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Abstract 
While the tensile/compressive mechanical properties of the re-entrant auxetic cellular structure 

have been relatively well modeled, their shear properties including the shear modulus and shear 

strength have not been investigated. This paper focuses on the analytical modeling of the shear 

properties of this auxetic structure utilizing beam analysis. The modeling results were further 

compared with results from both simulation and experimentation. It was found that in addition 

to the effective length reduction effect, the size effect also becomes significant for the shearing 

of this re-entrant auxetic structures. Due to the size effect, it was expected that the re-entrant 

auxetic structure could not be effectively homogenized based on the developed analytical 

property model, and additional design factors must be considered in the future.  

Introduction 
In industries such as aerospace and automotive, cellular structures are widely used due to their 

outstanding compromise between mechanical properties and weight.  Often, the cellular 

structures are used as cores in sandwich panel structures in order to achieve satisfactory 

combination of various requirements including bending stiffness, energy absorption, ultimate 

strength and weight. Various literature works have been dedicated to the characterization of 

cellular cores and their applications in sandwich structures [1-8]. Of specific interest are the pre-

modeled periodic cellular structures, which can be designed and optimized according to specific 

requirements. Unlike random cellular structures whose properties are often controlled via 

empirical production quality control, periodic cellular structures possess definitive geometrical 

patterns, making it possible to perform property analysis with the structures during the design 

stage. Because of their geometrical patterns, periodic cellular structures can often be 

represented by unit cells. This provides a convenient alternative to analyze and optimize these 

cellular structures when size effect is also taken into account [9-13]. 

Regular honeycomb structure has been studied extensively by various researchers, and their 

mechanical properties are well known [2-3, 14-16]. These research works on the honeycomb 
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structure are mainly focused on 2D honeycomb extruded structure, in correspondence to the 

primary industrial manufacturing processes. Recently, other structures have been drawing 

increased attentions due to their potential to provide equivalent or superior properties 

compared to honeycomb structures [17-27]. One of such examples are auxetic structures, which 

are structures that exhibit negative Poisson’s ratios [28]. Auxetic structures are expected to 

exhibit many attractive properties, such as high shear modulus [28-30], high indentation 

resistivity [31-32], high fracture toughness [33] and high energy absorption [34-37]. Of special 

interest are their exceptional shear properties since the flexure performance of the sandwich 

panels are largely determined by their shear strength. For lightweight sandwich structures, core 

shear is often the dominating failure mechanism [1], therefore a core structure with high shear 

strength is highly desired.  

There has been some attempts to use auxetic cellular structure as core for sandwich panels in 

aircraft wings, in an effort to realize compliant wing design with adequate strength [38-42]. 

Despite the fact that rather arbitrary design parameters of the auxetic cellular structures were 

used in these works, the finite element analysis results suggested promising results for the 

design of compliant “morphing” wing structures. From these works it becomes apparent that 

the lack of methods to describe the shear properties of the auxetic structure has become a 

restriction for many application oriented works towards broader adoption of this type of 

structures. To date there has been relatively few works that focuses on the modeling of shear 

properties for auxetic structures. Scarpa et al. performed a series of experimental work with the 

shear properties of various auxetic structures, and employed both empirical and FEA model to 

describe the shear properties of the structures [43, 44]. In another work performed by the same 

group, the shear modulus in a specific direction of an orthotropic auxetic structure was modeled 

analytically using Voigt-Reuss bounds method [45]. The analysis yield a rather wide range of 

modulus values, which could potentially restrict the accuracy of the design prediction of this 

type of structure. Xu et al. applied homogenization method on a 2D extruded re-entrant auxetic 

cellular structure. By ignoring the effect of the face sheet, the shear moduli of the auxetic 

cellular structure on both non-extrusion directions were derived, although no experiment or 

numerical analysis were performed for verification [46].  

