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Abstract 
 
In a previous paper (Figueiredo and Amorim, 2005), we introduced the continuity 
lines, a compressed description that encapsulates topological and geometrical 
properties of urban grids. In this paper, we applied this technique to a large 
database of maps that included cities of 22 countries. We explore how this 
representation encodes into networks universal features of urban grids and, at the 
same time, retrieves differences that reflect classes of cities. Then, we propose an 
emergent taxonomy for urban grids.  
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Decoding the urban grid: or why cities are neither trees nor perfect grids 
 
Introduction 
 
One of the key characteristics of recent studies on urban morphology is the use of 
networks to describe the built environment. In this perspective, the city is not seen 
as a collection of building blocks that may have geometrical regularities, 
ultimately architectural styles, but a network of interconnected open spaces 
created by those blocks – the urban grid (Martin, 1967; Hillier and Hanson, 1984). 
Such studies unfolded cities in their underlying spatial organisation, tracing a 
connection between space and society, and revealing that the urban grid itself 
contains an imprint of society (Holanda, 2002). 
 
The main descriptive technique applied to the built environment has been the 
decomposition of the urban grid into axial lines. The axial map is the minimal set 
of the longest straight lines of unobstructed movement that crosses and 
interconnects all open spaces in the system (Hillier and Hanson, 1984). It creates a 
graph where nodes are lines and edges are intersections between lines. A number 
of topological measures can be extracted from this graph in order to quantify 
characteristics of the spatial configuration of the urban grid. Most of these 
measures are based on topological distances, i.e. the number of steps (edges) 
between two nodes. The axial map has been proven useful for a wide range of 
applications, including the study of movement patterns (Hillier et al, 1993). 
 
However, recent studies pointed out a number of inconsistencies in the axial 
technique. In particular, the use of straight lines is oversensitive to small 
deformations in the grid, which leads to noticeably different graphs for systems 
that should have similar configurational properties (Ratti, 2004). In real cases, this 
creates an artificial differentiation between straight and curved or sinuous paths 
that have the same importance in the system. Long straight paths, represented as a 
single line, are overvalued compared to curved or sinuous paths as they are 
broken into a number of axial lines (Figueiredo and Amorim, 2005). To overcome 
such limitations, two new techniques have arisen: the angular-segment maps 
(Dalton et al, 2003; Hillier and Iida, 2005) and the continuity maps (Figueiredo, 
2004; Figueiredo and Amorim, 2004, 2005).  
 
The angular-segment model focuses on cognitive aspects by investigating if 
individuals navigate in the built environment using the geometry of the urban 
grid. In the graph, nodes are no longer lines but segments and the distance 
between two segments is the least angular changes of direction (Hillier and Iida, 
2005). This representation returns to the classic idea that the network is a skeleton 
for an external model, i.e. the configuration of the system is not captured by the 
structure of the network but it is highlighted as a result of the angular analysis. On 
the opposite direction, the continuity maps were designed to improve the axial 
representation without challenging its fundaments (Figueiredo, 2004; Figueiredo 
and Amorim, 2005). Therefore, it keeps the idea that the nodes (lines) should have 
an individual meaning and that the hierarchy and geometry of the system can be, 
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to a large extent, encapsulated in the structure of the graph – the network itself is 
the tool of analysis.  
 
A continuity line arises from the aggregation of axial lines, in axial maps, or line 
strings between junctions, in standard road-centre line data. This process of 
generalisation is known in cartography (Thomson and Brooks, 2002) and the rules 
for aggregating lines can be based in a number of different properties, such as 
street names (Jiang and Claramunt, 2004; Rosvall et al, 2005) or the angle 
between two lines (Figueiredo and Amorim, 2004, 2005; Porta et al, 2006). 
Although different criteria could be combined to built continuity maps, the use of 
angles is a purely geometrical criterion and therefore more appropriate for cross-
cultural morphological studies. In this case, two lines are aggregated if the angle 
of continuity (Figueiredo and Amorim, 2005), i.e. the angle between the linear 
continuation of the first line and the second line, is less than or equal to a 
predefined threshold. If more than one continuation is available, the line that 
forms the smaller angle is chosen. 
 

 
Figure 1: (Left) The continuity map of Brasília, Brazil (Holanda, 2002), using an 
angle of 45° . (Right) The underlying graph created by the continuity map 
(Figueiredo, 2004) where lines are nodes and intersections between lines are 
edges. The darker lines and nodes are the ones with high degree value. The degree 
or connectivity of a line is the number of lines that intersect that line. The degree 
defines the primary importance of a line in the system or, as cities are grids, the 
number of neighbours up to two steps.  
 
