
June 1990 U ILU-EN G-90-2221

COORDINATED SCIENCE LABORATORY
College o f Engineering

PROCEEDINGS
SPRING 1990
NETWORK
TOPICS COURSE

Bruce Hajek, Instructor

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

la. REPORT SECURITY CLASSIFICATION

Unclassified __
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBERS)

UILU-ENG-90-2221

REPORT DO CUM EN TATIO N PAGE
1b. RESTRICTIVE MARKINGS

None
^^5ISTRÏBUTÎoïT7ÂVAÏî3Biu^^^^R6PÔRT
Approved for public release;
distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Form Approved
OMÊ No. 0704*0189

' 6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of_XlllJ12iS—

6c AOORiSS {City, Star*, and H* Codaj
1101 W. Springfield Ave.
Urbana, IL 61801

8a. NAME OF FUNOING / SPONSORING
ORGANIZATION

lcAD0RESS(o5rs5ST5ziFc5^

6b. OFFICE SYMBOL
(If epplkeble)

8b. OFFICE SYMBOL
(If eppikeble)

7a. NAME OF MONITORING ORGANIZATION^

7b. AOORESS (City, Statt, and ZIP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

PROGRAM
ELEMENT NO.

11. TITLE (Indude Security CJsssifketion)

PROCEEDINGS SPRING 1990 NETWORK TOPICS COURSE
12. PERSONAL AUTHOR(S)BRUCE HAJEK, INSTRUCTOR
13a. TYPE OF REPORT

Technical________
16. SUPPLEMENTARY NOTATION

COSATI CODES

(13b. TIME COVERED
F R O M ____ TO

114. DATE OF REPORT (Yeer, M onth, Dey) 115. PAGE COLIN!
June 1990 I 1*7

18. SUBJECT TERMS (Continu* onreverse if necessery end identity by block number)
Computer communication networks

19. ABSTRACT (Continuea on reverse if necessery end identify by block number)

Collected here are papers prepared by the students of EE497: Highspeed Computer Communi­
cation Networks in the 1990 Spring Semester at the University of Illinois at Urbana-Champa^n.
Some minor revisions to the papers were made by the students after the end of the semester,
course was a special topics course at the graduate level. The first three papers deal with ome
aspects of routing in packet switched networks in which routing decisions are made in “ distributed
fashion. The next paper considers dynamic routing m a circuit switched network. The fifth and sixth
papers address two different queueing problems that arise m high speed networks. The final th
papers cover optical codes, network resource allocation from the perspective of economic theory,
and an existing telecommunication switch.

Bruce Hajek, Instructor

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
IS UNCLASSIFIEDAJNLIMITED □ SAME AS RPT. □ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified __

22b. TELEPHONE (Include Are* Code) I 22c. OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions ere obsolete.

UNCLASSIFIED

TABLE OF CONTENTS

PACKET ROUTING ON A BUTTERFLY IN TIME O (log N) WITH SMALL
CONSTANTS... .. 1

Arvind Krishna

A PRELIMINARY STUDY OF DEFLECTION ROUTING ON THE BUTTERFLY
NETWORK... 17

Andrea Pietracaprina

AN OPTIMAL POLICY FOR DEFLECTION ROUTING ON A TWO-DIMENSIONAL
GRID ... 33

Timothy Weller

AN ANALYSIS OF ALTERNATIVE ROUTING IN COMPLETE NETWORKS
WITH UNIT CAPACITY LINKS.. 47

Otmar S. Schlunk

ON OPTICAL ORTHOGONAL CODES... 66
Harlan Russell

APPLYING ECONOMICS TO NETWORK RESOURCE ALLOCATION 87
Michael Peercy

QUEUE LENGTH DISTRIBUTIONS IN THE PACKETIZED TRANSMISSION
OF REAL-TIME TRAFFIC... 107

Upamanyu Madhow

HEAD OF LINE BLOCKING IN PACKET SWITCHES.. 118
Branko Radosavljevic

SWITCHING ARCHITECTURE OF THE 5ESS... 132
Matthew T. Busche

i

Packet Routing on a Butterfly in Tim e
0 (lo g N) with Small Constants

Arvind Krishna

Submitted in partial fulfillment of the re­
quirements for EE497BH, Spring 1990

Abstract

Ranade, in his 1987 FOCS paper, presented an algorithm for a probabilistic P R A M emulation

on the Butterfly. He mentioned that this algorithm could be modified in a straight-forward

manner to route permutations. We simplify the scheme to handle packet routing and modify the

algorithm in a number of ways. Our results are for permutation routing and more importantly, for
the general case of uniform traffic. Uniform traffic is the case where each node has 1 packet to

be delivered and its destination is chosen randomly amongst all nodes in the network. Our main

results are related to finding upper bounds on the probability that the routing time exceeds t for

a fixed queue size. We show that if t = Ci(\ogN), then the probability is less than col1, where

c, a < 1.

1 Introduction

We study the problem of packet routing on the Butterfly network. Let N be the number of nodes
in the network, and let us consider routing a permutation on a bounded degree network. The
minimum possible time to evacuate the network for a typical permutation is logd N, where d is
the degree of the switches at each node. We propose schemes that can route a permutation with
high probability on a Butterfly in time Hog iV and maintain queues of size less than q at each
node. The novelty of these schemes lie in the fact that k can be as low as 12, and q can also be
as low as 12 to finish routing in time t with probability greater than 1 - cU, where a < 1. We
believe these results to be the best to date for routing permutations on a network whose nodes
have small degree. The schemes to be presented are modifications of the memory sharing scheme
of Ranade[15].

A lot of effort has been expended on this problem over the past few decades. Consider routing
a permutation from N sources to N destinations on a bounded degree network. Borodin and
Hopcroft [4] showed that any deterministic oblivious scheme, in the worst case, takes T = Q(y/N).
On removing the constraint of oblivious routes, sorting networks can be used to route messages.
This was first demonstrated by Batcher [3], whose scheme used T = 0(log2 N). Using the sorting
network of Ajtai, Komlos, and Szemeredi [1] the routing time reduces to O(logiV). We should
point out that while Batcher’s algorithm is easily implemented, the AKS algorithm is impractical
because of the large constants involved. The best constants to date for the AKS sorting network
are still in the 1000’s, for an example see Cole et al.[5]. Another deterministic routing scheme
that finishes in T = O(logiV) was given by Upfal[17] utilizing a Multi-Butterfly network with
0(1) queues at each node. Unfortunately, the constants involved are still in the 1000’s, at least
if the degree of the nodes is constrained to be smaller than 10.

There has been much greater success in the development of efficient, randomized packet
routing algorithms. One of the earliest works in this area was by Valiant and Brebner [18],
who developed an algorithm for routing permutations in T — O(logiV) on a N —node hypercube
network. Their algorithm used queues of size 0(log N) at each node and finished the routing in
the given time with high probability (where high probability means with probability exceeding
1 - N ~c, and c is a given positive constant). Similar results were obtained by Aleliunas [2]
and Upfal [16] for Butterfly and Shuffle-Exchange networks. Pippenger [14] and Ranade [15]
improved the results for the Butterfly by using only constant-size queues at each node. However,
Pippenger’s algorithm allows the possibility of deadlock, while Ranade’s algorithm does not.
Further, the analysis of Ranade’s algorithm is simpler than that of Pippenger’s algorithm. The
constants involved in Ranade’s algorithm are perhaps the best to date, requiring queue sizes to
be in the 100’s and the routing time to be Hog iV, where k is in the 100’s. Leighton et al. [12]
generalized Ranade’s ideas without restriction to any particular network.

In this paper, we examine Ranade’s work in detail. Ranade, in his original paper [15],
presented an algorithm for a probabilistic PRAM emulation on the Butterfly. He mentioned
that this algorithm could be modified in a straight-forward manner to route permutations. Our
main contribution is to modify the algorithm in a number of ways, so that we can make do with
queue sizes in the 10’s and routing times to be HogiV, where k can be as low as 12. This is
achieved by simplifying the original algorithm and making extensive use of randomization. The
simplification of the algorithm results mainly from the fact that packet routing does not need
message combining and messages do not need to retrace their paths with the data requested from

2

Packet Routing on a Butterfly

memory locations.

In brief, the modifications we make to the algorithm are as follows. Firstly, only unidirec­
tional links between nodes are required as opposed to bidirectional links required in the original
algorithm. Secondly, a universal hash function is not needed. Instead, that is replaced by ran­
domization, where the routing of each packet depends on two parameters, chosen independently
of other packets. Thirdly, the priority assigned to packets is divorced from their random inter­
mediate destinations. Fourthly, on fixing queue sizes, we show that the network evacuates with
probability greater than 1 - a1 in time less than t = O(logiV), where a < 1, whereas in [15]
the queue sizes needed to increase to improve the probability. Finally, we also consider the case
of uniform traffic and not just permutation routing. Uniform traffic is the case where packet
destinations are chosen randomly amongst all nodes in the network.

A more detailed statement of the results will be given in Sections 4 and 5. The rest of
this paper is organized as follows. Sections 2-4 deal with the problem of permutation routing.
In Section 2, we describe the network model and the routing algorithm. The key idea behind
showing that the routing cannot take a long time is that of delay paths, and this is discussed in
Section 3, following which the analysis is done in Section 4. In section 5 we take up the problem
of uniform traffic. Here, each node has a packet, the destination of each packet being picked
equiprobably from all nodes in the network. The ideas of Sections 2-4 generalize to this case,
and we shall show that the time required for routing is O(logiV). We end with a brief discussion
in Section 6.

2 Network M odel and Operation

An iV-node Butterfly, where N = n2n, can be conceptually visualized as having n columns of 2n
nodes each. A node is identified with a pair (c, r), where 0 < c < n and 0 < r < 2n. For node
i = (c,r), we define row(i) = r and column(i) = c. Node (c, r) is connected by links to nodes
(c + l ,r) and (c + l ,r ') , where c+ 1 is taken modulo n, and the binary representation of r' differs
from that of r in the c-th most significant bit.

We wish to route a set of packets where no two packets have a common source or destination.
The network operates synchronously and time is slotted. Nodes initiate transmissions at the
beginning of time slots and one time slot corresponds to the packet transmission time over one
link. Each node has two input queues, one associated with each input link. These queues have a
fixed size, independent of n. A node can start to transmit a packet over a link only if the input
queue to which the packet is destined has room for the packet at the beginning of the time slot.

Let II denote the permutation to be routed, where II(i’) is the destination of the packet at
node i. The path taken by the packet starting from source i leading to its destination II(z) is
described by the following four phases:

Phase 1: The packet makes its way from the starting node i = (c,r) to node (0,r).

Phase 2: The packet makes its way from node (0, r) to node (0, d(i)). Here, d(t) is a random
number chosen by each packet independently of all other packets, and 0 < d{i) < 2n. The
purpose of the random destination is to make heavy utilization of any link in the network
very unlikely.

3

Packet Routing on a Butterfly

Phase 3: The packet makes its way from node (0,d(i)), to node (0, row(Tl(i))).

Phase 4: The packet makes its way from node (0, r<ttt;(II(i))) to (column(Il(i)), row(U(i))).
Node U(i) = (column(Tl(i)), row(B(i))) is the destination of the packet.

In each phase, the path taken by the packet is unique. The uniqueness of paths between
nodes is a property of the Butterfly topology. As seen in Figure 1, each phase is a transversal
of the Butterfly. We describe the algorithm in the logical network of Figure 1, where columns
are numbered from 1 to 4n, and column j corresponds to column (j mod n) in the real network.
The four sections of the logical network correspond to the four phases of the algorithm. Columns
(t* - l)n , . . . , in - 1 correspond to phase i of the algorithm. This implies that in the real network-
each node has the function of two 2 x 2 switches, two l x l switches, and six input queues.

Figure 1: Logical Network, showing the path taken by the packet starting at node i to its
destination Îï(z) (the node corresponding to II(i), namely (column(E(i)) + 3n, roiü(II(î)))).

Each node in the logical network has queues associated with each input link. We assume that
each queue has size q > 2 for ease of later analysis. Once the random destinations, d(i), have been
chosen the path that each packet takes through the logical network is completely determined.
The order in which packets use a given link is yet to be determined. This order is determined by
priority tags, where p(i) denotes the priority tag of the packet beginning at node i. Each packet
chooses its priority tag independently of other packets and the random destinations, and each
priority tag is chosen equiprobably from 0 ,1 ,. . . , M - 1, where M is a parameter to be specified
later.

Packets are kept ordered in each queue by means of their priority tags. It will be shown
later that packets arrive on each link in order of their priority tags. Thus, all queues can

4

Packet Routing on a Butterfly

be implemented as simple FIFO queues. Since priority tags were chosen independently from
0 ,1 ,... , M - 1 it is possible that two packets have the same priority tag. This problem is avoided
by augmenting the priority tag of a packet starting at node i by its address, when necessary.
Thus, if p{i) = p(j) and i < j , then the priority tag of the packet starting at node j is larger
than the priority tag of the packet starting at node i.

Definition 1 The priority tag of a packet beginning at node i is specified by a lexicographic
ordering on the pair (p(z),z).

There are three types of packets— EOS, MESSAGE, and GHOST. The difference between
these three types will be made clear in the next few paragraphs. EOS is an acronym for End-
Of-Stream, a packet of this type conveying the information that no more packets are to be
received on that link. Packets of type MESSAGE are the real packets, the packets which have
to be routed to their destinations. A GHOST serves the function of informing a node that all
following packets on an input link will have larger priority tags than the GHOST.

We now give a detailed description of the algorithm at each node. The algorithm is syn­
chronous, in the sense that all nodes begin the algorithm together at time t = 0.

Consider phase 1. At time t = 0, each node in the first column forwards its packet, if any,
to the next column, and in the next time step forwards a packet of type EOS. A packet of type
EOS has a priority tag of infinity. A node in the first column with no packet, forwards only a
packet of type EOS. An EOS packet conveys the information that a node has no more packets
to send.

Consider a node in column c , 0 < c < n - l . It starts receiving packets at time t = c - 1.
Suppose this node receives packets in order of their priority tags and then forwards the packets
in that order, inserting its own packet in the correct position. Then, the next column, c + 1, also
receives packets in order of their priority tags. It follows, by induction, that all nodes receive
packets in order of their priority tags. Note that a node in column c , c > 0, waits until it receives
packets from the previous column and then starts its own operation. Moreover, in phase 1 each
node uses only one input link and one output link.

In phases 2 and 3, each node examines the packets at the head of each input queue. The
packet with the lower priority tag is selected for transmission on the appropriate link. An EOS
or GHOST packet is transmitted on both links. If the selected packet is of type MESSAGE,
then at the same time the node creates a GHOST packet (with the same priority tag as the
selected packet) which is selected for transmission on the other link. A GHOST packet informs
the receiving node that all further receptions on that link will have larger priority tags. For any
packet selected for transmission we have two possibilities.

1. Receiving queue is not full. In this case the packet is transmitted.

2. Receiving queue is full. Then, the packet cannot be transmitted. If the packet has type
EOS or MESSAGE, then it waits in the queue to be transmitted at some future time. If
the packet has type GHOST it is removed from the network, because the next packet to
be transmitted over that link will have a larger priority tag.

The only case when a packet is selected for transmission and still has to remain in the queue
is when it is of type EOS or MESSAGE and the receiving queue on its preferred link(s) is full.

5

Packet Routing on a Butterfly

Moreover, when a node receives a GHOST packet which cannot be transmitted onward at the
next time step, it removes the GHOST because it will receive some other packet with a larger
priority tag at the next time step. As a result, the GHOST’s never wait in queues. Also,
GHOST’s are not used after phase 3, so they can be removed from the network at column 3n.

Lemma 1 Every input queue in column c ,n < c < 3n, holds at least one packet at time c
and at every subsequent time step until an EOS packet leaves the queue.

P ro o f It is clear from the description of phase 1 that, from time n, each node in column
n has packets in only one input queue. The packets in that input queue are in order of their
priority tags. Starting at time n, each node in column n + 1 receives a packet on each input
queue unless the queue is full, or an EOS has been received. Hence the lemma is true for column
n + 1. An easy induction on column number completes the proof. □

It follows from the description of the algorithm that in phases 2 and 3, packets traverse each
link in order of their priority tags. This implies that in column 3n, the packets in each queue
are ordered. In phase 4, each node in column c , c > 3n, forwards packets on only one output
link, in order of their priority tags. Thus, the creation of GHOST’s is no longer necessary in this
phase. Packets traverse a link in order of their priority tags in all four phases of the algorithm.

3 Delay paths

We begin this section by giving a rough introduction to the concept of delay paths. Roughly
speaking, a delay path is a sequence of related nodes and packets. The positions of the nodes,
and the priority tags of the packets have to obey certain relations. The idea behind these concepts
is to construct an unlikely event, which is guaranteed to happen if the routing takes a long time
to happen. An upper bound on the probability of this event will then provide an upper bound
of the probability of routing taking a long time. These concepts will now be made more precise.

Definition 2 A path S in the logical network is a sequence { 5 (2)} of nodes with the property
that there is a link between nodes S(i) and 5(2 + 1), and the link can be oriented in either direction.
A path starting in column 4n and ending in column 0 is called an input-output path.

Notice that in the definition of a path, there only has to be a fink in one of the two directions
between nodes S(i) and 5(2 + 1). Thus, input-output paths can be much longer than 4?2.

Definition 3 Let P be a sequence of packets, P = p\,. . . ,pa, such that the priority tag of pi
is larger than that ofpi+i for 1 < i < a. Let S be an input-output path such that pi passes through
S(ji) and ji < ji+1 for 1 < i < a. All the packets in P are required to be o f type MESSAGE.
Then, S is a delay path for P.

We now define the lag of a packet, which denotes the amount of time a packet has spent waiting
in queues.

Definition 4 The lag of a packet p in node s, at time t, is defined to be lag(p,t,s) =
t — column(s). The lag is not defined if p is not in node s at time t.

Note that the lag of a packet starting at node i is defined only from time column(i) onwards. It
is clear that the lag of every packet in the network is non-negative. Consider a packet p that has

6

Packet Routing on a Butterfly

to wait at a node s. The packet enters node s at some time ts and leaves at time ¿l > Ie + 1-
There are only two possibilities which are enumerated below.

1. At time tj_, - 1, another packet p' from the same node was transmitted. It is clear that
lag(p',tL - 1 ,s) = lag(p,tL,s) - 1 and the priority tag of packet p' is smaller than the
priority tag of packet p.

2. At time ti, — l ,p was selected for transmission to some node s', but could not be transmitted
because the input queue corresponding to the link from node s to node s' was full. Since
p wa5 transmitted at time a packet p', at time t i — 1, had to leave node s'. It follows
that lag(p',tL - l ,s ') = lag(p,tL,s) - 2 and the priority tag of packet p' is smaller than
the priority tag of packet p. Packet p' is said to be a q-delayer for packet p.

The rest of this section is used to prove the following theorem.

Theorem 1 Suppose that a given permutation II requires time An + 6 to be routed. Let q
be the size of each input queue in the logical network, and let $ be any positive integer. Then,
there exists a sequence of packets P with |P| > min(6, q<f>), and an input-output path S of length
An + 2$, such that S is a delay path for P,

Proof We begin by constructing a path 5 through the logical network and a sequence of
packets P such that 5 is a delay path for P. Then, we modify S and P to have the required
sizes.

Consider an EOS packet, po, which arrives in node <t0 in column An at time to = An + 6. This
implies that lag(po,to,cro) = &• Follow po back in time until the last time it waited in a queue,
say in node o'0 at time t'0, that is lag(p0,t'0,o'0) = 6 - 1 . Then, Lemma 1 implies that there was
a packet p'0 which delayed p0 at time t'0 with the priority tag of packet p'0 is smaller than the
priority tag of packet po.

