63 3058
INV 5 37 23 37 68

JavaScript PROB 1 79 19 8 400
INV 1 38 19 1 11,061

CSS PROB 3 44 41 44 19,380
INV 9 30 29 30 11,269

6.4 Experimental Evaluation

In this section we evaluate our approach by applying the technique in several case studies. In
particular, we ask the following research questions:

• RQ1 (“Common inputs”). Can a learned grammar be used to generate inputs that
resemble those that were employed during the grammar training?

• RQ2 (“Uncommon inputs”). Can a learned grammar be modified so it can generate
inputs that, opposed to RQ1, are in contrast to those employed during the grammar
training?

• RQ3 (“Sensitivity to training set variance”). Is our approach sensitive to variance in
the initial samples?

• RQ4 (“Sensitivity to size of training set”). Is our approach sensitive to the size of the
initial samples?

• RQ5 (“Bugs found”). What kind of crashes (exceptions) do we trigger in RQ1 and
RQ2?

• RQ6 (“Failure-inducing inputs”). Can a learned grammar be used to generate inputs
that reproduce failure-inducing behavior?

To answer RQ1 and RQ2, we need to compare inputs in order to decide whether these inputs
are “similar” or “contrasting”. In the scope of this evaluation, we will use the method coverage
and call sequences as measures of input similarity. We will define these measures later in this
section, and we will discuss their usefulness. We address RQ3 by comparing the method calls
and call sequences induced for three randomly selected training sets, each containing five inputs.
Likewise, we evaluate RQ4 by comparing the method calls and call sequences induced for four
randomly selected training sets, each containing N sample inputs, where N 2 {1, 5, 10, 50}. We
assess RQ5 by categorizing, inspecting and reporting all exceptions triggered by our test suites in
RQ1 and RQ2. Finally, we address RQ6 by investigating if the “(un)common inputs” strategy
can reproduce (or avoid) a failure and explore the surroundings of the buggy behavior.
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6.4.1 Evaluation Setup

Generated Inputs

Once a probabilistic grammar is learned from the training instances, we generate several inputs
that are fed to each subject. Our evaluation involves the generation of three types of test suites:

a) Probabilistic - choice between productions is governed by the distribution specified by the
learned probabilities in the grammar.

b) Inverse - choice is governed by the distribution obtained by the inversion process described
in Section 6.3.3.

c) Random - choice between productions is governed by a uniform distribution (see RQ6).

Expansion size control is carried out in order to avoid unbounded expansion as described in
Section 6.3.4. Table 17 reports the details of the produced inputs, i.e. the depth and average
number of nodes in the derivation trees for the “common inputs” (i.e., probabilistic/PROB) and
“uncommon inputs” (i.e., inverse/INV).

Research Protocol

In our evaluation, we generate test suites and measure the frequency of method calls, the frequency
of call sequences and the number of failures induced in our subject programs. For each input
language, the experimental protocol proceeds as follows:

a) We randomly selected five files from a pool of thousands of sample files crawled from
GitHub code repositories, and through our approach produced a probabilistic grammar
out of them52. Since one of the main use cases of our tool is to complete a test suite, we
perform grammar training with few (i.e. five) initial sample tests.

b) We feed the sampled input files into the subject program and record the triggered failures,
the induced call sequences and the frequency of method calls using the HPROF [267] profiler
for Java.

c) Using the probabilistic grammar, we generate test suites, each one containing 100 input
files. We generate a total of 1000 test suites, in order to control for variance in the input
files. Overall, each experiment contains 100,000 input files (100 files x 1,000 runs). We
perform this step for both probabilistic and inverse generations. Hence, the total number
of inputs generated for each grammar is 200,000 (1,000 suites of 100 inputs each, a set of
suites for each experiment).

d) We test each subject program by feeding the input files into the subject program and
recording the induced failures, the induced call sequences and the frequency of method calls
using HPROF.

52To evaluate RQ6, we learned a PCFG from at most five random failure-inducing inputs.
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Table 18: Subject details

Input Format Subject Version #Methods LOC

JSON

Argo 5.4 523 8,265
Genson 1.4 1,182 18,780
Gson 2.8.5 793 25,172

JSONJava 20180130 202 3,742
Jackson 2.9.0 5,378 117,108

JsonToJava 1880978 294 5,131
MinimalJson 0.9.5 224 6,350

Pojo 0.5.1 445 18,492
json-simple a8b94b7 63 2,432
cliftonlabs 3.0.2 183 2,668
fastjson 1.2.51 2,294 166,761
json2flat 1.0.3 37 659

json-flattener 0.6.0 138 1,522

JavaScript Rhino 1.7.7 4873 100,234
rhino-sandbox 0.0.10 49 529

CSS3

CSSValidator 1.0.4 7774 120,838
flute 1.3 368 8,250

jstyleparser 3.2 2,589 26,287
cssparser 0.9.27 2,014 18,465

closure-style 0.9.27 3,029 35,401

All experiments were conducted on a server with 64 cores and 126 GB of RAM; more specifically
an Intel Xeon CPU E5-2683 v4 @ 2.10GHz with 64 virtual cores (Intel Hyperthreading), running
Debian 9.5 Linux.

Subject Programs

We evaluated our approach by generating inputs and feeding them to a variety of Java applications.
All these applications are open source programs using three different input formats, namely JSON,
JavaScript and CSS3. Table 18 summarizes the subjects to be analyzed, their input format and
the number of methods in each implementation.

The initial, unquantified grammars for the input subjects were adapted from those in the
repository of the well-known parser generator ANTLR [237]. We handle grammar ambiguity that
may affect learning probabilities by ensuring every input has only one parse tree. Specifically, we
adapt the input grammars by (re-)writing lexer modes for the grammars, shortening lexer tokens
and re-writing parser rules. Training samples were obtained by scraping GitHub repositories for
the required format files. The probabilistic grammars developed from the original ones, as well as
the obtained training samples can be found in our replication package.