In this work, attempt was made to model the shear properties of a 3D re-entrant auxetic 

structure. Analytical predictions were compared with the FEA analysis results as well as 

experiments in order to verify the modeling accuracy. This will enable the design of sandwich 

panel structure for specific shear performance using the auxetic cellular structure. Previous 

modeling work on this structure has established the design equations that determine the elastic 

modulus and compressive strength of the structure, which was verified by experiments and FEA 

analysis with satisfactory results [47-49]. Therefore, the results from this work could also 

potentially enable the homogenization of the structure, which will be briefly discussed in this 

paper as well.  
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Shear properties modeling 
The unit cell of the re-entrant auxetic structure is shown in Fig.1a, and the geometrical design 

parameters are shown in Fig.1b, which include the lengths of the vertical and re-entrant struts H 

and L, respectively, the re-entrant angle θ between the two types of strut, and the cross 

sectional shape and dimensions of the struts (not shown). Same design approach as previously 

employed was adopted to model the shear performance of the structure [47-49]. However, as 

the standard unit cell as shown in Fig.1a lacks sufficient symmetry under the shearing 

conditions, a modified unit cell geometry with offset boundaries as shown in Fig.1c was used in 

order to simplify the modeling analysis. For a spatially infinite cellular structure, under remote 

shear stresses τ, it can be easily shown that the modified unit cell structure is subject to force 

components as shown in Fig.2a. The re-entrant struts aligning at different directions in relation 

to the shear stress also exhibit different loading conditions, which are marked as type A and B in 

Fig.2a. While type A struts align at an angle in relation to the shear plane, type B struts align 

along the shear plane. As type A struts are not subject to effective loading, it does not 

contribute to the deformation and strength of the structures under this loading condition.    

Fig.2b and Fig.2c show the loading of a half vertical strut and a half re-entrant strut, 

respectively. From force equilibrium these force components can be readily determined as: 
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(a) The unit cell (b) Parameter of a unit cell (c) Shear of structure 

Fig.1 3D re-entrant auxetic unit cell design 

 

  

(a) Vertical strut (b) Vertical strut (half) 
(c) Type B re-entrant strut 

(half) 

Fig.2 Decomposition of unit cell struts and force components 
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From Eq.(1)-(5), the deflection of the half struts in the x and z directions can be determined by 

considering both shear and bending induced deformations. Referring to Fig.3, the deflections 

Δx1, Δx2, Δz1 and Δz2 are: 

 

 

(a) Vertical strut (b) Re-entrant strut 

Fig.3 Deflection of struts 
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where Es, Gs are the elastic modulus and shear modulus of the solid material, Iv, Ir are the second 

moment of inertia of the vertical and re-entrant struts, and Av and Ar are the cross sectional 
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areas of the vertical and re-entrant struts, respectively. Note that the deflection values shown in 

Fig.(6)-(9) only represent these from half struts.  

As the total deflection of the unit cell in each direction is contributed by two re-entrant struts 

and two vertical struts. Therefore, from Eq.(6)-(9) the total deflections of the unit cell structures 

can be determined, which can be used subsequently for the prediction of modulus.  

Xz-Shear Modulus 

When the deflection angle is small as is the case for some metals, Δz1 can be neglected. 

Therefore, the shear modulus of the structure could be determined as:  
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Note that in Eq.(10) the deflection Δz2 does not contribute to the total deflection as this 

deflection is cancelled out during the deflection of the entire structure. Fig.4 shows the 

relationship between H/L ratio, re-entrant angle θ and the normalized shear modulus of the re-

entrant auxetic structure under xz-shear. It is obvious that larger re-entrant angle and smaller 

H/L ratio contribute to larger shear modulus.  

 
Fig.4 xz-shear modulus under different geometrical designs  

L=5mm, square strut cross section, t=1mm 

 

Xz-Shear strength  

From the force analysis, the structure could be potentially subject to plastic failure (yield) and 

elastic failure (buckling). However, further analysis shows that the struts that are subject to 

compressive stress (i.e. type B re-entrant strut) are also subject to bending and shearing 

simultaneously, which would cause bending of the struts. Therefore, the only failure mode for 
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the re-entrant auxetic structures under xz-shear is plastic failure. Consequently, the shear 

strength of the structure can be considered as the maximum stress at which either the vertical 

struts or the re-entrant struts yields.  