The subsequent encoding into a network is the same as in the axial map; nodes are 
lines and edges are intersections between lines  (Figure 1). However, while axial 
lines are hard to recognise in real systems, a continuity line can be associated to 
two-way traffic flow through a sequence of continuous streets, where the 
intersecting streets, or optionally the streets up two changes of direction1, 
potentially feed or distribute traffic from that flow. Therefore, the continuity map 
is a generalisation of the urban grid that encodes into a network a hierarchy of line 
lengths, i.e. the hierarchy of the street network is ultimately simplified in the 
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degree distribution of the system (Figure 2). This representation focuses on the 
potential created by the morphology of the grid instead of the actual physical or 
traffic constraints of the real system. 
 
Hillier (2002) and later Carvalho and Penn (2004) had already showed that the 
distribution of line lengths in axial maps present universal features “which seem 
to go across cultures and even across scales of settlements” (Hillier, 2002). In any 
axial map, there are a large number of short lines and a small number of very long 
lines. In the Figure 2, we see that the line length distribution also presents this 
behaviour in continuity maps (left) and that it is also reflected in the degree 
distribution (right). It is commonly argued that the tail of this type of distribution 
(from the point where the curve starts to resemble a straight line) follows a power-
law with a decay exponent 

! 

a  (Newman, 2005), i.e. 

! 

P(X " x) ~ x
#(a#1) and 

! 

P(X = x) ~ x
"a . However, despite having similar behaviours, the relation between 

line length and degree becomes clearer in continuity maps because curved and 
sinuous lines are reconstituted and correctly placed in the hierarchy of line lengths 
(Figueiredo and Amorim, 2005).  
 

 
Figure 2: (Left) The line length distribution of the continuity map of Recife, Brazil, 
using an angle of 45° . The plot is a cumulative distribution function in a 
logarithmic scale. The horizontal axis is the length of the line and the vertical axis 
is the probability of finding a line that has a length longer than or equal to 

! 

x . 
(Right) The same plot for the degree distribution. It shows how the topology 
simplifies the line length distribution. In fact, the correlation (R) between line 
length and degree in this map is 0.9064. 
 
Due to this descriptive consistency, several researchers have adopted this type of 
representation in order to explore structural properties of street and road networks 
(Rosvall et al, 2005; Porta et al, 2006; Karapala et al, 2006). They argue that these 
networks exhibit small-world and scale-free properties (Porta et al, 2006) as 
numerous other natural and man-made systems when represented as networks 
(Barabasi, 2003). The small-world phenomenon occurs when the average 
topological distance between any pair of nodes in the system, i.e. the average path 
length (L), is small regardless the size of the system. This is due to the presence of 
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“hubs”, highly connected nodes that create shortcuts between different parts of the 
network. These networks also have a high degree of clustering at the local level, 
i.e. groups of interconnected nodes. The scale-free behaviour means that the 
degree distribution in these networks exhibit fractal properties, following a power-
law (Figure 2). These studies are still in preliminary stage and restricted to a small 
number of maps. In addition, the meaning of such abstract properties in real cities 
has yet to be discussed, with the notable exception of Rosvall and colleagues 
(2005). 
 
In this paper, we applied our previous definition of continuity lines (Figueiredo 
and Amorim, 2005) to 101 axial maps of cities (Table 1) from 22 countries using 
a maximum angle of continuity of 45°. The continuity maps used in this study 
were created from three databases or axial maps built or collected for the doctoral 
thesis Urbis Brasiliae2 (Medeiros, 2006). We used a wide threshold for 
aggregating lines in order to overcome differences in the construction of axial 
maps from different data sources and reflect a directional system, in which 45° 
stands between a straight continuation and a 90° turn left or right. The aim of this 
paper is to unfold morphological and configurational properties of cities through 
continuity maps. We explore how this representation encodes into networks 
universal features of urban grids and, at the same time, retrieves differences that 
reflect classes of cities. We propose, then, a new taxonomy for urban grids based 
on quantitative methods that avoid any type of pre-classification.  
 