Measuring (Dis)similarity

Questions RQ1 and RQ2 refer to a notion of similarity between inputs. Although white-box
approaches exist that aim to measure test-case similarity and dissimilarity [268, 269], applying
them to complex grammar-based inputs is not straightforward. However, in this work, since we
are dealing with evaluating the behavior of a certain piece of software, it makes sense to aim for
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(a) PROB vs. SAMP vs. INV

(b) PROB (c) SAMP (d) INV

Figure 61: Frequency analysis of call sequences for json-flattener (length=2)

a notion of semantic similarity. In this sense, two inputs are semantically similar if they incite
similar behaviors in the software that processes them. In order to achieve this, we define two
measures of input similarity based on structural and non-structural program coverage metrics.
The non-structural measure of input similarity is the frequency of method calls induced in the
programs. The structural measure is the frequency of call sequences induced in the program, a
similar measure was used in [270]. Thus, we will say two inputs are similar if they induce similar
(distribution of) method call frequencies for the same program. The frequency of call sequences
refers to the number of times a specific method call sequence is triggered by an input, for a
program. For this measure, we say two inputs are similar if they trigger a similar distribution
in the frequency with which the method sequences are called, for the same program. These
notions allow for a great variance drift if we were to compare only two inputs. Therefore, we
perform these comparisons on test suites as a whole to dampen the effect of this variance. Using
these measures, we aim at answering RQ1 and RQ2. RQ1 will be answered satisfactorily if
the (distribution of) call frequencies and sequences induced by the “common inputs” strategy is
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Table 19: Call Sequence analysis for “common inputs” (PROB) and “uncommon inputs” (INV)
for all subject programs

Length
Call Sequences Call sequences

covered by Sample covered by
# also by PROB also by INV PROB INV

2 1210 1157 (96%) 937 (74%) 6348 5196
3 1152 1099 (95%) 782 (62%) 7946 5930
4 849 803 (90%) 479 (47%) 9236 5825

Total 3211 3059 (94%) 2198 (61%) 23 530 16 951

similar to the call frequency and sequences obtained when running the software on the training
samples. Likewise, RQ2 will be answered positively if the (distribution of) call frequencies and
sequences for suites generated with the “uncommon inputs” strategy are markedly dissimilar.

Visual test

For each test suite, we compare the frequency distribution of the call sequences and method calls
triggered in a program, using grouped and single bar charts. These comparisons are in line with
the visual tests described in [271].

For instance, Figure 61 shows the frequency analysis of the call sequences induced in
json-flattener by our test suites. The grouped bar chart compares the frequency distri-
bution of call sequences for all three test suites, (i.e. (a) PROB vs. SAMP vs. INV) and the single
bar chart shows the frequency distribution of call sequences for each test suite (i.e., (b.) PROB, (c)
SAMP and (d) INV). Frequency analysis (in (a.)) shows that the (distribution of) call sequences
of PROB and SAMP align (see rightmost part of bar chart), and INV often induces a different
distribution of call sequences from the initial samples (see leftmost part of bar chart). The single
bar chart for a test suite shows the frequency distribution of the call sequences triggered by the
test suite. For instance, Figure 61 (b) and (c) show the call sequence distribution triggered by
the “common inputs" and initial samples respectively. The comparison of both charts shows that
all call sequences covered by the samples, were also frequently covered by the “common inputs".

Likewise, Figure 63 to Figure 65 show the call frequency analysis of the test suites using a
grouped bar chat for comparison (i.e. (a) PROB vs. SAMP vs. INV) and a single bar chart to
show the call frequency distribution of each test suite (i.e., (b.) PROB, (c) SAMP and (d) INV).
The grouped bar chart shows the call frequency for each test suite grouped together by method,
with bars for each test suite appearing side by side per method. For instance, analysing Figure 63
(a) shows that the call frequencies of PROB and SAMP align (see rightmost part of bar chart),
and INV often induces a different call frequency for most methods (see leftmost part of bar chart).
Moreover, the single bar chart for a test suite shows the call frequency distribution of the test
suite. For instance, Figure 63 (b) and (c) show the call frequency distribution of the “common
inputs" and initial samples respectively, their comparison shows that all methods covered by the
samples, were also frequently covered by the “common inputs".
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Figure 62: Call sequences covered by Sample for “common inputs” (PROB) and “uncommon
inputs” (INV)

Collecting failure-inducing inputs

For each input file in our Github corpus, we fed it to every subject program of the input language
and observe if the subject program crashes, i.e. the output status code is non-zero after execution.
Then, we collect such inputs as failure-inducing inputs for the subject program and parse the
standard output for the raised exception. In total, we fed 10,853 files to the subject programs,
1,000 each for CSS and JavaScript, and 8853 for JSON. Exceptions were triggered for two input
languages, namely JavaScript and JSON, no exception was triggered for CSS. In total, we collected
15 exceptions in seven subject programs (see Table 26).

6.4.2 Experimental Results

In Figure 63 to Figure 65, we show a representative selection of our results53. For each subject,
we constructed a chart that represents the absolute call frequency of each method in the subject.
The horizontal axis (which is otherwise unlabelled) represents the set of methods in the subject,
ordered by the frequency of calls in the experiment on probabilistic inputs.

53The full range of charts is omitted for space reasons. However, all charts, as well as the raw data, are available
as part of the artifact package. Moreover, the charts shown here have been selected so that they are representative
of the whole set; that is, the omitted charts do not deviate significantly.
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(a) PROB vs. SAMP vs. INV

(b) PROB (c) SAMP (d) INV

Figure 63: Call frequency analysis for json-simple-cliftonlabs

RQ1 (“Common inputs”): Can a learned grammar be used to generate inputs that
resemble those that were employed during the grammar training?

To answer RQ1, we compare the methods covered by the sample inputs and the “common inputs”
strategy (Table 20 and Figure 63 to Figure 65). We also examine the call sequences covered by
the sample inputs and the “common inputs”, for consecutive call sequences of length two, three
and four (Table 19 and Figure 62). In particular, we investigate if the “common inputs” strategy
covered at least the same methods or the same call sequences as the initial sample inputs.

Do the “common inputs” trigger similar non-structural program behavior (i.e., method calls)
as the initial samples? For all subjects, the “common inputs” strategy covered almost all (96%)
of the methods covered by the sample (see Table 20). This result shows that the “common inputs”
strategy learned the input properties in the samples and reproduced the same (non-structural)
program behavior as the initial samples. Besides, this strategy also covered other methods that
were not covered by the samples.
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Table 20: Method coverage for “common inputs” (PROB) and “uncommon inputs” (INV)

Methods covered by sample Methods Kolmogorov-Smirnov (KS) test of

Subject # also by covered by SAMP vs. PROB SAMP vs. INV

PROB INV PROB INV D-stat(p-value) D-stat(p-value)

Argo 52 52 (100%) 32 (62%) 256 165 0.28 (1.11E�9) 0.50 (1.84E�30)

Genson 12 12 (100%) 10 (83%) 218 188 0.25 (3.46E�7) 0.73 (5.88E�64)

Gson 24 24 (100%) 14 (58%) 287 239 0.52 (1.09E�40) 0.25 (1.94E�9)

JSONJava 29 29 (100%) 23 (79%) 51 42 0.08 (0.99) 0.63 (3.45E�11)