Under the loading shown in Fig.2b, vertical struts are subject to both normal stress and shear 

stress, which are attributed by the bending moments and the shear forces. For the simplicity of 

discussion, the cross section of the cellular struts was assumed to be square with thickness of t. 

The normal stress distribution as a function of the thickness of the strut could be determined as: 

 1

v
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I
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where σv is the normal stress, and T is the thickness of the position of interest. On the other 

hand, the shear stress distribution as a function of the thickness of the strut could be obtained 

as: 

 

2

1

2

3 4
(1 )

2

x

v

v

F T

A t
τ = − (0<T<t/2) (12)  

Define the failure of the vertical struts to occur when the first principal stress equals the yield 

stress of the material, or σ1=σYS. The principal stress as a function of the cross sectional position 

T could be determined by Eq.(13) as: 
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Therefore, maximum shear stress can be determined as: 
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For different design, the critical position will differ, and could be fully determined by Eq.(14). 

When H is large compared to t, the principal stress will be dominated by normal stress, 

therefore, the critical stress will occur at the surface of the vertical strut (T=t/2), which can be 

determined as: 
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For type B re-entrant struts, from the loading shown in Fig.2c, the normal stress and shear stress 

can be determined in similar manner as:  
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Note that in Eq.(16) positive and negative signs of the stress status represent tensile and 

compressive stress, respectively. It could also be shown easily that when L/Hcosθ>1, the re-

entrant strut is subject to an external tensile stress, while when L/Hcosθ<1, the re-entrant strut 

will be subject to an external compressive stress. For the analysis of principal stress, either 

tensile or compressive stress can be employed for the plastic failure strength prediction as they 

have the same magnitude. Therefore, the first principal stress for the re-entrant struts can be 

determined as: 
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(0<T<t/2) (18) 

It can be shown that the critical position of the type B re-entrant struts is located at the surface 

of the strut (T=t/2), and the maximum shear stress can be determined as: 

 
2 2 2

3 2 2

3 sin sin sin cos

YS

m
HL L HL

t t t

σ
τ

θ θ θ θ
=

+ −

 (19) 

It is worth noting that the shear strength obtained from Eq.(19) only represents the lower 

boundary of the properties, since with many materials the structure could continue to carry 

more load after the initiation of yield. Fig.5 shows the relationship between the geometry 

designs and the shear strength of the re-entrant auxetic structure. The shear strength exhibits 

the same dependence on geometrical designs compared to shear modulus, which implies the 

possibility of achieving both high modulus and high strength with the structural designs. Also, 

from the analysis it appears that the vertical struts are subject to critical loading during the 

shearing.  
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Fig.5 xz-shear strength under different geometrical designs 

L=4mm, t=1mm 

Shear properties in the other two principal directions 

Using the same approach described in the previous sections, the shear modulus of the re-

entrant auxetic structures in the other two principal directions (xy and zx directions) were also 

derived as functions of geometrical designs. Without showing further details, the shear modulus 

Gxy and Gzx were derived as: 
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With the knowledge of shear modulus, elastic modulus and Poisson’s ratios in all principal 

directions, it becomes possible to consider the homogenization of the re-entrant auxetic 

structures during designs [49]. It is worth noting that the successful implementation of 

homogenization with the structure also depends on the boundary effects such as size effect, 

which will be further investigated in this study in the verification of the modeling accuracy.  

Model verification 
The mechanical property results from analytical modeling was first verified via finite element 

simulation and destructive testing. Four different design variations were created with 

parameters shown in Table 1. All the designed structures have struts with square cross sections, 

and the parameters were chosen in such a way that the effect of both relative density and 

auxetic behavior (Poisson’s ratio) can be directly compared. For example, comparison of the 

effect of relative density can be made between designs A1 and A2 or B1 and B2, and the 
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comparison of the effect of Poisson’s ratio can be made between design groups A and B, or 

specifically between design A2 and B2. The numbers of repetitions of unit cell is 4x4x3 (x, y, z) 

for A1 and A2, and 4x4x4 (x, y, z) for B1 and B2, respectively. The unit cell repetition was 

determined to be relatively small so the same designs can be manufactured and experimentally 

tested.  

