2,295 research outputs found

    Laser Beam Welding of Stainless Steels

    Get PDF
    Obiettivo principale di questa tesi di dottorato è quello di studiare la saldatura laser degli acciai inossidabili. Durante gli esperimenti un laser Nd-YAG in onda continua da 1.1kW è stato utilizzato per saldare rispettivamente acciai martensitici in configurazione di piena penetrazione e combinazioni di acciai austenitici/ferritici in configurazione d’angolo. È stata studiata l’influenza di vari parametri di processo come potenza del laser, velocità di saldatura, diametro della fibra, angolo di incidenza e defocalizzazione nonché le loro interazioni sulla geometria del giunto e sulle sue proprietà meccaniche. Si sono analizzati, inoltre, gli effetti della densità di energia e dell’energia per unità di lunghezza sulle caratteristiche del giunto di saldatura in modo da evidenziare la dipendenza del processo dai fenomeni di scambio termico. Successivamente si è studiato la microstruttura della solidificazione del giunto e la relativa distribuzione degli elementi di lega per diversi valori della densità di energia correlandole con la variazione locale della microdurezza. Durante il corso della ricerca, sono state utiliizzate tecniche di DOE come il FFD ed il RSM con l’obiettivo di modellare ed ottimizzare il processo di saldatura laser. In questa fase, per ogni materiale saldato sono stati elaborati dei modelli in grado di determinare i fattori chiave che governano il processo. Tali modelli, inoltre, sono stati ottimizzati prendendo in considerazione la combinazione dei parametri di processo che consente di avere giunti di qualità superiore in termin di geometria e caratteristiche meccaniche. È stato, infine, elaborato un modello teorico per la determinazione della geometria di un giunto ottenibile dalla saldatura in piena penetrazione di acciai ferritici. Tale modello si basa sul concetto che la geometria risultante è funzione del tipo di scambio termico che si genera durante il processo e che a sua volta tale scmbio termico vari in funzione della densità di energia fornita dla laser. Il modello ha dimostrato una corrispondenza con i dati sperimentali con una maggior accuratezza nel caso di saldatura per conduzione

    A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow

    Get PDF
    A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers

    Production of Hybrid Tubular Metal-Fiber-Preforms: Material Characterization of Braided Hoses with a Binder

    Get PDF
    Hybrid shafts or rods, where the area of load introduction is metallic (e.g. steel or aluminium) and the area of load transfer is made of fibre reinforced plastics (FRP), are an established concept for lightweight parts. Besides the monolithic FRP and the metallic areas, the overlap area of both materials is particularly important. Such parts can beneficially be produced by the use of liquid composite moulding (LCM), where the bonding process takes place during the resin curing. This is called intrinsic hybridization. Beforehand it is crucial to produce a near-net-shape preform in which the metallic end fittings for the load introduction are already integrated. To manufacture such parts constantly with a high quality, a process model of the joining by draping the braided preform is necessary. In this paper an approach for the production of hybrid preforms made of braided hoses and metallic fittings is presented in order to develop a process model. The process starts with a cylindrical multi-layer preform made of braided hoses, in which the layers are bonded by a thermoplastic binder powder. The decisive process step is the draping of the preform onto the metallic fitting. For this forming step, the material characterization of the hybrid preform plays an important role. Several material tests to determine the textile parameters of the preform are therefore evaluated and performed. Finally, the results of these tests are presented and discussed

    Discrete Stiffness Tailoring: Optimised design and testing of minimum mass stiffened panels

    Get PDF
    Discrete Stiffness Tailoring (DST) is a novel manufacturing concept where stiffness tailoring is achieved using discrete changes in ply angle to favourably redistribute stresses. Resulting performance increases can be exploited to potentially achieve lightweight rapidly manufacturable structures, uninhibited by the minimum tow-turning radii which limit continuous fibre steering approaches. An efficient two-stage optimisation routine is implemented to design a DST minimum-mass stiffened aircraft wing panel subject to buckling and manufacturing feasibility constraints. The panel is manufactured and compression tested to failure, extending the DST design concept to component level for the first time. A weight reduction of 14.4% is achieved compared to a constant stiffness optimum, through redistribution of load to the stiffener region. The optimum design removes material from the skin, between stiffeners. Experimentally, the optimised tailored panel achieved a buckling load, without failure, within 5% of that predicted, validating both the methodology and modelling
    • …
    corecore