Decoding the urban grid 
 
As argued before, continuity maps are based on the simple idea that longer lines 
are more important in the system. As long lines usually have more connections, 
the line length tends to be reflected in all topological measures applied to this 
representation. In fact, the average correlation (R) between line length and degree 
in our set of 101 continuity maps is 0.8371, compared to 0.7413 in the original set 
of axial maps. In this context, if the impact of the line length on the topology of 
continuity maps increases in relation to axial maps, one can expect an overall 
increase in the interdependence of other variables. The intelligibility index (Hillier 
et al, 1987) demonstrates this. It evaluates how global properties reflect local 
properties in the system. However, the original definition suffers of size effects3. 
Instead, we used the correlation between degree and betweenness centrality 
(Freeman, 1979) as an intelligibility index. Betweenness, or choice (Hillier et al, 
1987), captures how often a node is used in journeys from all spaces to all other 
spaces in the system. It highlights not only highly connected nodes, but also 
strategic connectors that are between subsystems, such as a bridge. The average 
correlation (R) between degree and betweenness is 0.6597 in the continuity maps, 
compared to 0.4781 in the axial ones. These differences are usually higher in 
“organic” or “deformed” grids, confirming that the continuity maps improve the 
axial representation by reconstituting curved or sinuous paths. 
 
From another point of view, continuity maps enables the comparison between the 
urban grid and other networked systems, in particular small-world and scale-free 
networks. At the first sight, the small-world phenomenon seems to be an 
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abstraction that has no meaning in spatially embedded systems such as cities. 
Topological distances do not ensure shortest paths in terms of metric distances, 
and two streets can be located kilometres apart. However, previous studies using 
axial maps and topological distances (Hillier et al, 1993) have shown that 
movement flows throughout the city are strongly affected by the urban grid, 
which naturally creates a system in which journeys tend to pass through the most 
accessible locations. In such studies, the shortest path between two locations is 
interpreted as the least number of “changes of direction” between them.  
 
Although axial and continuity maps seem to be similar in this aspect, in the 
second one changes of directions are no longer bound to the concept of axial line. 
A change of direction can be roughly associated to an instruction “left” or “right” 
if we assume that the built environment provides enough information to discover 
where we should make the turn by, for instance, counting a sequence of streets or 
finding a street name. Therefore, in a continuity map, the shortest path between 
two nodes is any path that requires a minimum number of instructions “left” or 
“right”, assuming that the journey starts in the correct direction. The encoding of 
cities into this representation confirmed that the average path length (L) is indeed 
small (Table 1), regardless the size of the system. Even large urban grids such as 
São Paulo (52826 nodes) or Tokyo (53116 nodes) have average path lengths of 
13.11 and 7.45 steps respectively. In our perspective, these results suggest that 
cities retain a reasonable degree of navigability regardless their size, as we can 
describe most paths using a small number of directions. In addition, this confirms 
the key role of long lines in these systems, which connect entire subsets of 
interconnected short lines (Figueiredo and Amorim, 2005, Rosvall et al, 2005; 
Karapala et al, 2006).  
 
In fact, the encoding of cities into continuity maps seems to reveal an underlying 
structure of the urban grid. If cities were perfect grids they would be non-
hierarchical systems. All lines would have the same length and number of 
connections. In addition, the average path length of any system would be smaller 
than two, as any pair of nodes would dist up two steps. This would create a highly 
accessible system that provides multiple routes between any pair of locations. On 
the opposite direction, if cities were purely hierarchical systems, such as a tree, 
the average path length would tend to be higher than in a grid of the same size due 
to the existence of isolated branches4. This would create a segregated system that 
provides a single route between any pair of locations. The figure 3 illustrates these 
ideas. Imagine that we have to describe the simplest route between the location 1 
to the location 2 in both maps (a) and (b).  In the first case, we can describe five 
routes using two left-right directions. In the second case, there is only one route of 
four directions. 
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Figure 3: (a) The perfect grid is non-hierarchical system that provides multiple 
routes between two locations. If we have to describe only the simplest routes 
between 1 and 2, we have five short descriptions that use two directions. This 
means that there is a degree of uncertainty about which route would be effectively 
used. (b) In the tree-like layout, there is only a single route that can be described 
using four directions. A perfect hierarchy means no uncertainty. Cities are neither 
trees nor perfect grids. They retain a clear hierarchy as tree while enabling short 
descriptions as a grid. 
 
One may argue that pure grid systems are easy to navigate due to this high 
accessibility and to the existence of multiple paths between any pair of locations 
(Rosvall et al, 2005). However, if we assume that such routes are equally 
probable5, we see that morphology of the perfect grid does not differentiate main 
spaces and movement tend to be dispersed everywhere. The tree, on the other 
hand, clearly has a main space that connects all branches and controls movement 
between them. This kind of geometrical order seems to reflect ideals of equality 
and freedom or hierarchy and control. It creates either systems of short 
descriptions and high randomness, i.e. disorder in their underlying spatial 
organisation, or systems of long descriptions and no randomness (Hillier and 
Hanson, 1984). Real cities seem to be a result of a process of negotiation, through 
which the paradigms of equality-freedom and hierarchy-control generate a 
structure of a different kind. The urban grid minimises descriptions as long as 
possible while maintaining enough differentiation to establish a clear hierarchy. It 
is this differentiation, characteristic of traditional systems, that creates a well-
defined underlying structure (Hanson, 1989) in which journeys converge into set 
of key locations (Hillier et al, 1993). Therefore, cities are neither trees 
(Alexander, 1969) nor perfect grids, but a combination of these structures that 
emerge from a myriad of social and constructive processes.  
 