Design H (mm) L (mm) t (mm) θ (deg) Rel. Dens. PR-zx 

A1 7.3 3.5 1 45 0.286 -0.937 

A2 9 4.5 1 45 0.203 -0.937 

B1 7 5.6 1 70 0.102 -0.302 

B2 4.75 3.8 1 70 0.204 -0.302 

Table 1 Design variations for model verification 

The setup of the pure shear simulation is shown in Fig.6. Currently the shear simulations were 

only performed for xz-shearing using SolidWorks Simulation module. The designed structures 

were fully bonded between two rigid platens. One of the platens was fully constrained, while 

the other was applied a shear stress and allowed to move in the direction of the shearing. 

During the simulation, a shear stress of 1MPa was applied on the structure, and the maximum 

deformation as well as maximum stress levels were used to calculate the shear modulus and 

lower bound yield strength respectively. Using the default material library provided by the 

software, the elastic modulus, shear modulus and Poisson’s ratio of Ti6Al4V-ELI were taken as 

105GPa, 41GPa and 0.31 respectively. 

 
Fig.6 Setup for pure shear simulation 

 

In order to achieve near-perfect shear testing conditions, experimental samples as shown in 

Fig.7 were designed, in which two cellular portions with identical designs would be subject to 

identical shear stress when the entire sample is subject to compressive loading. The 
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experimental samples were fabricated by Arcam A2 electron beam melting (EBM) system using 

Ti6Al4V-ELI as materials. Standard network theme was used during the fabrication, and all 

samples were oriented with the xz plane of the re-entrant auxetic structure normal to the build 

direction. The overall dimensions of the samples were measured with a caliper, and the weight 

of samples were also measured with a digital scale with 0.001g accuracy. In addition, the 

dimensions of the vertical struts and re-entrant struts were measured under optical microscope, 

as from earlier studies this was found to be an important source of property deviation [48, 49]. 

The samples were tested under an Instron universal tester. During the testing, the displacement 

of the crosshead was used as the sample deflection for calculation.  

 

 

a. Sample design b. Experimental results 

Fig.7 Destructive testing of samples 

 

The dimensional measurements with the experimental samples showed good consistency. While 

the overall dimensions of the samples were very close to the designs, some of the strut sizes 

showed considerable deviations as shown in Table 2. Due to the high sensitivity of mechanical 

properties to the strut dimensions, both the FEA simulations and analytical model adopted the 

actual strut dimensions for property calculations. 

Design Vertical strut size (mm) Re-entrant strut size (mm) 

A1 0.866±0.037 0.890±0.033 

A2 1.016±0.026 0.968±0.011 

B1 0.992±0.024 0.983±0.176 

B2 0.977±0.008 0.910±0.005 

Table 2 Strut dimensions of fabricated samples 

The comparison between different results are shown in Table 3. It was apparent that these exist 

significant difference between results from different methods. Since for both analytical model 

and FEA the yield strength was actually calculated within the elastic region, the results from the 

FEA were considered to be most accurate and used subsequently for the error analysis.  
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Design 
Calc. Shear 

mod. (MPa) 

Cal. Strength 

(MPa) 

FEA shear 

mod. (MPa) 

FEA 

strength 

(MPa) 

Exp. Shear 

mod. 

(MPa) 

Exp. 

