
November 1992 LIDS-P-2149

Performance of Hypercube Routing

Schemes With or Without Bufferingi

by

Emmanouel A. Varvarigos2 and Dimitri P. Bertsekas3

Abstract

We consider two different hypercube routing schemes, which we call the simple and the proerity scheroew

We evaluate the throughput of both the unbuffered and the buffered version of these Lchems fosr 4rrdom

multiple node to node communications. The results obtained are approximate, but very accurate as simula-

tion results indicate, and are given in particularly interesting forms. We find that little buffer space (between

one and three packets per link) is necessary and adequate to achieve throughput close to that of the infinite

buffer case. We also consider two deflection routing schemes, called the simple deflection and the priority

deflection schemes. We evaluate their throughput using simulations, and compare it to that of the priority

scheme.

Research supported by NSF under Grant NSF-DDM-8903385 and by the ARO under Grant DAALO03-92-

G-0,115 .

2 Department of Electrical and Computer Engineering, UCSB, Santa Barbara, CA 93106.
3 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. Introduction

1. INTRODUCTION

The traffic environment under which the routing schemes of this paper are analyzed is stochastic.

In particular, we assume that packets having a single destination are generated at each node of a

hypercube according to some probabilistic rule over an infinite time horizon. The destinations of

the new packets are uniformly distributed over all hypercube nodes. Packets have equal length and

require one unit of time to be transmitted over a link. We are interested in the average throughput

of the network when it reaches steady state.

One-to-one routing has been extensively analyzed in the literature for a variety of network topolo-

gies. One line of research that has been pursued is related to the so-called randomized algorithms. In

randomized algorithms a packet is sent to some random intermediate node before being routed to its

destination. Randomized routing algorithms were first proposed by Valiant [Val82], and Valiant and

Brebner [VaB81] for the hypercube network. They were extended to networks of constant degree

by Upfal [Upf84], and they were improved to achieve constant queue size per node by Pippenger

[Pip84]. The results on randomized routing are usually of the following nature: it is proved that

for sufficiently large size of the network, a permutation task can be executed in time less than some

multiple of the network diameter with high probability. A disadvantage of this line of research is

that the results obtained are of an asymptotic nature, and apply only to permutation tasks (or

partial permutations, and concatenation of permutations). Another disadvantage is that the com-

munication task is proved to be executed within the specified time with "high probability" instead

of "always".

A second line of research, which is closer to our work, is the evaluation of the throughput of

a network in steady state. A routing scheme, called deflection routing, has been investigated by

Greenberg and Goodman [GrG86] for mesh networks (numerically), Greenberg and Hajek [GrH90]

for hypercubes (analytically), Maxemchuk [Max87], [Max89] for the Manhattan network and the

Shuffle Exchange (numerically and through simulations), and Varvarigos [Var90] for hypercubes (for

a priority deflection scheme, through the formulation of a Markov chain). The analysis in these works

was either approximate, or it involved simulations. Since deflection routing is a way to circumvent

the need for buffers, buffer size played a minor role in these analyses. Dias and Jump [DiJ81]

analyzed approximately the performance of buffered Delta networks. Stamoulis [Sta91] analyzed

a greedy scheme in hypercubes and butterflies for infinite buffer space per node. He analyzed a

closely related Markovian network with partial servers, and used the results obtained to bound the

performance of the hypercube scheme, without using approximations.

2

1. Introduction

In this paper we propose two new routing schemes, described in Section 2 and called the simple

and the priority routing schemes. In both of these schemes, packets follow shortest paths to their

destinations. However, they may remain at some node without being transmitted even if there is a

free link which they want to use (this phenomenon is called idling). The switch used at the nodes

is simple, fast, and inexpensive, and uses @(d) wires as opposed to the E(d2) wires of a cross-bar

switch. Packets can be dropped due to the unavailability of buffer space. In the simple scheme,

packets competing for the same link have equal priority, except for the new packets, which have the

lowest priority. In the priority scheme, however, packets that have been in the network longer have

priority. The priority scheme has significantly larger throughput than the simple scheme, especially

when the buffer space is small and the load is heavy.

The throughput results that we derive in Sections 3 and 4 for the simple and the priority schemes

are given in particularly interesting forms. The throughput of the simple scheme (with or without

buffers) is given in parametric form as a function of the generation rate of new packets. The

parametric solution involves a single parameter, and is very close to a closed form solution. The

throughput of the priority routing scheme is obtained from a (backward) recursion of only d steps,

where d is the hypercube dimension. Our results are approximate but as simulations given in Section

5 indicate, close to being accurate. Our results will indicate that buffer space for one to three packets

per link is adequate to achieve throughput close to that of the infinite buffer case, even for rather

heavy load. Increasing the buffer space further increases the throughput only marginally, and may

be characterized as an ineffective use of the hardware resources.

If we are using packet switching then the only way to avoid packets being dropped is deflection

routing (other methods pose restrictions on the transmission rates of the sources, as in [Gol91],

or they do not use a packet switching format, as in the CSR protocol proposed in [VaB92]). The

Connection Machine model 2 of Thinking Machines Corp., which with its 65,000 bit processors is

the biggest parallel computer currently available, uses deflection routing and has space only for

the packets being transmitted. In Section 6 we focus on two deflection schemes, which we call the

simple non-wasting deflection and the priority non-wasting deflection schemes, and use simulations

to evaluate their throughput. Both deflection schemes outperform the unbuffered priority scheme for

hypercubes of large dimension. In fact, for uniform traffic, the throughput of the priority non-wasting

deflection scheme seems to tend to the maximum possible when the dimension of the hypercube

increases. However, if we can afford some buffer space for the priority scheme then its performance

can be superior to that of the deflection schemes. Deflection routing has several disadvantages (see

[Max90]), and requires the use of cross-bar switches at the nodes. The simple and the priority

schemes do not exhibit these disadvantages, and they use switches much simpler than cross-bar

switches.

3

2. Description of the Hypercube Node Model and the Routing Schemes

2. DESCRIPTION OF THE HYPERCUBE NODE MODEL AND THE ROUTING SCHEMES

Each node of an N = 2d-node hypercube is represented by a unique d-bit binary string 8d-s182 · ·.. 80· o.

There are links between nodes whose representations differ in one bit. Given two nodes s and t,

s (t denotes the result of their bitwise exclusive OR operation and is called the routing tag between

the two nodes. A link connecting node s to node s8 e,, i = 0, 1,... ,d - 1, is called a link of the ith

dimension. Note that if the ith bit of the routing tag of a packet is equal to one, then the packet

must cross a link of dimension i in order to arrive at its destination.

We now introduce the node model, and describe the simple and the priority routing schemes.

Each node has a queue for each of its outgoing links. The queue of node s that corresponds to

link i is called the i-th link queue, and is denoted by Qj(s). A link queue is composed of two buffers,

which can hold k + 1 packets each. The first buffer is called the forward buffer and is denoted by

QI(s). The forward buffer can be used only by packets that have to cross the itd dimension. The

second buffer, denoted by Q°(s), is called internal buffer, and can be used only by packets that do

not have to cross the in dimension. The case k = 0 is called the unbuffered case, and corresponds

to the situation where a packet received during a slot is transmitted at the next slot, or is dropped,

otherwise.

(s nodes Snodes+e 1

link 1

Each buffer has space for k+ 1 packets

Figlue 1: A node of the hypercube. For a comparison with other node (rolter) models, see also Fig.
13 of Subsection 6.2.