This hierarchy of lines has a signature. Our findings confirmed that the line length 
and degree distributions in continuity maps have a shape that could be described 
as a scale-free behaviour (Carvalho and Penn, 2004). The same power-law tails 
illustrated in the Figure 2 in both distributions were found in a large number of 
maps, mainly in maps of relevant size. However, irregular shapes and faster 
decays in the tails, which would characterise scale-dependent distributions, were 
also found. At this stage, we can only point reasons that would lead to irregular or 
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scale-dependent distributions. In the mapping and descriptive procedures, 
inadequate choices to determine the boundary of the maps or flaws in the 
aggregation process can damage the representation of very long lines. In the real 
systems, topographical or geographical factors can limit path lengths in several 
cases, such as in an island. In addition, long lines often cross peripheral or non-
urban areas, where the number of potential connections is noticeably reduced. 
 

 
Figure 4: The continuity map of Nicosia, Cyprus, using an angle of 45° . The Figure 
has two types of visualisation (Figueiredo, 2004). In the left, the multilayer 
structure of the supergrid is highlighted. The darker lines roughly correspond to 
the 5% longest lines. In the right, “neighbourhoods” are highlighted by finding 
clusters of lines with similar line length. The intensities of grey are based on the 
average line length of the cluster. Note that the two parts of the Old Nicosia 
(centre) have slightly different intensities of grey. The map is a courtesy of the 
Space Syntax Laboratory (Konstantinos Kypris). 
 
We have found that the continuity map decomposes the urban grid into a 
multilayer main core that interconnects a number of clusters, which roughly 
correspond to “morphologically defined neighbourhoods”. Examining the Figure 
2 again, we see that the line length distribution starts with a horizontal sequence 
of short lines followed by an abrupt decay – the power-law tail. However, it may 
be not obvious that roughly 75% of the lines are “short” and thus concentrated 
right before the tail. On their turn, the long lines that form the tail are also present 
in a higher or smaller degree in the top values of most measures applied to this 
type of map6. We have found that this phenomenon is universal in continuity 
maps and, as the interdependence of variables is higher in this type of map, the 
core is better defined than previously observed in axial maps (Peponis et al, 1989; 
Read, 1997). The main core or “the supergrid” (Read, 1997) is a system itself. It 
starts with few very long lines that are complemented by shorter and shorter lines 
that create several “grids” in a multilayer structure, when it is finally completed 
by clusters of short lines (Figure 4). In some extent, it is the relation between the 
main core and the clusters that defines the underlying structure of the urban grid. 
There are cases in which the “neighbourhoods” are attached to the main grid, 
creating “tree-like” structures, or embodied by long lines that define a sort of 
boundary. In other cases, the supergrid pervades the clusters blurring the frontier 
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between local and global. Finally, there are cases that core creates “super 
neighbourhoods”, i.e. the long lines are clustered as in Eixample district in 
Barcelona (Spain). 
 
Finally, we quantified some morphological and topological characteristics of our 
set of maps. We have shown that the aggregation degree (Figueiredo and 
Amorim, 2005), i.e. the percentage of axial lines that are aggregated, measures 
how “organic” or “deformed” is a grid. In addition, there is a “descriptive 
improvement” that can be measured as an increase in the correlation between line 
length and degree. However, we are also interested in determining where a 
particular urban grid stands between a tree-like structure and a perfect grid. As 
mentioned before, small-world networks are also characterised by a high degree 
of clustering at local level. It is possible to measure if lines are clustered as a grid7 
using the “grid coefficient” (Caldarelli et al., 2004). The definition we adopted is 
based on the number of cycles of four steps that include a two-steps neighbour. 
The grid coefficient of a line is the sum of all existing cycles of four steps 
between that line and its second neighbours over the maximum number that could 
exist if all its first and second neighbours were clustered as a grid (Figure 5). 
Therefore, the average grid coefficient summarises this underlying grid structure 
even if it is not immediately obvious in the geometry of the urban grid.  The 
values of aggregation degree, “descriptive improvement” and average grid 
coefficient for our set of 101 continuity maps are listed in the Table 1. 
 