• If Po is not a GHOST (i.e. p'0 is a MESSAGE) then set pi = p'Qlti = t'0 and cq to be the
switch in which p\ is at time t\. If p'0 is a q-delayer, then column(oi) = column(cr'0) + l, else
C\ = Oq. If pi was a q-delayer then lag(pi,ti,<Ti) = lag(p0,t0,oo) — 2, else lag(pi,ti,<Ti) =
lag(p0,t0,(To) - 1.

• If Po is a GHOST (in this case p'0 cannot be a q-delayer), follow it backwards starting at
time t'0 until we reach a node where it was created. If its creator was a GHOST, follow
this GHOST backwards until we reach a MESSAGE p\ in switch cq at time t\ with the
same priority tag as Pq. Since GHOST’s never wait, /ap(pi,ii,<Ji) = lag(p'0,t'0, cr'0) =
lag(p0,t0,e 0) ~ 1.

In a similar manner, given (pt-,it-, <7t) with lag(pi,ti,Oi) > 0 we can construct another MES­
SAGE (pt+ i,ii+ i, <r,-+i) with the priority tag of packet pt+i smaller than the priority tag of packet
Pi and 0 < /ap(pt+i ,t t+i,<7t+i) < /ap(pt-, a,-). Eventually, we reach the packet pl at time and
switch al such that lag(pL,tL,(7L) = 0. By construction, the sequence of packets P = p i , . . . ,pl
are MESSAGES. can be made into a path S by including the nodes through which
the packets creating the sequence P passed through.

Suppose that in this path S, column(s{) = column(si_i) + 1. Then, there is a packet p j £ P
such that pj passed through st- and was a q-delayer for Pj-i- It is easy to see that the path S

7

Packet Routing on a Butterfly

constructed above has length < 4ti-\-2klì where kl are the number of q-delayers in the sequence
P. Let K{ be the number of q-delayers in the sequence po,pi, . . . ,Pi C P. From the construction
above it follows that /a<7(p,+i,tt+i,<7t+i) = ^QÌPììUì^ì) — 1 — (*h+i — «¿)- Then, summing both
sides of the previous equation for i = 0 , . . . ,L — 1, we get lag(pL,tL, ox) = lag(po,to,oo)~ L - kl-
Hence,

0 = 6 — L — k l =>L — 6 — kl. (1)

Suppose packet pi+\ was a q-delayer for pi. Then pt+1 leaves cri+i at time i,+1, and the queue
of pi+i was full at time U+i - 1. Since pi is a MESSAGE, there are q - 1 other MESSAGES,

in the same queue as pt+ i. Let the priority tag of MESSAGE rrii be denoted by
Pi. Then,

priority tag(pi) > p\ > P2 > • • • > Pq-i > priority tag(pi+1).

Thus, on adding m i , . . . ,m g_i to P, S is still a delay path for the augmented P.

• Ii kl < $, we can add (q - 1)kl packets to P (as shown above), and we can easily extend
S to an input-output path of length 4n + 24>. In this case, using equation (1), the number
of packets in the sequence is

L + (q - 1)kl = 6 - kl + (q - 1)kl - 6 + (q - 2)kl > 6.

• If kl > $, consider p i,... ,p k where Kk = Note that k > Then, adding packets
for the q-delayers in p\,. . . ,pk (as shown above) to p i , . . . ,Pk we get a packet sequence of
length (q — 1)$ + k > q$. Let S(ji) be the switch where pi meets S. Then, it is clear that

. . . , S(jk) can be extended into an input-output path of length 4n -f 2$ (because
there are only $ links corresponding to the $ q-delayers). □

4 Analysis

The randomization in the algorithm consists of the choice of intermediate destinations (0,d(i))
and the priority tags chosen by the packet starting at node i. The permutation n that is being
routed is fixed. Letting 6 = q$, Theorem 1 implies that the probability of the routing taking
longer than q$ time units is less than the probability that there is an input-output path, S, of
length 4n + 2$ which is a delay path for a sequence of q$ packets. From this sequence of <7$
packets, there are ̂ ^ ̂ ways to choose a subsequence, P, of x packets such that the path S

is a delay path for P.

Definition 5 (a) Let Ti be the probability that the routing takes longer than 4n + q<& time
units.

(b) Let T2 be the number of distinct choices o f intermediate destinations and priority tags such
that there is an input-output path of length 4n + 24> which is a delay path for some sequence
o fq * packets.

(c) Let T3 be the number of distinct choices o f sequences of x packets, input-output paths of
length 4n -f 2$, intermediate destinations, and priority tags such that the path is a delay
path for the sequence of x packets.

8

Packet Routing on a Butterly

Then, the following inequalities will provide an upper bound on T i, the probability of interest.

)7i\n2n 'Y' __ j 'V' (Ti (M2n) < T 2 and T 2 < T< (2)
We begin by computing bounds on the number of ways to choose bn objects out of an objects.
Stirling’s formula [6] states that n! = (^)n\/27rnan, where e 12n+1 < an < eisTT. It follows that

e «En 27r6(a — b)n \b

bn

—)a - b j

(a— b)n
< l an } < I_____2___

V bn) \l 2xb(a — b)n \b
a \bn (a

a — b

(a —b)n

(3)

We now compute, for a given permutation II, an upper bound for T3. This is done by straight­
forward enumeration, upper bounding quantities which are hard to estimate. This enumeration
is divided into 4 steps.

(1) Count the number of input-output paths of length 4n + 2$. Each path has to end in one of
the 2n nodes in column 4n. There are exactly $ backwards links which cannot be in the last n
links of the path. Each link, backward or forward, can be chosen in two ways. There are at most
2n22n+2<i> ̂ + 2$ ̂ input-output paths of length 4n + 2$.

(2) Once the path is fixed, the nodes where the x packets meet the path can be chosen in at
, (4n + 2<I> + x \

most (x) wa^s‘

(3) Count the ways in which the MESSAGE packets, intermediate destinations, and priority tags
associated with the above path can be chosen.

• If a packet passes through a given node in phase 1 or 2, there are 2n ways in which to
choose together, the originating node’s row(i) and d(i), of a packet. There are at most n
ways in which column(i) can be chosen.

• If a packet passes through a given node in phase 3 or 4, there are 2n ways in which to
choose together the destination node’s row(ir(i)) and d(i), of a packet. There are at most
n ways in which the column, column(Tt{i)) can be chosen.

Note that if i is fixed, then 7r(i) is fixed, and vice-versa. Since the priority tags of the packets
in the sequence are ordered, the priority tags p(i) can be chosen in at most ̂ ^ ^ x ̂ ways.
Thus, the total number of ways to choose the sequence of \ packets, and values of d(i) and p(i)
for such packets, if the nodes where the packets meet the path are fixed, is given by

(2n)xn?

(4) So far, the intermediate destinations and priority tags of only x packets have been fixed.
These can be chosen for the remaining packets in (2nM)n2 -x ways.

Hence, an upper bound on T3 is given by

T3 < 23n+2$ 4n + 2$ + x
X

(2nAi)n2" M ~x (4)

9

Packet Routing on a Butterûy

Using equation (2), it follows that T i(M 2 n)n2 < T2: J- 3
q$>
X

- l

X = xn. Then, substituting equation (3) in the equations above

Let $ = (fin, M = mn, and

{3+4>)/xg 6 qn /(3 + 20) (4 + 20 + x) (m + z) x(qcfi — x) 2 ̂ /3 + 2 cfiŸ/x /3 + 20\
~ 27T71 \1 0(3 + 0) x(4 + 20) mx qcfi \ 0) ̂ 3 + 0 /

4 + 2(fi + x /4 + 20 + x \(4+2<t>̂ x m +
4 + 2 <fi

m + x \ m'x J_x_
m q<fim

q<fi - x Ÿ q4>~x)/x
q<fi (5)

Before proceeding with an asymptotic analysis, we give some examples of how equation (5)
provides a bound on T i, the probability of the routing time exceeding a time t.

Example 1 Suppose that all queue sizes in the logical network are 4, M = 256n, and we
want the probability of the routing finishing in time 24n. Set m = 256, (fi = 5, x = 18, and ([= 4.
Then, numerical substitution in equation (5) gives Ti < 0-04112~0-4433n.

Example 2 Suppose that all queue sizes in the logical network are 12, M — 256n, and we
want the probability of the routing finishing in time 16n. Set m = 256,0 = l ,x = 10, and q = 12.
Then, numerical substitution in equation (5) gives T i < ° °3832~2-43383n.

Example 3 As a final example, suppose that all queue sizes in the logical network are 6,
M = 256n, and we want the probability of the routing finishing in time 64n. Set m = 256,0 =
10, x = 50, and q = 6. Then, numerical substitution in equation (5) gives Ti < °-09'4+2~129n.

A sy m p to t ic A nalysis

We begin with a technical fact, that is used heavily in the proof of the following theorem.

Fact 1 (1 + l/x)x is an increasing function of x, for x > 0.

Theorem 2 Let the number of priority tags be 256n. Then, given any queue size, q > 8,
the probability that the time to route any permutation exceeds t, t > max(28n,2qn), is less than
(211 n)” 1*5 2- (i-4nH1-46-3-02/9).

Proof Let x ^ The conditions of the theorem correspond to m = 256, q >
8, 0 > 2, and qcfi > 24. It follows from equations (2),(3), and (4) that a bound on Ti is given by

Ti < (2 ;rn) -1.5 / (3 + 20) (4 + 20 + q<fi) (m + qcfi)
V <̂ (3 + 0) q<fi(4 + 20) mq<fi

3 + 2d>
2 ^ 3 + 2(fi\1/q /3 + 20\(3+0)M

0 I

4 + 20 + q<fi
qcfi 1 +

\^4+2^ /^ / qcfi\mlq(t>
4 + 20

 ̂ ¿<P)! q<? ^
1 + m

1
-----hm s)

3 + 0
q<t>n

)
(6)

We shall first bound terms inside the square brackets.

Using the fact that q > 8, and qcfi > 24, it follows that 2(3+2^/q<t> < 23/24+2/8 < 1.297. Next,
((3 + 20) /0)1/q < 3.51/* and (4 + 20 + q<fi)/q(fi < 1.417.

Since (3 + 0) /0 < 2.5, it follows from Fact 1 that (1 + 0 /(3 + 0))^3+^)/i?<?i> < 2.321/<i. Also,
since (4 + 2cfi)/(qcfi) < 4/24 + 2¡q < .417, Fact 1 implies that (1 + qcfi/(4 + 2cfi))^+2(t>̂ q<i) < 1.666.
Since mfqcfi < 256/24, Fact 1 implies that (1 + qcfijm)m̂ q̂ < 2.601.

10

Packet Routing on a Butterfly

Since m = 256 and q<j> > 24, it follows that 1/m + l/q<f> < 0.0456. Finally, it is easy to verify
that the term inside the square root sign is less than 1. Thus, putting all of the above together

Ti < (2IIn)_1'5 [(1.297)3.51/i?2.321/9(1.417)1.666(2.601)0.0456 ^ = (2IIn)-1-5 2_9</>n(1-46_3-02/<?)

Setting the routing time to be 4n + qf>n, the theorem follows. a

The choice of the parameters in the statement of Theorem 2 are arbitrary and were chosen
to give an exponentially decaying probability with time. If there is a specific time or queue size
in mind, the parameters can be chosen to give a much better bound on the probability as shown
in examples 1 — 3.

5 Uniform Traffic

5.1 M an y -O n e R ou tin g

We consider the problem of routing on a A-node Butterfly, N = n2n, where each node has 1
packet to send. The destination of each packet is picked equiprobably from amongst the N nodes
and independently of all the other packet destinations. The minimum expected time for routing
such a configuration is n, because a typical packet is more than n links from its destination.
We shall show that the routing finishes with high probability in time 0 (n). Unlike the case of
permutation routing, we shall not derive the tight bounds of examples 1-3, though a similar
procedure can be carried out for this case as well. The bounds of this section are restricted to
an asymptotic analysis for the purposes of brevity.

The ideal result to prove would be that if no node has to receive more than 0 (n) packets,
then the routing would finish in time 0(n) with high probability, where the probability refers
to the randomization in the algorithm and not to the packet destinations. Permutation routing
takes care of the case when each node has to receive exactly 1 packet. However, our result is
slightly weaker than the ideal case. The network is partitioned into into 2n sets of n nodes. We
show that if none of the sets of n nodes has to receive more than O(n) packets, then the routing
finishes in time 0 (n) with high probability. This allows Q(n) packets to be received by 1 node,
but not by more than 0 (1) nodes in any of the sets of n nodes.

The algorithm and delay path described in Sections 2 and 3 apply to this case. The only
place that the permutation n came into use was in step (3) of the enumeration of T3 in Section 4.
Further, it is clear that Theorem 1 holds with the appropriate modification that the permutation
n is replaced by the set of packets to be routed.

Lemma 2 Suppose there are n2n packets, each packet choosing one of the n2n destinations
on a Butterfly equiprobably. For a fixed row r, let Yr be the number of packets that choose any
one of the destinations (0, r), (1, r) , . . . ,(n — l,r) . Then, for k > 2 e

Pr(maxYr < kn) > 1 - 2 " ^ - 1)n

P roo f The union bound implies that Pr(maxr Yr > kn) < 2n Pr(yr > kn) . Also,

11

Packet Routing on a Butterfly

Since Yr is the sum of n2n Bernoulli random variables, the union bound and equation (7) together
imply that

Pr(yr > kn) < f j 2- t " 2 < (^) tn 2‘ *nJ = 2 -nkio^ i < 2~nk

This proves the lemma D

The main implication of this lemma is that it is sufficient to find a bound on the probability
for routing in time t for the case when each node has 1 packet to send, and no row of nodes has
to receive more than kn packets. The case when any row of nodes has to receive more than kn
packets has probability less than 2~(fc-1)n.

T i ,T 2, and T3 are defined as before. Then, equation (2) still holds.

Theorem 3 Let the number of priority tags be 256kn, k > 2e. For 1̂ — 2- ^ -1)n ̂N n out
of the possible N n configurations to be routed the probability that the time to route exceeds t,
t > max(24fcn + 4n,2qn), is less than (2IIn)-:L5 2“ (i_4n)(1-46-3-02/<7). given any queue size q > 8
in the logical network.

Proof Consider the case when no row of nodes has more than kn packets destined for it.
By Lemma 2, this happens in (l - 2- ^ -1)n) N n out of the possible N n configurations. All of
the analysis done in the enumeration for the bound on T3 carries over to this case, except for
one exception. This one exception lies in part (3) of the enumeration. There, a further term of
k has to be factored in for each of the x packets, because

• knowing the destination row means that the packet could have come from any one of kn
sources.

• knowing the source of a packet uniquely specifies the packet, and k > 1.

The bound on T3 of equation (4) gets modified by multiplying the right hand side by kx .

Let $ = 4>n, M = mkn, and x = %n — q<f>n- Then, a slightly modified proof of Theorem 2
supplies the result.

□

5.2 M a n y -M a n y R ou tin g

We consider the problem of routing on a iV-node Butterfly, N = n2n, where each node has as
many as cn packets. The destination of each packet is picked equiprobably from amongst the
N nodes and independently of all the other packet destinations. The minimum possible time
for routing such a configuration is cn2, because a typical packet is more than n links from its
destination. We shall show that the routing finishes with high probability in time 0 (n 2).

The purpose of considering this case is to make a start at establishing a steady state theory
for packet routing on bounded degree networks. The known results for steady state delay on

12

Packet Routing on a Butterfly

self-routing bounded degree networks are not rigorous, at least for fixed length packets. Some
progress has been made under some special traffic conditions [13,11], but the problem is still
open. The results to be presented in this section are very similar in spirit to the /¿-relations
described in [13]. However, unlike the extended Omega network, the routing network required
here is of the same size as the number of inputs and outputs. The extended Omega network
requires il(iVlogiV) switching nodes for N inputs and outputs.

The algorithm described in Section 2 generalizes to this case quite easily. Let intermediate
destinations and priority tags be picked at random, like before. The only modification required
is that in phase 1 of the algorithm more than one packet will be inserted by a node into the
network. Further, it is clear that Theorem 1 holds with the appropriate modification that the
permutation n is replaced by the set of packets to be routed.

As a first step in the analysis, we establish the following lemma.

Lemma 3 Suppose there are cn22n packets, each packet choosing one of n2n destinations
equiprobably. Let Y{ be the number of packets that choose destination i. Then, for k > 'Ice

Pr(maxYi < kn) > 1 - .i

P ro o f The union bound implies that Pr(maxt- Y{ > kn) < n2n Pr(Y[> kn) . Since Yt is the
sum of cn22n Bernoulli random variables, the union bound and equation (7) together imply that

Pr(yr > kn) < (cnf f j (n2n) - kn < (yî2~'î"2 = 2~nk'°^ A <

This proves the lemma D

The main implication of this lemma is that it is sufficient to find a bound on the probability
for routing in time t for the case when each node has cn packets to send, and no node has to
receive more than kn packets. The case when any node has to receive more than kn packets has
probability less than 2- (A;-2)n. We shall now concentrate on this case only.

A form of equation (2) still holds. All of the analysis done in the enumeration for the bound
on Ï3 carries over to this case, except for two exceptions. One exception lies in part (3) of the
enumeration. There, a further term of kn has to be factored in for each of the x packets, because

• knowing the destination means that the packet could have come from any one of kn sources.

• knowing the source means that the packet could be any one of cn packets, and k > c.

The second exception is in part (4) of the enumeration, because the number of packets left over
is larger. The bound on T3 gets modified as follows.

T3 < 23n+2<* 4n + 2$ + X
X (8)

Let $ = </>n2, M = mkn2, and x — xn2- With this normalization, the bound for Tx reduces to
a form very similar to equation (6), and leads to the following theorem.

13

Packet Routing on a Butterfly

Theorem 4 Let the number of priority tags be256kn2, k > 2 ce. For 1̂ — 2 ^ (cri2A)^
out of the possible (cn2N)N configurations to be routed the probability that the time to route ex­
ceeds t, t > max(24kn2 + 4n,2qn), is less than (2Hn)_:L5 2- (i-4n)(1-46-3-02/<7), given any queue
size q > 8.

6 Conclusion

The analyses in Sections 4 and 5 showed that as the number of values, Af, for priority tags
increased, the lower bounds on the probability of routing finishing in a given time increased. This
seems to indicate that the performance of the algorithm would actually improve if the number
of priority tags increase. However, simulations do not support this hypothesis. We performed
simulations for permutation routing on various network sizes, from 256 nodes to 10240 nodes.
Our main observations were that the routing time was not significantly affected on varying M
from 2 to 2000000. Another observation was that the variance of the routing time was extremely
small. A simulation of the basic algorithm with no priority tags, but still using FCFS queues and
random conflict resolution was done. It was found that this algorithm performed better than the
algorithm proposed in this paper. All these observations bear further investigation.

The intuition behind the routing completing in time O(log A) for the uniform traffic case in
Section 5.1 is that an averaging effect is taking place. The algorithm described in this paper routes
packets to the correct row ignoring the particular node in the row to which the packet is destined.
Thus, in some sense, the algorithm is behaving like running log A versions simultaneously. This
is achieved by the packet paths having 3 log A links on the average. It is still an open question
whether there is an algorithm which can come closer to having optimal length paths, which have
1.5 log A links on the average for the Butterfly network. An even bigger open question is whether
there is a local routing algorithm for a Shuffle-Exchange network, or any other optimal diameter
bounded degree network, that can complete routing with high probability in O(log A) time with
bounded queue sizes.