4

2. Description of the Hypercube Node Model and the Routing Schemes

The queues of the nodes are linked in the following way: the internal buffer Q°(8) is connected

to queue Q(i-).,Md d(8) of the same node, while the forward buffer Q!(s) is connected to queue

Q(i_-)ad d(s $ ei) of the neighbor node s (ei (see Fig. 1). This router, which we call descending

dimensions switch, restricts the class of switching assignments that are feasible. It is, however,

simpler, faster, and less expensive than a cross-bar switch (see also Fig. 13).

In both the simple and the priority scheme, the packets traverse the hypercube dimensions in

descending (modulo d) order, starting with a randomly chosen dimension. In particular, consider a

packet that arrives at queue Q,(s) [either from buffer Q(+l)wd d(s) of the same node, or from buffer

Q0i+l)nud a(s8 ei+l) of the neighbor node s @ e,+l, or a new packet]. Then the i h bit of its routing

tag is checked. Depending on whether this bit is a one or a zero, the packet claims buffer Q!(8) in

order to be transmitted during the next slot to queue Q(i-,).,l d(8 @ e,) of the neighbor node a8 ei,

or it claims buffer Q°(s) in order to be internally passed to the next queue Q(i-,),ad d(8) of the same

node. In both cases conflicts may arise because more than one old and new packets may claim the

same buffer of a link. When conflicts occur packets may be dropped if there is not enough space at

the buffer.

In the simple scheme conflicts over buffer space are resolved at random, with the exception of the

newly generated packets, which are always dropped in case of conflict. In the priority scheme the

packets that have been in the system longer have priority when they compete for buffer space. Since

the packets that are dropped are those that have travelled less, the waste of bandwidth resulting

from dropping packets is expected to be smaller in the priority scheme than in the simple scheme.

If two packets have travelled an equal number of links then one of them is dropped with equal

probability.

In the unbuffered case, packets are removed from the network exactly d time units (slots) after

entering the network. Since the bits of the routing tag of a packet are cyclically made equal to

zero, packets are delivered to their destination with delay d, unless dropped on the way. A packet

may arrive at its destination earlier, but it is not removed before the do slot; during the last slots

it may travel from link-queue to link-queue of the same node until the time of its removal. The

predictability of the packet delay facilitates the choice of an appropriate window size and time-out

interval if a retransmission protocol is to be used (see [BeG87]). In the buffered case, packets may

wait in some buffers, thereby potentially increasing their total travel to more than d time units.

We denote by po the probability that a new packet is generated during a slot and claims a buffer

Q '(s), j E {O, 1}, i E {O, 1,.. .,d- 1}. At most one new packet can claim a link buffer during a slot.

New packets denied acceptance to the network, or packets that are dropped are not retransmitted

(memoryless properly). One can visualize this model for the arrival process of new packets in the

5

3. The Simple Scheme

following way. Whenever a link is empty, a packet that wishes to use the link is requested, and with

probability po such a packet exists. If, for example p0 = 1/2, and a link is empty 2/3 of the time,

then the source inserts a packet 1/3 of the time. We will refer to po as the probability of access.

Other models for the arrival process can be incorporated in our model, as long as the new arrivals

at each link are independent from the arrivals at other links, and po can be calculated.

Note that for both schemes under investigation, the internal and the external links are mathe-

matically equivalent. In order to see this, consider a packet located at the ith link queue of a node

s that does not have to cross dimension i, and is therefore passed to the (i - 1 mod d)th queue of

the same node. The probability of this event is equal to the probability of the event that the packet

has to cross dimension i and is sent to the (i - 1 mod d)th queue of node s @ ei.

3. THE SIMPLE SCHEME

In this section we evaluate the throughput of the simple scheme. The unbuffered and the buffered

cases are analyzed in Subsections 3.1 and 3.2, respectively. Recall that in the simple scheme all

packets have equal priority, except for the new packets, which have the lowest priority. The analysis

to be given is approximate, but very close to being accurate as Section 5 will indicate. We will find

a parametric expression that gives the throughput as a function of the probability of access po. The

parametric solution involves a single parameter, and is almost as elegant as a closed form solution.

We consider this important, since most of the results found in the literature for the steady-state

throughput of various multiprocessor networks and routing schemes are given in a less direct way

(typically they are numerical and simulation results, or they are of an asymptotic nature).

A packet will be referred to as a packet of type i when it has been transmitted (on forward or

internal links) i times, including the current transmission. A packet received at a node with type

different than d is a continuing packet. This definition does not include packets that have been

received during previous slots, which are called buffered packets. Packets generated at a node are

called new packets.

3.1 Analysis of the Simple Scheme Without Buffers

We first deal with the unbuffered case where each link buffer can hold only the packet under

transmission (internally or to a neighbor node).

6

3. The Simple Scheme

We denote by pi, i = 1,2,..., d, the steady-state probability that a packet of type i is transmitted

on a particular link during a slot. We also denote by e the steady-state probability that a link is

idle during a slot. By symmetry, both the pi's and e are independent of the particular link. Clearly,

we have

e+ Epi= 1. (1)
i=1

Note that since a type d packet is ready to exit the network, we may view Pd as the throughput per

link. We will derive the relationship between pj and the probability of access po.

Q kAS)

Q k.s)

~~L ~'1

QkAS+ek.l) Q (s+e

Figure 2: A link 1, and the two links leading to it.

Consider a particular link 1 (for example, the one connecting Q(s) with Q(.i-l)d d(s + e,)). Call

II and 12 the internal and the forward links, respectively, that lead to I (see Fig. 2). We make the

following approximating assumption.

Approximating Assumption A.1: Events in 1I during a slot are independent of events in 12

during the same slot.

In our schemes, a packet transmitted on II and a packet transmitted on 12 have used in the past

links belonging to different subcubes of the hypercube. However, events in 11 are not necessarily

independent of events in 12, as will be explained in Section 5. Nonetheless, we believe that the

approximation A.1 is quite accurate, as the discussion in Section 5 will suggest, and simulation

results will support.

U ~r·

3. The Simple Scheme

Let Ej, j = 1, 2, be the event that a packet P of type i - 1 arrives on link Ij, requests link 1, and

gets it. Then, for i = 2, 3,..., d, the probability pi that a packet of type i is transmitted on link I is

pi = Pr(Ei) + Pr(E2) = 2 Pr(EI).

Since a packet P of type i-1 arrives on II with probability pi-r, and requests link I with probability

1/2, the preceding equation gives

pi = pi-l Pr(P not dropped), i = 2, 3,..., d.

Packet P may be dropped due to a conflict with a packet Q coming on 12. Of course, packet Q

should then be of type different than d (packets of type d are removed from the network since they

have arrived at their destination). Under the approximating assumption A.1, the probability that a

packet of type different than d arrives on link 12 and claims link I is equal to

C=IPi
2

Since conflicts are resolved at random, such a packet will cause packet P to be dropped with

probability 1/2. Thus

(pi:-I- 4=i: i)=2,3,...,d. (2)

The probability ph that a packet of type 1 (i.e., a new packet) is transmitted on link I is the

product of two probabilities:

(1) The probability that no packet arrives on Il or 12 requesting link 1; this probability is equal to

(2) The probability that a new packet is generated at 1; this probability is equal to po.

Therefore, pl is given by

PI = 2o (Pi (3)
Similarly, the probability e that a link is idle is equal to

2)*
It is useful to define

d-l

0 =p+e = - p , (5)
j=i

8

3. The Simple Scheme

where 6 will be treated as a free parameter. Then Eqs. (2)-(5) give

(1 +)2 (3+!±)3 (6)Pd = PO 4 - (0)

and

e = -(1 - po)(1 + 0)2, (7)

Adding Eqs. (6) and (7), and taking into account that 0 = pj + e we get

= po1 (1 +)2(3 + 0)-1 + (1-po)(1 + 0)2,

or
f1 6\2 1

Po = 1- +- (8)

Equations (6) and (8) give the relationship between pa and p0 in parametric form.