Strength 

(MPa) 

A1 58.3 2.5 101.4 3.2 128.0 9.4 

A2 45.3 2.0 63.9 2.1 54.3 4.7 

B1 40.4 0.9 23.7 0.8 15.7 1.7 

B2 148 2.7 101.0 2.3 79.8 6.8 

Table 3 Verification results 

As was pointed out in earlier studies, there exist multiple factors that could potentially affect the 

modeling accuracy, including surface sintering, effective length reduction and boundary effects 

[47-49]. As the surface sintering was partly accounted for by using actual strut dimensions 

during the calculation, the investigation focused on the effective length reduction and the 

boundary effects. The effective length reduction is caused by the difference between a node-

and-line design model (as shown in Fig.1b) and a more realistic model with strut thickness (as 

shown in Fig. 2b). A simulation based study was performed for the effective length reduction. As 

shown in Fig.8a, overhanging beams with varying tilt angles and beam lengths were designed 

and simulated under certain shear force F, and the struts and joints were modeled in the same 

way as those in the cellular structures. From the deflection results obtained from the 

simulations, the effective beam lengths using both Euler-Bernoulli model and Timoshenko 

model were calculated and compared with the designed lengths in order to obtain the effective 

length reduction. As shown in Fig.8b, for square beam structures with 1mm strut size, the tilt 

angle appears to be the only significant factor in determining the effective length reduction of 

the beam. As the tilt angle approaches 90°, the effective length reduction reduces to a small but 

non-zero value, indicating that for actual structure the joint is also contributing to the 

deformation of the structures.  

  
a. Simulation model b. effective length reduction 

Fig.8 Effective length reduction simulation 

 

For the various boundary effects, the size effect was investigated in this study in order to to 

evaluate the effect of number of unit cells on the effective mechanical properties of the 

structures. From previous studies it was shown that for re-entrant auxetic structures the 
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compressive strength and elastic modulus of the structures exhibit minimum size effect [49], 

which was also predicted by earlier studies with generic auxetic structures [50]. For shear 

modulus simulation results showed that the re-entrant auxetic structures exhibit significant size 

effects. As shown in Fig.9, for design A1, as the number of unit cell increases, the re-entrant 

auxetic structure exhibit a significant decrease of shear modulus. In addition, as the aspect ratio 

of the overall structure becomes large, the structure will start to behave increasingly like a long 

beam, which introduces additional deformation due to macroscopic bending, and the boundary 

condition defined in Fig.6 no longer represent a valid pure-shear condition. Therefore, the trend 

shown in Fig.9 might need to be subject to further scrutiny in order to obtain quantitatively 

accurate results.  

 
Fig.9 Size effect of shear modulus 

 

After taking both the effective length reduction effect and the size effect into consideration, the 

analytical model showed significantly improved agreement with the FEA model, indicating that 

the analytical modeling approach is an accurate and efficient method in the design of the shear 

properties of the re-entrant structures. However, the results from both models still exhibit 

considerable deviation from the experimental results. This could potentially be contributed by 

several factors. First of all, the boundary constraint during the actual experimentation was not 

ideal. Instead of allowing for free in-plane sliding as shown in Fig.7a, the two supports were 

partially bonded to the bottom substrate due to the existence of friction. Secondly, the use of 

crosshead displacement as the measurement of sample deformation inevitably introduces error 

into the calculation. Thirdly, as the yield strength values from both analytical model and FEA 

model only indicate the lower boundary values, for ductile materials (e.g. Ti6Al4Vl used in the 

experimental study), the yield strength of the structures could be significantly higher.  

Conclusion 
In this paper the shear modulus and shear strength of the re-entrant auxetic structure were 

modeled based on beam bending and beam shearing. Parametric design model indicated the 
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feasibility of designing for structures that possess both high shear modulus and high shear 

strength, which could be valuable for potential sandwich applications. The analytical model also 

yields satisfactory accuracy when size effect and effective length reduction effect are taken into 

consideration properly. On the other hand, it was observed that the re-entrant auxetic structure 

exhibit significant size effect upon shearing, which is very different with its compressive/tensile 

properties. This size effect also indicates that the homogenization of this structure could not be 

readily achieved based on the analytical modeling approach. As the homogenization ability of a 

cellular structure is an intrinsic characteristic, it could be expected that during the design of this 

re-entrant auxetic structures, more sophisticated design approach might be necessary, and 

further works are needed to address this. 
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