One point which many readers may question is the assumption that packets take unit time
to be transmitted over a link. After all, packet lengths are ft(logA). On letting the packet
transmission time over one link be proportional to log A , the routing time goes to O((log A)2).
However, for the uniform traffic case, we expect that some node has to receive ft(log A) packets.
This implies that for uniform traffic, if all links are bit-serial, that the time has to be ft ((log A)2),
since there are only 2 links entering any given node.

The previous paragraph raises another related question. One of the schemes that has been
proposed for packet routing is based on the Batcher-Banyan [3,9]. This scheme can be pipelined
so that the operation is actually bit-serial and that the total time is 0((log A)2), assuming that
one bit takes unit time to be transmitted over one link. The question naturally arises whether
a similar pipelining effect can be used for the scheme presented in this paper and in [15]. There
does not seem to be any way to pipeline this scheme and still preserve the guaranteed bounds
on the performance. This is because ft((log A)2) bits have to be transmitted over some links in
the logical network. It is worth investigating if some other schemes can offer better performance
assuming that 1 bit takes unit time to be transmitted.

The next point to be made concerns steady state operation. Suppose that a version of the

14

Packet Routing on a Butterfly

algorithm is used to route packets in a continuous fashion, i.e. nodes inject packets at random
intervals into the network and time stamps or some other device are used. A question which
arises is how delays behave in such a scenario. Various authors have studied this problem in a
variety of contexts, and have met with only partial success. Most of the analysis in the literature
is based on some kind of independence assumptions [8,7,10,11,13]. However, simulation results
match the approximate analysis extremely well, usually within a few percent. A rigorous theory
for the performance of packet routing networks in steady state is sorely needed.

A ck n ow ledgem en ts
The author wishes to thank Bruce Hajek and Andrea Pietracaprina for many helpful discussions.
They will be the co-authors once this course is over and the paper is improved. (We hope!)

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi. An 0 (N log N) sorting network. In Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing, pages 1-9. ACM, 1983.

[2] R. Aleliunas. Randomized parallel communication. In Proceedings of the ACM SIGACT-
SIGOPS Symposium on Principles o f Distributed Computing, pages 60-72. ACM, August
1982.

[3] K. Batcher. Sorting networks and their applications. In Proceedings AFIPS Spring .Joint
Comput. Conf., volume 32, pages 307-314, 1968.

[4] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of compu­
tation. Journal of Computer and Systems Sciences, 30:130-145, 1985. An earlier version of
this paper was presented at the 14th Annual ACM Symposium on the Theory of Computing.

[5] R. Cole and C. 0 . Dunlaing. Note on the AKS sorting network. Technical report, Computer
Science Department, New York University, 1988. Ultracomputer Note #109.

[6] W. Feller. An Introduction to Probability Theory and Its Applications, volume one. John
Wiley h Sons, New York, 3rd edition, 1968.

[7] A. Greenberg and B. Hajek. Approximate analysis of deflection routing in hypercube net­
works. Submitted to IEEE Trans, on Communications. Also, presented at the TIMS meet­
ing, Osaka, July 1989, August 1989.

[8] A. G. Greenberg and J. Goodman. Sharp approximate models of adaptive routing in mesh
networks. In O.J. Boxma, J. W. Cohen, and H. C. Tijms, editors, Teletraffic Analysis and
Computer Performance Evaluation, pages 255-270. Elsevier, Amsterdam, 1986. revised,
1988.

[9] A. Huang and S. Knauer. Starlite: a wideband digital switch. In Proceedings of Globecom
Conference, pages 121-125. IEEE Press, 1984.

[10] A. Krishna and B. Hajek. Performance of shuffle-like switching networks with deflection.
In Proceedings of the IEEE Infocom’90, San Francisco, CA, June 1990. IEEE Press.

15

Packet Routing on a Butterfly

[11] C. P. Kruskal, M. Snir, and A. Weiss. The distribution of waiting times in clocked multistage
interconnection networks. IEEE Transactions on Computers, 37(11): 1337—1352, November
1988.

[12] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. In Proceedings
of the 29th Annual Symposium on Foundations of Computer Science, pages 256-269. IEEE
Press, 1988.

[13] D. Mitra and R. A. Cieslak. Randomized parallel communications on an extension of the
omega network. Journal o f the Association for Computing Machinery, 34(4):802-824, Oc­
tober 1987.

[14] N. Pippenger. Parallel communication with limited buffers. In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, pages 127-136. IEEE Press, 1984.

[15] A. Ranade. How to emulate shared memory. In Proceedings of the 28th Annual Symposium
on Foundations of Computer Science, pages 185-194. IEEE Press, 1987.

[16] E. Upfal. Efficient schemes for parallel communication. In Proceedings of the ACM SIGA CT-
SIGOPS Symposium on Principles of Distributed Computing, pages 55-59. ACM, August
1982.

[17] E. Upfal. An O(loglV) deterministic packet routing scheme. In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, pages 241-250. ACM, 1989.

[18] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceed­
ings of the 13th Annual ACM Symposium on Theory of Computing, pages 263-277, May
1981.

16

A Preliminary Study of Deflection
Routing on the Butterfly Network.

Term Paper EE497 Spring 90

Andrea Pietracaprina

Abstract
In this paper we consider deflection routing on the butterfly

network and concentrate on the number of packets which are
delivered to the destinations without being deflected. We study
the mean and the distribution of this number. Previous work has
been concerned only with the mean. We rederive the lower and
upper bounds for the mean and develop an approximate gener­
ating function for the density. Simulation results show that the
approximation is quite accurate. It turns out that the distru-
bution is concentrated around the mean value. Unfortunately,
the generating function is still in a form which is not easy to
manipulate and we are working to find a nicer form.

17

1 Introduction.

The Packet Routing is considered one of the most important issues for packet switching networks.

In general, the problem consists of delivering a certain number of packets from the inputs to the

outputs of a network. Each input may have d > 0 packets and each packet may be destined to

one or more outputs. Several versions of this problem have been analysed in the past few decades

for different kinds of networks. A switching network is called non-blocking for a particular set of

input-output connection requests if the routes of the packets through the network do not interfere

with each other, that is the packets can be delivered with no two packets contending for the same

link at any point in the network.

Unfortunately, networks turn out to be non-blocking in very few cases. More frequently, col­

lisions occur among the packets which travel toward their destinations. Different approaches can

be adopted to deal with this problem. One approach is to provide the nodes of the network with

buffers for queuing packets temporarily blocked. In this case, the routing strategy should try to

minimize the packet delays and the queue sizes. Alternatively, queues can be avoided by eliminat­

ing all the packets contending for the same link, except one. If packets are eliminated dynamically

during the routing process, they can be lost. In order to avoid that, a preprocessing phase may

determine a subset of packets which can be delivered without collisions; the other packets could be

stored in input buffers, so that they may try the connection successively. In both cases, the goal is

to maximize the number of packets delivered at once and minimize the total time needed to deliver

all packets.

Another approach consists of misrouting a packet which loses the contention for a link, which

means that the packet is sent along another link and the distance to its destination possibly in­

creases. This approach was originally proposed by [Ba64] who called it hot potato routing; later, the

term deflection routing has been adopted. Most of the work on this subject has been done in recent

years. Borodin and Hopcroft [BH85] propose deflection routing for a permutation problem on a

IV-node hypercube network. They don’t give a formal analysis, but only report some promising

simulation results. Greenberg and Hajek [GH89] present an approximate analysis of transient and

18

equilibrium behaviour of the hypecube under deflection routing. A similar analysis is given by Kr­

ishna and Hajek [KH89] for several networks based on Shuffle Exchanges. Shuffle Exchange is also

considered in [TSH88], but the authors only present some simulation results. Deflection routing

on two dimensional meshes is adopted by Maxemchuk [Ma87] and by Greenberg and Goodman

[GG86]. Greenberg and Goodman give estimates of the steady state throughput and the packet

delay. An actual application of deflection routing can be found in the HEP multiprocessor sys­

tem [Sm81] where this strategy has been used in the switching network which connects processors,

memory modules and I/O devices.

In this paper we present a preliminary study of deflection routing on the butterfly network. We

assume the network synchronous and the time slotted. At the beginning, each input independently

generates a packet, with probability po for a random destination. Each packet is sent through the

unique path from the input to the output and traverses a link at each time slot. The deflection

strategy is applied in case of conflicts. A more detailed description of the model is given in section

2. Because the paths are unique, a deflected packet will necessarily reach a wrong output and,

if wrap-around connections are provided, it can start, at that point, a new journey toward the

right destination. Our study is preliminary in the sense that we only focus on the number of

packets which reach their destinations without being deflected. This number can be represented

by a random variable. Bounds on the mean value of this variable are known, but no work has

been done, so far, about the distribution. In section 3.1, we briefly reconsider the mean and derive

a different lower bound. In section 3.2, we develop an approximate generating function for the

density. Although it is only an approximation, simulation results, reported in section 4, suggest

that it is quite accurate. The generating function is still in a form which is not easy to manipulate

and our present research is focused on deriving a nicer form. Finally, section 5 discusses some open

problems which should be investigated.

19

A

n

bovi o

Itovi

rovi 2

tbw 3>

Q11

col. o co i i col 2

Figure 1: A butterfly of order 3.

2 The M odel.

2.1 T h e netw ork .

•

A butterfly network of order n , belongs to the wide class of banyan networks and consists of n

stages of 2X2 switches which connect 2n inputs to 2n outputs. Each stage contains 2n_1 switches.

Following a usual notation, we call the stages columns and subdivide the switches in each column

into rows. A switch is identified by a pair < c, r > where c, 0 < c < n - l represents the column, and

r, 0 < r < 2n_1 - 1 represents the row. A switch v = < c, r > with c < n - 1 is directly connected

to two switches V\ =< c + 1, r > and v2 = < c + 1, r' > in column c + 1, where r' = r © 2C and 8

denotes bitwise exclusive or. The inputs enter the switches in column 0 and the outputs leave the

switches in column n — 1. Usually, the network is wrapped-around by providing fixed connections

between input i and output i, 0 < i < 2n — 1. A butterfly of order n = 3 is shown in fig.l. The

network has a symmetric and recursive structure. It is easily seen that column n — 1 is connected

to the top columns of two disjoint butterflies of order n — 1. In general, column c, l < c < n - l i s

connected to the top columns of 2n-c disjoint butterflies of order c. As stated in the introduction,

the network is synchronous and the time is slotted. The z-th time slot will be identified by t, and

20

all operations begin at time to- At each time slot a switch in column c can recive a packet from

one of the two links coming from column c — 1 (if c = 0 they are input links) and send the packet

through one of the two links going to column c + 1 (if c = n — 1 they are output links).

2.2 The routing problem.

It can be easily shown that in the butterfly there exists a unique path connecting one input to

one output, and this path is completely determined by the output address. In particular, each

transition between two adjacent columns is determined by one bit of this address. We assume that

at time to, each input link independently generates a packet for a random destination, with uniform

probability po» 0 < po < 1. Therefore, the number of packets offered to the network at time to has a

binomial distribution with parameters 2n and po- The destinations are independent and uniformly

distributed in [0,2n — 1] (uniform traffic). Each packet contains a header, with the destination

address, and some data information. At each time slot a packet traverses a link between two nodes

in adjacent columns. We call it a transition. Each packet tries to follow the unique path which

leads to its destination. No packet can be buffered at a switch at any time. This implies that all

the packets are forced to make a transition at each time slot, and then, at time tc all packets are in

column c. For this reason, in what follows we will avoid specifying the time, unless it is necessary.

Since the paths are not necessarily disjoint, a collision may arise when two packets, in input to

switch < c,r >, require a transition along the same output link, as shown in fig. 2. In this case

we apply a deflection strategy. One of the two packets, chosen by tossing a fair coin, is deflected

to the other link. By uniqueness of input-output paths, the deflected packet will travel up to a

wrong destination from which it can try to reach the right destination in a successive traversal of

the network. While the packet travels along the wrong path, any transition is equivalent, so that

it can never be involved in a conflict. For our purposes, we don’t care about deflected packets. We

say that an input to a switch < c,r > contains a live packet if there is a non deflected packet, and

no packet if there is no packet or a deflected packet.

In the following sections we study the distribution of the number of live packets in each column

and, in particular, the number of live packets which arrive at the right destinations without being

21

------deflected

<c^>

deflected.

Figure 2: A collision.

3 Statistics.

3.1 Average number of survivals.

In this section we determine the average number of live packets arriving to each column.

Definition 1 For a butterfly of order n, the random variable X n(c,po), 0 < c < n — 1, denotes the

number of live packets input to column c and X n(n,po) denotes the number of packets that arrive

at the desired outputs without being deflected

For notational simplicity, we will omit the subscript n when the context makes it clear.

Definition 2 Let l be an input link to a switch in column c, 0 < c < n — 1. Then, pc(l) is the

probability that the link contains a live packet. If l is an output link, then pn(l) is the probability

that l receives a packet destined to it.

We have po(l) = po for any /, and a symmetry argument easily shows that, for fixed c > 1, also

pc(l) does not depend upon l. Thus, we can omit the parameter /. As noticed before, X (0,po) has a

binomial distribution with parameters 2n and po, since it can be expressed as sum of 2n independent

Bernoulli random variables with parameter po. For c > 1, X(c,po) is still a sum of 2n Bernoulli

variables, but they are no longer independent because of the collisions among the packets. Thus,

22

we cannot claim that X (c,po) has binomial distribution. However, the statistical dependence does

not affect the mean, so that we have:

E(X(c,po)) = 2npc, 0 < c < n (1)

Given po, we can determine pc,c > 1, by solving the recurrence relation given in the following

lemma.

Lemma 1 Given po, for c = 0 . . . n — 2,

Pc+1 = Pc ~ \(Pcf-

Proof: Consider a switch < c, r > and let /i and I2 be the two input links. Each link has a live

packet with probability pc and independently of the other link. This fact follows because, as shown

in fig. 3, the two links come from two disjoint butteflies of order c (if c = 0 the probabilities po

are independent by definition). Therefore, an input link to column c + 1, which is an output of a

switch in column c, will have a packet with probability

1 (1 P°\2Pc+l = 1 — (1 ----2") — Pc — (Pc)2
4

□

Kruskal and Snir [KS83] give an asymptotical bound for this recurrence relation. They show

that for any fixed initial value po,

4
Pc = ~

where In x denotes the natural logarithm. We now prove a lower and an upper bound which are

functions of po.

Theorem 1 For c = 0 . . . n — 1,

g(c) < p c < f(c)

where g(c) = A~Zln and / (c) = - ¡ V .
c + n c+ po

23

Figure 3: Transition between column c - 1 and column c

Proof: It can be easily verified that for c > 1,

9(c) < 9(c - 1) - ^[g(c - l)]2

and

/(*) > f (c - 1) - i [/(c - l)]2.

We now show g(c) < pc < /(c) by induction on c. For the basis, we have #(0) = p0 = /(0).

Inductively assume that tf(c-l) < pc_i < / (c -1) for some c > 1. Since the function <f>(x) = x - \x2

is strictly increasing for 0 < * < 2 and g(c - 1), /(c - 1) and pc_i are probabilities, we have

Pc = Pc-1 - j(Pc-i)2 > g(c - 1) - i[ff(c - l)]2 > g(c)

and

Pc = Pc-1 - j(Pc-l)2 < /(c - 1) - i [/(c - l)]2 < f (c)

□

The same upper bound is also proved in [KH89]. If po is a constant, then pc G 0 (, and, by

applying relation 1, the average number of packets which arrive at the right destination after n

24

time slots is E (X (n ,po)) € 0 to be compared with the 0 (2n) packets which start. On the

other hand, for p0 = L we have — arrivals and 2̂. departures on average, which means that a

constant fraction of packets has been deflected.

3.2 The density function of X (n ,p 0)

In this section we investigate the distribution of the random variable X(n,po) previously defined.

Let nn,po(j) = = j) , for 0 < j < 2n. In other words, ttn,PoU) is the probability that,

when deflection routing is performed on a butterfly of order n, with initial load po> exactly j packets

are delivered to the outputs after n time slots.

Definition 3 The generating function for 7rn,Po(j) is defined by

Gn,m(z) = £(**<"*•>) = ! > „ , * , (jV
i=0

We want to derive Gn,po(z) in terms of the probabilities of lower order, that is in terms of ttn',p0(j)

for n' < n. For this purpose, we exploit the recursive structure of the butterfly. As noticed before,

the last column (i.e. column n — 1) of a butterfly of order n is connected to two disjoint butterflies

of order n — 1. Since these two smaller butterflies are disjoint, their histories are described by

independent distributions 7rn_ i)Po. The idea is to start from the number of packets which arrive

to the outputs of these butterflies and consider the last transition up to column n — 1. Note that

contain the live packets. In general, the configurations with exactly j live packets do not

7rn_iiPo(j) gives only the probability of having j live packets, but it doesn’t say which outputs
' 2n_1 '

j
have the same probability. In order to determine the generating function we need to assume that

each subset of j outputs contains the packets with the same probability

V 3
Consider a butterfly of order n and a switch < n — l ,r > in the last column. According to the

presence of live packets on its inputs, this switch can be in one of the four states st-, i = 0 .. .3,

represented in fig. 4. Assume that in column n — 1 there are k{ switches in state i, i = 0 . . . 3, where

Yll=o b = 2n_1, and let pn,p0(ko, &i, ^3) be the probability of such event. The subscripts n and

Po denote, as usual, the order of the butterfly and the initial load, respectively. In the following

25

O O O 9 • O #

O r ho

6 r live

Figure 4: States of a switch

lemma we give an exact form of the generating function Gn,Po{z).

Lemma 2
2„-l 2n - l _ h 2 n - l _ k3_ h ,

G » , „ W = E E E Pn,Po(*0,fcl,*2,fe)zil+i2+‘13
*3=o *2=o *1=0 \ 2 J

Proof: Note that ko is uniquely determined by ki,k2, that is ko = 2n~1 - k\ - k2 - k3. The

three summations fix the values for ki,k2,k3 in all possible ways. Now, the switches in state s 1 or

52 output exactly one packet with probability 1 and contribute a factor zkl+k7 to the generating

function. The switches in state 53 output either one packet with probability 1, or two packets with

probability 1. Then they contribute a factor 3 to the generating function. The lemma

follows by rearranging the terms in z. □

Now, we express pn,pQ{ko, &i,k2, k3) in terms of the distribution 7rn_ iiPo. As stated before, we need

to pretend that all configurations with the same number of live packets at the outputs of a butterfly

of order n are équiprobable.
Lemma 3

Pntp0(ko,ku k2yk3) 7rn-l,p0(fcl + k3) 7Tn_ iiP0(fc2 + fc3) (2n~1)!
/ 2n-l \ / 2n -l \ kz'Mlkxlkol
y k\ + k3 J ^ 2 + 3̂ j

26

Proof: Recall that the inputs to column n — 1 are the outputs of two disjoint butterflies of order

n — 1. It is easily seen that a quadruplet (ko, ki, k2, k3) implies that k\ -1- k3 packets are output by

one butterfly and k2 + k3 packets by the other. There are ways fixing the k{ switches in

state i, for i = 0 . . . 3. Fixed the state of each switch, we have a particular configuration of k\ + k3

packets at the outputs of one butterfly and a particular configuration of k2 + k3 packets at the

outputs of the other. By the fact that the two butterflies are independent and by the assumption

made above, the two configurations occur with probability

TTn—l,pp(fcl -b k3) 7Tn—l,pp(&2 + k3)
(2n_1 \ (2n~1 \
\ ki + ̂ 3 J ^2 + ̂ 3 j

and the lemma follows. □

We are now ready to write the approximate generating function that we denote by Gn,Po(z).