Since there are 2d (internal or forward) links per node, the throughput R per node is

R = 2dp,.

It can be proven, using arguments similar to those used later in Subsection 6.2, that for uniformly

distributed destinations, R is always less than two.

Note that the eligible values of the parameter 6 range continuously from 1 (when pa = 0, which

gives e = 1 and pd = O0) to some number close to 0 (when po = 1, which gives e = 0 and pa less than

1/d), By giving values to 0 we can find the corresponding values of p. and R. The fact that the

range of 0 is not the entire interval [0,1] does not create any difficulty, since the values of / which

are not feasible give po > 1.

Figure 3 illustrates the results obtained for d = 11. To evaluate the results it is useful to have

in mind typical values of the traffic load that appears in real systems. Measurements reported in

[HsB90] for numerical and simulation algorithms have given that in almost all cases links were idle

for more than 95% of the time. In our model such loads correspond to values of p. much less than

0.051. Note that the maximum throughput is achieved for p. less than one. Therefore, when the

simple scheme without buffers is used, some mechanism to control the rate at which nodes transmit

would be necessary.

This value is probably an overestimate. If the measurements reported in [HsBO90] corresponded to uniform

traffic, then the corresponding p. would be considerably less; however, the communication patterns in the

measurements of [HsB90] may have had locality properties. Note also that even with infinite buffers the

case 2dpo > 2 would correspond to an unstable system, since 2 is the maximum throughput that can be

sustained.

9

3. The Simple Scheme

Simple Unbuffered Scheme, d-ll

0.5

0.4

0.3

0.2

0.1

0.0'
0.0 0.2 0.4 0.6 0.8 1.0

Po

Figum. 3: Simple scheme withmit hbuffers (d=- 1).

3.2. Analysis of the Simple Scheme With Buffers

In this subsection we analyze the buffered version of the simple scheme. In particular, we assume

that each link buffer can hold up to k packets, in addition to the packet under transmission. The

scheme is the same with that analyzed in Subsection 3.1 with the difference that when packets want

to use the same link, one of them is transmitted and the other is stored, if there is enough space in

the buffer, or dropped, otherwise. The analysis of Subsection 3.1 corresponds to the case k = 0 of

this subsection. The reason the unbuffered and the buffered cases were treated separately is that an

additional approximation is needed for the buffered case. We assume that continuing packets have

priority over new or buffered packets when claiming a link. New packets are dropped if there are

continuing or buffered packets that want to use the link. The reason we do not allow new packets to

be buffered is that we want to keep the buffer space for packets already in transit, and not have it

filled with new packets. A new packet is available to enter at an otherwise idle link with probability

po during a slot.

We will find a relationship between the throughput pj per link and the probability of access

10

3. The Simple Scheme

p0. The relationship will be given in parametric form, involving a single parameter. Note that

corresponding results in the literature are typically obtained through the use of numerical meth-

ods and/or simulations ([DiJ81], [GrG86], [Dal90a], [Max89], [Var90], [Bra91]), or they are of an

asymptotic nature in the number of processors or in the buffer size ([GrH90], [Sta91]).

In order to analyze the buffered version of the simple scheme we need, in addition to the approx-

imating assumption A.1, the following approximating assumption.

Approximating Assumption A.2: The arrivals of packets at a buffer during a slot are indepen-

dent of the arrivals at the buffer during previous slots.

Independence approximating assumptions are found in most throughput analyses of buffered

routing schemes of direct or indirect multiprocessor systems.

We denote by bi, i = 0, 1,..., k, the probability that there are i packets at a link buffer at the

beginning of a slot. The remainder of the notation used in this subsection is the same with that

used in Subsection 3.1. Since there are two links (one forward and one internal) leading to a buffer,

at most two continuing packets may arrive at a buffer during a slot. Thus, we have

bi = bi Pr(one arrival) + bi-i Pr(two arrivals) + bi+l Pr(no arrivals), for i # 0, k. (9)

In getting Eq. (9) we have used the approximating assumption A.2 in the following way: we have

assumed that the events of one, two, or no arrivals at a buffer are independent of the arrival process

at previous slots, and therefore of the number of packets already in the buffer. Calculating the

probability of one, two, or no arrivals of continuing packets at a link buffer, and substituting in Eq.

(9) we obtain

bi = 2b (- 2)bi-, 22 + bi+l I , i = 1,..., k - 1. (10)

The equations that give bo and b, are slightly different:

2 2 2

and

b = 2bt (1- 2 2 + (be + b ._.) (a). (12)

Letting
d-I

= pd + e = 1-- Ep,

Eqs. (10)-(12) can be rewritten as

b =b, 2 +b, (- + b+ (- , i 1,2,...,k-, (13)

3. The Simple Scheme

bo =bo +(bo +b) ,((14)

and

bk = bk2 + (bk + bk) (. (15)

The quadratic equation corresponding to the second order recursion of Eqs. (13)-(15) is

2 (+)2 (2(=0,

which has roots

l =1

and

P2= (+)

The solution to the recursion is of the form

bi=a+p~ +8 } , i=O,l,...k- 1,

for some constants a and ,. Taking into account Eqs. (14) and (15) we obtain after some algebraic

manipulation that

bi =b0I ~ 10/ , i=Ol,...,k. (16)
(1 B2 (16)

To verify this equation, use it to express bi in terms of be in Eqs. (13)-(15), and see that these

equations hold identically for all 0. Since

Ebi-1
i=O

we finally get that

bo = I+ () 2 (17)

with 8 E (0, 1).

For k = 0 (unbuffered case) Eq. (17) gives b0 = 1 as expected. For infinite buffer space we have

b= 1- 1- } 'for k= oo. (18)

The probability that a buffered packet is of type i - 1, for 2 < i < d, is proportional to pi-1,

because all the packets have the same priority during conflicts. Therefore,

Pi-i
Pr(buffered packet is of type i - 1) = Pi-

12

3. The Simple Scheme

A packet of type i = 2, 3,..., d transmitted over a link is either a continuing packet or a packet that

was buffered. Recall that continuing packets have priority over buffered packets. The probability

that a continuing packet is transmitted over a link is given by Eq. (2). The probability that a buffered

packet is transmitted as an i-type packet is the product of three probabilities: (i) the probability

that no continuing packet requests the link, (ii) the probability that the buffer is non-empty, and (iii)

the probability that the packet at the head of the buffer is of type i - 1. Using the approximating

assumption A.1, we get

+ Pi-IPi (4) + (2) (1 - bo) (19)
-- - -- oO I Pi

=P- 3 + (l+2(1-bo) Pi-, i>l 1

where the first term accounts for packets that are received and transmitted at the immediately

following slot, and the second term accounts for packets that were buffered. Since new packets are

accepted in the network only when there are no continuing or buffered packets, we have

PI =pObO (-)2 (P 2 (20)

A link remains idle if there are no continuing, buffered or new packets that want to use it. Thus,

= (1 -p)bo (1- pj i) (1 - po)bo 2

Equations (19) and (20) give

pobo(O + 1)2 (3 + (1 - bo) (1+ +)2 (21)
4 3 1+8 +-

Adding the last two equations, substituting 9 = pd + e, and solving for po we finally obtain

bo(l + 8)2 - 48
p0 = (22)

where bo is given by Eq. (17). Equations (21) and (22) give the relationship between pa and Po in

parametric form with parameter 6. The throughput per node is

R = 2dpj.

