4,545 research outputs found

    Anterior Hippocampus and Goal-Directed Spatial Decision Making

    Get PDF
    Contains fulltext : 115487.pdf (publisher's version ) (Open Access

    Travel Planning Ability in Right Brain-Damaged Patients: Two Case Reports

    Get PDF
    Planning ability is fundamental for goal-directed spatial navigation. Preliminary findings from patients and healthy individuals suggest that travel planning (TP)—namely, navigational planning—can be considered a distinct process from visuospatial planning (VP) ability. To shed light on this distinction, two right brain-damaged patients without hemineglect were compared with a control group on two tasks aimed at testing VP (i.e., Tower of London-16, ToL-16) and TP (i.e., Minefield Task, MFT). The former requires planning the moves to reach the right configuration of three colored beads on three pegs, whereas the latter was opportunely developed to assess TP in the navigational environment when obstacles are present. Specifically, the MFT requires participants to plan a route on a large carpet avoiding some hidden obstacles previously observed. Patient 1 showed lesions encompassing the temporoparietal region and the insula; she performed poorer than the control group on the ToL-16 but showed no deficit on the MFT. Conversely, Patient 2 showed lesions mainly located in the occipitoparietal network of spatial navigation; she performed worse than the control group on the MFT but not on the ToL-16. In both cases performances satisfied the criteria for a classical dissociation, meeting criteria for a double dissociation. These results support the idea that TP is a distinct ability and that it is dissociated from VP skills

    Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

    Full text link
    There has been tremendous progress in algorithmic methods for computing driving directions on road networks. Most of that work focuses on time-independent route planning, where it is assumed that the cost on each arc is constant per query. In practice, the current traffic situation significantly influences the travel time on large parts of the road network, and it changes over the day. One can distinguish between traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e.g., accidents. In this work, we study the \emph{dynamic and time-dependent} route planning problem, which takes both prediction (based on historical data) and live traffic into account. To this end, we propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric~(e.g., due to traffic updates or user restrictions) faster than previous approaches, while allowing subsequent queries that enable interactive applications

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Decoding the urban grid: or why cities are neither trees nor perfect grids

    Get PDF
    In a previous paper (Figueiredo and Amorim, 2005), we introduced the continuity lines, a compressed description that encapsulates topological and geometrical properties of urban grids. In this paper, we applied this technique to a large database of maps that included cities of 22 countries. We explore how this representation encodes into networks universal features of urban grids and, at the same time, retrieves differences that reflect classes of cities. Then, we propose an emergent taxonomy for urban grids

    Neural systems supporting navigation

    Get PDF
    Highlights: • Recent neuroimaging and electrophysiology studies have begun to shed light on the neural dynamics of navigation systems. • Computational models have advanced theories of how entorhinal grid cells and hippocampal place cells might serve navigation. • Hippocampus and entorhinal cortex provide complementary representations of routes and vectors for navigation. Much is known about how neural systems determine current spatial position and orientation in the environment. By contrast little is understood about how the brain represents future goal locations or computes the distance and direction to such goals. Recent electrophysiology, computational modelling and neuroimaging research have shed new light on how the spatial relationship to a goal may be determined and represented during navigation. This research suggests that the hippocampus may code the path to the goal while the entorhinal cortex represents the vector to the goal. It also reveals that the engagement of the hippocampus and entorhinal cortex varies across the different operational stages of navigation, such as during travel, route planning, and decision-making at waypoints

    Design of a multiple bloom filter for distributed navigation routing

    Get PDF
    Unmanned navigation of vehicles and mobile robots can be greatly simplified by providing environmental intelligence with dispersed wireless sensors. The wireless sensors can work as active landmarks for vehicle localization and routing. However, wireless sensors are often resource scarce and require a resource-saving design. In this paper, a multiple Bloom-filter scheme is proposed to compress a global routing table for a wireless sensor. It is used as a lookup table for routing a vehicle to any destination but requires significantly less memory space and search effort. An error-expectation-based design for a multiple Bloom filter is proposed as an improvement to the conventional false-positive-rate-based design. The new design is shown to provide an equal relative error expectation for all branched paths, which ensures a better network load balance and uses less memory space. The scheme is implemented in a project for wheelchair navigation using wireless camera motes. © 2013 IEEE

    A Hybrid 3D Path Planning Method for UAVs

    Get PDF
    corecore