 
Figure 5: (Left) On the left, the line “0” has six first neighbours labelled as “1”. 
However, only four of them are also connected to the two-steps neighbour “2”. 
(Right) If we take in consideration the number n of common neighbours between 
the two lines “0” and “2”, the number of existing cycles of four steps that start and 
end in the line “0” using the line “2” is n (n – 1) / 2. The grid coefficient of a line is 
the sum of all existing cycles between that line and its second neighbours over the 
maximum number that could exist if all the first (1st) and second (2nd) neighbours 
of that line were clustered as a grid, i.e. 2nd * (1st (1st – 1)) / 2.  
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Families of cities 
 
The urban grid is an imprint of the history of the city, containing traces of 
different growing, planning and social processes. Each grid tell us a particular 
history, that might include the accelerated growing of Latin America cities or the 
deep medieval roots of some European cities. In this sense, these objects invite us 
to reconstitute their ontology. We have shown that continuity maps provide an 
important insight into the morphology of urban grids, capturing geometrical and 
topological properties of such objects. In this section, we introduce new analytical 
procedures that match certain similarities between urban grids and reveal an 
emergent taxonomy. 
 

 
Figure 6: Urban grids worldwide. From left to right, the aggregation degree 
increases, i.e. the range could be described as “regular – irregular”. From top to 
bottom, the grid coefficient increases, i.e. the range could be described as “tree – 
grid”. The maps are courtesy of Space Syntax Laboratory (a, b – Kayvan Karimi, d 
– Mark David Major, f); Valério A. S. de Medeiros and DIMPU UnB (c, g, i); Tao Yang 
(e); and Loon Wai Chau (h).  
 
We start by examining the problem of classification within space syntax. Previous 
comparative studies do not use syntactic tools to classify cities. Instead, they 
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adopt other classifications, such as cultural or geographical criteria, and then 
apply analytical tools to characterise the existing groups in morphological terms 
(Major, 1997; Karimi, 1997; Hillier, 2002, Kubat et all, 2001, Medeiros, 2006). 
Therefore, the categories and their components precede the analysis. A second 
and more elegant approach is to propose objectives or paradigms (Holanda, 2002) 
and use the analytical tools to identify cities of each category. Although the 
classification itself is a result of the analysis, the categories are bound to the 
argument of the investigator and still precede the analysis. Recent studies inverted 
this sequence and avoid predefined categories (Medeiros and Holanda, 2005; 
Figueiredo and Amorim, 2005). Instead, groups are interpreted as a result of the 
analysis. Figure 6 illustrates this approach. From left to right, the aggregation 
degree increases, creating an “irregular – regular” scale. From top to bottom, the 
grid coefficient increases, creating a “tree – grid” scale. However, even in this 
case the categories are based on the argument of the investigator, who ultimately 
decides the boundaries and thus the elements of each group. 
 