In the case of infinite buffer space, bo is given by Eq. (18), and Eq. (21) is simplified to

Pj = po8, for k = oo.

13

3. The Simple Scheme

Simple Scheme with buffers (d=10)
k-buffer space

X k=O

o --k=

I k=4

0·~ .. |~ - |~~~~ C]|~~~ |~k--.- 5

0

0.0 0.2- 0.4 0.6 0.8 1.0

Po

Figure 4: Throughput per node of the simple scheme for various buffer sizes.

As k -- oo, Eq. (22) takes the indeterminate form 0/0. By using L' Hospital's rule we get after some

calculations that
1-6

Po : 1)' fork = oo.

Combining the last two equations and using the fact R = 2dpd we obtain

R= 2dpo for k= oo.
1 + po(d-1)'

For p0 = 1 and infinite buffer space, R is equal to two packets per node as expected.

In Fig. 4 we have plotted the throughput R per node as a function of p0 for several buffer sizes

k. It can be seen from this figure that buffer space for two or three packets per link is adequate to

achieve throughput close to that of the infinite buffer case. Note also that for k > 2 the throughput

for po = 1 is not significantly smaller than the maximum throughput, and, therefore, no mechanism

for controlling the rate at which the nodes transmit is necessary.

14

3. The Simple Scheme

3.3. Asymptotic Behavior of the Thoughput

In this subsection we will examine the asymptotic behavior of the throughput of the hypercube

for a fixed value of the buffer size k, as the number of nodes increases.

Combining Eqs. (20), (21), and (17), we obtain after some calculations that

(Ai L4i (j ' *(23)

Pi 4

Define

Y (24)
1+9

Then Eq. (23) can be rewritten in terms of the new parameter as

(25)Pi 2(1 + y)(I - y2V +2)

As the free parameter 0 ranges continuously from some small number to one, y takes all the values

from zero to some number close to one. We choose

y = bd-*L, (26)

which is clearly a legitimate value for y. This value of y corresponds to fixed values for po and pa;

the corresponding value of the throughput can serve as a lower bound on the maximum achievable

throughput. As d -- oo, the right hand side of Eq. (25) tends to a positive constant c = c - 2, that is

lim Pd = c > 0, for y chosen according to Eq. (26). (27)
d-ao Pl

For y given by Eq. (26) we have

Epi = l-8 = l~ =- e (d-*) ..i(=l

Since

P- < Pi < 1 for i= 1,2,...,d-1,
Pi - Pi -

we have in view of Eq. (27) that p, = O(p4), for i = 1, 2,..., d, and

pa = e (d+-), for y given by Eq. (26).

15

3. The Simple Scheme

Therefore, the maximum total throughput H of the hypercube is

H = 2dNPj = l N (28)

In the case where y = o(d-h+), we can similarly find that pj = o (d'-iL), and H =

o (N/du'r) . In the case where y = Q(d-7), with Q standing for strictly larger order of magni-

tude, Eq. (25) gives pjd/p -* 0 as d - oo. Based on these observations and Eq. (28) we conclude

that

H=8 N*)./ (29)

For y = o(dh-) [or else, po = o (1/d+2*i), i.e., small load, we expect almost all of the packets

to succesfully reach their destination. For y = 0(d-r'T) [or else, po = o(l/d'+NiT)] we expect

a constant fraction of the packets to reach their destination. For y = 6(d-Z'T) [or else, po =

Q(1/d'+L+s)], almost all the packets are dropped (for large d).

The dependence of the total throughput on the buffer size per link k is an interesting one. In the

case of no buffers, Eq. (29) gives H = O(N/d). Having buffer space for k = 1 packet (in addition

to the one being transmitted) increases the throughput by a factor of di over the unbuffered case,

which is a significant gain. Increasing k further gives diminishing returns. For infinite buffer space

(k = oo) we have H = @(N) as expected (in fact we then have H = 2N).

It is interesting to compare Eq. (29) with the throughput of another routing scheme, which we will

call greedy scheme, in a Q-dilated hypercube. A Q-dilated hypercube is a hypercube whose links have

capacity Q, that is, each link can be used for up to Q packets. In the greedy scheme, packets traverse

the hypercube dimensions in descending order, always starting with dimension d. The node model

assumed for this scheme is the same with that of Fig. 1 (but the greedy scheme is different than

the simple or the priority scheme where each packet starts transmission from a random dimension).

The greedy scheme has been analyzed by Koch in [Koc88] and [Koc89] (the case where the capacity

is equal to one was previously analyzed in [Pat81] and [KrS83]; see also [Lei92a], pp. 612-620). The

maximum total throughput of the greedy scheme in a Q-dilated hypercube is given by

H=O e N1 (i).(30)

Comparing Eqs. (29) and (30) it seems (modulo our approximating assumptions, since Koch's

result is rigorously obtained) that the dependence of the throughput on the buffer size i is stronger

than the dependence on the capacity Q. One might think of attributing this to the fact that the

simple scheme achieves uniform utilization of the hypercube links, while the greedy scheme does

not: packets in the greedy scheme start transmission from a fixed dimension and some of them have

16

3. The Simple Scheme

buffer

No packet dropped P
P * P

One packet dropped
I

k=l, Q=I I k,09 ,?-

One packet dropped *~j---~/ No packet dropped

kI01Q-2 k-O, Q-2

p: positions of packets at time t=O

(a) (b)

Fiugire 5: In scenario (a) more packets are dropped when links have capacity two and no hbuffer space
than when they have capacity one and buffer space for one packet in addition to the packet under transmission.
In scenario (hb) the opposite is tuMe.

already been dropped by the time they reach the links of the other dimensions. This argument,

although correct, does not seem to explain the difference in the dependencies of the throughput on k

and Q, because the unbuffered and uncapacitated hypercube (k = 0 and Q = 1) achieves throughput

of the same order of magnitude [O(N/d)] for both schemes. Therefore, the most plausible explanation

is that increasing the buffer space by a constant factor impoves the throughput significantly more

than increasing the capacity of the links by the same factor. This means that less packets are dropped

when we have k buffer spaces per link than when we have k wires per link. This should hold on the

average, since one can devise scenaria where buffer space helps most, and scenaria where capacity

17

4. The Priority Scheme

helps most ([Lei92b]). For example, Fig. 5a illustrates a scenario where having more buffer space

per link results in less packets losses than having more capacity per link, while Fig. 5b illustrates a

scenario where the opposite is true. One should also note here, that although buffer space may be

more important than capacity when the objective is the throughput, the situation will probably be

different when the objective is the average packet delay.

4. THE PRIORITY SCHEME

In this section we will evaluate the throughput of the priority scheme. Recall that in the priority

scheme the packets that have been in the system longer have priority when they compete for a

forward or an internal link. If two packets that have travelled equal distances request a link at

the same time, one of them is transmitted with equal probability. New packets are admitted at a

link buffer only if there are no continuing or buffered packets claiming the link. We analyze the

unbuffered priority scheme in Subsection 4.1, and the buffered priority scheme in Subsection 4.2.