Theorem 2

Gn,p0(z) —
2„_l 2n_1 —k3 2n- 1-k3-k2

E E E
k3=0 k2=0 k\ =0

*n-l,po(ki + k3) TTn-l,po(k2 + k3)
(271- 1 \ / 2n~l \
\ ki + k3) [k 2 + k3)

(2 " -1)! f i + f V 3
kz\ki\k\\ko\ \ 2 J

Proof: Immediate from lemma 2 and lemma 3. □

4 Simulation results.

The generating function G'n,p0(z)y given in the previous section, has been derived by using the

approximation that, in a butterfly of order n , if exactly k outputs contain live packets at time tn,

these packets may appear in any subset of k outputs, with the same probability. Unfortunately,

this is not true. It could be shown that these subsets can be partitioned into classes with the

same probability, according to a permutation group. The proof is pretty tedious and we prefer

giving an intuitive argument by the following example. Consider a butterfly of order 2. The two

configurations shown in fig. 5 do not have the same probability. For p0 = 0.5, configuration A has

27

Figure 5: Configurations A and B.

probability ~ 0.049 and configuration B has probability ~ 0.085. This depends on the fact that

the ’histories’ which led to these configurations are different. Only one configuration of live packets

in input to column 1 may generate A, while four configurations may generate B.

Nevertheless, the generating function turns out to be quite accurate. We conducted a set of

experiments to evaluate confidence intervals for the mean and the variance of X (n,po) by means

standard simulation techniques [La83]. In particular, the confidence interval for the variance has

been extimated by using a Jackknifing technique. We simulated deflection routing on butterflies

with 16, 32, 64 and 128 inputs, and with initial probabilities po = 0.1, 0.3, 0.5, 0.7, 0.9. For each

dimension and each value po we performed 10000 independent runs. The results are summarized in

tables 1-4. Each table refers to a particular dimension of the network. The first column indicates

the initial probability. Columns 2-4 indicate the exact mean, determined by the recurrence relation

presented in section 3.1, the value given by the generating function and the interval estimated with

95% of confidence, respectively. Columns 5-7 compare the variance obtained by the generating

function, the sample variance s2 and the interval estimated with 95% of confidence. Note that, in

all cases, there is a close agreement between the simulation estimates and the values given by the

generating function.

28

Mean Variance
Po exact Gen. Fun. interval 95% Gen. Fun. sz interval 95%
0.1 1.45 1.45 1.42 4- 1.46 1.09 1.09 1.06 4- 1.12
0.3 3.63 3.63 3.62 -r 3.67 1.65 1.71 1.64 -r 1.76
0.5 5.13 5.13 5.11 -r 5.16 1.64 1.67 1.62 -r 1.71
0.7 6.18 6.18 6.15 -r 6.20 1.60 1.61 1.57 4- 1.66
0.9 6.92 6.92 6.91 4- 6.96 1.63 1.64 1.60 -r 1.69

Table 1: Butterfly 16X16.

Mean Variance
Po exact Gen. Fun. interval 95% Gen. Fun. sz interval 95%
0.1 2.84 2.84 2.82 -r 2.88 2.04 2.02 1.96 -r 2.07
0.3 6.85 6.85 6.83 -r 6.89 2.94 2.90 2.82 H- 2.98
0.5 9.44 9.44 9.43 -r 9.50 2.92 2.92 2.84 -r 3.00
0.7 11.17 11.17 11.13 -r 11.19 2.91 2.93 2.85 -r 3.01
0.9 12.34 12.34 12.31 -r- 12.38 3.00 3.03 2.94 -r 3.11

Table 2: Butterfly 32X32.

Mean Variance
Po exact Gen. Fun. interval 95% Gen. Fun. sz interval 95%
0.1 5.55 5.55 5.49 -- 5.57 3.84 3.76 3.66 -r 3.87
0.3 12.97 12.97 12.95 -- 13.04 5.28 5.17 5.02 -r 5.31
0.5 17.49 17.49 17.44 -- 17.53 5.29 5.32 5.17 -r 5.46
0.7 20.38 20.38 20.33 -- 20.42 5.36 5.40 5.25 4- 5.55
0.9 22.30 22.30 22.24 -- 22.34 5.55 5.47 5.32 4* 5.62

Table 3: Butterfly 64X64.

Mean Variance
Po exact Gen. Fun. interval 95% Gen. Fun. S2 interval 95%
0.1 10.86 10.86 10.80 -i- 10.91 7.26 7.19 6.98 4- 7.39
0.3 24.62 24.62 24.58 4- 24.70 9.60 9.64 9.55 4- 10.12
0.5 32.59 32.59 32.56 4- 32.68 9.71 9.75 9.48 4- 10.02
0.7 37.52 37.52 37.45 4- 37.57 9.96 10.13 9.84 4- 10.41
0.9 40.71 40.71 40.61 4- 40.74 10.34 10.55 10.25 4- 10.84

Table 4: Butterfly 128X128.

29

By observing the above results, we notice that the distribution of X(n,po) is quite concentrated

around the mean value. To have a more tangible proof of this fact, the first graphic in fig. 6 reports

the results of 10000 independent runs for a butterfly with 128 inputs and with initial probability

0.5. The horizontal axis shows the number of arrivals and the vertical axis the occurrences of each

particular value. For comparison, the other graphic reports the values predicted by the generating

function; once again we observe the accurancy of this function.

5 Conclusions and open problems*

In this paper we considered deflection routing on the butterfly network under the assumption of

uniform and independent traffic offerd at the inputs. In particular, we focused on the first phase of

the routing (i.e. the first traversal of the network) and we studied the distribution of the random

variable X(n,po) which represents the number of packets delivered to the right destinations within

this phase. Previously, only the mean value has been studied. We slightly modified the lower

bound for the mean and developed a generating function for the density. The generating function

is based on the approximation that all configurations of exactly k live packets at the outputs have

the same probability. Although this assumption is not generally true, simulation estimates for

mean and variance closely match the values obtained by the generating function. Other extensive

simulations, not shown in the paper, have confirmed its accurancy. Unfortunately, the function is

still in a form which is not easy to manipulate and our present research is focused on finding a nicer

or even a close formula.

Both simulations and generating function show that the distribution is concentrated around

the mean. It is interesting to note that, when the initial probability po is small, the values of

mean and variance are pretty close. In this case, the poisson distribution seems to be a good

approximation. This fact is not surprisingly because it is known that under certain hypothesises,

the sum of dependent bernoulli variables converges to the poisson distribution [AGG89]. However,

when the value po increases, this approximation is no more applicable because the mean and the

variance tend to differ each other, as indicated by the results in the previous section.

30

occurrences

4000 .

500 ■

ôi
occurrences

simulations

•-%
* 30 <t0 U* arrivais

Figure 6: 10000 runs for a butterfly 128X128 with po = 0.5.

So far we have only considered the first phase of deflection routing on the butterfly. The author’s

future research will be concentrated on the global routing, where several traversals of the network

may be necessary to deliver all packets. Moreover, in a more realistic scenario, we can suppose

that the traffic is offered dynamically. The knowledge of the distribution of the number of packets

delivered in one traversal becomes helpful if we want to study the overall time and the optimal

tradeoff between time and offered traffic.

References

[AGG89] R. Arratia, L. Goldstein and L. Gordon: ’Two Moments Suffice for Poisson Approxima­

tions: the Chen-Stein Method’, in The A nnals o f Prob. 17,1 (1989) 9-25.

[Ba64] P. Baran: ’On Distributed Communication Networks’, in IE E E Trans. C om m . System s

March (1964) 1-9.

31

[BH85] A. Borodin and J.E. Hopcroft: ’Routing, Merging and Sorting on Parallel Models of

Computation’, in JC S S 30 (1985) 130-145.

[GG86] A.G. Greenberg and J. Goodman: ’Sharp Approximate Models of Adaptive Routing in

Mesh Networks’, Manuscript (1986).

[GH89] A.G. Greenberg and B. Hajek: ’Deflection Routing in Hypercube Networks’, Manuscript

(1989).

[KH89] A. Krishna and B. Hajek: ’Performance of Shuffle-Like Switching Networks with Deflec­

tion’, Manuscript (1989).

[KS83] C.P. Kruskal and M. Snir: ’The Performance of Multistage Interconnection Networks for

Multiprocessors’, in IE E E Trans. Comp. C-32,12 (1983) 1091-1098.

[La83] S.S Lavenberg: ’Computer Performance Modeling Handbook’, Academic Press (1983).

[Ma87] N.F. Maxemchuk: ’Routing in the Manhattan Street Network’, in IE E E Trans. Com m u­

nications COM-35,5 (1987) 503-512.

[Sm81] B.J. Smith: ’Architecture and Applications of the HEP Multiprocessor Computer Sys­

tem’, in Real Time Signal Processing IV , Proc. o f S P IE (1981) 241-248.

[TSH88] X.N. Tan, K.C. Sevcik and J.W Hong: ’Optimal Routing in the Shuffle-Exchange Net­

works for Multiprocessors Systems, in Com pEuro 88 - System Design: Concepts, Methods

and Tools IEEE Euromicro (1988) 255-264.

32

An Optimal Policy for Deflection Routing on a 2-Dimensional Grid

Timothy Weller

May 11, 1990

1 Introduction

The class of mesh networks is a broad class of regularly connected networks like hypercubes, grids,

etc. In this paper we consider only 2-D rectangular grid topologies where each node is connected

to 4 nearest neighbors. If the links are bidirectional and the boundary nodes have degree 3 (degree

2 for corner nodes) then we call the topology a finite grid. If the boundaries extend to infinity, it

is an infinite grid. A finite grid with each row connected in a bidirectional ring and each column

connected in a bidirectional ring is called a torus. Finally, a torus structure with an even number of

columns and rows and every other row and every other column and unidirectional rings in opposite

directions is called a Manhattan Street Network (M SN), so named because the rows and columns

are like one-way streets in downtown Manhattan. See Figure 1 for diagrams of these networks. We

assume all finite networks to be square.
i • *

*■ — ‘l “ \ i
■ -

,1 t
i v- -

r
)

-

W e s t T o f o l o j i '^ s

4 O*
R>r& 0 _

33

y i
> ■>

>
%

/ >r -f /L * 1 „
.7- -
'I

"
\ '
’ r*

\i ✓ .7 ~ iy '
- - 1 \

4c 4̂ »j- M f> r U.

Our main result is for an infinite grid. Consider a packet at a source node on this grid. The

packet wishes to go to a destination node. Define the two diagonals with respect to this destination

node as the set of nodes whose vertical distance from the destination is the same as its horizontal

distance. In any time slot at any intermediate node the packet will decide which of the four outgoing

links is preferred as a first choice. Due to several reasons such as a conflict with another packet, a

link failure, or congestion at the corresponding receiving node, the packet may not be transmitted

on the first choice link. If this transmission fails, the packet will try to get out on its second choice

of outgoing links. This and subsequent attempts may also fail. Since the topology is a grid, at any

node there can be at most two outgoing links which bring the packet closer to its destination (only

one if the packet is aligned with the destination in one coordinate). These will be called shortest

path links.

If a packet fails to get out on a shortest path link in the current time slot, there are three possible

strategies. One strategy is to delete the packet from the network. A second way to handle the

packet is to queue it at the intermediate node and transmit it in a later time slot. However, this is

not always desirable because it requires memory at each node (perhaps a prohibitive amount if the

network speed is very high) and may cause buffers to overflow. These two methods are consider

by Badr and Podar in [1]. A third choice, which we consider here, is to “deflect” the packet by

sending it out on a link which makes it farther from the destination, a non-shortest path link. Some

analytical results and simulations have shown this to work well for at least some topologies under

certain traffic models (see [5] for example).

Using deflection routing and the additional assumption that no new packets can be injected into

a node in any time slot during which a node has 4 packets, it is easily seen that no packet will

ever need to be deleted from the network. It may, however, be desirable to delete packets which

have been in the network too long or to offer priority to these or other packets in an attempt to

maintain stability, increase throughput, or preserve fairness.

34

2 Our Deflection Routing Model

In our model we consider the travel of a single packet from a source to a destination node. At any

intermediate node this packet will decide on a first, second, third, and last choice of outgoing links

which it prefers. It will get its first choice with highest probability, its second choice with the next

highest probability, etc. Because we assume deflection routing and restrict all new traffic injected

into the network to those nodes which have fewer than 4 packets in any time slot, it is clear that

our packet will leave any intermediate node on some link during a single time slot (no queueing

necessary). We will make special consideration of the case where a packet can’t get out on any link

later.

The four outgoing transmission probabilities are assumed to be non-increasing in order of the

packet’s preference, uniform across the network (a reasonable assumption under uniform traffic),

and independent from slot to slot (time-invariant). In general these will be time-varying parameters

which depend on the traffic in the network, but we require this simplifying stationarity assumption.

A steady-state fixed point analysis may allow us to improve on this assumption at a later time.

The only cost incurred by the packet will be unit cost to traverse each link. Boundary conditions

are not present as the grid will be considered to extend to infinity. Our result is conjectured to

hold for a finite grid, but this introduces some additional boundary modeling issues and also makes

the DP solution more difficult.

In this paper, we present a control policy which a packet should use to choose its outgoing link

preferences for the network model described above, and we prove the optimality of this policy. This

can be considered as an extension of the result of [1] for deflection routing.

3 The Zig-Zag Routing Policy

In keeping with the terminology used in [1], we call our optimal policy the Z2 (zig-zag deflection

routing) policy. In words, this policy says that among the shortest path links, the one which moves

the packet closer to the diagonal with respect to the destination is to be preferred. The same

preference is true for non-shortest path links if a packet must be deflected. This is intuitively

35

satisfying because moving toward the diagonal leaves a packet with more alternate shortest paths

to the destination. As a example, with the destination (0,0) and the packet at (4,2), the link to

(3,2) is preferred over the link to (4,1). The name comes from the fact that after reaching the

diagonal, an undeflected packet will take a zig-zag path to the destination. See Figure 2.
♦c<J

Q D&Stnrvatrio*
------3

X Diq^owcj
Q Sou \
♦/«**< Sawiple pat*'»

Without «lei-lecfc-»* ------ 2st-------

7------

7

------ î____
;

____ £
r * i
q____

>

L

;____

LI

il------

7

\r . .* 7

_ <30
Figure 2

4 Summary of the Result of Badr and Podar

The result in our paper can be considered as an extension of a result by Badr and Podar in [1].

Their work will be summarized here, but not in detail because the analysis is similar, and our proof

technique works for this problem also. Consider a packet at a given source node which wants to get

to a given destination node on a finite grid. At any point along the way there will be either one or

two outgoing shortest path links. A packet can be successfully on any given link with probability p,

independently of all other links. If a packet can not get out on a shortest path link in a time slot,

then the packet is dropped from the network (no deflection). This paper proves that to maximize

the probability of delivery, a packet should first try to go out the shortest path link in the direction

of the diagonal if such a link exists. If that is not possible then it tries to go out the other shortest

path link if another exists. This is called Z 2 routing, as described above. Suppose instead of being

36

dropped when it can not leave on a shortest path link, the packet is instead delayed by W slots,

at which point it can try again from the same node (the packet is never dropped; it just may be

delayed a long time). To minimize expected time of arrival at the source, the Z 2 routing is again

shown to be optimal. It turns out that the Dynamic Programming Equations (DPE) are the same

as in the first problem, which will also be true in our case. These are the two results in this paper.

The second follows from the first, and the first is proved by writing the DPE (by conditioning on

the first move a packet makes) and then showing that a Z2 policy achieves the minimum (using

induction on the state space). It is interesting to note that the value function here represents

probability.

5 Other Topologies and Suboptimal Routing

As mentioned earlier we have proved the optimality of Z2 routing for an infinite grid, and DP value

iteration for the finite grid suggests it to be true there as well. However, DP value iteration for

the torus and the MSN shows that Z2 routing is NOT optimal for these topologies (see attached

program and output for example on a torus). This is because near the boundary a packet maintains

more shortest path options at each step by staying on the boundary (due to wraparound) than by

going toward the diagonal, which can result in a lower expected delivery time. In [1, page 1365], the

Z 2 policy is stated as optimal for a torus as a representative example of all mesh topologies, which

is clearly in error. Their proof as given holds up for finite and infinite grid problems. Unfortunately

they have failed to distinguish the torus and the finite and infinite grid.

As a practical matter, when analyzing the value functions obtained from value iteration, we see

that Z 2 routing will perform very well (within a few percent of optimal) for both the torus and

the MSN, and due to its simplicity is probably desirable for implementation in most cases. It is

not known how well this policy performs when the network topology is altered due to links which

are known to have failed with probability 1. Due to the fact that the number of shortest paths

is maximized at every step with Z 2, we conjecture that it performs as well as any policy which is

uniform at all nodes (spatially invariant).

37

6 Our Problem Statement

We will use a dynamic programming approach to rigorously formulate and prove the optimality

of the Z2 control policy for our problem. See [2] for more on standard formulations of dynamic

programming problems. We adopt the notation used there. Our method is simliar to that of Hajek

in [4]. Our state space is the two dimensional integer plane X = Z 2. We consider the movement of

a single packet through the network. Labeling the destination node (0,0), we will define V*(x) as

the minimum expected time for the packet at x to reach (0,0). This minimum is taken over all

control policies. The state is X*., the location of the packet at time k . Let pi be the probability that

this packet is transmitted on its ¿th preferred outgoing link in any time slot from any intermediate

node Xk• We require p\ > p2 > P3 > p̂ and p\ > p\. Let wk be a random variable which

takes value i with probability pi, i = 1,2,3,4. This represents the choice (from first to last)

link that the packet actually gets transmitted out on in slot k. Let an admissible control be

Uk = (u\,u\,u3k,u\) e U = {permutations of [(-1,0), (1,0), (0 ,-1), (0,1)]}. Our state equation is

then

zjfc+i = <
Xk + Ufc*

(0, 0)

if xk # (0,0)

if xk = (0,0)

So we have a semi-Markov decision process. Our underlying probability space

random walks on X which are absorbed at (0,0).

will be the set of all

= {all infinite sequences of integer pairs ending in

(0,0), (0 ,0),...}

r(u) = min{z > 0 : a;,-= (0,0)}, Vo; = (o;o,o;i,...) E 0

We have defined the random variable r(u;) to be the hitting time of (0,0) for the sample path u.

Our packet will be assessed unit cost to traverse a link and no other costs, so that the cost per

stage is g(xk) = I{xk̂ {o,o)}'

Model l:No packet rejections

Suppose that pi + P2 + P3 + P4 = 1» i.e. a packet always gets out on some link in each time

slot. We define the cost for a policy p, = (ti0,tti,..) and the optimal policy as follows for an infinite

38

horizon problem.

V ^ x) = Ei[r]
N -1

= lim N -+ 00E% ^ 2 9{x k)
k=0

V*(x) = infV^*)

= minimum expected time to reach (0,0) from x

Our objective is to minimize the expected delivery time by proper choice of the optimal control

policy.

Model 2¡Rejected packets are dropped

Suppose that p\ + P 2 + Pz + P a < 1, i.e. a packet is rejected and dropped from the network in

any time slot with probability pr — 1 — {pi -f P2 + P3 + P a)> For i = 1,2,3,4 we replace pi by

P i/(l — pT). Now p i + P 2 + P3 + P a — 1- We can think of allowing a virtual packet to travel as in

Model 1 until it hits (0,0), and then we decide if the actual packet reaches (0,0), which will happen

with probability pTr since at every step it was rejected with probability p T. Now our objective is to

maximize our probability of arrival, P^.

pA = E [(i - Pry]

= £ (1 - Prf P { T = k}
k=l

= 1 ~ Pr ¿ (1 “ Pr)kP{T > k}
k=0
00

= 1 ~ Pr 0,0)}]
k=0

To maximize PA, we can clearly minimize the last summation without the constant. By defining

the discount factor f3 = (1 — pT) we get the standard definition of the cost functions for an infinite

horizon discounted cost problem. Note that the Monotone Convergence Theorem allows us to

interchange the lim and £[•].