Jackson 2 2 (100%) 1 (50%) 957 732 N/A N/A

JsonToJava 29 29 (100%) 9 (31%) 82 33 0.25 (8.48E�3) 0.24 (1.38E�2)

MinimalJson 24 24 (100%) 18 (75%) 110 100 0.34 (2.36E�6) 0.83 (5.39E�42)

Pojo 23 23 (100%) 7 (30%) 159 93 0.19 (1.81E�3) 0.29 (1.04E�7)

json-simple 11 11 (100%) 10 (91%) 26 24 0.35 (0.09) 0.46 (7.13E�3)

cliftonlabs 23 23 (100%) 23 (100%) 48 48 0.21 (0.25) 0.54 (8.29E�7)

fastjson 70 70 (100%) 62 (89%) 245 231 0.37 (3.07E�15) 0.41 (8.84E�19)

json2flat 6 6 (100%) 5 (83%) 17 14 0.35 (0.24) 0.65 (1.15E�3)

json-flattener 36 36 (100%) 32 (89%) 83 81 0.15 (0.29) 0.15 (0.29)

Rhino 23 6 (26%) 23 (100%) 107 201 0.34 (3.18E�12) 0.45 (6.48E�21)

rhino-sandbox 3 3 (100%) 3 (100%) 17 17 0.47 (0.04) 0.53 (0.02)

CSSValidator 10 10 (100%) 10 (100%) 97 124 0.42 ( 1.20E�10) 0.38 (7.95E�9)

flute 58 57 (98%) 51 (88%) 148 131 0.29 (3.35E�6) 0.50 (7.34E�18)

jstyleparser 75 74 (99%) 59 (79%) 183 169 0.34 (1.53E�13) 0.38 (1.83E�17)

cssparser 71 71 (100%) 66 (93%) 177 152 0.36 (2.91E�12) 0.62 (4.21E�37)

closure-style 104 95 (91%) 103 (99%) 229 238 0.16 (2.03E�6) 0.09 (3.34E�2)

Total 685 657 (96%) 561 (82%) 3,497 3,022

The “common inputs” strategy triggered almost all methods (96%)
called by the initial sample inputs.

Do the “common inputs” also trigger similar structural program behavior (i.e., sequences of
method calls)? In our evaluation, the “common inputs” strategy covered most of the call sequences
that were covered by the initial samples. For instance, Figure 61 shows that the call sequences
covered by the samples were also frequently covered by the “common inputs", for json-flattener.
Overall, the “common inputs” strategy covered 94% of the method call sequences induced by the
sample (see Table 19 and Figure 62). For all call sequences, the “common inputs” strategy also
covered 90% to 96% of the method call sequences covered by the samples. This result shows
that the ‘common inputs” strategy triggers the same structural program behavior as the initial
samples.

The “common inputs” strategy triggered most call sequences (94%)
covered by the initial sample inputs.

Additionally, we compare the statistical distributions resulting from our strategies. We need
to be able to see a pattern in frequency calls such that the frequency curves for the sample runs
and the probabilistic runs match as described in the visual test (see Section 6.4.1). Figure 63 to
Figure 65 show that this match does hold for all subjects.

For all subjects, the method call frequency curves for the sample runs
and the probabilistic runs match.

We also perform a statistical analysis on the distributions to increase the confidence in our
conclusion. We performed a distribution fitness test (KS - Kolmogorov-Smirnov) on the sample
vs. the probabilistic call distribution; and on the sample vs. the inverse probabilistic distribution.
It must be noted that the KS test aims at determining whether the distributions are exactly the
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(a) PROB vs. SAMP vs. INV

(b) PROB (c) SAMP (d) INV

Figure 64: Call frequency analysis for JSONJava

same, whereas we want to ascertain if they are similar or dissimilar. KS tests are very sensitive
to small variations in data, which makes it, in principle, inadequate for this objective. In this
work, we employ the approach used by Fan [272]—we first estimate the kernel density functions
of the data distributions, which smoothen the estimated distribution. Then, we bootstrap and
resample new data on the kernel density estimates, and perform the KS test on the bootstrapped
data.

The KS test confirms the results from the the visual inspection, the distribution of the method
call frequency of “common inputs” matches the distribution in the sample (see Table 20), for
some subjects. However, there are also subjects, where the hypothesis is rejected (p < 0.05)
that method call frequency distributions (sample and “common inputs”) come from the same
distribution, which is indicated by the blue entries. In the case of the Jackson subject, frequencies
for the sample calls are all close to zero, which makes the data inadequate for the KS test.
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(a) PROB vs. SAMP vs. INV

(b) PROB (c) SAMP (d) INV

Figure 65: Call frequency analysis for json-simple

RQ2 (“Uncommon inputs”): Can a learned grammar be modified such it can
generate inputs that, opposed to RQ1, are in contrast to those employed during
the grammar training?

For all subjects, the “uncommon inputs” produced by inverting probabilities covered markedly
fewer (82%) of the methods covered by the sample (see Table 20). This result shows that the
“uncommon inputs” strategy learned the input properties in the samples and produced inputs
that avoid several methods covered by the samples.

The “uncommon inputs” strategy triggered markedly fewer methods (82%)
called by the initial sample inputs.

Do the “uncommon inputs” trigger fewer of the call sequences covered by the initial samples?
Table 19 shows that the “uncommon inputs” strategy triggered significantly fewer (61%) of the
call sequences covered by the samples. The number of call sequences induced by the uncommon
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Table 21: Sensitivity to training set variance using three different sets (S 2 {1, 2, 3}) of initial
samples containing five inputs each

Methods covered by Sample Methods Call Seq. covered by Sample Call Seq.

S
also by covered by also by covered by

# PROB INV PROB INV # PROB INV PROB INV

1 685 657 (96%) 561 (82%) 3,497 3,022 3,211 3,059 (94%) 2,198 (61%) 23,530 16,951

2 2,963 2,924 (97%) 2,764 (85%) 8,623 8,246 6,044 5,643 (93%) 4,110 (68%) 22,531 19,896

3 2,656 2,639 (100%) 2,516 (87%) 8,655 8,165 5,005 4,915 (98%) 3,306 (66%) 20,792 19,892

Table 22: Sensitivity to the size of the training set using initial sample size N 2 {1, 5, 10, 50}

Methods covered by Sample Methods Call Seq. covered by Sample Call Seq.