There are alternatives. Methods for automatic classification or grouping, broadly 
termed “hierarchical clustering”, are known in disciplines such as Biology (Sneath 
and Sokal, 1973) or Geospatial Analysis (de Smith, 2007). The general idea 
behind the hierarchical clustering is that elements of any set have similarities and 
differences that can be mapped as distances in an n-dimensional space in which 
each characteristic (variable) is an axis. Then, clusters are created by grouping 
isolated elements or subgroups or, alternatively, splitting the set into smaller 
groups, according to the distance between them. Although the researcher can still 
select the variables, neither the groups nor the components precede the analysis – 
an important step towards a non-discursive or “numerical” taxonomy (Sneath and 
Sokal, 1973). As an exploratory experiment, we apply the “average linkage” 
method to our set of maps. The average linkage clustering starts by considering 
the elements as isolated groups. Then, step-by-step, two groups are merged if the 
average distance between their components is the smallest in relation to all other 
group combinations. We used three variables presented before (Table 1): 
aggregation degree, descriptive improvement and average grid coefficient, which 
are relatively independent as the maximum correlation (R) between them is 
0.5084. They were standardised between zero and one and the distance or 
similarity between two cities was defined as the sum of the absolute difference 
between each measure8. The result is presented in form of a dendrogram (Figure 
7). Indentations in the tree indicate when the groups were clustered. As we see, in 
the beginning, pairs of elements are usually grouped. Then, isolated elements are 
added to an existing group or two subgroups are merged together until the whole 
tree is built. We can obtain the final groups by cutting vertically the dendrogram 
or selecting branches. Finally, this method has known limitations. Isolated cases 
tend to be added to bigger clusters, as the selected variables may not be sufficient 
to characterise them or other samples of the same type are needed. In addition, the 
use of the average distance in each step leads to a loss of information (Ward, 
1963), i.e. later groupings are less meaningful because the average distance 
between large groups may not be a representative value.  
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Despite these limitations, the results were satisfactory as we found meaningful 
branches in the tree. In the top, we have cities with an exceptionally high average 
grid clustering, e.g., Gama, Ceilândia-Taguatinga (planned cities in Brazil) e 
Johor Bahru (Malaysia). The second group is mainly composed of English and 
European cities, along Brazilian ones with a strong Portuguese influence, e.g., 
Canterbury (UK), Lisbon (Portugal) and São Luís (Brazil). These cities have high 
aggregation degree and descriptive improvement. If we ignore Penang (Malaysia), 
an odd case, we have two large branches of “grid” and “tree” cities. The “tree” 
branch (in the bottom) and is mainly composed of Iranian and planned cities such 
as Brasília (Brazil) and Milton Keynes (UK), characterised by low aggregation 
degree and low grid clustering. Seattle (USA) is also grouped to this branch 
because the map includes large sprawl areas. Finally the “grid” branch has two 
main subdivisions. The “regular” grid branch is mainly composed of Brazilian 
and American cities, e.g., Fortaleza (Brazil) and Chicago (USA). This branch has 
relatively low aggregation degree and low descriptive improvement. These results 
are consistent with Medeiros’ (2006) original study. By comparing 44 Brazilian 
cities to cities worldwide he revealed that, on average, they are predominantly 
regular and composed of distinct grid patterns resembling a patchwork. Finally, 
the “deformed” or “mixed” branch is the largest group and includes cities that 
have medium values of the selected variables. Not surprisingly, several minor 
branches are mainly composed of cities of the same country, revealing the trace of 
similar growing, planning and social processes. Even when they challenged our 
common sense, we found that the branches revealed similarities that would 
remain hidden if we had used any type of pre-classification. 
 
Conclusions and future developments 
 
In this paper, we have shown that the continuity lines are a powerful tool for the 
representation and analysis of the urban grid. This descriptive technique is fully 
embedded in the recent developments on network science, drawing contributions 
from fields such as the statistical mechanics and biology. We explored only few 
of these innovative tools on a large database of continuity maps that included 
cities of 22 countries. The results unfolded striking properties of such objects. We 
have found that the underlying spatial organisation of the urban grid retains a 
clear hierarchy as a tree while enabling short descriptions as a grid. We have also 
shown that although being composed of a set of pieces that follows universal 
laws, such pieces are arranged in countless ways, reflecting the particular history 
of each city. We characterised such arrangements and proposed an emergent 
taxonomy for urban grids. 
 
The challenge is still to fully understand the rules that govern and generate these 
spatial and networked structures. In particular, we need to characterise the 
supergrid and its relation with the neighbourhoods. Our next efforts include the 
use of innovative clustering methods (Newman, 2004) not only to identify and 
extract this supergrid and the morphologically defined neighbourhoods, but also 
to create new powerful taxonomic procedures. Finally, we expect that the methods 
and results presented here to shed some light on the complex urban phenomena. 
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Figure 7: The cluster dendrogram created by the average linkage method. It shows 
the similarity between the cities taking in account three variables: aggregation 
degree, descriptive improvement and average grid coefficient. 
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1 Several classical studies used “Radius 3” measures, i.e. “up two three steps”, to 
capture local properties of urban areas (Hillier et al, 1993). However, they used a 
software called “Axman”, written by Nick Dalton, in which the distance from a 
node to itself is one instead of zero. Therefore, “Radius 3” should be read as 
“Radius 2” in these studies. 
 
2 The first database is composed of Brazilian cities. It is georeferenced and was 
mainly created by Valério A. S. de Medeiros (2006), with contributions of several 
Brazilian research centres, in particular the DIMPU UnB and MUsA UFRN. The 
second database of world cities was built by researchers and students of the Space 
Syntax Laboratory and the Bartlett School of Graduate Studies. Finally, the third 
database contains individual contributions of several researchers worldwide. 
 
3  The original index is the correlation between connectivity (degree) and 
integration (Hillier and Hanson, 1984), a normalised version of closeness 
(Freeman, 1979). Integration highlights a central core, which becomes “over 
concentrated” as the size of the system increases. This measure is also sensible to 
discontinuous systems (two or more subsystems connected by few lines) and 
boundary conditions, the “edge effect” (Ratti, 2004). 
 