N-1
V“ (x) = HmN^ E Z PkS(*k)

k—0
V \ x) = inf VM(x)

39

So the two models are equivalent if we treat the problem with a discount factor (3 < 1. Model

1 has ¡3 = 1 and Model 2 has (3 < 1. The rejection probability simply discounts our cost.

We can get the corresponding DPE by conditioning on the first move from x = (i,j) .

V \ x) = 1 + (3 minuE wV*(x + uw) (6.1)

= 1 + (3 minu[pUlV*(i + l , j) + Pu2V*(i - l , j) (6.2)

+Pu3V *(iJ - 1) + Vu<V\i, j + 1)] (6-3)

V*(0) = 0 (6.4)

This is the celebrated Bellman Equation, whose solution unfortunately is not guaranteed to be

unique in the undiscounted case. However we do know that it has at least one solution since our

cost per stage is bounded below [2]. Later we will show it has unique solution for our problem. To

prove some properties about V* and to find the minimizing u* we consider iterates of the value

function in an infinite horizon dynamic programming problem defined for x = (i , j) as

V n+l(x) = inf E £ [t A (n + 1))i A4
= 1 + minu[pUlVn(i + l , j) -I- Pu,Vn(i - 1, j) + Pu3Vn(iJ - 1) + Pu*Vn(iJ + 1)]

V °(x) = 0
This defines a mapping V n+1 = T { V n). We will show that these iterates have two special properties.

Property S We say that a function V(-) defined on X has Property S (8-way symmetry) if for

every (z ,j) G X we have V (i , j) = V (i , - j) = V (- i , j) = V (j , i) .

Property O We say that a function V(-) defined on X has Property 0 (Ordering of Neighbors)

if it has Property S and for every (i , j) € X such that i , j > 0,i > j we have V(i — 1 , j) <

V (i , j - 1) < V { i , j + 1) < V (i + l ,j) .

Proposition 6.1 For every n = 0,1,2,..., V n has Property S.

Proof. This follows easily by induction because the mapping T preserves symmetry and V"0 is

trivially symmetric. D

40

Proposition 6.2 For every n = 0,1,2,..., Vn has Property O.

Proof. Again we proceed by induction. Trivially, V"0 has Property 0 . Suppose V n,n > 0 has

Property 0 . Fix any (i , j) £ X such that i j > 0,i' > j . There are four separate cases to be

considered. We use the symbol = to mean by definition. To simplify the notation, we refer to

coordinates by the letter designations as a = (i , j —2) , b = (i—1, j + 1), c = (i , j+ l) , d = (¿ + 1, j + 1),

e = O' - 2, j) , / = (i - 1, j) , g = h = (i + l , i) , fc = (* + 2, j) , / = (i - 1, j - 1), m = (i, j - 1,

p = 0 + l , i - 1), and g = (* - 2, j) . See Figure 3 for these relationships.

a

b e d
• • •

e f g h k
• • • • •

1 m p
• • •

q

Figure 3

Case 1 (Interior) i > j , j > 0

Vp+1 = 1 + minu[pUl V)p + pU2 V[n + pU3 Vbn + pUi V£]

< 1 + minu [pUl V™ + Pu2 + Pu 3 Vgn + Put Vp]

— yn+1— m

< 1 + minu[pui V? + p„2 Vp + pU3 VP + p„(Vy]

_ yn+1

< 1 + miii„[pui V" + pU2 V" + p„3vy + p„, vy]

= yn+1

where each inequality follows from the induction hypothesis for V n applied at the four points

/,m ,c,h .

41

Case 2 (Diagonal) i = j , i > 0

v ;+1 = C +1
= 1 + rm nu[pui V,n + p„2 V” + pU3V3" + pu, Vpn]

< 1 + rm nu[pui Vkn + p„2 V" + pU3 V" + p„, VJ*]

= Kn+1

= ^ n+‘

where the inequality follows from the induction hypothesis for V " applied at the four points f,m,c,h

and Property S, and the two equalities follow from Property S directly.

Case 3 (Horizontal Axis) i > 0 ,j = 0

Vp+1 = 1 + minu [pUl VJ1 + Pn2 Vr + Pu 3 Vbn + pUi Vg]

< 1 + minu [pui Vin + pU2 + PuZ Vg + Pu 4 Vp]

— T/«+l— y m

= Vcn+1

= 1 + min„[pui VJ* + p„2 V ” + p„j V" + p„, VJ*]

< 1 + imii„[pui VJ* + p„2 V ; + pU3 VJ* + p„(VJ*]

■ V ^ 1

where the inequalities follows from the induction hypothesis for Vn at the four points and

Property S, and the equality follows from Property S directly.

Case 4 (Origin) i = j = 0

yri+ l _ y n + 1 _ y n + 1 _ y^n+1

which follows directly from Property S.

This completes the proof of Proposition 6.2 since the point g = (i , j) is in one of these four regions.

□

42

Proposition 6.3 If for every n = 0 , 1 , 2 , V n has Properties S and O and the limn^ ̂ V 71 =

V°° exists, then V°° has Properties S and O.

This is true since the inequalities in Property O are not strict.

Proposition 6.4 For every n and for x G X, y n+1(x) > V n(x).

This is true since the cost per stage is nonnegative.

Since V n(•) increases pointwise, lim ^oo V n = V°° exists, although y°°(x) may be infinite for

any particular x. However, this is not the case, as we will show in Proposition 6.6. Note that

Proposition 6.3 shows that V°° has Properties 0 and S.

Proposition 6.5 V00̂) = V*(x) for all x E X.

Proof. V n{x) < V*(x) Vx,ra so U°°(x) < V*(x). But since V°° has Property 0 we have a

minimizing u* to solve V°° = T (y°°), and so Vx, F 00̂) = E% [r] > infM E£[t\ = V*(x). □

Next we will show that F*(x) is finite for all x so that we know our control policy is optimal

(otherwise starting from x we would get a random walk which had infinite expected r for any

policy, and all policies would be equally bad).

Proposition 6.6 For every x £ X , V*(x) = V00^) < +oo.

Proof. The proof is by drift analysis of the stochastic process {x^}. Let x ̂ = (ik,jk) be the

location of the packet at time k. Using the Euclidean norm of the location as a Lyapunov function,

/ (x) =|| x ||, and doing a Taylor series bound on / (x) to degree 2 using V / and V 2/ , we can upper

bound the drift. Without loss of generality (Property S) we fix xjt such that ikdk > 0? *it > jk• Let

0k = /a n -x(4j). Note that 0 < 0k < 45°.

drift = E [|| Xfc+i || - || xk || | xk]

43

< cosQk(Eik+\ - tk) + sin6k(Ejk+1 - jk) + r,----
II x k

4= cosdk(p4 - p i) +s in O k(p3~P2) + T,-----Ti­
ll Xk ||

< —€ for large enough || xk ||,/orso77iee > 0

since cosOk > 0, sinOk > 0, p4 < p\, and p3 < P2• This drift condition is called (C l). We also note

that | || Xfc+i || — || xk || | < 1 which gives us the necessary boundedness condition (C 2) along with

condition (C l) above to apply a theorem of Hajek[3], to infer

V(xk) = E fk[r] < +oo

Actually [4] implies that we have a finite set containing (0,0) which is positive recurrent, but since

our chain is irreducible, the above fact is also a direct consequence. So the random walk starting

at xk with transition probabilities given by the Z 2 policy is expected to hit the destination (0,0)

in finite time. This gives V(x) < +oo,Vx 6 X as desired. □

Since V* = V°° we know that V* has Properties S and 0 , and hence we can see that the

minimizing control policy is indeed the Z2 policy, achieving the minimum u* in equation (6.3). It

is seen here that the primary goal is to move toward the destination and the secondary goal is to

move toward the diagonal. The primary goal takes precedence when these two goals conflict. The

four combinations of success/failure of these two goals represent the four directions the packet can

request. In closing, we mention that a Model 3 can be considered. Suppose as in [1] that rejected

packets are not deleted, but instead they retry after failing to leave a node in any time slot, waiting

a delay W slots at the node before each retry. The DPE for this problem have exactly the same

form as the DPE for Model 1 and 2 and the same analysis holds. So the Z2 routing policy is

optimal with respect to several possible measures of cost for deflection routing on an infinite grid.

7 Conclusion and Future Research

We have reviewed an optimal routing policy [1] for mesh topology networks and then extended this

result for deflection routing. Some questions remain. First, it seems clear that the new result will

44

extend to 3-D networks (more dimensions seems unnecessary) and to finite grids. It would also be

nice to generalize the three models enough to contain the result in [1] as a special case. While one

would like to obtain the optimal policy for the torus or MSN, this seems unlikely to be of a simple

closed form because the policy will obviously depend on (pi,P2,P3>P4)- Finally, there is the question

of “closing the loop” . We solved the problem for a single packet with fixed link utilization proba­

bilities. By fixing the network throughput, we can derive the link utilization probabilities, which

will lead to some value of delay, and hence we can derive a non-linear relationship between delay,

throughput, and the average number of customers in the system. We can get a throughput-delay

curve for the network by solving (by iteration to a fixed point) this equation for fixed throughput.

We can also find the throughput corresponding to a particular policy for a given reasonable traffic

model and then try to show that the Z 2 policy has the maximum throughput. Subsequent work

will attempt to show this is true.

References

[1] S. Badr and P. Podar. An optimal shortest-path routing policy for network computers with reg­

ular mesh-connected topologies. IEEE Transactions on Computers, 38(10):1362—1371, October

1989.

[2] D. Bertsekas. Dynamic Programming. Prentice-Hall, 1987.

[3] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications.

Advances in Applied Probability, 14:502-525, 1982.

[4] B. Hajek. Optimal control of two interacting service stations. IEEE Transactions on Automatic

Control, AC-29:491-499, June 1984.

[5] N. Maxemchuk. Routing in the manhattan street network. IEEE Transactions on Communi­

cations, COM-35(5):503-512, October 1987.

45

Value Iterations for N x N Torus

N=18 (pl,p2,p3,p4)=(0.50, 0.50, 0.00, 0.00)
No Deflections
The positive quadrant of V*(i,j) is shown below with V*(0,0)
at the lower left corner
18.,500 18,.500 18.,521 18,.601 18.,794 19..150 19..709 20..488 21.,488 22..488
17 .,500 17 ,.500 17., 521 17..601 17,.794 18..150 18..709 19,.488 20,,488 21..488
15..499 15,.501 15., 541 15..681 15..987 16,.507 17,,267 18,.267 19..488 20..488
13..498 13,.502 13..581 13,.822 14..292 15,.027 16..027 17,.267 18.,709 19,.709
11.. 494 11,.506 11..660 12 ,.062 12..762 13..762 15..027 16,.507 18 .,150 19 ..150
9.. 481 9,.519 9.,815 10 ,.463 11..463 12 ..762 14 .,292 15,.987 17.,794 18 ,.794
7 ..444 7 ,.556 8..111 9..111 10..463 12..062 13..822 15..681 17..601 18 ..601
5..333 5,.667 6..667 8,.111 9..815 11..660 13..581 15..541 17..521 18 .. 521
3,.000 4 ,.000 5..667 7 ,.556 9..519 11,.506 13,.502 15,.501 17 ..500 18 ..500
0,.000 3,.000 5..333 7,.444 9..481 11,.494 13..498 15,.499 17.,500 18..500

Property 0 holds.
N=18 (pl,p2,p3,p4)=(0.40, 0.30, 0.20, 0.10)
Deflection routing
The positive quadrant of V*(i,j) is shown below with V*(0,0)
at the lower left corner
37., 442 37..594 38..180 39,.216 40..610 42..261 44..114 46..040 47.,795 48 ,.795
35., 948 36..126 36.,771 37..885 39.,394 41..211 43..211 45..230 46..999 47 ,.795
32.,852 33,.069 33.,846 35..177 36.,963 39..050 41..270 43,.458 45.,230 46,.040
29.,306 29,.580 30..531 32,.107 34.,151 36,.480 38.. 917 41,.270 43..211 44 ,. 114
25., 578 25,.938 27..127 28,.999 31.,316 33,.865 36..480 39,.050 41..211 42 ,.261
21.,696 22,.202 23..733 25,.966 28.,571 31,.316 34..151 36,.963 39..394 40 ,.610
17 ,.592 18 ,.383 20.. 416 23,.081 25..966 28,.999 32..107 35,.177 37..885 39,.216
13..078 14,.505 17..278 20,.416 23..733 27,.127 30..531 33,.846 36..771 38,.180
7 ..667 10,.718 14,.505 18,.383 22..202 25,.938 29..580 33,.069 36..126 37,.594
0,.000 7 ,.667 13..078 17,.592 21..696 25,.578 29..306 32,.852 35,.948 37,.442

WARNING: Property 0 FAILS to hold
N=18 (pl,p2,p3,p4)=(0.26, 0.25, 0.25, 0.24)
Deflection routing
The positive quadrant of V*(i,j) is shown below with ¥*(0,0)
at the lower left corner
321.544 322.207 324
319.642 320.371 322
313.987 314.909 317
304.477 305.755 309
290.673 292.603 297
271.591 274.794 282
245.100 251.174 264
206.135 220.029 242
140.449 180.252 220

0.000 140.449 206
WARNING: Property 0

109 326.972 330.408
440 325.533 329.210
488 321.265 325.654
264 314.257 319.894
703 304.652 312.178
658 292.665 302.895
045 278.767 292.665
337 264.045 282.658
029 251.174 274.794
135 245.100 271.591
FAILS to hold

333.986 337.292 339
333.000 336.478 339
330.094 334.092 337
325.436 330.312 334
319.323 325.436 330
312.178 319.894 325
304.652 314.257 321
297.703 309.264 317
292.603 305.755 314
290.673 304.477 313

966 341.715 342.334
274 341.090 341.715
257 339.274 339.966
092 336.478 337.292
094 333.000 333.986
654 329.210 330.408
265 325.533 326.972
488 322.440 324.109
909 320.371 322.207
987 319.642 321.544

46

Otmar S. Schlunk
EE 497
May 1990

An Analysis of Alternative Routing
in Complete Networks

with Unit Capacity Links

I. Introduction

Alternative routing is a routing scheme in circuit-switched networks
wherein calls that would be blocked in a regular fixed routing scheme might be
routed instead along alternative paths, enabling them to reach their destination.
Such a scheme can under certain circumstances significantly reduce call
blocking probabilities. When used injudiciously, however, it can seriously cripple
a network. Therefore, a clear understanding o f its use is essential. In this paper,
various methods o f analysis have been undertaken for the case o f alternative
routing in complete networks with unit capacity links in the hope o f determining
when and how to implement such a strategy.

II. The model:

The model used here for alternative routing on a complete network is as
follows. First off, begin with a complete graph o f N nodes. There is one link
connecting every pair o f nodes, i.e. N (N-l)/2 links in all. Calls arrive at some
rate on the link between any two nodes (source and destination are irrelevant).
The links have capacity one ~ at most one call can be serviced on any link at
any given time. In all cases if the link between these two nodes is free, the call
will be accepted on this link. If this link is servicing a prior call, however, one of
the following will happen. One might automatically drop the call. If this strategy
is always employed, this is called routing without deflection or fixed routing. On
the other hand one might try routing the call through some other 3rd party node
or nodes (see fig. 1). Consider what is called a two-link deflected call. In such a
call, one would route the call from one o f the two original nodes through a link to
a third node, and then through the link from that third node to the other original
node. Such a call uses two links — hence the name two-link deflected call (or
deflected call o f length two). Similarly, using more and more third party nodes,
one could establish a connected path o f maybe 3, 4, ... up to N -l links. This is
what is known as alternative routing — routing that, given one's primary route is
full, attempts to establish connection via some alternative route or routes.

The networks considered throughout this paper are completely
symmetric. The arrival distribution per any given link is exponential with rate X.
All calls are serviced with exponentially distributed times o f rate |i. Optimality
throughout this paper is viewed in terms o f maximizing the expected total

47

Otmar S. Schlunk
EE 497
May 1990

Normally an arriving
call along this link
could not be routed,
with dynam ic routing
it is routed along these
two links

regular one link calls

Figure 1. A pictorial explanation of dynamic routing.

longrun throughput achievable. This is equivalent to minimizing the probability
o f blocking (i.e. achieving a better probability o f blocking).

A routing policy then is used to determine when to route an arriving call
over k-links. There are two main categories o f routing policies that will be
examined. They are static and dynamic policies. When deciding whether or not
to route a call, the former policies ignore the current state o f the network, while
the latter policies take some or all o f the state information into account.

As a general rule, static policies should be simpler to implement than
dynamic ones as they require less knowledge to make decisions. For similar
reasons, they should in general be easier to analyze as well. On the other hand,
one might pay a penalty if one uses a static policy as not all the available
information is considered. In other words, static policies would seem unlikely to
be optimal policies (it turns out that they might nevertheless be optimal,
however). The main static policies considered in this paper are the following:

1) using fixed routing (i.e. never using an alternative route),

2) choosing one alternative path at random ~ that is, if a call can not be directly
connected, one two-link policy is chosen at random, and if available used
to route the call,

3) finding in a random order the first available two-link alternative path — this is
really just policy two extended to looking at all N-2 possible two-link
paths in random order and choosing the first available one
encountered, and

4) using the shortest available path o f up to k links in length — this is really policy
three extended — after looking at all N-2 two-link calls in a random order,
one looks through all three length calls, then four length calls, ... , up to k
length calls.

48

Otmar S. Schlunk
EE 497
May 1990

All four policies were simulated with service rate o f one on some small
networks. The results are presented in figure 2. It is interesting to note that, for
all the simulations run, alternative routing was only useful when the arrival rate
was shorter than the service rate. For the cases where only two-link deflected
calls were attempted, regardless o f the number o f such calls attempted, equality
o f blocking probability with the fixed routing case was reached at exactly where
the arrival rate equaled the service rate. For the fixed routing case (mostly
included to give an indication as to the error bounds o f the simulations) the
probability o f blocking as expected (see section III) is independent o f the
number o f nodes in the network. Under policy two, the probability o f blocking
begins to decrease somewhat with increasing N. This effect is even more
marked under policy three. This leads us to question what happens
asymptotically as N goes to infinity. Is there some curve it approaches or does it
asymptotically go to zero for all arrival rates less than one?

Because o f the large quantity o f knowledge that can be. conditioned upon,
dynamic policies tend to be harder to categorize than static ones. Nevertheless,
they will be looked at to some extent in section V.

The ultimate goal then in all this is to figure out the optimal policy — when
should a call be routed on an available k-link deflected path and when should it
be thrown away. Unfortunately, the answer to the above remains an open
problem (at least with regards to this paper). Some useful insights, though, have
nevertheless been found.

B
lo

ck
in

g
Pr

ob
ab

ili
ty

Bl

oc
ki

ng
 P

ro
ba

bi
lit

y
B

lo
ck

in
g

Pr
ob

ab
ili

ty

Otmar S. Schlunk
EE 497
May 1990

No Deflections

Arrival Rate per Link

One Attempt

All 2 • link Deflections
All Possible Deflections

All Possible Deflections

Arrival Rate per Link

Comparison of Deflection Schemes - N » 10

Figure 2. Simulations and comparisons of static alternative routing policies.