N
also by covered by also by covered by

# PROB INV PROB INV # PROB INV PROB INV

1 1,496 1,490 (100%) 1,352 (79%) 8,715 7,954 1,955 1,942 (99%) 1,135 (58%) 21,279 15,341

5 685 657 (96%) 561 (82%) 3,497 3,022 3,211 3,059 (94%) 2,198 (61%) 23,530 16,951

10 3,546 3,517 (100%) 3,339 (89%) 9,388 11,497 6,297 6,105 (97%) 4,474 (71%) 26,575 21,214

50 5,347 5,313 (100%) 4,961 (89%) 8,950 8,217 9,389 9,076 (97%) 7,421 (79%) 23,512 18,391

inputs decreases significantly as the length of the call sequence increases (see Figure 62). For
instance, comparing frequency charts of call sequences in Figure 61 ((a), (c) and (d)) also show
that “uncommon inputs” frequently avoided inducing the call sequences triggered by the initial
samples. Notably, for sequences of four consecutive method calls, the “uncommon inputs” strategy
covered only 47% of the sequences covered by the initial samples (see Table 19). Overall, the
“uncommon inputs” avoided inducing the call sequences that were triggered by the initial samples.

The “uncommon inputs” strategy induced significantly fewer call sequences (61%)
covered by the initial samples.

Do the “uncommon inputs” only cover fewer, or also different methods? We perform a visual
test to examine if we see a markedly different call frequency between the samples and the inputs
generated by the “uncommon inputs” strategy. In almost all charts this is the case (see Figure 63
to Figure 65). The only exception is the CSSValidator subject.

For all subjects (except CSSValidator), the method call frequency curves for the sample
runs and “uncommon inputs" runs are markedly different.

Besides, we examine if the frequency of distribution of method calls for the samples and the
“uncommon inputs” are significantly dissimilar. In particular, the KS tests shows that for all
subjects (except json-flattener) the distributions of method calls in the sample and the “uncommon
inputs” are significantly different (p < 0.05, see sample vs. INV in Table 20).

RQ3 (“Sensitivity to training set variance”): Is our approach sensitive to variance
in the initial samples?

We examine the sensitivity of our approach to the variance in the training set. We randomly
selected three distinct training sets, each containing five inputs. Then, for each set, we compare
the methods and call sequences covered by the samples to those induced by the generated inputs
(Table 21).

Our evaluation showed that our approach is not sensitive to training set variance. In particular,
for all training sets, the “common inputs” strategy covered most of the methods and call sequences
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Crawled PROB
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Figure 66: Number of exceptions triggered by the test suites

induced by the initial sample inputs. Table 21 shows that the “common inputs” (PROB)
consistently covered almost all call sequences (93 to 98%) covered by the initial samples, while
“uncommon inputs” (INV) covered significantly fewer call sequences (61 to 68%). Likewise, the
“common inputs” consistently covered almost all methods (96 to 100%) covered by the initial
samples, while “uncommon inputs” covered fewer methods (82 to 87%) (cf. Table 21).

Both strategies, the “common inputs” and the “uncommon inputs”,
are insensitive to training set variance.

RQ4 (“Sensitivity to the size of training set”): Is our approach sensitive to the size
of the initial samples?

We evaluate the sensitivity of our approach to the size of the training set. For each input
format, we randomly selected four distinct training sets containing N sample inputs, where
N 2 {1, 5, 10, 50}. Then, for each set, we compare the methods and call sequences induced by
the samples to those induced by the generated inputs (Table 22).

Regardless of the size of the training set, the “common inputs” strategy consistently covered
most of the methods and call sequences covered by the initial samples. Specifically, for all sizes,
the “common inputs” covered almost all (94 to 99%) of the call sequences covered by the initial
samples, while “uncommon inputs” covered significantly fewer call sequences (58 to 79%). In the
same vein, the “common inputs” consistently covered almost all methods (96 to 100%) covered by
the initial samples, while “uncommon inputs” covered fewer methods (79 to 89%) (cf. Table 22).
These results demonstrates that the effectiveness of our approach is independent of the size of
the training set.

The effectiveness of our approach is independent of the size
of the training set used for grammar training.

RQ5 (“Bugs found”): What kind of crashes (exceptions) do we trigger?

To address RQ5, we examine all of the exceptions triggered by our test suites. We inspect
the exceptions triggered during our evaluation of the “common inputs” strategy (in RQ1) and
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Table 23: Exception details

Input #Exceptions #Subjects
Average subject crash rate

(All) (Crashed)

SAMP 3 1 0.05263 1

PROB 9 4 0.05999 0.28493

INV 9 7 0.03139 0.08521

the “uncommon inputs” strategy (in RQ2). To evaluate if our approach is capable of finding
real-world bugs, we compare the exceptions triggered in both RQ1 and RQ2 to the exceptions
triggered by the input files crawled from Github (using the setup described in Section 6.4.1).

Both of our strategies triggered 40% of the exceptions triggered by the crawled files, i.e. six
(out of 15) exceptions causing thousands of crashes in four subjects (cf. Table 23 and Table 24).
Half (three) of these exceptions had no samples of failure-inducing inputs in their grammar
training. This indicates that, even without failure-inducing input samples during grammar
training, our approach is able to trigger common buggy behaviors in the wild, i.e. bugs triggered
by the crawled input samples. Exceptions were triggered for JSON and JavaScript input formats,
however, no exception was triggered for CSS.

Probabilistic grammar-based testing induced two fifths of all exceptions
triggered by the crawled files.

Our strategies were able to trigger eight other exceptions that could not be found by the
crawled files (cf. Figure 66). This result shows the utility of our approach in finding rare buggy
behaviors, i.e. uncommon bugs in the crawled input samples. Besides, all of these exceptions were
triggered despite a lack of “failure-inducing input” samples in the grammar training. In particular,
both strategies triggered nine exceptions each, three and four of which were triggered only by the
“common inputs” and only by the “uncommon inputs”, respectively.

Probabilistic grammar-based testing induced eight new exceptions
that were not triggered by the crawled files.

The “common inputs” strategy triggered all of the exceptions triggered by the original sample
inputs used in grammar training. Three exceptions were triggered by the sample inputs and
all three exceptions were triggered by the “common inputs” strategy, while “uncommon inputs”
triggered only two of these exceptions (cf. Table 23 and Table 24). Again, this result confirms
that our grammar training approach can learn the input properties that characterize specific
program behaviors.

The “common inputs” induced all of the exceptions triggered by the original sample inputs.