4 The exception would be long linear trees with shallow branches attached. 
  
5 We can use information theory to formalise this argument. If the probability of 
choosing a route between 1 and 2 (Figure 3) is p, the entropy (or uncertainty) of 
this system is 

! 

H = " plog2# p. Therefore, the perfect grid (3a) has maximum 
entropy if the routes are equally probable while the tree (3b) has no entropy as 

! 

log21" 0. Note that we can encode an instruction of the type left (0) or right (1) 
into a single bit. 
 
6 With the exception of integration (or closeness) measures due to the already 
mentioned “edge effect” (Ratti, 2004).  
 
7 See also “grid axiality” (Hillier and Hanson, 1984) and “n-clustering 
coefficient” (Jiang and Claramunt, 2004). 
 
8 This similarity distance is also known as “Manhattan” or “city-block” distance 
in the literature (Sneath and Sokal, 1973). 
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Table 1: The set of 101 continuity maps used in this study. 

Map Nodes L Aggregation 
Degree 

Average Grid 
Coefficient 

Descriptive 
Improvement 

at.vienna 1448 5.5105 0.4824 0.1588 0.0823 
be.antwerpen 2565 5.9915 0.4965 0.1602 0.1442 
bh.al-manamah 3216 6.4670 0.2597 0.1825 0.0884 
bh.al-muharraq 3311 8.8694 0.3207 0.1827 0.1281 
br.anapolis 2445 6.2126 0.3340 0.2060 0.0697 
br.aracaju 6387 9.8427 0.3392 0.2309 0.0796 
br.arapiraca 1246 6.7345 0.4454 0.1932 0.0786 
br.belem 8366 8.4576 0.3734 0.1634 0.0559 
br.brasilia 1683 7.9037 0.1979 0.1594 0.1592 
br.ceilandia-taguatinga 3799 6.8773 0.1331 0.2690 0.0032 
br.cuiaba 5423 7.7533 0.4744 0.2001 0.1052 
br.fortaleza 8914 7.7566 0.3270 0.2106 0.0540 
br.gama 1029 6.2170 0.0752 0.2718 0.0044 
br.goiania 14231 9.1693 0.4533 0.1976 0.0807 
br.guara 845 8.0221 0.0957 0.1547 0.0939 
br.joao-pessoa 7290 9.2646 0.4610 0.1921 0.0937 
br.maceio 2434 7.9107 0.2130 0.2052 0.0690 
br.manaus 16439 10.7051 0.4539 0.1892 0.1298 
br.mossoro 1735 6.0583 0.2590 0.2337 0.0481 
br.natal 8555 9.3514 0.3176 0.2118 0.0273 
br.palmas 2301 6.6380 0.3220 0.2368 0.0581 
br.pelotas 1808 5.8663 0.3611 0.2175 0.0757 
br.porto-alegre 7697 10.0371 0.4458 0.1633 0.0906 
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Map Nodes L Aggregation 
Degree 