50

Otmar S. Schlunk
EE 497
May 1990

III. Analysis:

Various approaches were attempted to gain insight into this problem. The
following are the the results o f these attempts. For a fixed network, the blocking
probability is readily determined.

^blocking = ^)• (1)

This is easily attained from standard Markov chain theory:

each link has two possible states, therefore,
^link is free + ^link is fu ll=

and the flow between states must be conserved,
^ ^link is free = ^ ^link is full.

Similarly, Markov theory can be employed to analyze dynamic routing schemes
in a three node network (see fig. 3). In the case where all calls that can not be
directly connected are connected along the alternative two-link path whenever
available, one gets that the probability of blocking is

x2(9 + 1x + x 2)
Mocking “ 2 + 8x + 15jc2 + 8 je3 + x 4

where x = X/ji. Figure 4 compares this against fixed routing, and it can be seen
that dynamic routing is preferable, whenever X < \i.

51

Otmar S. Schlunk
EE 497
May 1990

Figure 3. A Markov chain model for dynamic routing in a three node network.

Comparison of Dynamic and Fixed Routing « N = 3

• pHra
■8

£
S
3O
CO

Arrival Rate
Figure 4. Dynamic versus fixed routing for a three node network.

52

Otmar S. Schlunk
EE 497
May 1990

Although the next result might seem intuitively obvious, it nevertheless
needs to be firmly established. The following trick will come in handy. Consider
a sequence {b } = b j, b2 » ... o f exponentially distributed independent random
service times. As calls arrive in the network they can take any one o f the
service times bj not already taken by a previous call provided that no information
regarding these times is used. If one knows that a service time is at least x time
units long, but the residual time after the x units is unknown, this residual time is
exponentially distributed with the same mean as the original service time and
can therefore be used as a service time as well (provided one never uses the
original service time). The same sequence o f service times can then be used
when comparing two different systems.

Proposition 1: Accepting direct one-link calls is always optimal.

Consider an arbitrary state o f the network with at least one link free, at
time tQ. Let { b } = b j , b2 , ... be a sequence o f independent exponentially
distributed times with mean 1 /ji. Given a call is offered upon an open link in this
state (call it link AB), the call may either be accepted or rejected. Assume for
the sake o f argument by contradiction that the optimal strategy in this case is not
to accept the call. Call this system 1. Let us compare this case in terms o f
throughput (the criterion o f optimality) to the case where one does accept the
call (assign the call a service time bj). Call this latter case system 2.

In both system, all previously chosen service times are equivalent. Also,
all future arrivals will occur at the same exact points in time for both systems.
While time is less than tQ + bj, assign every arrival in system 1 which is routed
along a path which does not contain AB an unused service time in {b } which is
not bj. Clearly any such call can be made in system 2 as well with the exact
same service time — as all these links have equivalent status in both systems.
This guarantees these links remain equivalent in both systems. Now consider
the first call that system 1 chooses to route through link AB. Say this call occurs
at time tj. If bj < tj - tQ, then the accepted call has already finished in system 2.
Both systems therefore have completely equivalent states at this point in time,
and one can mimic the optimal policy o f system 1 for the rest o f time with
system 2 by never choosing service time bj for system 1 and matching service
times in both systems. If the call in system 2 is still in progress, however, one
can assign the residual service time o f bj to the system l's new call. Thus,at
time t|, system 2 will no longer have any links full which system 1 has empty.
Furthermore, by only accepting calls in system 2 which are accepted in system
1 and assigning them the exact same service time in the sequence o f service

53

Otmar S. Schlunk
EE 497
May 1990

times as picked by system 1, one can ensure this always remains the case. By
counting the throughput over both systems, one immediately sees that the
throughput o f system 2 will always be better or equal that o f the optimal system
— system 1. This implies system 2 is optimal which further implies that accepting
direct one-link calls is always optimal. Q.E.D.

This now firmly established leads to the question o f when should a k-link
call be made, and when shouldn't one. If one believes that if one can route a k-
link call, it is always preferable to routing a call o f length k', where k' > k; and if
one further believes that if at a given moment it is optimal to throw away a k-link
call, then at any other moment and place one should never consider routing calls
of k or more links, then the following proposition implies that one need never
consider routing a k-link call when k > (A,+|i)/A,. The first assumption isn't a very
large leap o f faith. The latter, however, is far from clear. Nevertheless, through
several simulations that were run, most o f which are discussed in section V, no
evidence to indicate the contrary was ever found.

Proposition 2. An otherwise nondeflecting policy which at one given instant in
time is allowed to make a k-link deflected call is inferior in terms o f average
longrun throughput to a strictly nondeflecting policy whenever k > (A,+p,)/A,.

Let system 1 and system 2 be identical, except that at some time tQ
system 1 is makes a k-link deflection. At all other times, however, only one-link
calls are permitted in both systems. Define the net future gain in expected
throughput o f not routing this call versus routing it to be G^. Then

Gfc = E{future throughput system 2 - future throughput system 1}. (4)

If this is greater than one, then routing the k-link call leads on average to a lower
longrun throughput. If this is the case, not routing the call would be optimal.

The first thing to notice here, is that all links not along the k-link path can
be considered identical in both systems, as having routed a k-link call elsewhere
does not hinder or help any link in accepting calls in the future. Next, due to the
symmetric nature o f the network,

G^ = k E{ future throughput on a single link among the k o f system 2 -
future throughput of the same link in system 1}. (5)

Now define = G^/k.

54

Otmar S. Schlunk
EE 497
May 1990

Let us focus in on one o f the k links along the path. If the k-link call
manages to leave before any arrival on the link, Hk = 0. With probability
A/(A,+|i), however, a call will arrive on this link before the k-link call is removed
from system 1. If this happens, the new call can be routed in system 2 for a
throughput o f one call, whereas in system 1 it must be thrown away. After
accepting the call in system 2 then, both systems will have a call on the link and
equal service rates. From this point on, the expected throughput on the link will
be equal in both systems, since they have equal probabilities o f finishing first and
equal equivalent expected gains given their job finishes first. Therefore, in this
case, Hk = 1. Thus one gets

Hk = • 0 + X/(X+\i) • 1 = X/(k+\i) (6)

which gives us

Gk = k X/(A.+]i). (7)

As mentioned above then, if Gk > 1 , not routing the k-link deflected call is the
optimal choice. Q.E.D.

IV. Fixed-point approximations

Fixed-point approximations are used throughout networking to rapidly
determine estimates o f otherwise virtually impossible numbers to calculate.
Unfortunately, fixed-point approximations themselves tend to be hard to analyze.
For example it tends to be quite difficult if not impossible to prove the uniqueness
o f a solution. And even if a unique solution does exist, proving convergence to it
or even getting the approximation to converge in practice, is often far from easy.

A. History

Many fixed point expressions exist for dynamic alternate routing
schemes. All seem to have the assumption that the probability o f one link in the
network being full is independent o f the probability o f other links in the network
being full. Furthermore, all are geared towards networks with large capacity
links (and often different capacity links), such as phone trunk lines. Below is a
small sampling o f what is currently available. Only [1] analyzes complete
networks and mentions the idea o f finding alternative paths in random orders.

55

Otmar S. Schlunk
EE 497
May 1990

In Lin et al [4], analysis is performed on the alternate routing scheme o f
originating-office control with spill-forward used in the European network
AUTO VON. Originating-office control simply means that the originator of a call
knows what his order o f alternate path choices is. If his first choice is
unavailable the second is tried. This continues till there are no more choices left.
The spill-forward part means that if a node has very few neighbors and not a lot
o f different paths, it can allow a couple adjacent nodes to take over the
originating-office function o f trying to find an available path. The fixed point
model for this is essentially straightforward. Assume all links are independent of
one another. The fixed point works by trying to find the probabilities o f various
links being available, then the probability that paths using them are
attempted/accepted. Iterations are then performed over all these factors from all
possible source-destination pairs and their routing tables till everything
converges.

Another model is presented in Kuczura and Bajaj[3]. They employ what
they call a three-moment method. The general method involves determining
overflow from the Erlang loss function, and redistributing this overflow over the
alternate routes to minimize the total network overflow. Then the probability of
blocking is estimated on a point to point basis by assuming independent blocking
in the links. Their results supposedly are sufficiently accurate for engineering
purposes (whatever that means).

In [1], Gibbens discusses various aspects o f dynamic routing in
circuit-switched networks. Among his contributions is a fixed point analysis on a
trunk reservation scheme. In such a scheme alternative calls are blocked if a
certain fraction o f the capacity o f a link is full. He also provides some insight
into what this fraction should be to best guarantee traffic under worst case
conditions and performs some asymptotic analysis on the result. Simple bounds
on loss networks are also discussed in the paper, and numerous simulation
results are given.

Finally, in [2], Kelly looks at these networks from a somewhat different
perspective. His main analysis is focused on fixed networks, though some
extensions to alternative routing are presented. He looks at the network from the
perspective o f how the net gains are affected by incremental changes in the flow
along the routes. Using this idea, he suggests nodes can, in a distributed fashion,
follow an adaptive routing scheme, changing with the changes in network
demands.

56

Otmar S. Schlunk
EE 497
May 1990

B. Fixed point for attempting all possible two-link deflections

All the above fixed points assumed independence between the status o f
links. A fixed point using some knowledge o f dependence can however be
developed for the case where link capacities are one.

Let us consider the static policy three as defined in section II. Define A1
to be the equilibrium probability o f accepting an offered call as a one-link call
and PI to be the equilibrium probability o f a link having a one-link call on it.
Similarly, let A2 be the probability o f accepting an offered call as a two-link call,
and P2 be the probability o f a link being full with a two-link call on it. Finally, for
convenience, let

P = PI + P2, (8)

which is simply the probability a link is full. Then iterating the following four
equations produces a fixed point:

A1 = 1 - P
f]c=N-7_____ \

A 2 = PI x r al - P) kPN_2_k(l - P k)
k=0 ' ' J

+P2(k S 3(£ " 3) (l - P) k PN -3-k(l - P k))
k=0 V

PI = A, A1
P2 = 2 XA2. (9)

The A1 equation is obvious as it stems from the probability an arrival meets with
an open link. The A2 equation separates whether an arrival that couldn’t be
routed met with a one-link call or a two-link call. If the former, it checks for the
probability o f k free links to third parties that exist from one o f the two original
nodes. By assuming that the blocking probability o f each individual link is still P,
this can be determined via a binomial distribution. Then by assuming that the
probability o f the link from a reachable third party node back to the other original
node is full with probability P as well, one gets for k free links, one or more
two-link paths will be available with probability 1 - P^. If the new call was
blocked by a two-link call, one does virtually the same thing. In this case though
one starts at the center node o f the call that is blocking the new one. At most
N-3 possible connections (instead o f N-2) can be made from this side.
Otherwise the concept is the same. The probability a link is full with a one link
call is simply the arrival rate multiplied by the probability o f accepting a call as a

57

Otmar S. Schlunk
EE 497
May 1990

one-link call. Similarly the probability o f a link being full with a two-link call is
simply twice the probability o f accepting a call as a two-link call multiplied by
the arrival rate, where the factor o f two comes in since every accepted call
takes up two links.

When these values have converged, the probability o f blocking is simply
the probability that you are not accepted as a one or a two link call. That is

^blocking = 1 " A1 -A2 (10)

Fixed points were calculated for some o f the networks simulated in
section II (service rate p was one) and were compared with the simulations
(see fig. 5). On the whole they faired quite well. The predicted results seemed to
slightly lower bound the simulations (though by never much more than about 3%
probability o f blocking). As arrival rates neared one, the predicted results
converged to the simulations and met at the point 1/2 probability o f blocking for
an arrival rate o f one. It should also be noted that this fixed point was closer than
one which employed no information at all.

A similar fixed-point expression can be obtained for static policy two o f
section II. The only difference is in the probability o f accepting a two-link call. In
this case, for simplicity one can set

A2 = P (1 - P)2 . (11)

The results for this case are given in figure 6. One could also have chosen

A2 = (1 - P)2(P - P2/CN-2)), (12)

making use o f the fact that one knows the probability the call was blocked
initially due to two-link call, and under those circumstances, 1 out o f N-2 random
attempts will automatically be blocked.

58

Pr
ob

ab
ili

ty
 o

f B
lo

ck
in

g
23

Pr

ob
ab

ili
ty

 o
f

Bl
oc

ki
ng

Otmar S. Schlunk
EE 497
May 1990

Fixed Point Simulation
All 2 - link Deflections

gure 5. Fixed-point simulation for policy three.

Fixed Point Simulation

Figure 6. Fixed-point simulation for static policy two.

59

Otmar S. Schlunk
EE 497
May 1990

V. Optimizing strategies

One o f our main concerns is to decide when a deflected call o f k links
should be accepted. In an attempt to gain some insight into this question, several
simulations were conducted. All simulations considered arrival rates in the range
from .1 to 1, with unit service rates. In all cases 100000 total arrivals were
tested for their probability o f blocking on networks o f from three to ten nodes.

The first question considered was, o f all static policies that route calls on
k or fewer links (shorter connections are always preferred), whenever it is
possible to do so, which k is optimal (i.e. which k optimizes static policy 4 in
section II). The results here indicate what one might expect (see figure 7) ~
longer length deflections at very low rates provide better long run average
throughput. Somewhat unexpectedly, however, is that virtually all the gains are
gotten in the two-link deflection stage. And, as arrival rates increased towards 1,
the two-link strategy became the optimal such static strategy. So what this
seems to indicate is that in most cases, by restricting one's attention to
optimizing over all two-link strategies, one can probably attain optimal or near
optimal results.

Optimal Static Number of Deflections — N = 10

Figure 7. Finding the optimal value of k for static policy 4.

60

Otmar S. Schlunk
EE 497
May 1990

Given these results, the main concern seemed to be optimizing over all
possible two-link strategies. Several possible strategies were tested. The first
was to only route two-link deflected calls when x or fewer links in the system
were full (see figure 8). In these tests, gains were had as expected at low values
of x (only systems which had shown improvements under two-link static
policies were considered). I was quite frankly expecting a point at which the
system might be so full though that allowing more deflected calls into the system
might decrease performance. This never seemed to happen. One possible reason
is that perhaps die system rarely achieves a state where this would be the case,
so that any losses that might be occurring are virtually unnoticeable. Another
possibility is that such losses occur when N becomes large. Or maybe, such
losses just never occur. An interesting study might be to artificially start the
system at a really full level, and measure total throughput over some short period
o f time thereafter for each o f two systems — one where one does accept a
two-link call as opposed to one where one does n ot Then over several thousand
such tests, perhaps a more accurate conclusion could be drawn.

Stop W hen x in System — N = 10

Figure 8. Dynamic policy o f only routing two-link deflected calls when x or fewer links are full
in the system.

61

Otmar S. Schlunk
EE 497
May 1990

Next, a test was conducted to limit the number o f two-link deflected calls
permitted into the network at any given moment. The results were similar to
those o f the previous experiment (see figure 9). As more two-link calls were
allowed to enter the network, the probability o f blocking steadily decreased,
eventually reaching a saturation point. Beyond this point, admitting more
deflected calls did not seem to affect the network much one way or the other.
Once again, it is not clear if this plateau in the blocking probability is due more to
the fact that a nearly full network o f deflected calls virtually never arises, or that
the probability o f blocking due to accepting calls when the network is nearly
saturated with two-link calls remains virtually unchanged.

Maximum Number of 2-link Deflections -- N = 10
0.6

0.5
bO

I 0.4 o
3
O 0.3

JQ
-Q
2
cu

0.2

0.1

0

0 11 22
Maximum Number of Deflections

Figure 9. Permit a maximum of x deflected calls into the network at once.

Two more experiments that were conducted, seemed to indicate that t̂he
more deflected calls tried (when using deflected calls was known to decrease
the probability o f blocking in the first place), the lower the blocking probability
that could be achieved. The first o f these compared the static policies o f
attempting calls in random order only up to some value o f k o f the N-2 possible
two-link deflected paths. If after these k attempts the call still couldn't be made,
it was thrown out. The results (see figure 10) showed a monotonically
decreasing probability o f blocking with increasing values o f k. The final
experiment involved only routing two-link deflected calls, if x or fewer
neighboring links were full on both the source's and the destination's sides. As in
the last experiment, the more calls routed, the better the probability o f blocking
achieved (see figure 11).

62

Otmar S. Schlunk
EE 497
May 1990

Stop if Either Neighbor has x Full — N = 10

Figure 10. Look at up to k two-link alternate paths.

Number o f 2 - link Deflected Calls Tried - N=10

0.1 0.4 0.7 1
Arrival Rate per Link

Figure 11. Accept only if fewer than x calls on both neighbors side links.

63

Otmar S. Schlunk
EE 497
May 1990

VI. Conclusion

Unfortunately solving problems when dealing with alternative routing is
quite difficult, even when dealing with such drastic simplifications as symmetric
networks and unit capacity links. However, some basic ideas seem to have
come forth. From the previous sections simulations, it seems possible that if a
k-link call is optimal at some point in time and place in a network, a k-link call
will always be optimal whenever it is the shortest possible call that could be
routed. This would imply that a static approach o f always accepting calls up to
some value k o f links is actually the optimal policy for this network. In any case,
it seems reasonably probable that a static policy is almost always very close to
an optimal strategy. Another interesting discovery was that restricting the
maximum length o f an allowable deflected call to two does not, except perhaps
under some very strict blocking requirements at low arrival rates, seem to hurt
performance very much.

Although some progress has been made, a great deal is still left to be
discovered and proven. Can, for example, the conjectured optimality o f the static
policies be proven or disproven? Can an arrival rate threshold be found for when
to route calls o f k-links? What happens if the symmetry o f the network is
removed? Can closer performance bounds or approximations be found? etc ...
The answers to these questions are probably not simple, but they may very well
be important. They should not only increase our understanding o f this simple
network, but that o f perhaps other much more complicated networks as well.

64

Otmar S. Schiunk
EE 497
May 1990

References

[1] R.J. Gibbens, "Dynamic Routing in Circuit-Switched Telecommunications
Networks", Rayleigh Prize Essay, University o f Cambridge.

[2] F.P. Kelly, "Routing in Circuit-Switched Networks: Optimization, Shadow
Prices and Decentralization", Adv. Appl. Prob., Vol. 20, No. 2, pp.112-144,
1988.

[3] A. Kuczura and D. Bajaj, "A Method o f Moments for the Analysis o f a
Switched Communication Network's Performance", IEEE Trans. Comm.,
Vol. 25, pp. 185-193, Feb. 1977.

[4] P.M. Lin, B.J. Leon, and C.R. Stewart, "Analysis o f Circuit-Switched
Networks Employing Originating-Office Control with Spill-Forward", IEEE
Trans. Comm.,Vol. 37, No. 16, pp. 754-765, June 1978.

65

On Optical Orthogonal Codes

Harlan Russell

For EE497
Professor B. Hajek

Spring 1990

In t r o d u c t io n
The rate of optical-to-electrical and electrical-to-optical conversions is limited by the speed

of the electronic components, so much of the bandwidth available in a fiber optic link will not be

utilized if the signaling rates are limited to the rates that can be achieved by current electronic

devices. One solution is to perform many of the signaling functions with optical components. For

example, the receiver can consist of optical components rather than first converting the optical

signals to electrical signals and using a conventional receiver.