Overall, 14 exceptions in seven subject programs were found in our experiments (see Table 23
and Table 24). On inspection, six of these exceptions affecting five subject programs have been
reported to developers as severe bugs. These exceptions have been extensively discussed in the
bug repository of each subject program. This result reveals that our approach can generate inputs
that reveal real-world buggy behaviors. Additionally, from the evaluation of crawled files, 15
exceptions in five subjects were found. In particular, one exception (Rhino issue #385, which is
also reproducible with our approach) has been confirmed and fixed by the developers.
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Table 24: Exceptions induced by “Common Inputs” (PROB), and “Uncommon Inputs” (INV)

Input

Format
Subject Exception

#Failure- Occurrence rate in

inducing PROB INV Crawled

samples Files

CSS No exceptions triggered

JSON

Gson java.lang.NullPointer 0 0 0.0001 0
Pojo java.lang.StringIndexOutOfBounds 0 0.0259 0 0.0024
Pojo java.lang.NumberFormat 0 0 0.0001 0
Argo argo.saj.InvalidSyntax 0 0 0.0023 0.0225
JSONToJava org.json.JSON 0 0.0200 0.0200 0.0223
json2flat com.fasterxml.jackson.core.JsonParse 0 0 0.0013 0
json-flattener com.eclipsesource.json.Parse 0 0 0.0013 0
json-flattener java.lang.UnsupportedOperation 0 0.2981 0 0
json-flattener java.lang.IllegalArgument 0 0.2554 0 0
json-flattener java.lang.NullPointer 0 0.0398 0 0
json-flattener java.lang.NumberFormat 0 0.0028 0.0745 0

Java-

Script

rhino-sandbox org.mozilla.javascript.Evaluator 3 0.4905 0.4469 0.5290
rhino-sandbox java.lang.IllegalState 1 0.0016 0 0.0010
rhino-sandbox org.mozilla.javascript.EcmaError 1 0.0058 0.0500 0.3740

RQ6 (“Failure-inducing inputs”): Can a learned grammar be used to generate
inputs that reproduce failure-inducing behavior?

Let us now investigate if our approach can learn a PCFG from failure-inducing samples and
reproduce the failure.

For each exception triggered by the crawled files (in Section 6.4.1), we learned a PCFG from
at most five failure-inducing inputs that trigger the exception. Then, we run our PROB approach
on the PCFG, using the protocol setting in Section 6.4.1. The goal is to demonstrate that the
PCFG learns the input properties of the “failure-inducing inputs”, i.e. inputs generated via PROB
should trigger the same exception as the failure-inducing samples. This is useful for exploring the
surroundings of a bug.

In addition, for each exception, we run the inverse of “failure-inducing inputs" (i.e., INV), in
order to evaluate if the “uncommon inputs” avoid reproducing the failures. In contrast, for each
exception, we run the random generator (RAND) on the CFG (according to Section 6.4.1), in order
to evaluate the probability of randomly triggering (these) exceptions without a (learned) PCFG.
In the random configuration (RAND), production choices have equal probability of generation.

In Table 25, we have summarized the number of reproduced exceptions. We see that proba-
bilistic generation (PROB) reproduced all (15) failure-inducing inputs collected in our corpus.
This shows that the grammar training approach effectively captured the distribution of input
properties in the failure-inducing inputs. Moreso, it reproduced the program behavior using the
learned PCFG.

Learning probabilities from failure-inducing inputs strategy reproduces
100% of the exceptions in our corpus.

For the inverse of “failure-inducing inputs", our evaluation showed that the “uncommon inputs”
strategy could avoid reproducing the learned failure-inducing behavior for most (10 out of 15) of
the exceptions (cf . Table 25 and Table 26).

The “uncommon inputs” strategy could avoid reproducing the learned program behavior
for two-thirds of the exceptions.
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Table 25: Reproduced exceptions by sample inputs (SAMP), “failure-inducing inputs” (PROB),
inverse of “failure-inducing inputs” (INV) and random grammar-based generation (RAND)

#Exceptions Average #

Reproduced Other Failure-inducing inputs

SAMP 15 0 87

PROB 15 21 18,429

INV 5 6 18,080

RAND 0 0 0

However, this strategy reproduced a third (five out of 15) of the exceptions in our corpus (cf .
Table 25 and Table 26). On inspection, we found that “uncommon inputs” reproduced these five
exceptions by generating new counter-examples, i.e., new inputs that are different from the initial
samples but trigger the same exception. This is because the initial sample of failure-inducing
inputs was not general enough to fully characterize all input properties triggering the crash. This
result demonstrates that the inverse of “failure-inducing inputs” can explore the boundaries of
the learned behavior in the PCFG, hence, it is useful for generating counter-examples.

The “uncommon inputs” strategy generated new counter-examples
for one-third of the exceptions in our corpus.

In contrast, the random test suite (RAND) could not trigger any of the exceptions in our
corpus, as shown in Table 25. This is expected, since a random traversal of the input grammar
would need to explore numerous path combinations to find the specific paths that trigger an
exception. This result demonstrates the effectiveness of the grammar training and the importance
of the PCFG in capturing input properties.

Random input generation could not reproduce any of the exceptions in our corpus.

Furthermore, we examined the proportion of the generated inputs that trigger an exception. In
total, for each test configuration and each exception we generated 100,000 inputs. We investigate
the proportion of these inputs that trigger the exception.

Our results for this analysis are summarized in Table 26. We see that about 18% of the inputs
generated by the “failure-inducing inputs” strategy (PROB) trigger the learned exception, on
average. This rate is three times as high as the exception occurrence rate in our corpus (SAMP;
6%).

About one in five inputs generated by the “failure-inducing inputs” strategy
reproduced the failure-inducing exception.

Finally, the “failure-inducing inputs” strategy also produced new exceptions not produced
by the original sample of failure-inducing inputs. As shown in the “Other” column in Table 25,
“failure-inducing inputs” triggered at least one new exception for each exception in our corpus.
This result suggests that the PCFG is also useful for exploring the boundaries of the learned
behavior, in order to trigger other program behaviors different from the learned program behavior.
This is possible because “failure-inducing inputs” not only reproduces the exact features found in
the samples, but also their variations and combinations.
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Table 26: Reproducing exceptions by “failure-inducing inputs” (PROB), inverse of “failure-inducing
inputs” (INV), and random grammar-based test generation (RAND), showing (A) the number of
failure-inducing inputs in crawled files, (B) the exception occurrence rate in crawled files, as well
as the exception reproduction rate in (C) PROB, (D) RAND and (E) INV

Input

Subject ExceptionFormat Reproduction rate in

(#files) A B C D E

JSON

(8853)

Gson java.lang.ClassCast 6 0.0007 0.0090 0 0
Gson java.lang.IllegalState 22 0.0025 1 0 1
JSONToJava java.lang.ArrayIndexOutOfBounds 38 0.0043 0.0025 0 0
JSONToJava java.lang.IllegalArgument 1 0.0001 0.0003 0 0
JSONToJava org.json.JSON_1 167 0.0189 0.1811 0 0.1811
JSONToJava org.json.JSON_2 30 0.0034 1 0 1
Pojo java.lang.IllegalArgument 88 0.0099 0.0002 0 0
Pojo java.lang.StringIndexOutOfBounds 21 0.0024 0.0471 0 0