4.1. Analysis of the Priority Scheme Without Buffers

In this subsection we analyze the unbuffered case. Since packets which have travelled more have

priority when claiming the same link, the packets of type i are not affected by the existence of

packets of type 1, 2,..., i - 1 or new packets. Let pi and e be as defined in Subsection 3.1. Consider

a link 1, and the two links 11 and 12 leading to it. Making again the approximating assumption A.1

and reasoning as in Subsection 3.1 we find that

pi = pi-l Pr (packet of type i - 1 not dropped). (31)

A packet P of type i - 1 that arrives on link 1i is dropped if and only if one of the following two

events happens:

Event 1: A packet of type i, i + 1,... , d - 1 was transmitted on link 12 during the previous slot and

its routing tag was such that I was chosen. This happens with probability

d-1

2 EPj, (32)
3=.

or

18

4. The Priority Scheme

Event 2: A packet Q of type i- 1 was transmitted on link 12 during the previous slot, its routing tag

was such that I was selected, and Q was chosen (with probability 0.5) instead of P. The probability

of this event is

Pi-, (33)4

Since Events 1 and 2 are mutually exclusive, Eqs. (31)-(33) give

=Pi--I- 1 -) i = 2,3,...,d. (34)

For pl we have a slightly different equation:

2P1 = 2 (1 - i) (35)

where p0 is the probability that no new packet is available and

is the probability that no packet that wishes to use link I arrives on 11 or 12. The probability that a

link is idle can be seen to be

e=(1- p) (1- 2 (36)

For a particulal value of pa we can use Eqs. (34)-(36) to find the corresponding values of pa_ ,Pd-2, ... ,poP

This is done by solving Eq. (34) with respect to pi-u, and keeping the solution that gives a legitimate

probability distribution (the other solution corresponds to pi-, > 1):

4-I a_, 2

pi_, = 2- pj- 2- pj- D 4pi, i = 0,...,d-2. (37)
j=i j=/

For po we have from Eq. (35) that

P0 P (38)

Giving a value to the throughput per link pj we can obtain the corresponding value of the access

probability pa by using the backward recursion of Eq. (37). The remaining performance parameters

of interest (for example, the probability e that a link is idle, and the mean throughput per node

R = 2dpj) can then be computed easily. Figure 6 illustrates the results obtained for d = 11.

19

4. The Priority Scheme

Priority unbuffered scheme (d-1l1)

1.0

0.8

0.6v 9* R: throughput pr mod
ea: probaUty that a " Isrelyj

0.4'

0.2

0.0 0.2 0.4 0.6 0.8 1.0
PO

Figtnm 6: Priority scheme witholt bufferu (d=l 1).

Let pa = F(po), where the function F is not known in closed form. We already presented a simple

recursion to compute po = F-' (pj) for each pj. It can be proved by induction that f-1 (and therefore

F) is monotonically increasing. This shows that F is 1-1 [this is also evident from the fact that Eq.

(34) has a unique solution in the interval (0, 1f, and the maximum of pj and R occurs for pa = 1.

The monotonicity of the throughput with respect to the offered load is a desirable characteristic of

the priority scheme. It indicates that if we superimpose on it a retransmission scheme, then the

system will behave well when congestion arises. By contrast, for the simple scheme the relationship

between pj and po was not 1-1, and the maximum throughput was attained for pa less than one.

4.2. Analysis of the Priority Scheme with Buffers

We now evaluate the throughput of the priority scheme when there is buffer space at each link.

We assume that each buffer can hold up to k packets in addition to the packet under transmission.

When two packets arrive at a node and request the same link, one of them is transmitted over the

link, and the other is either stored (if there is enough space in the buffer), or dropped. The packet

20

4. The Priority Scheme

which is transmitted is the one that has crossed more forward and internal links with ties resolved at

random. The analysis of Subsection 4.1 corresponds to the case k = 0 of this subsection. Continuing

packets have priority over buffered packets or new packets when claiming a link. New packets are

admitted in the network only if the buffer where they enter is completely empty. The buffers are

FIFO, and packets in the buffer that have higher priority do not overtake packets of lower priority

that are in front of them. If we were using a priority discipline within the buffer then we could

probably obtain higher throughput, but the system would be more difficult to analyze.

In order to analyze the buffered priority scheme we make again the approximating assumptions

A.1 and A.2.

Following the notation of Subsection 3.2, we denote by bi, i = 0,1,... , k, the probability that

a link buffer contains i packets just before the beginning of a slot, and we define the parameter

0 = p + c. The probability b, is given by Eqs. (16) and (17), which we repeat here for completeness:

b=i bo (l+@) = -,i =, .1.., (39)

and

bo = 1 ()I)--* (40)

with 0 E (0, 1).

The probability that a buffered packet is of type i - 1, for 2 < i < d, is proportional to

(- + Pi) .

This is because only conflicts with packets of types i - 1, i,..., d can cause a packet of type i - 1 to

be buffered (and conflicts with packets of type i - 1 are resolved at random). Therefore, a buffered

packet is of type i - 1 with probability

P (+ J- pi) _= (.fi + (Pi) _2p + A Pj)

E-1 PI LOL + Ad-1 pi (')2 ~(1 0)2

The probability that a packet of type i > 1 is transmitted over a link is

Pi = p,_, 1 -PiJ' 2 ~ ~-~ + 1 - bo) ,~ (-0
2 4 2 (1 -2p)

~Pi-, Z.i P:i- -0)~- + (- bj, +~j i> 1 (41)2ps (1- 4 92(1-)2 bo)P 2 /
where the first term in the above summands is the same with the right side of Eq. (34) and accounts

for packets that were received during the preceding slot, and the second term accounts for packets

21

4. The Priority Scheme

that were buffered. Since new packets are accepted in the network only when there are no continuing

or buffered packets, we have

pi = (obo 1 I-) .2 (1+9 2 (42)

The probability that a link is idle is given by

= (1 -o)b 1 -) = (1 - o)bo (2)

Priority Scheme with Buffers (d1l1)
k-buffer size

2- I , .

· kd
* kal
* ku

U k.4

0.0 0.2 0.4 0.6 0.8 1.0

PO0

Figumr 7: The thrmoghput of the priority scheme for variolm buffer sixes.

We used a Gauss-Seidel type of algorithm to find numerically pi's that satisfy Eqs. (41) and (42).

We did not prove the uniqueness of the solutions obtained; however, we tried a number of different

initial conditions always arriving at the same solution. The results obtained are shown in Figs. 7

and 8. Figure 7 illustrates the throughput R = 2dpj per node as a function of po for several buffer

sizes k. Figure 8 illustrates the ratio Pdj/p, that is, the steady-state fraction of packets accepted in

the network that arrive at their destination, as a function of the offered load for several values of

the buffer size k. Figures 7 and 8 suggest that little buffer space is adequate in practice to achieve

22

5. Quality of the Approximations, and Simulation Results

Priority Scheme with Buffers (d-1 1)

1.2

0J 1.0
U k

0.2 0.4 0.6 8 1 0

Lo o~~o ~oo.o 0.2their detination.8 1.0th e in the net o
Po

Figine 8: Packeta delivered to their dsmtination an a fraction of thors accepted in the network for the
priority scheme and variows bufler ates.

satisfactory throughput, and low probability of packet losses (recall that the load region where we

are primarily interested is po < l/d).

Comparing Figs. 4 and 7 we see that the priority rule increases the throughput significantly. The.

priority rule is designed to decrease the waste of resources caused from packets being transmitted

several times and then being dropped. Note also that the priority scheme (especially the unbuffered

version) is so simple that it can be implemented entirely in hardware. A similar priority rule for

deflection routing will be examined in Section 6.

5. QUALITY OF THE APPROXIMATIONS, AND SIMULATION RESULTS

The unbuffered simple scheme is similar to the greedy routing scheme in a wrapped butterfl.