One method proposed by Salehi et. al. [1,2, 3] to increase the signaling rates for fiber

optic based networks is to use fiber-optic code division multiple-access (FO CDMA). This allows

low information rate electrical signals to be converted to high rate optical pulse sequences. Figure

1 (taken from [1]) shows the system for a source and a destination using an optical encoder and

decoder. One possible implementation of a network using FO CDMA is shown in Figure 2 (taken

from [1]). Each user’s input optical signal is combined in a optical star coupler so that all the input

signals are received by each user. One signaling strategy (often referred to as receiver-directed

signaling) is to use the optical sequences as addresses or signature sequences. Each user has its

own sequence and to send data to that user, the information is coded on that user’s specific address

sequence (or signature sequence). This type of signaling allows the network to achieve random,

asynchronous communication access which is free of network control. Good sequences must

satisfy two conditions: each sequence can be easily distinguished from a shifted version of itself

and each sequence can be easily distinguished from (a possibly shifted version of) every other

sequence in the set.

66

Optical Orthogonal C odes (OOC)
A detailed development of the signature sequences is presented in References 1 and 2. An

optical orthogonal code C is a family of (0,1) sequences and is described by parameters

(F J C X aX c) (or (F , K , X) if Xa = Xc). Each sequence has length F (or has F chips) and has

weight K (or has K pulses). The sequences must satisfy the above two conditions which are

equivalent to the following two conditions. Assume that the sequences are extended periodically.
The Auto-correlation Property: For any sequence x = (xn) e C

K 1 = 0
Z Xa 1 < / £ F - 1

Cross-Correlation Property: For any pair of sequences x = (xn) e C and y = (yn) e C

F-1
, x nx n+l

n=0

F- l

n=0
£ X, O ^ / S F - l

The fiber-optic communications system is modeled as a positive system; hence, the

sequences consist of 0’s and l ’s only. This corresponds to the receivers using noncoherent

detection techniques (i.e., power measurements). The signals cannot be manipulated to add to

zero. Therefore, codes based on +1/-1 sequences (such as for direct-sequence spread spectrum)
would not be well suited for this model. In [1, 2] the authors assume Xa = Xc = X = 1, that is, two

sequences will overlap in at most one position. We will also consider codes for X = 2. More

general codes are considered in [3]. Two typical OOC with X = 1 are shown in Figure 3 (taken

from [1]).

Properties for OOC are developed in [1,3], including methods for constructing codes
given (F, K, Xa, Xc). Of particular interest are bounds on the number of codewords, O, that can

be found for a given family. The bounds are

0 (F yK tX)<
(F - l) - (F - X)

K (K - 1 } ~ (K - X)

67

Q (F ,K ,X a,X c) Z

F - l (K V

Xa + 1A K - X a - l
mm{F-K,K} (p _ ̂y r \

n- X
i=X,c + l

K - i A 1 J
. , Xe(F-AT + l)-(Xc A a)(AT-l)2(A:-2)

<D(F,Ar,A.a,Xc) > --------------- ’ \ c ,af -------- — ----------
AT(AT-l)'

Graphs for F - 1000 and 1 ^ X £ 3, as K varies are shown in Figures 4-6. Notice that,

except for when X = 1, both lower bounds are essentially 0 for the parameters considered here. In

[3] the authors claim that the upper bound is particularly strong for small values of X. In fact, they

prove that when X = 1 the upper bound is achieved for many values of K . For the system

considered here, each receiver is assigned a unique codeword, so N , the number of users, can be

at most O, the number of codewords. Derivations of these bounds can be found in [3]. We

present the bounds here for the purpose of determining valid ranges for N , F , K , and X.

Pr o bability D ensity F unction for Tw o Interfering OOC
The probability density function for two interfering OOC (with X = 1 only) is developed in

[1]. A density function is developed for three cases: chip synchronous, strong chip

asynchronous, and weak chip asynchronous. For the chip synchronous model, at each receiver

the chips are aligned, but, the frames are not assumed to be synchronized. The chip asynchronous

models do not assume that the chips will be aligned; the strong and weak models concern the

patterns of overlaps between codewords that are allowed and are precisely defined in [1]. It is

shown that the chip synchronous model is an upper bound for the actual performance and that the

weak chip asynchronous model is a lower bound for the actual performance (the performance is

measured in terms of the bit error probability, which will be discussed in the following sections).

For the remainder of this paper we will consider the chip synchronous model only. The chip

synchronous model is more tractable, whereas the chip asynchronous models are not as well

developed.

68

Consider the probability that two codewords from the same OOC overlap. Since each
r\

codeword has K pulses, there are K ways to overlap two pulses. Because X = 1, only two pulses

can overlap for any particular offset of the two codewords. Hence, there are K offsets that result

in an overlap of one pulse. Each codeword has F chips and we assume the offset between two

codewords is distributed with equal probability for each offset so that the probability for each

overlap is 1 IF. Thus, the probability that two codewords overlap in one position is K /F. The
<2

probability that the two codewords do not overlap is 1 - K IF. Furthermore, the two codewords

will overlap in more than one position with probability zero. We say a hit occurs if two pulses

overlap.

On-O ff FO -C D M A

The network is assumed to consist of N transmitter-receiver pairs, and it is assumed that all

transmitters are in use. Figure 2 shows one possible implementation. The performance is

evaluated by the bit error probability where the only source of performance degradation is from the

presence of other users. The effects of quantum and thermal noise are neglected. Also, the optical

energy level from all users that occur at the same time are assumed to be additive.

Each transmitter uses on-off keying. When the data bit is 1 the desired codeword is

transmitted, and when the data bit is 0 nothing is transmitted. Each user supplies a continuous

stream of data bits with the value of each bit being equally likely. Each receiver has an ideal optical

correlator (or matched filter) that is matched to its assigned codeword. Figure 7 shows a typical

receiver. Notice that the receiver integrates the correlated sequence over the entire sequence length,

not on a chip by chip basis. For user 1, the output of the correlator is Zj = b \K + where b\ is

the desired data bit and I \ is the interference experienced by receiver 1 from the N -1 interfering

transmitters.

For this paper we assume that if Zj is less than K then the output data bit is a 0, otherwise

the output is a 1. If the desired data bit is a 1 then an error cannot be made (in [2] it is implicitly

assumed that the receiver achieves and maintains perfect synchronization). An error can only be

69

made when the desired data bit is a 0 and there are K or more hits from the N -1 interfering

transmitters. Notice that for this receiver and channel model the distribution of hits over the

codeword duration is not important, only the total number o f hits. An example of an error is

shown in Figure 8. The desired data bit is a zero, the weight o f the code is 4, and there are 4 hits.

Thus, the receiver incorrectly outputs a 1.

User l ’s codeword 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Received sequence_______ 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8. Example of an error when user 1 ’s received bit should be 0. The received sequence
is after the correlator.

The conditional probability of i hits given N -1 interfering transmissions is binomial and is

given by

P/t(ihits IA-ltrans)=
(N - l V K 2\l

2 F

f x/2
i -

K
I F

Notice that the probability that a particular interfering transmission hits the desired sequence is now

K2I2F since on-off keying is used (the interfering user is present with probability 1/21). The

probability of a bit error for the desired user is

1

L i=K

The factor of 1/2 is included because an error can occur only if the desired data bit is a 0.

O p t i c a l H a r d - L i m i t e r

A second model for the fiber optic channel is considered in [2] by placing an optical hard-

limiter before the receiver. The hard-limiter is defined as

1 In [2] the implicit assumption is that, if present, interference from a particular user will be present during the
desired user’s entire frame, and the interference is independent between frames. But, because the frames are not
synchronized, part of two frames of an interfering user will overlap the desired frame. The two interfering frames are
independent, so, the interference may be present during only part of the desired frame. This also introduces
dependence in the bit error probability between frames of the desired user.

70

An example of a receiver using the hard limiter is shown in Figure 9. In effect the hard-limiter

reduces the effect of the interference by limiting the interfering power during any particular chip.

Consider Figure 10 with the same desired sequence and received signal as in Figure 8. If the data

bit for user 1 is 0 then the hard-limiter prevents an error because the total interference power is now

only 2 instead of 4. Notice that for the receiver with the hard-limiter, the distribution of the

number of hits is important. An error is made only if there is a hit in all of the pulses used by the

desired sequence. The number of hits in each chip is not needed.

User l ’s codeword 10000000010010000000000000010000
Received sequence 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Limited sequence_________1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fi gure 10. The hard-limiter prevents an error event by limiting the received power.

In [2] an approximation for the bit error probability is presented and it is claimed to be an

upper bound. We show it is not an upper bound, and we will present an upper bound. The

probability that a bit error occurs is the probability that all of the pulses of the desired sequence are

hit and that the desired data bit is a 0. The probability that all pulses are hit can be expressed as

PE = P (A)P {B \ A)P (C \ A ,B) -

were P (A) is the probability that one of the pulses is hit by 1 or more of the N -1 interfering users,

P(B I A) is the probability that a second pulse is hit by 1 or more interfering users given that pulse

A is hit, P (C I A , B) is the probability that a third pulse is hit by 1 or more interfering users given

that both pulses A and B are hit, etc., so that there is a term for each of the K pulses. Notice that

P (B I A) depends on the number of interfering users that hit pulse A . A user that hits pulse A

cannot hit pulse B because X = 1. The bounds use the fact that P (B I A) < P (B I Aj) where A i

denotes the event that pulse A was hit exactly once, and a similar approximation is used for the

remaining terms. When the probability that A is hit by more than one user is very small (i.e.,

when P (A) * F(A1)), P (B I A) * P (B I Aj) and the approximation is very good. The bit error

probability is

71

PE ^ P (A)P (B iA l)P{C \A 1,B l } -

Define P(AZ) as the probability that A is hit by exactly i users. The probability that an

interfering user does not hit a particular pulse is given by

1 K q = 1-------
I F

So, the probability that a pulse is hit 1 or more times is P {A) = 1 - q ^ '1. Given that A is hit once,

the probability that the next pulse is hit is

/ >(5IA1) = 1 - 1 -
K

\ N - 2

2 (F - K)

This follows because X - 1 implies a codeword can hit the desired sequence in one place only.

Also, since exactly one codeword can hit the desired pulse no other codeword can hit that desired

pulse. An interfering codeword can hit the desired pulse with any one of its K pulses. So of the F

possible offsets, K of them cannot occur because of the conditioning on A y The upper bound is

i K-1 r
I I 1- ,
m=0 V

1 -
K

\ N -l -m

2 (F - m K)

The bound in [2] incorrectly assumes that given A is hit once, the probability that the next pulse is

hit is P {B I Ai) = 1 - Thus, the bit error probability is approximated by

m=0

In the next section, we calculate the exact bit error probability, and calculations on

Mathematica show that the exact calculation is in fact greater than the upper bound given in [2],

though the two values are very close. For example, for a (1000,5,1) code with 50 users the

claimed upper bound is 8.4 10‘6, while the exact bit error probability is 8.5 10'6. The upper bound

presented here is 8.8 10'6.

72

Calculation of Probability of Bit E r r o r
W e found that it is possible to make an exact calculation for the bit error probability when

the hard-limiter is used. Because X = 1, two sequences can overlap in one position only, making

the hits independent. The probability o f a bit error is

N- 12 iV—1
Pe = — £ /> (/ hits occupy allATpulses)

2 « r
N- 1

= — ^ ^ (a l l K pulses hit I i hits in K pulses) • P(i users hit the K pulses)
2> • wwi=K

The probability P(i users hit the K pulses) is simply the probability o f i hits given N - 1

interfering users, P^(i IN -1), calculated above for the receiver without the limiter. The probability

that all K pulses are hit given i hits is equivalent to the probability that K bins are occupied by i
balls. The solution to the occupancy problem can be found in [4], for example. The probability

that all bins are occupied given i balls and K bins is

K
P o (U K) = £ (- !) ’

V— O

iK \
1 - iK

Thus, for the hard-limiter, the bit error probability is

iJV-1

Z i=K

The bit error probabilities for both the receiver without the limiter and the receiver with the hard-

limiter are evaluated for some specific parameter values and are shown in Figure 11. Notice that

the receiver with the hard-limiter performs significantly better. Figure 12 compares the exact bit

error probability, the upper bound, and the approximate bit error probability from [2]. There is

very little difference between the probabilities. The exact bit error probability is slightly greater

than the approximate bit error probability.

73

Larger W eight Codes

For a fixed number of users and a fixed sequence length, lower bit error probabilities can

be achieved as K , the weight of the code, is increased. For example, Table 1 shows the bit error

probabilities for the two receivers considered in this paper with 10 users and a sequence length of

1000. But, the value of K is limited because X = 1. Referring back to Figures 4-6, to increase the

number of codewords (and correspondingly the number of users) while holding F fixed, X will

need to be increased. For example, to support 50 users, K is limited to 5 when X = 1. But, if X =

2, K can be as large as 28. Unfortunately, the bit error probabilities developed here all assume that

X = 1, that is that two sequences overlap in at most one position. When X = 2, two sequences can

overlap in 1 or 2 positions.

Table 1. Bit error probability with N = 10 and F = 1000.
K /̂ (hard-limiter) P£(no limiter)

1 2.25 10'3 2.25 10'3
3 8.39 10'7 3.75 10'6
5 7.20 10'10 1.84 10'8
7 5.69 10'13 9.13 10'11
9 1.37 10'16 1.4710'13

Using the previously developed equations, some approximations can be easily made for the

bit error probability when X = 2. A simple lower bound for both systems is to assume that, even

though X - 2, each codeword will overlap in one position only. That is, the equations from above

are used for larger values for K . Of course, this bound becomes worse as K increases since more

of the sequences will overlap in 2 places. A pessimistic approximation that can be used for both

systems is to double the number of interfering users and assume each user is independent and can

hit the desired sequence in 1 position only. In the above equations N is replaced by 2N - 1. For

the system with the hard-limiter, a pessimistic assumption can be made by assuming each of the N

users overlaps with the desired sequence in 2 positions, and the overlaps are independent. This

can be thought of as having each user hit the desired sequence with the same probability as in the X

74

= 1 case, but each hit results in two independent balls. In actuality the balls are not independent

since they cannot both occur in the same position. For this case, the bit error probability is

approximated by

i ^ - l
PE--J,P0(2i,K)Ph{i\N-l)

Z i=K

An upper bound can be formulated for the system without a limiter. Assume that all hits

result in an overlap in 2 positions. Since an error event can occur only if the number of hits is

greater than or equal to K , and the distribution of the hits is not important, an error event can occur

if half as many transmissions hit the desired signal as in the previous case. The upper bound is

given by
i N - 1

HK/2]

Figures 13-14 show these bounds for both the system without a hard-limiter and the

system with a hard-limiter. The number of users is taken to be 50, and the sequence length is

1000. The solid black square in both graphs is the exact bit error probability for the (1000,5,1)

OOC with 50 codewords. This is the largest value of K that can be used with 50 codewords. For

the larger values of K , X must be 2. For the system without a limiter, the lower bound indicates

that not much improvement is possible in the bit error probability when K is increased. However,

for the system with the hard-limiter, the graph indicates that the bit error probability may indeed be

lower for some values of K . The graph indicates that further investigation into the bit error

probability for codes with X = 2 is warranted.

M O D E L F O R B IT E R R O R P R O B A B IL IT Y W H E N X = 2

Next, we consider the bit error probability when X = 2. Two sequences can overlap in 1 or

2 positions. The total number of ways for an overlap to occur is K . Let the number of offsets

that result in only one overlap between the two codewords be k\ and the number of offsets that

result in two overlaps be &2- Because each overlap between two particular pulses occurs only

75

once, K 2 = ki + 2&2- When using on-off keying, the probability that a codeword overlaps exactly

once with the desired sequence is p\ = k -J lF and the probability that they overlap in two positions

is p 2 = t y l F . For the system without the limiter, the probability of a bit error is the probability

that the number of hits is greater than K , and this is simply the multinomial distribution given by

z+2j> K k J
p \ p i (i - P i - p 2)

N - l - i - j

Unlike in the case when X = 1, the bit error probability for the system with the hard-limiter

is not an easy generalization from the system without the limiter. When two hits occur, they are

not independent The second hit cannot occur in the same location as the first hit. An

approximation is to assume that the hits are independent, but, this may not be good when K is

small. The approximation is

1 i+ j< N -\

PE = ~ X P o (i + 2 j ,K)
1 z+2 j> K

rN - l y

< U J
l A p i ^ - P i - P i)

N - l - i - j

The values for k\ and k^ are, in general, not easy to determine. They depend on the two

particular sequences that are overlapping. One possibility is to determine average values for k\ and

&2 for an OOC. A best case estimate can be made by taking k\ = K 2 and ̂ = 0 and a worst case

estimate by taking k\ = 0 and k^ - K 2f l . We believe that a better estimate of the system

performance can be made with these approximations than is available with the bounds in the

previous section.

Conclusions

We have examined a signaling technique for a fiber optic based network. A user’s low rate

data stream is encoded onto a high rate optical sequence. Each sequence has good auto-correlation

and cross-correlation properties so that random, asynchronous communication can take place free

of network control. A special class of sequences, called optical orthogonal codes, are examined

and shown to be suitable. The sequences examined in [1,2] are limited to the class where only

one overlap occurs between two sequences (i.e., X = 1). Two different types of receivers are

76

considered: a optical correlation receiver and the same receiver with a hard-limiter placed at its

input. To determine the performance of these receivers using these sequences and on-off keying,

the bit enror probability is calculated. The bit error probability for the receiver without the limiter is

developed and an approximation for the receiver with the hard-limiter is given in [2]. We have

shown that the exact bit error probability for the receiver with the hard-limiter can be calculated.

We have also investigated codes that allow the overlap between two sequences to be 2 instead of 1

(i.e., X = 2). It is shown that for the receiver without the hard-limiter, the performance is not

likely to improve by considering sequences with X = 2. But, for the receiver with the hard-limiter

it may be possible to improve the bit error probability by using larger weight codes. We have

proposed a model for calculating the bit error probability for codes with X = 2, but use of this

model is limited by the fact that probabilities are dependent on the particular codewords used.

Some approximation techniques are suggested that may provide further insight

A C K N O W L E D G E M E N T

The author would like to thank Colin Frank, Arvind Krishna, and Upamanyu Madhow for

their many constructive suggestions.

R e f e r e n c e s

[1] J. A. Salehi, “Code Division Multiple-Access Techniques in Optical Fiber Networks—Part
I: Fundamental Principles,” IE E E Trans. C om m un ., vol. 37, pp. 824-833, Aug. 1989.

[2] J. A. Salehi, C. A. Brackett, “Code Division Multiple-Access Techniques in Optical Fiber
Networks—Part 13: System Performance Analysis,” IE E E Trans. C om m un ., vol. 37, pp.
834-842, Aug. 1989.

[3] F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical Orthogonal Codes: Design, Analysis,
and Applications,” IE E E Trans. Inform . T h eory, vol. 35, pp. 595-604, May 1989.

[4] W. Feller, A n Introduction to Probability Theory and Its Applications, vol. 1, edition 3,
New York: John Wiley & Sons, 1968.

77

Figure 1 : Fiber Optics Communication System Usino
Optical Encoder and Decoder (Correlator) *

n t , n * A Lf I

78

/"

Figure 2: A Typical Fiber Optics Code Division Multiple Access (FO-CDMA) Network
in a Star Configuration

((X. I? € i\ Ayt'i* .'V. /'lC t i

79

Fig. 3. Two “ optical orthogonal codes” with length F « 32, K ■ 4, and X,
- K = 1 • (a) First code is represented by placing a pulse at the 1st, 10th,
13th, and 28th chip positions. Here, we designate this code as 9, 3, 13, 5!
(b) Second code is represented by placing a pulse at the 1st, 5th,’ 12th, and
31st chip positions; the code is designated as 4, 7, 19, 2.