JavaScript

(1000)

Rhino java.util.concurrent.Timeout 11 0.0110 0.0048 0 0
Rhino java.lang.IllegalState 2 0.0030 0.0001 0 0
rhino-sandbox delight.rhinosandox.ScriptDuration 11 0.0110 0.0073 0 0
rhino-sandbox org.mozilla.javascript.Evaluator 529 0.5290 0.4560 0 0.4982
rhino-sandbox org.mozilla.javascript.EcmaError_1 372 0.3720 0.0056 0 0.0326
rhino-sandbox org.mozilla.javascript.EcmaError_2 2 0.0020 0.0002 0 0
rhino-sandbox org.mozilla.javascript.JavaScript 1 0.0010 0.0502 0 0

AVERAGE 0.0646 0.1842 0 0.1808

The “failure-inducing inputs” strategy discovered new exceptions
not triggered by the samples or random generation.

6.5 Threats to Validity

Internal Validity

The main threat to internal validity is the correctness of our implementation. Namely, whether
our implementation does indeed learn a probabilistic grammar corresponding to the distribution
of the real world samples used as training set. Unfortunately, this problem is not a simple one
to resolve. The probabilistic grammar can be seen as a Markov chain, and the aforementioned
problem is equivalent to verifying that its equilibrium distribution corresponds to the posterior
distribution of the real world samples. The problem is two-fold: first, the number of samples
necessary in order to ascertain the posterior distribution is inordinate. Second, even if we had a
chance to process such a number of inputs, or if the posterior distribution were otherwise known,
it might well be the case that the probabilistic grammar actually has no equilibrium distribution.
However, our tests on smaller and simpler grammars suggest that this is not an issue.

A second internal validity threat is present in the technique we use for controlling the size of
the generated samples. As described before, a sample’s size is defined in terms of the number
of expansions in its parsing tree. In order to control the size, we keep track of the number of
expansions generated. Once this number crosses a certain threshold (if it actually crosses it at
all), all open derivations are closed via their shortest path. This does introduce a bias in the
generation that does not exactly correspond to the distribution described by the probabilistic
grammar. The effects of such a bias are difficult to determine, and merit further and deeper
study. However, not performing this termination procedure would render useless any approach
based on probabilistic grammars.
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External Validity

Threats to external validity relate to the generalizability of the experimental results. In our case,
this is specifically related to the subjects used in the experiments. We acknowledge that we
have only experimented with a limited number of input grammars. However, we have selected
the subjects with the intention to test our approach on practically relevant input grammars
with different complexities, from small to medium size grammars like JSON; and rather complex
grammars like JavaScript and CSS. As a result, we are confident that our approach will also work
on inputs that can be characterized by context-free grammars with a wide range of complexity.
However, we do have evidence that the approach does not seem to be generalizable to combinations
of grammars and samples such that they induce the learning of an almost-uniform probabilistic
grammar.

Construct Validity

The main threat to construct validity is the metric we use to evaluate the similarity between test
suites, namely method call frequency. While the uses of coverage metrics as adequacy criteria
is extensively discussed by the community [66, 273, 274], their binary nature (that is, we can
either report covered or not covered) makes them too shallow to differentiate for behavior. The
variance intrinsic to the probabilistic generation makes it very likely that at least one sample
will cover parts of the code unrelated to those covered by the rest of the suite. Besides, method
call frequency is considered a non-structural coverage metric. To mitigate this threat, we also
evaluate our test suites using a structural metric, in particular, (frequency of) call sequences.

6.6 Limitations

Context sensitivity: Although, our probabilistic grammar learning approach captures the
distribution of input properties, the learned input distribution is limited to production choices at
the syntactic level. This approach does not handle context-sensitive dependencies such as the
order, sequences or repetitions of specific input elements. However, our approach can be extended
to learn contextual dependencies, e.g. by learning sequences of elements using N-grams [275] or
hierarchies of elements using k-paths [276].
Input Constraints: Beyond lexical and syntactical validity, structured inputs often contain
input semantics such as checksums, hashes, encryption, or references. Context-free grammars,
as applied in this work, do not capture such complex input constraints. Automatically learning
such input constraints for test generation is a challenging task [277]. In the future, we plan to
automatically learn input constraints to drive test generation, e.g. using attribute grammars.

6.7 Related Work

Generating software tests. The aim of software test generation is to find a sample of inputs that
induce executions that sufficiently cover the possible behaviors of the program—including undesired
behavior. Modern software test generation relies, as surveyed by Anand et al. [66] on symbolic
code analysis to solve the path conditions leading to uncovered code [67, 68, 69, 70, 71, 72, 73, 74],

146



6.7. Related Work

search-based approaches to systematically evolve a population of inputs towards the desired
goal [75, 76, 77, 78], random inputs to programs and functions [79, 80] or a combination of these
techniques [81, 82, 83, 84, 85]. Additionally, machine learning techniques can also be applied to
create test sequences [86, 87]. All these approaches have in common that they do not require
an additional model or annotations to constrain the set of generated inputs; this makes them
very versatile, but brings the risk of producing false alarms—failing executions that cannot be
obtained through legal inputs.

Grammar-based test generation. The usage of grammars as producers was introduced in
1970 by Hanford in his syntax machine [88]. Such producers are mainly used for testing compilers
and interpreters: CSmith [89] produces syntactically correct C programs, and LANGFUZZ [90]
uses a JavaScript grammar to parse, recombine, and mutate existing inputs while maintaining most
of the syntactic validity. GENA [91, 92] uses standard symbolic grammars to produce test cases
and only applies stochastic annotation during the derivation process to distribute the test cases
and to limit recursions and derivation depth. Grammar-based white-box fuzzing [93] combines
grammar-based fuzzing with symbolic testing and is now available as a service from Microsoft.
As these techniques operate with system inputs, any failure reported is a true failure—there are
no false alarms. None of the above approaches use probabilistic grammars, though.

Probabilistic grammars. The foundations of probabilistic grammars date back to the
earliest works of Chomsky [94]. The concept has seen several interactions and generalizations
with physics and statistics; we recommend the very nice article by Geman and Johnson [95]
as an introduction. Probabilistic grammars are frequently used to analyze ambiguous data
sequences—in computational linguistics [96] to analyze natural language, and in biochemistry [97]
to model and parse macromolecules such as DNA, RNA, or protein sequences. Probabilistic
grammars have been used also to model and produce input data for specific domains, such as
3D scenes [98] or processor instructions [99].

