research

Extending TRANSIMS Technology to an Integrated Multilevel Representation

Abstract

The TRANSIMS system developed at Los Alamos in the USA over the past decade is a world leader in providing an integrated land-use transportation dynamical model for large areas with a million or more inhabitants. TRANSIMS uses standard survey data to create synthetic micropopulations, including family structure, to simulate trip making and emergent traffic dynamics. We propose to extend TRANSIMS by adapting it to a new multi-level representation, allowing dynamics to be algebraically integrated at the micro-, meso- and macro-levels. The new representation builds a lattice hierarchy in a way that integrates non-partitional hierarchies of links and routes based on the usual hierarchy of geographical zones, e.g. neighbourhoods, districts, cities, counties and countries. Applying the representation to a big city starts by defining sets of zones at different levels. At the first level, N, is the street. This can be subdivided to building plots at level N-1, buildings at level N-2, and even rooms at level N-3. At level N+1 are the neighbourhoods, at level N+2 is the set of district zones (each of them containing the different neighbourhoods in the previous level), and at the top level N+3 (in this case), is just one zone, the city itself. If a larger study area is to be considered, we would have a whole set of N+3 zones defining N+4-level areas, and so on, extending to the level of counties, countries or even continents. This paper will explain the fundamentals of TRANSIMS technology and compare it to other systems. We will show how TRANSIMS and the new multi-level representation can be brought together to give new insights into the macro-dynamics of very large road systems such as London, England and even the whole of Europe

    Similar works