A wrapped butterfly is obtained by merging the first and the last levels of an ordinary butterfly

into a single level (see Fig. 9; the direction of the links, which is from left to right, is not shown

for simplicity). Each link of the wrapped butterfly is assumed to have buffer space only for the

23

5. Quality of the Approximations, and Simulation Results

packet under transmission. All the nodes of the wrapped butterfly are seen as potential sources or

destinations. A new packet is available to enter at a link (including the links of the intermediate

stages) with probability pe, and has as destination a node at the same stage with its source. The

internal links of the hypercube node model of Fig. 1 correspond to straight links of the wrapped

butterfly, that is, links connecting a node of some stage with the node of the next stage that has the

same binary representation. Similarly, the forward links of the hypercube node model correspond

to the cross links of the wrapped butterfly, that is, links connecting a node of a stage with the node

of the next stage whose binary representation differs in one bit. The simple scheme corresponds to

the greedy scheme in a wrapped butterfly, where packets follow the unique shortest path to their

destination, while the priority scheme corresponds in a natural way to a priority greedy scheme in

a wrapped butterfly.

f \ -

oil

I1N

11. 0 p- 110

111 111

Figur. 9: A wrapped butterfly. The nodeA of the last stage are the same with the nodes of the first
stage. The destination of a packet has to be at the same stage with its source.

Consider a link 1, and the two links 11 and 12 that lead to it. We want to investigate the quality

of the approximation A.1 used in the analyses of the unbuffered simple and priority schemes. In

particular, we are interested in the following questions:

1. Are the packet arrivals during a particular slot T on link 1I independent of the packet arrivals on

link 12 during the same slot?

2. If they are dependent, where does the dependence come from, and how strong is it?

24

5. Quality of the Approximations, and Simulation Results

The following lemma gives a partial answer to these questions.

Lemma 1: Events on links ll and 12 at time T, are dependent only through events that happened

at time T- d and before.

Proof: By the symmetry of the system we can assume without loss of generality that the links 11

and 12 are of dimension d (see Fig. 9).

The sequence of links traversed by a packet, together with the corresponding times will be referred

to as the time-path of the packet. The length of a time-path is the number of links it traverses; we

are only interested in time-paths of length less than or equal to d. Let Pi = {(zI,tI),(z 2,tl +

1), ... , (1, T)} be the time-path of a packet that passes from l1 at time T. We use the same symbol

P1 to denote the event of a packet following that path. Let A = {(yI,t2),(h, t2 + 1),...,(12,T)}

be a time-path leading to link 12 at time T. We are interested in the dependence between events P

and P2.

Consider a packet p that entered the wrapped butterfly at time to at dimension is. The link

traversed by the packet during slot t > to has dimension i, with i + t mod d=i. + to mod d. This is

because packets travel dimensions in descending order and there is no buffering. Therefore, the sum

i + t mod d of the time slot and the dimension traversed at that slot is a constant of the packet (or

of the corresponding time-path), and is called class of the packet. We denote the claw of packet p

by c(p) = is + to mod d.

We will denote the dependence between two events A and B by A - B. It is easy to see that ~

is an equivalence relation. Two time-paths intersect (or equivalently, two packets that follow them

collide) only if they pass through the same link during a slot. Only time-paths of the same class

may intersect, and only packets of the same class may collide. Dependencies are created and spread

only through the intersection of time-paths. For example, if time-path A intersects time-path B,

and B intersects time path C, then events A and C may be dependent. Events corresponding to

time-paths of different classes are independent.

Let Ho (or HI) be the sub-wrapped-butterfly that consists of the nodes whose least significant

bit is equal to zero (or one, respectively), and the links that connect them. A time-path belongs to

Ho (or HI) if all the links that it traverses belong to Ho (or Hi, respectively). The time-paths P

and P2 that lead to links l, and 12 at time T satisfy

Pi e Ho (43)

and

P2 E Hi. (44)

Events Pi and P2 can be dependent only in the following two cases:

25

5. Quality of the Approximations, and Simulation Results

Case A: The time-paths Pi and P2 intersect before time T, or

Case B: There is an integer k and time-paths X1 , X 2,..., X, such that

Pi intersects X1 at time T. < T

X 1 intersects X2 at time T2 < T

XkI intersects X, at time Tk < T

Xk intersects P2 at time Tk+1 < T.

Case A cannot happen because of Eqs. (43)-(44), and the fact that He and HI are disjoint. In view

of Eqs. (43) and (44), case B can happen, only if there is an i E {1, 2,..., k} such that time-path Xi

traverses a link of dimension d (passing from Ho to HI or vice versa) at some time prior to T. But

c(P)= c(X)=..- =c(X)= c(P 2)= d+T mod d,

because any two intersecting time-paths have the same class. Thus c(Xi) = d + T mod d, which

means that packet Xi crosses dimension d at or prior to time T- d. Therefore, Xi intersects with

either Xi+, or Xi-l prior to time T - d. This proves that events on links lx and 12 are dependent

only through events (conflicts or non-conflicts) that have taken place before time T- d. Q.E.D.

Lemma 1 says that the approximating assumption A.1 is weaker than the following assumption:

"Events that take place at time T are independent from events that take place at time prior to

T - d". This suggests that the dependence between an event on link 11 and an event on linl 12 at

a given time is weak, and assumption A.1 is a quite accurate approximation. In fact, the larger d

is the better the approximation. The above arguments do not assume any way to resolve conflicts,

and therefore hold for both the simple and the priority unbuffered schemes.

Another way to see that the previous dependence is weak is the following. Given that a packet

of a particular type is transmitted on the straight link 11, the a posteriori probability that a packet

is transmitted on a cross link I of dimension d is the same for all 1. For any cross link I let

Ap(l) = Pr(l has a packet I 11 has a packet of type i)- Pr(l has a packet)

be the difference between the a priori and the a posteriori probabilities. The smaller Ap(12) is the

more accurate the approximation A.1 is. Observe that

Ap(l) = Ap(l2) = Ap for all cross links I of dimension d.

26

5. Quality of the Approximations, and Simulation Results

The average total flow of packets through the links of dimension d conditioned on the presence of

a packet on link lI differs by N · Ap units from its a priori value. It is reasonable to expect that

the knowledge that a particular link lI has a packet will not significantly change the average flow

through links of dimension d because this flow is a quantity of a global nature. Thus, Ap must be

small [we believe that Ap = 0(1/N)] .

We simulated the unbuffered simple scheme for various network sizes, and several values of po.

The difference between the analytical and the simulation results has been consistently negligible for

all network sizes and values of p0 (see Table 1 for d = 8). This is a further indication that the

parametric equations obtained in Subsection 3.1 are very accurate.

po Throughput/node (analytical) Throughput/node (simulations)

0.9983 0.6325 0.6331

0.9288 0.6401 0.6401

0.8045 0.6539 0.6540

0.6972 0.6657 0.6650

0.6042 0.6754 0.6744

0.5234 0.6827 0.6824

0.4871 0.6853 0.6843

0.3642 0.6888 0.6883

0.3142 0.6859 0.6852

0.2915 0.6831 0.6828

0.2145 0.6628 0.6621

0.1982 0.6552 0.6557

0.1094 0.5712 0.5721

0.0030 0.0448 0.0446

Table 1: Simulation and analytical results for the unbuffered simple scheme for d = 8.

We have also performed simulations for the buffered simple scheme. The results obtained from the

simulations were found to be within 3% from the analytical results. Recall that the analyses of the

buffered schemes use approximating assumption A.2 in addition to the approximating assumption

A.1 used by the analyses of the unbyffered schemes, and were, therefore, expected to be kess accurate.