The usage of probabilistic grammars for test generation seems rather straightforward, but
is still uncommon. The Geno test generator for .NET programs by Lämmel and Schulte [100]
allowed users to specify probabilities for individual production rules. Swarm testing [101, 102]
uses statistics and a variation of random testing to generate tests that deliberately targets or omits
features of interest. These approaches, in contrast to the one we present in this chapter, does not
use existing samples to learn or estimate probabilities. The approach by Poulding et al. [103, 104]
uses a stochastic context-free grammar for statistical testing. The goal of this work is to correctly
imitate the operational profile and consequently the generated test cases are similar to what one
would expect during normal operation of the system. The test case generation [105, 106] and
failure reproduction [107] approaches by Kifetew et al. combine probabilistic grammars with a
search-based testing approach. In particular, like our work, StGP [105] also learns stochastic
grammars from sample inputs.

Our approach aims to generate inputs that induce (dis)similar program behaviors as the
sample inputs. In contrast to our work, StGP [105] is focused on evolving and mutating the
learned grammars to improve code coverage. Although, StGP’s goal of generating realistic inputs
is very similar to our "common inputs" strategy (see RQ1 ), our approach can further generate
realistic inputs that are dissimilar to the sample inputs (see RQ2 ). Meanwhile, StGP is not
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capable of generating dissimilar inputs.
Mining probabilities. Related to our work are approaches that mine grammar rules and

probabilities from existing samples. Patra and Pradel [278] use a given parser to mine probabilities
for subsequent fuzz testing and to reduce tree-based inputs for debugging [279]. Their aim, however,
is not to produce inputs that would be similar or dissimilar to existing inputs, but rather to
produce inputs that have a higher likelihood to be syntactically correct. This aim is also shared
by two mining approaches: GLADE [280] and Learn&Fuzz [281], which learn producers from
large sets of input samples even without a given grammar.

All these approaches, however, share the problem of producing only “common inputs”—they
can only focus on common features rather than uncommon features, creating a general “tension
between conflicting learning and fuzzing goals” [281]. In contrast, our work can specifically focus
on “uncommon inputs”—that is, the complement of what has been learned.

Like us, the Skyfire approach [282] aims at also leveraging “uncommon inputs” for probabilistic
fuzzing. Their idea is to learn a probabilistic distribution from a set of samples and use this
distribution to generate seeds for a standard fuzzing tool, namely AFL [283]. Here, favoring
low probability rules is one of many heuristics applied besides low frequency, low complexity, or
production limits. Although the tool has shown good results for XML-like languages, results for
other, general grammar formats such as JavaScript are marked as “preliminary” only, though.

Mining grammars. Our approach requires a grammar that can be used both for parsing and
producing inputs. While engineering such a grammar may well pay off in terms of better testing,
it is still a significant investment in the case of specific domain inputs where such a grammar
might not be immediately available. Mining input structures [284], as exemplified using the above
GLADE [280] and Learn&Fuzz [281] approaches, may assist in this task. AUTOGRAM [285]
and MIMID [286] mine human-readable input grammars exploiting structure and identifiers of a
program processing the input, which makes them particularly promising.

6.8 Discussions and Future Work

This chapter empirically show that learning input distribution from sample inputs in the wild is
useful to drive test generation. We have presented an approach that allows engineers, using a
grammar and a set of input samples, to generate instances that are either similar or dissimilar to
these samples. Similar samples are useful, for instance, when learning from failure-inducing inputs;
while dissimilar samples could be used to leverage the testing approach to explore previously
uncovered code. Our approach provides a simple, general, and cost-effective means to generate
test cases that can then be targeted to the commonly used portions of the software, or to the
rarely used features.

Despite their usefulness for test case generation, grammars (including probabilistic grammars)
still have a lot of potential to explore in research, and a lot of ground to cover in practice. In the
future, we plan to investigate the following topics:

Deep models. At this point, our approach captures probabilistic distributions only at the level
of individual rules. However, probabilistic distributions could also capture the occurrence
of elements in particular contexts, and differentiate between them. For instance, if a "+"

148



6.8. Discussions and Future Work

symbol rarely occurs within parentheses, yet frequently outside of them, this difference
would, depending on how the grammar is structured, not be caught by our approach. The
domain of computational linguistics [96] has introduced a number of models that take context
into account. In our future work, we shall experiment with deeper context models, and
determining their effect on capturing common and uncommon input features.

Grammar learning. The big cost of our approach is the necessity of a formal grammar for
both parsing and producing—a cost that can boil down to 1–2 programmer days if a formal
grammar is already part of the system (say, as an input file for parser generators), but also
extend to weeks if it is not. In the future, we will be experimenting with approaches that
mine grammars from input samples and programs [285, 286] with the goal of extending the
resulting grammars with probabilities for probabilistic fuzzing.

Debugging. Mined probabilistic grammars could be used to characterize the features of failure-
inducing inputs, separating them from those of passing inputs. Statistical fault localization
techniques [1], for instance, could then identify input elements most likely associated with
a failure. Generating “common inputs”, as in this work, and testing whether they cause
failures, could further strengthen correlations between input patterns and failures, as well as
narrow down the circumstances under which the failure occurs.

We provide the source code of our parsers, production tools, the raw input samples, as well as all
obtained data and processed charts as a replication package:

https://tinyurl.com/inputs-from-hell
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Chapter 7

Conclusion

In this thesis, we propose an evidence-driven approach to address challenges in software testing
and debugging. The main idea of this approach is to gather empirical evidence from software
practice to guide and support the debugging activities of software developers. We conclude this
dissertation with a summary of our work and its contributions. We also discuss future research
opportunities and elicit on possible directions for further improvement and investigation.

7.1 Summary

We provide a summary of the challenges addressed in this work with respect to the thesis statement:
“Software testing and debugging should be driven by empirical evidence collected from software
practice". Specifically, to evaluate this thesis statement, we pose these scientific questions:

1. How do developers debug and repair software bugs? We have conducted an empirical
study to collect data on the tools and strategies employed by developers while debugging
real faults. Our study includes a survey of over 200 developers and a human study where we
observe 12 developers while they debug 27 real bugs. In this study, we collected data on the
debugging needs of developers and the reasons for developers (non-)adoption of debugging
aids. Indeed, we have found that there is a gap between the needs of developers and the
tools provided by researchers.

