1,063 research outputs found

    Performance of hypercube routing schemes with or without buffering

    Get PDF
    Includes bibliographical references (p. 34-35).Supported by the NSF. NSF-DDM-8903385 Supported by the ARO. DAAL03-92-G-0115by Emmanouel A. Varvarigos and Dimitri P. Bertsekas

    Analytical evaluation of improved access techniques in deflection routing networks

    Full text link

    Performance Model of Multichannel Deflection-Routed All-Optical Networks With Packet Injection Control

    Get PDF
    Deflection routing is a feasible approach to resolve the output contention problem in packet-switched networks when buffering of packets is not practical. In this paper, we investigate the performance of multichannel deflection-routed networks with no packet injection control, strict packet injection control, and a simple token-bucket-based packet injection control. The analytical performance models of multichannel deflection-routed networks with strict packet injection control are derived. Simulation results show that the analytical models can accurately predict the performance regardless of the network topology, number of channels, and packet injection control methods. We observed that the end-to-end throughput-delay and the packet re-transmission performance at sources can be largely improved by using simple packet injection control mechanisms such as the proposed token-bucket-based method.postprin

    Deflection routing in slotted self-routing networks with arbitrary topology

    Get PDF
    A deflection routing algorithm that can be applied to a novel self-routing address scheme for networks with arbitrary topology is proposed. The proposed deflection routing algorithm can be implemented all-optically using bitwise optical logic gates. Besides the primary output link selection, alternate output link choices by a packet at each node in case of deflection are also encoded in the address header. Priority classes can also be defined in the proposed address scheme. The performance of the deflection routing algorithm is studied using the AT&T North America OC-48 optical fiber network topology.published_or_final_versio

    The efficiency of greedy routing in hypercubes and butterflies

    Get PDF
    Includes bibliographical references (p. 24-26).Cover title. "October 1990".Research supported by the ARO. DAAL03-86-K-0171 Research supported by the NSF. ECS-8552419by George D. Stamoulis and John N. Tsitsiklis

    Proceedings Spring 1990 Network Topics Course

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Efficient routing schemes for multiple broadcasts in hypercubes

    Get PDF
    "February 1990/Revised June 1990."--Cover. Cover title.Includes bibliographical references (p. 36-37).Research supported by the NSF. ECS-8552419 Research supported by Bellcore, Inc. and Du Pont. Research supported by the ARO. DAAL03-86-K-0171 Research supported by a fellowship from the Vinton Hayes Fund.George D. Stamoulis and John N. Tsitsiklis

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both
    corecore