Average Grid 
Coefficient 

Descriptive 
Improvement 

br.porto-velho 1852 5.4499 0.2796 0.2201 0.0013 
br.recife 11149 8.6658 0.4048 0.1712 0.1189 
br.rio-de-janeiro 10133 11.1423 0.5405 0.1984 0.1869 
br.rio-grande 708 4.9412 0.2994 0.2580 0.0583 
br.salvador 28635 14.6388 0.5558 0.1564 0.2046 
br.samambaia 2150 7.0888 0.2759 0.2103 0.1181 
br.sao-luis 7480 8.4450 0.5621 0.1919 0.1312 
br.sao-paulo 52826 13.1077 0.5157 0.1528 0.0776 
br.teresina 4939 8.0636 0.3733 0.2080 0.0310 
br.uberlandia 3871 6.2623 0.4695 0.2040 -0.0166 
br.vitoria 1890 9.2564 0.5319 0.1621 0.0820 
cl.santiago 24918 6.5827 0.2661 0.1897 0.0616 
cn.beijing 15539 6.6508 0.3682 0.1904 0.1169 
cy.nicosia 4468 7.8600 0.4005 0.2027 0.1780 
de.aachen 1375 6.0019 0.3769 0.1664 0.1235 
de.berlin 3198 5.6401 0.4583 0.1469 0.0933 
de.frankfurt 761 6.7410 0.5066 0.1867 0.1768 
de.munich 623 4.4762 0.6070 0.1353 0.1611 
de.spandau 1270 5.4284 0.4341 0.1902 0.1341 
es.barcelona 3934 5.4847 0.4705 0.1600 0.0326 
gr.athens 15954 7.7715 0.5104 0.1421 0.0492 
gr.chania 824 5.4778 0.3835 0.1608 0.0581 
gr.heraklion 1618 6.2055 0.5091 0.1418 0.0979 
ir.hamadan 3051 6.3474 0.3341 0.1099 0.0676 
ir.kerman 3489 6.2047 0.3317 0.1276 0.0586 
ir.kermanshah 1428 5.6465 0.3909 0.1649 0.0971 
ir.qazvin 2741 6.3276 0.4155 0.1333 0.1199 
ir.semnan 1632 6.2923 0.3009 0.1120 0.1017 
ir.shiraz 6982 7.0439 0.2187 0.1279 0.0794 
it.rome 7340 9.6702 0.4612 0.1689 0.1000 
it.venice 2262 16.1509 0.1976 0.1811 0.0702 
jp.kyoto 16056 7.9960 0.4086 0.1705 0.0507 
jp.tokyo 53116 7.4553 0.4275 0.1336 0.0715 
lb.beirut 2278 5.7071 0.3613 0.1485 0.1265 
mx.mexico 3833 4.9572 0.3168 0.1342 0.0469 
my.johor-bahru 20167 10.1633 0.2983 0.2964 0.0343 
my.penang 5491 10.4150 0.3517 0.2575 0.1462 
nl.alkmaar 1748 7.7153 0.4407 0.2023 0.1020 
nl.amsterdam 7744 7.6875 0.3378 0.1895 0.0580 
nl.dordrecht 2906 8.4895 0.3493 0.1862 0.0926 
nl.eindhoven 4485 8.8638 0.3666 0.1996 0.1084 
nl.rotterdam 1000 6.2330 0.3830 0.1691 0.0692 
nl.the-hague 2603 5.5370 0.3606 0.1895 0.0673 
pt.lisbon 5016 12.6716 0.5263 0.1853 0.1462 
tr.istanbul 15094 12.3082 0.4922 0.1660 0.1340 
tr.samsun 741 4.5580 0.5393 0.1652 0.0634 
uk.bath 2328 7.8847 0.4058 0.1602 0.1345 
uk.birmingham 1621 5.8063 0.4827 0.1579 0.1920 
uk.bristol 4656 9.3853 0.5191 0.1492 0.2103 
uk.cambridge 1224 6.7960 0.2962 0.1585 0.1904 
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Map Nodes L Aggregation 
Degree 

Average Grid 
Coefficient 

Descriptive 
Improvement 

uk.canterbury 486 5.5351 0.5237 0.2227 0.2694 
uk.carlisle 778 6.4889 0.4360 0.2272 0.1266 
uk.hereford 551 5.8106 0.5422 0.2004 0.2789 
uk.london 11764 8.2174 0.4171 0.1701 0.1033 
uk.maidstone 1060 7.5043 0.4791 0.1918 0.1618 
uk.manchester 2501 5.7407 0.3923 0.1795 0.1061 
uk.milton-keynes 4848 7.5431 0.2055 0.1167 0.1037 
uk.newcastle 4875 10.6000 0.3046 0.1832 0.1248 
uk.norwich 1484 6.4108 0.4606 0.1927 0.2349 
uk.nottinghan 3313 7.5155 0.3833 0.1880 0.1452 
uk.oxford 1103 6.6285 0.5049 0.1916 0.1701 
uk.wolverhampton 3498 7.2239 0.5390 0.1745 0.2264 
uk.york 1231 6.3779 0.4805 0.1750 0.2760 
us.ann-arbor 2447 6.6169 0.5568 0.1595 0.1571 
us.atlanta 2425 5.6055 0.3969 0.1574 0.0348 
us.baltimore 9696 7.7910 0.2818 0.1793 0.0294 
us.chicago 25086 6.4504 0.2925 0.1914 -0.0032 
us.denver 1703 4.5301 0.3112 0.1893 0.0029 
us.las-vegas 7434 5.9278 0.1914 0.1855 0.0278 
us.los-angeles 745 3.7598 0.3779 0.1453 0.0575 
us.miami-beach 1439 4.8032 0.2340 0.2014 0.0062 
us.new-orleans 3598 6.3614 0.3917 0.2042 0.0109 
us.pensacola 3458 6.2584 0.3254 0.1901 0.0200 
us.san-francisco 1673 5.5510 0.3814 0.1838 0.0157 
us.seattle 17953 8.4808 0.1941 0.1530 -0.0032 
us.st-louis 3805 6.4821 0.4333 0.1974 0.0410 
us.washington 2503 6.0345 0.4357 0.1679 0.0168 
yu.belgrade 1930 7.0204 0.3786 0.1750 0.1092 

 
 
 