Table 2 illustrates the results obtained for d = 7 and k = 1.

pa Throughput/node (analytical) Throughput/node (simulations)

27

6. Comparison with Deflection Routing

0.931384 1.493738 1.451239

0.566517 1.477039 1.433139

0.302901 1.345433 1.354165

0.199937 1.189335 1.162777

0.169829 1.116160 1.092926

0.144199 1.038224 1.020776

0.103110 0.871355 0.861196

0.086444 0.783858 0.777389

0.052758 0.557855 0.554911

Table 2: Simulation and analytical results for the buffered simple scheme for d = 7 and k = 1.

6. COMPARISON WITH DEFLECTION ROUTING

In this section we describe two deflection schemes, called the simple onm-wasting deflection and

the priority non-wasting deflection schemes. We use simulations to find the throughput of these

schemes and compare it with that of the priority scheme of Section 4. In Subsection 6.1 we describe

the two deflection schemes, and the stochastic model under which they are examined. In Subsection

6.2 we present and discuss the results obtained.

6.1. The Deflection Schemes, and the Stochastic Model

Each node has a queue which can hold up to d packets. During a slot each node transmits all the

packets of its queue, either by transmitting them on their preferred links, that is, links that take the

packets closer to their destination, or by simply transmitting them on a free link. We assume that

new packets are always available, and for every packet that exits the network at some node a new

packet enters the network at the same node. At every slot, exactly d packets are received by each

node. Some of these packets exit the system because they have arrived at their destination, and are

replaced by an equal number of new packets. Under this model the hypercube is a closed network

and every node always has exactly d packets. The destinations of the new packets are uniformly

distributed over all nodes, except for their origin.

Before describing the deflection schemes, we give some definitions.

28

6. Comparison with Deflection Routing

A partial switching assignment is a 1-1 match between packets and preferred links, where each

packet (or link) is matched to at most one link (or packet, respectively). A full switching assignment

is a match between all the d packets residing at the node and the d outgoing links of the node.

A partial switching assignment is wasting if there exists a packet that has not been assigned to a

preferred link, although one of its preferred links is free. By transmitting the packet on this link the

number of packets that are sent towards their destinations is increased by one and the assignment

remains feasible. In a non-wasting switching assignment such a situation is not allowed. In Fig. 11,

both a and b are non-wasting switching assignments, while c is not.

1 010 0 1 L 1 00 I 1 0 1

1 1 0 0 1 1 0 0 1 0I1 0 0 I 1 0 0 1 I 0 0

Figiur. 11: Cases a and b corrspond to non-wasting amignamenta, while e is a wasting amignment.

There are many ways to obtain a non-wasting assignment. A simple procedure is the following.

At each slot, an order (called processing order) of the packets stored at a node is found. The packets

are then picked in that order, and each of them is assigned to one of its preferred links, provided

that this link has not been assigned to any of the previously considered packets. If more than one

unassigned preferred links exist, one of them is chosen at random.

A deflection scheme consists of two phases. During the first phase, called the non-wasting phase,

a non-wasting partial switching assignment is found. This assignment matches some of the packets

with an equal number of links. The assignments made depend on the order in which the packets

are processed. In the simple non-wasting deflection scheme the processing order is random with

all orders (permutations) being equally probable. In the priority non-wasting deflection scheme the

processing order is found as follows. The packets are partitioned in priority classes, so that the ti

priority class consists of the packets that are currently located at a distance i from their destination.

The order of the packets within the same class is random; however, packets that are closer to their

destination precede in order packets that are farther from their destination.

In general, the partial assignment found in the non-wasting phase will cover only z of the d packets

with z < d. In the second phase, called deflection phase, the partial assignment is extended to a

29

6. Comparison with Deflection Routing

full assignment. This extension is achieved by arbitrarily mapping the remaining d- z packets to

the d- z unassigned outgoing links. The d- z packets that are not transmitted over preferred links

increase their distance to the destination. We will refer to such events as packet deflections. Every

time a packet is deflected, the number of links it has to traverse increases by two.

The rationale behind the priority deflection scheme is the following. If the processing order is

random the packets that are at distance one from their destination have a higher probability of being

deflected than packets at distance i > 1 from their destination. To see that consider a packet which

is one hop away from its destination. Such a packet has only one preferred link, and the probability

that this link will have already been assigned when the packet is processed is large. In contrast, a

packet at distance i > 1 from its destination has i preferred links, and will probably not be hurt

if some of its preferred links have been assigned to other packets. A packet at distance d from its

destination is never deflected, and it is logical to assign it to a link only after all other packets have

been processed.

6.2. Steady State Throughput of the Deflection Schemes

Before presenting the simulation results for the two deflection schemes, we give an upper bound

on their throughput.

Let A be the average total throughput of the hypercube at steady-state. Since the number of

packets in the hypercube is constant and equal to Nd, Little's theorem gives

Nd = AT,

where T is the mean delay of a packet from the time it is accepted in the network until the time it

arrives at its destination. For uniformly distributed packet destinations we have

d N
-2N-1'

Combining the last two equations we get

A<_ 2(N- 1). (45)

Figure 12 illustrates the simulation results obtained for the simple and the priority non-wasting

deflection schemes, together with the analytical results obtained for the priority scheme (with buffer

size k = 0 and k = 1) of Section 4. Note that as the dimension of the hypercube increases the

throughput of the deflection schemes increases. However, for small dimensions the priority scheme

30

6. Comparison with Deflection Routing

Model: new packets always available *

2.0

1.8

1.6

1.4

1.2 -

1.0

0.8i 0.8

{§ 0.6 * Priorlty Dhlcdm

0.4- * Prbrity Sdem (k=)

0.2 o Prood Scbem (k=l)0.2 *o SimpI Ddbcfom

0.0 .

2 4 6 8 10 12 14
dimension d

Figure 12: Throughput per node of (1) the ximple uon-wasting deflection scheme, (2) the prwity
non-wasting deflection scheme, (3) the unbuffered priority scheme, and (4) the bufleed (k = 1) priority scheme.

with k = 1 outperforms deflection routing. Thus, the priority scheme may be preferable for small

hypercube dimensions (the crossover point is d = 8). If we take into account that the switch used

at each node by the priority scheme is simpler, faster, and less expensive than the cross-bar switch

used by the deflection schemes (see Fig. 13), then the priority scheme may be preferable for large

hypercube dimensions as well. By increasing the buffer size of the priority scheme it becomes even

more appealing (provided that we can afford the additional hardware).

The average delay of the deflection schemes satisfies

d N
T = N + 2E(Number of Deflections), (46)

where E(Number of Deflections) is the average number of deflections suffered by a packet. The first

term of the right hand side of the preceding equation comes from the fact that the mean delay of a

packet when it is not deflected is equal to i--. For the second term note that every time a packet

is deflected, its delay increases by two steps. Figure 14 illustrates the average number of deflections

suffered by a packet in the priority non-wasting deflection scheme, for various dimensions d of the

31

7. Conclusions

dxd crosbar switch dxd ascending-dimensions switch

_ _ _ _ _II' , I

I t
- I -- IM S/M -I S:1: switch

M: dol merge

S/M I, S/M: Zx2 cross-bar

_I 1 ________ S/M

Figrm 13: A d x d cram-bar switch (required by deflection schem), a dr x d decending-dimennion
switch (required by the simple and the priority schemes), and the moduls out of which they are compcd.
The number of wires of a descending-dimensions switch is only G(d). A croa-bar router in largt and slower, and
results in a slower network (the procesilng time at a node and the cloekd cycle is larger). The switching amis"gmnts
pomible with the descending-dimenrions switch ar of course mmo restricted, and frer from internal mesagp
collisions (the collision. c the internal links of the node model of i& I). Since the dmeedinddimemsion switch
umes simple 2:2 switch/merge switches, it can he made to operate very quickly, which may oinrt the degradation
in the performance due to the restrictions in the routing algorithm (mf [la190).

hypercube (the average number of deflections is obtained by Eq. (46) and Little's theorem by using

the simulation results for the throughput A).