2. What is the most effective automated fault localization (AFL) technique? We have
evaluated the effectiveness of the state-of-the-art fault localization techniques using hundreds
of real faults. In particular, we evaluated the performance of 18 most effective statistical
debugging formulas against program slicing. We also evaluate the impact of error type
(artificial or real faults) and the number of faults (single or multiple faults) on the effectiveness
of these AFL methods. In our evaluation, we found that dynamic slicing is best suited for
diagnosing single faults, while, statistical debugging performs better on multiple faults.

3. How can we automatically debug and repair real-world invalid inputs? In the con-
text of input debugging, we evaluate the prevalence and causes of invalidity in inputs, using
thousands of real-world input files. In our evaluation, we found that four percent of input
files in the wild are invalid, they were either rejected by at least one subject program or their
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input grammar. We have also identified a number of causes of input invalidity, such as wrong
syntax and missing or nonconforming elements. Many inputs were invalid because of single
character errors, such as a deleted character, a missing character or an extraneous character.

4. Can we leverage real-world sample inputs to guide test generation? We provide an
approach to automatically learn the distribution of input elements from sample inputs found
in the wild. Our approach employs probabilistic grammars to learn input distribution and
applies the learned grammars to generate inputs that are similar or dissimilar to the the initial
samples. In our evaluation, our approach effectively generates inputs that reproduce/avoid
failures and tests for neighboring program behaviors. During debugging, this is useful for
bug reproduction and testing the completeness of bug fixes.

7.2 Contributions

This thesis answers the aforementioned scientific questions and provides a number of tools and
methods to aid developers during debugging activities as well as researchers in evaluating debugging
and repair tools. Specifically, this dissertation makes the following technical contributions:

DbgBench. In our empirical study on debugging in practice, we have collected hundreds of
real world fault locations and patches provided by 12 developers while debugging 27 real
bugs. We provide the empirical data from this study as a benchmark called DbgBench.
DbgBench provides details on the debugging needs of developers, as well as the tools and
strategies employed by developers when debugging real faults. In addition, it is useful for
the automatic evaluation of debuggers and automated repair tools. Our evaluation setup,
empirical data and experimental results are available at: https://dbgbench.github.io

Hybrid Fault Localization. We have proposed a hybrid approach that synergistically combines
the strengths of both dynamic slicing and statistical debugging, our hybrid approach builds
on the empirical evidence from our study on the effectiveness of AFL techniques. This
hybrid approach combines the contextual information provided by dynamic slicing and
the fault correlation analysis performed by statistical debugging to effectively diagnose
faults. Our evaluation showed that our hybrid strategy overcomes the weaknesses of both
slicing and statistical fault localization. In our evaluation with hundreds of faults, the
best fault localization approach is the hybrid strategy, regardless of the number or type of
program faults. The empirical data and results obtained in this evaluation can be found
here: https://tinyurl.com/HybridFaultLocalization

Maximizing Delta Debugging (ddmax). Building on the empirical results from our study on
the causes of input invalidity, we provide a black-box technique for automatically diagnosing
and repairing invalid inputs via several test experiments. Our maximizing delta debugging
algorithm (ddmax ) (1) identifies which parts of the input data prevent processing, and (2)
recover as much of the (valuable) input data as possible. Through experiments, ddmax
maximizes the subset of the input that can still be processed by the program, thus recovering
and repairing as much data as possible. The difference between the original failing input
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and the “maximized” passing input includes all input fragments that could not be processed.
We provide our tool and findings in an artifact package, the artifact is available at: https:
//tinyurl.com/debugging-inputs-icse-2020

Probabilistic Test Generation (Inputs From Hell). Applying probabilistic grammars as
input parsers, we show how to learn input distributions from input samples, allowing to
create inputs that are (dis)similar to the sample. Among many use cases, this method allows
for the generation of failure-inducing inputs – learning from inputs that caused failures in
the past gives us inputs that share similar features and thus also have a high chance of
triggering bugs. This is useful for bug reproduction and testing the completeness of bug
fixes. Our evaluation shows that learning from failure-inducing sample inputs effectively
reproduces the same failure and also reveal new failures. The experimental setup, evaluation
data and results are available at: https://tinyurl.com/inputs-from-hell

7.3 Future Work

This dissertation opens the door for a number of exciting future research opportunities. There are
still lots of open problems and research challenges to address in the interplay of software practice
and automated debugging. Our future work will focus on the following issues:

Multiple Fault Locations. In contrast to the assumptions of typical debugging and repair
tools, most real-world bugs can not be explained, localized or patched by finding one fault
location [287, 112]. In the context of automated debugging, this assumption is called perfect
bug understanding. It is the assumption that finding and examining a single faulty statement
in the program is sufficient to detect, understand, explain and fix the bug [178]. A few
researchers have shown that this assumption does not hold in software practice [112], in
fact it has been shown to impede the effectiveness of debugging aids and automated repair
techniques [287]. The results from our empirical study on debugging practice (in Chapter 3)
also show that the perfect bug understanding assumption does not hold in reality. Indeed, for
most bugs, developers provided bug diagnoses and fixes that span more than one contiguous
fault location. For instance, we found that most (over 50% of) developer-provided diagnoses
span multiple (three to four) contiguous code locations and multiple (10 statements) faulty
LoC (, on average). This result has major implications for debuggers and repair tools in
practice, since most tools assume perfect bug understanding.

To address this problem, we plan to conduct an empirical study to investigate the impact of
multi-line faults and multiple (contiguous) fault locations on the productivity of developers
and the effectiveness of debugging techniques. It is pertinent to examine the impact of the
perfect bug understanding assumption on the effectiveness of debugging aids and its cost in
terms of developer productivity and time. Besides, this assumption has serious implications
for the (previous) evaluation of debugging and repair tools. We plan to first empirically
investigate the impact of this assumption in realistic debugging settings with developers,
using real-world bugs with multi-line faults and multiple contiguous fault locations. We
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would then employ the empirical evidence collected from this study to build tools that
address this challenge in practical debugging and repair settings.

Advanced Input Debugging. We are investigating a number of open problems in input de-
bugging, in particular, how to leverage program features to improve input repair. To address
this problem, we plan to develop a white-box input repair approach. The goal is to leverage
program semantics to improve input diagnosis and repair.

First, we plan to empirically investigate the presence of program invariants that correlates
with input (in)validity in software practice, using a number of subject programs and thousands
of inputs. Applying the lessons learned from this investigation, we would develop a white-box
input repair algorithm that automatically learns program invariants (e.g. coverage-based
metrics) that correlates with input (in)validity. One can employ such invariants as semantic
checks for input diagnosis and repair, for instance, via test oracle checks for the coverage of
error-handling method calls. White-box input repair is important to effectively repair invalid
inputs for programs that silently handle failures, e.g. without triggering a program crash.
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