Production of Hybrid Tubular Metal-Fiber-Preforms: Material Characterization of Braided Hoses with a Binder

Abstract

Hybrid shafts or rods, where the area of load introduction is metallic (e.g. steel or aluminium) and the area of load transfer is made of fibre reinforced plastics (FRP), are an established concept for lightweight parts. Besides the monolithic FRP and the metallic areas, the overlap area of both materials is particularly important. Such parts can beneficially be produced by the use of liquid composite moulding (LCM), where the bonding process takes place during the resin curing. This is called intrinsic hybridization. Beforehand it is crucial to produce a near-net-shape preform in which the metallic end fittings for the load introduction are already integrated. To manufacture such parts constantly with a high quality, a process model of the joining by draping the braided preform is necessary. In this paper an approach for the production of hybrid preforms made of braided hoses and metallic fittings is presented in order to develop a process model. The process starts with a cylindrical multi-layer preform made of braided hoses, in which the layers are bonded by a thermoplastic binder powder. The decisive process step is the draping of the preform onto the metallic fitting. For this forming step, the material characterization of the hybrid preform plays an important role. Several material tests to determine the textile parameters of the preform are therefore evaluated and performed. Finally, the results of these tests are presented and discussed

    Similar works