An interesting observation concerning Fig. 14 is the following. As d increases, the average delay

suffered by a packet also increases, but the E(Number of Deflections) seems to remain almost con-

stant (between 0.42 and 0.48 for d = 3,4,... ,13). If the average number of deflections is actually

bounded above by a constant for every d, then the average delay T of the priority deflection scheme

will be T = INN_ + 0(1). If in addition, the higher moments of the average number of deflections

are also 0(1), then the throughput of the priority deflection scheme will tend to the upper bound

of two packets per node, which is the maximum possible for uniformly distributed destinations [for

this to be true it would be enough to prove that the average number of deflections is o(d)J. We could

not prove this by a rigorous analysis, so we leave it as a conjecture.

32

7. Conclusions

Average number of deflections per packet

0.48

0.47-

0.46-

0.45

o 0.44-

z 0.43

0.42-

0.41 . . , , .
2 4 6 8 10 12 14

Figure 14: Average number of deflections per packet for the priority non-wasting deflection scheme.

7. CONCLUSIONS

We considered two different hypercube routing schemes, and evaluated their steady state through-

put for various traffic loads. The schemes require simple, low-cost switches at the hypercube nodes,

instead of crossbar switches. The results obtained were approximate, but very accurate as simu-

lation results indicate, and they were given in particularly interesting forms. The one of the two

schemes uses a priority rule to resolve conflicts over a link. The priority rule was found to increase

the throughput significantly. For both routing schemes we examined the effect of the buffer size on

the throughput, and found that little buffer space is necessary and adequate to achieve throughput

close to that of the infinite buffer case. We also considered two deflection routing schemes, and

evaluated their throughput using simulations. These schemes, which use crossbar switches at the

nodes, have very satisfactory throughput; in fact, the priority deflection scheme is conjectured to

33

References

have throughput asymptotically equal to the maximum possible.

REFERENCES

[Bra91] Brassil, J. T., Deflection Routing in Certain Regular Networks, Ph.D. Thesis, UCSD, 1991.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, N.J., 1989.

[BeG87] Bertsekas, D. P., and Gallager R., Data Networks, Prentice-Hall, 1987.

[ChL89] Choudhury A., and Li, V. O. K., "Performance Analysis of Deflection Routing in the

Manhattan Street and Minimum-Distance Networks," preprint.

[Dal90] Dally, W. J., "Network and Processor Architecture for Message-Driven Computers," in R.

Suaya, and G. Birtwistle (Eds.), VLSI and Parallel Computation, Morgan Kaufmann Publishers,

San Mateo, CA, pp. 140-222, 1990.

[DiJ81] Dias, D. M., and Jump, J. R., "Analysis and Simulation of Buffered Delta Networks," IEEE

Trans. on Computers, Vol. C-30, pp. 273-282, August 1981.

[GrG86] Greenberg, A. G., and Goodman, J., "Sharp Approximate Models of Adaptive Routing in

Mesh Networks," in J. W. Cohen, O. J. Boxma and H. C. Tijms (Eds.), Teletraffic Analysis and

Computer Performance Evaluation, pp. 255-270, Elsevier, Amsterdam, 1986, revised 1988.

[GrH90] Greenberg, A. G., and Hajek, B., "Deflection Routing in Hypercube Networks," to appear

it IEEE Trans. on Communications, June 1989 (revised December 1990).

[HaC90] Hajek, B., and Cruz, R. L., "On the Average Delay for Routing Subject to Independent

Deflections," submitted to IEEE Trans. on Information Theory, June 1990.

[Haj91] Hajek, B., "Bounds on Evacuation Time for Deflection Routing," Distrib. Comput., 5:1-6,

1991.

[HsB90] Hsu, J., and Banerjee, P., "Performance Measurements and Trace-Driven Simulation of

Parallel CAD and Numeric Applications on Hypercube Multicomputers," in Proc. 17th Intl. Sypm.

Computer Architecture, Seattle, WA, May 1990.

[Gol91] Golestani, S. J., "Congestion-Free Communication in High-Speed Packet Networks," IEEE

Trans. on Communications, Vol. 39, No. 12, December 1991.

[Koc88] Koch, R., "Increasing the Size of the Network by a Constant Factor Can Increase Perfor-

mance by More than a Constant Factor," in 29kt Annual Symposium on Foundations of Computer

Science, IEEE, pp. 221-230, October 1988.

34

References

[Koc89] Koch, R., An Analysis of the Performance of Interconnection Networks for Multiprocessor

Systems, Ph.D. Thesis, MIT, May 1989.

[KrS83] Kruskal, C., and Snir, M., "The Performance of Multistage Interconnection Networks for

Multiprocessors," IEEE Trans. on Computers, C-32(12), pp. 1091-1098, December 1983.

[Lei92a] Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays - Trees -

Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

[Lei92b] Leighton, F. T., personal communication, 1992.

[Max87] Maxemchuk, N. F., "Routing in the Manhattan Street Network," IEEE Trans. on Com-

munications, COM-35(5), pp. 503-512, May 1987.

[Max89] Maxemchuk, N. F., "Comparison of Deflection and Store-and-Forward Techniques in the

Manhattan Street and Shuffle-Exchange Networks," in INFOCOM '89, Vol. 3, pp. 800-809, April

1989.

[Max90O] Maxemchuk, N. F., "Problems Arising from Deflection Routing: Live-lock, Lock-out, Con-

gestion and Message Reassembly," Proceedings of NATO Workshop on Architecture and High Per-

formance Issues of High Capacity Local and Metropolitan Area Networks, France, June 1990.

[Pat81] Patel, J. H., "Performance of Processor-Memory Interconnection for Multiprocessors," IEEE

Trans. on Computers, Vol. C-30, pp. 545-556, April 1981.

[Pip84] Pippenger, P., "Parallel Communication with Limited Buffers," Proc. of the 25th Annual

IEEE Symposium on Foundations of Computer Science, pp. 127-136, 1984.

[Sta91] Stamoulis, G., Routing and Performance Evaluation in Interconnection Networks, Ph.D.

Thesis, MIT, Report LIDS-TH-2035, May 1991.

[Upf84] Upfal, E., " Efficient Schemes for Parallel Communication," J. ACM, Vol. 31, pp. 507-517,

1984.

[VaB81] Valiant, L. G., and Brebner, G. J., "Universal Schemes for Parallel Communication," in

Proc. of the 13th Annual symposium on Theory of Computing, pp. 263-277, 1981.

[Val82] Valiant L. G., " A Scheme for Fast Parallel Communication," SIAM J. Comput., Vol. 11,

pp. 350-361, 1982.

[VaB92] Varvarigos, E. A., and Bertsekas, D. P., "A Conflict Sense Routing Protocol and its Perfor-

mance for Hypercubes," September 1992, submitted IEEE Trans. on Computers.

[Var90] Varvarigos, E. A., Optimal Communication Algorithms for Multiprocessor Computers, MS.

Thesis, Report CICS-TH-192, Center of Intelligent Control Systems, MIT, 1990.

35