£rtrv\ ’fe y p e Refer*.nee I

80

Nu
mb

er
of

Po
ssi

ble
 Co

des

Nu
mb

er
of

Po
ssi

ble
 Co

des
■0—Upper Bound — □ -L ow er Bound

Codes with A. = 1

Codes with X = 2

h 3 ur

\r \ a r< j

81

Nu
mb

er
of

Po
ssi

ble
 Co

des
O—Upper Bound — □ -L ow er Bound

Codes with X = 3

K, Code Weight

F”icUU’ -t t-

3 a .
Figure I S : An ideal optical correlation using active optical components

83

Sample a! time t = T

Rom s 24f A typical optical receiver with
Ft *w<t **)

an ideal optical hard lim iter.

t i ' tt- n rvi t-e- f

ik

85

Pr
ob

ab
ilit

y o
f B

it E
rro

r
Pr

ob
ab

ilit
y o

f B
it E

rro
r

— ■—PE(Exact) - o -P e(N=99)
—□ -P E(Lower Bound) - x -P E(Upper Bound)

Y i ‘j u

4L l H

86

APPLYING ECONOMICS TO NETWORK RESOURCE ALLOCATION

M ichael P eercy

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801

(217) 333-6564
FAX: (217)244-1764

peercy@ lucky.csg.uiuc.edu

ABSTRACT
In this paper we examine the application of economics to the network resource allocation problem. We begin

with the presentation of work by Ferguson in creating and analyzing a flow control economy through economic
theory. Then we propose a different approach to the application of economics to flow control. We create a mechan­
ism whereby network resources become real world resources subject to real world economic laws. We present
simulation results of our strategy. We also propose extensions of the basic strategy.

87

The rush hour problem is a good example. The size of city expressways is determined almost entirely by the peak
traffic that they have to bear. The extra cost to the city of an additional driver at 3 a.m. is essentially zero—the
roads are there anyway and nobody is using them. The extra cost of an extra driver at rush hour averages out, I am
told, to about five dollars per trip. Presently, both drivers are charged essentially the same price, in the form of
higher gas costs due to gas taxes. If the roads were privately run, it would pay their owners to encourage off-hour
traffic by charging a low price, and to discourage people from driving at rush hour by charging them the full cost of
their trip.

David Friedman
The Machinery o f Freedom

88

1. INTRODUCTION

There are many problems in distributed systems which deal with diverse users. While most previous solutions

have tried to neglect the diversity as much as possible, some new solutions actually use diversity in their favor.

These solutions model problems to resemble some other distributed system of diverse agents: for instance, ecology

or economics [1]. In this paper we are interested in applying economics to the network resource allocation problem.

A recent paper by Ferguson [2] uses economic theory to propose a flow control economy to allocate network

resources.

We begin in Section 2 by presenting Ferguson’s flow control economy. We then continue with an approach

different from Ferguson’s. While he applies economic theory to networks, he does not actually bring the economic

laws of the real world to bear on the problem of resource allocation in the network. In Section 3 we propose a pric­

ing mechanism which does just that. By bringing the laws of supply and demand of the outside world into the net­

work, we elevate the links of the network from mere network resources to real world resources. In section 4 we

present simulations and discussion of our strategy, and in section 5 we present extensions of our ideas. Section 6

concludes the paper.

2. A FLOW CONTROL ECONOMY

2.1. Flow Control Economy Model

Donald Ferguson’s PhD dissertation at Columbia [2] gives one use of economic theory in the design of a net­

work resource allocation strategy. He proposes a flow control economy with features of a real economy.

Ferguson’s model begins with a network of M links. Each link i has a supply Si which it may allocate to users of

the link. The supply Si is defined to be strictly less than the actual link capacity C,- so that misfortunes in queuing

are avoided. The other components of the network model are the N virtual circuits vying for link resources. Virtual

circuit (VC) a is allocated a wealth Wa. By spending this wealth among the links in the path Pa, the virtual circuit

receives link resources. In economic terms the links act as supplier agents, and the VCs act as consumer agents.

An allocation is a vector = <-*i, *2,.... >, where x,- is amount of the resources of link i used by a particu­

lar VC. Each virtual circuit has its own allocation vector. A price scheme]?= <p\,P2, ~,Pm >, with p,>e>0,

89

defines the price per unit of the resources of each link i . The goal of Ferguson’s flow control economy is to achieve

a utilization-maximizing equilibrium among the allocations demanded by the VCs using the mechanism of the

prices of the links.

22. Demands of Virtual Circuits

In an economy each agent has a preference relation describing the relative value to the agent of the many dif­

ferent allocations possible to it The agent uses this preference relation to select the best allocation it can afford

given the price vector p and the agent’s wealth. The preference relation in Ferguson’s flow control economy is

based on throughput and delay. Each VC a is characterized by a (constant) path Pa and a throughput goal ya. VC

a adapts its allocation jt to bring the throughput of the allocation, T (£*), to the throughput goal ya. If the VC is suc­

cessful in attaining the throughput goal at the current prices, its surplus wealth is spent in order to buy excess space

from the links to minimize the delay D (jt).

This preference relation permits a wide diversity of virtual circuits to specify accurate measures of goodness.

A throughput-oriented session, such as file transfer, could set ya=00- A real time session, such as voice communica­

tion, could set Ya equal to the minimum requirement of transmission and have a large surplus with which to minim­

ize delay. However, this preference relation offers no means for a virtual circuit to specify a lower-bound average

rate (LAR) [3] to indicate the minimum throughput the VC will tolerate.

A VC’s demand, <j>a (p), is its most preferred allocation at prices p. The above preference relation defines a

continuous function of demand, permitting a mathematical algorithm to determine $a(p) from p and Pa. Let the

total price per unit of transmission be Qa. Set

That is, if VC a can not afford the price per unit to send at its throughput goal, it sends at the throughput it can

afford, demanding the same affordable throughput from each link in the path. (Of course, if link i is not in path Pa,

If Wa <Qa ya, then, for all ieP a,

90

If Wa >QaYa, then VC a can afford its throughput goal. VC a then sets

<J>/* ~ Y a+ U i

where u* is the excess resources purchased from link i in order to minimize total delay. The delay expression

which is minimized to determine u* is
>

Assuming independence between the links, this determines the total average delay experienced by VC a as the sum

of the delay experienced at each link in Pa. The delay experienced by VC a with allocation t due to link i is

Df c)=

Si is the allocatable supply on link i. x-t is the supply being consumed by VC a. Therefore, assuming that all the

remaining supply 5,-x, is being consumed by other VCs, C,—(5, -x,) is the available service rate of link i. Since

the throughput goal ya is the planned arrival rate, the above expression for link delay follows for an M/M/l queue.

Ferguson minimizes the aggregate delay, arriving at an expression for the Lagrange multiplier. His proposed algo­

rithm to determine it* performs a binary search on the possible values of the Lagrange multiplier.

2 J . Equilibrium Through Pricing

We have described the VCs’ responses to the link prices p: each VC a calculates a demand vector <j>a (p). If

an equilibrium is to be reached among allocations, the links must push the VCs’ demands closer to equilibrium by

changing their prices. Each link sees a total demand

a

and an excess demand

Z i W ^ d i O n - S i

Ferguson initially defines equilibrium as having the following properties: (1) no resources are unused, and (2) every

agent’s demand is satisfied. However, if a link’s supply, even at the lowest possible price e, exceeds its total

demand, then resources must remain unused. Thus equilibrium in the flow control economy allows surplus supply.

The flow control economy is in equilibrium at prices p* if, for all links i , Z, (jf)=0, or, Z, (p*)<0 and /?*=£.

The following algorithm from [2] is used to attain equilibrium of prices and demands in the network.

91

ALGORITHM 1:

1. Choose an initial prices Jf.

2. For all VCs a , compute <j>a (P) as described above.

3. If for all links i , (Z, (p)=0) or (Z, (p)<0 and p;=e), stop, for an equilibrium has been reached.

4. Otherwise, for all links i ,

± Ziip) o d i(?) „Pi = max Pi+Pr = max P i—37 ,e

5. Go to 2.

Step 2 of this algorithm can be performed by agents acting in the VCs’ behalfs, and thus can be distributed. Step 4

can be performed by agents acting for the links and is similarly distributable. Step 3, on the other hand, requires the

global determination of equilibrium, and Ferguson gives no distributed form for it (although he conjectures its

existence).

Because the flow control economy Ferguson develops is intentionally designed to parallel a real economy, the

same techniques can be used to prove the existence of equilibrium. Ferguson proves that there is, in fact, an equili­

brium price vector p* for the flow control economy. However, there may be infinitely many equilibrium price

schemes. The example Ferguson gives is shown in Figure 1. The single virtual circuit of wealth 2 wishes to send

throughput 1 across both links of supply 1. Any price scheme in which pi+pt=2 is an equilibrium price scheme.

But note that there is only one equilibrium allocation in this example: each link allots one unit of resource.

Whether only one equilibrium allocation exists in a flow control economy is an open problem.

No proof for convergence of the flow economy described by ALGORITHM 1 is known. However, in

"several hundred simulation experiments" [2] the flow control economy always converged. Demonstrated conver­

t s 2

92

gence was rather rapid, although recognition of convergence was sluggish. Heuristics were used to prevent overi­

teration, and adequate convergence was usually attained in about 25 iterations.

In determining the fairness of the equilibrium allocation of the flow control economy on the network links,

economic theory provides another powerful concept. Pareto-optimality is a definition of fairness used in econom­

ics. To define pareto-optimality for the flow control economy, we begin by defining a coalition S as a subset of the

VCs in the economy. S can improve on an solution (**, x®, ...,3^) if there is another solution (y*1, y®,...»y^) such

that:

1. y*=x*,a<*S

2. f l>at a,a eS , where >* means a prefers y* to x*

3. There exists a e S for which pa>a^a, where >a means a strictly prefers y* tox*3

A solution is pareto-optimal if no coalition can improve on their allocations. That is, a solution is fair by the meas­

urement of pareto-optimality if no VC or set of VCs can improve their allocations without affecting the allocations

of the VCs outside the set. A theorem proven by Ferguson asserts that, given an equilibrium price scheme p* , the

VCs’ demanded allocations), tfip*),..., (pf) are pareto-optimal and unique.

2.4. Discussion

Ferguson has successfully brought economic theory into the design and analysis of network resource alloca­

tion. By proposing a simple yet versatile demand utility function for the virtual circuits, and then subjecting the

VCs to the laws of supply and demand, he has attained a provably fair allocation of the network resources. His

work is an excellent application of economics to the flow control problem.

However, there are some disadvantages in Ferguson’s flow control economy. The first drawback is that the

allocation and behavior of wealth is unspecified in the flow control economy. Another drawback, due to the require­

ment of attaining equilibrium, is that VCs are not allowed to choose paths; they must follow fixed paths. Still

another disadvantage is the fact that only a centralized scheme is known for attaining the global equilibrium in

ALGORITHM 1.

But perhaps the greatest disadvantage is the demand preference relation. The economic parallels exhibited by

the flow control scheme require that this relation be continuous from 0. That is, a virtual circuit is assumed to be

satisfied if it can obtain any resources, no matter how small. This may not be realistic. Many applications would

93

prefer to wait and try later than tolerate a smaller throughput.

In the next section, we discuss another approach to the application of economics to the network resource allo­

cation problem. The strategies proposed there offer the following solutions to the disadvantages of Ferguson’s flow

control economy. First, this scheme does not require virtual circuits to prespecify wealth; they instead specify a wil­

lingness to pay. Also, this scheme allows noncontinuous allocation functions, permitting a greater range of users to

accurately describe their demands. Most importantly, the approach of the next section does not seek a global equili­

brium, thus avoiding the centralization problem of Ferguson’s algorithm. Finally, because no global equilibrium is

sought, the virtual circuits are allowed, in fact, encouraged, to choose their favorite paths.

3. ANOTHER APPROACH

3.1. Principles

While Ferguson’s work is an excellent application of economic theory to the network allocation problem, it

ignores the great influence economic laws in the real world could have on the load of the network. In the real world

prices are the means for equating supply and demand. And when demand exceeds supply for some resource, say a

particular network link, a raised price can bring demand back into equality with supply. This is the idea behind

Ferguson’s flow control economy, but he does not attach it to dollars in the real world. Because such an attachment

would show up on the user’s bottom line, real dollars should be a very effective means of regulating the demand for

network resources. Our primary goal is now clean to create a mechanism whereby network resources become real

world resources subject to real world economic laws.

We can arrive at a mechanism which achieves this goal through the following argument. A network is not a

natural resource: someone has to pay for the creation and maintenance of the network. Ideally, the people who use

the network should be the ones who pay for it Simple application of this principle would lead one to conclude that

a user should pay for the network in proportion to the amount of resources he uses. However, there is an essential

difference between resources granted to the only user on the network and resources granted to one user while

another user’s resource demand is left unmet. The former user induces no costs outside the network. The latter user

brings a cost to the unsatisfied user: the cost of not receiving the desired resources. That induced cost can actually

94

be equated to dollars—dollars the unsatisfied user would be willing to pay the network owner to displace some other

user from the netwoik to get resources for himself. It must be stressed that this is a real cost. (Just ask the

unsatisfied user.) Therefore, economically this should be the real price for the resource. It is what some user is wil­

ling to pay to receive the scarce resource; it is the price at which that resource could be sold. The netwoik owner

should make sure that every user currently occupying resources is willing to pay the price at which he could reallo­

cate the resources, and then he should charge them that price.

We have introduced the basic idea behind the setting of prices:

1. The price of a scarce resource is the maximum someone who does not have it is willing to pay.

2. The price of a nonscarce resource is roughly the cost of its production.

The basic (nonscarce) price of resource i we call 1.00, and any price charged for i will be greater than or equal to

1.00. In an actual implementation, the basic price of 1.00 on one resource may be monetarily different from what

we call 1.00 on another resource. Exchange rates easily allow conversion of the base price on any resource to be

converted to real dollars.

3.2. The Link Manager

We now enter into the world of the network to investigate the application of the principles outlined above.

The pricing scheme described above is, in fact, very simple to implement on a link level. Each link is managed by a

link manager situated, for example, at the source end of the link. The link manager holds a bid table containing an

entry for each virtual circuit desiring service from the link. In a link’s bid table entry a , for virtual circuit a , con­

tains the following fields:

1. Ra: the request of VC a ,

2. Oa: options for service for VC a , and

3. Pa: the price that VC a is willing to pay per unit of service (VC a ’s bid) on this link.

The manager’s task is very straightforward and is shown here in Algorithm MANAGER.

Algorithm MANAGER

1. Dereserve all link resources.

95

2. LetA={a:Ra*0}.

3. Let a = a', where a'e A andP a'= m^x P a".

4. If R a can be granted, then reserve requested resources.

Otherwise, stop and reallocate (or continue prior allocation of) resources according to reservations, charg­

ing X=Pa per unit

5. LetA=A-{a}.

6. Go to 3.

Table 1 gives an example of the operation of Algorithm MANAGER. Let the link in the example have a sup­

ply of 10 units of resource, and let requests be a specification of units of resource desired. Assume that a VC would

rather have no resources than have less than it requests. The link manager allocates the 10 units of supply in order

of decreasing bid. Thus VC 2, which bid 2.00, has its request for 4 units granted. Similarly, VC 3’s bid of 1.50

allows its request for 5 units to be considered and granted. VC 1 is considered next, but its request of 2 units of

resource can not be granted; only one unit of supply remains. VC l ’s demand is left unsatisfied, and, since VC 1

would pay 1.20 to satisfy that demand, each of the VCs must pay 1.20 for the resources they consume. This, of

course, does not bother VCs 2 and 3 because they state in their bid that they are willing to pay more than that price

in order to have their demands satisfied. Note that the charge for VCs 2 and 3 is per unit of resource. VC 2’s ser­

vice costs 4.80 in total, while VC 3’s service costs 6.00.

To continue the example, suppose VC 3 leaves the link. (Perhaps it has found an alternate link which is not

so expensive to use.) Then the link manager would grant VCs 1 and 4 the resources they request Because all

members in the bid table are satisfied, there is no excess demand to force the price up. No other user is willing to

pay anything to displace the current users of the link. Therefore, the price at which all VCs on the link are charged

Table 1. Example of Algorithm MANAGER.

VC Request Price Supply Charge
2 4 2.00 4 1.20
3 5 1.50 5 1.20
1 2 1.20 0 .00
4 3 1.10 0 .00

96

is the base price of 1.00.

An immediate modification to the manager and pricing as we have described is obvious if we suppose that VC

5 enters the example of Table 1 with a bid of 1.15 and a request for 1 unit. After granting the requests of VCs 2 and

3, VC l ’s request cannot be granted, but VC 5’s request can. In the interests of efficient use of resources, VC 5

should be granted its demand of 1 unit; otherwise that unit would remain unused. However, VC 5 should not be

charged the going rate of 1.20. It is not willing to pay 1.20, and it is not displacing any VC willing to pay 1.20.

Whether VCs squeezed onto the link after some VC’s unsatisfied request should be charged their bids or should be

charged the bids of the VCs they are displacing (1.00 in our example) is debatable.

3.3. The Virtual Circuit Agent

The other participants in our network resource allocation scheme are VC agents. Each VC in the network is

represented by one agent in the requesting and bidding for link resources. VC agents communicate with link

managers through free (or low-cost) short messages given reserved bandwidth in the network. They send bids and

receive allocation information from the link managers. While link managers in our scheme are very simple to

specify, VC agents are quite difficult Perhaps the best description of a VC agent is the following: an algorithm

which minimizes the charge to a virtual circuit using the network.

Link managers are unintelligent and their behavior is easily understood. VC agents, on the other hand, are

expected to be intelligent They are expected to convey correctly the preferences of the VC and to represent accu­

rately the price the VC is worth to the user. The only tools each agent has at its disposal are the bid tables at the

various link managers. What agents write into these tables determines the services and the charges they receive.

Each VC agent is in competition with other VC agents for the same resources. If those resources are scarce, the

competition will incur costs that users must bear. Minimizing or limiting those charges while seeing to the success

of the VC is the difficult job of the VC agent

There are various differences which can exist among VC agents. VC agents can represent very diverse

preference relations. Agents may update their entries in link managers’ bid tables frequently or infrequently. Or an

agent may begin with an allocated wealth, as in Ferguson’s scheme. An agent may be given instructions to get the

job done immediately regardless of cost Or an agent may try to find the cheapest path or stick to one path through

the network. In fact the agent can be left as an exercise for the user.

97

3.4. Options

We have yet to discuss the options field of the bid table. This field contains options offered by the manager

which might be desired by the agent. A number of options would be worth implementing due to their power of

expressing the wishes of a VC agent and their ease of implementation in the link manager. Note that the line

between requests and options can be somewhat fuzzy; options are, in fact, requested. But it is useful to separate

options from requests because requests indicate service demanded from the resource while options indicate instruc­

tions to the link manager granting the request

The first option we discuss is the lower-bound average rate (LAR) [3]. A VC would specify this option if

there is some rate LAR, lower than the actual request, at which the VC can perform its job satisfactorily. If the link

manager can not grant the full request of a VC specifying an LAR, the link manager gives as much as it can grant

provided this amount exceeds the LAR. If the manager can not grant the LAR, no resource is allocated to the VC,

and the VC is unsatisfied.

Another worthwhile option is called STAY. A VC specifying STAY wishes to continue its current service at

any cost. If a VC with a higher bid threatens to displace a staying virtual circuit, the manager automatically raises

that circuit’s bid to match the potentially displacing bid. This is useful for continuity critical jobs, such as

teleconferences. If the raised charge far exceeds the desired charge, the agent may seek an alternate, less expensive

link. But service will be uninterrupted.

A third option is DON’T. A VC agent bidding with the option DON’T does not actually want service; it only

would like to know what its allocation would be if it did want service. This option has two primary uses. First,

DON’T allows a VC agent to probe the network to find the best, least expensive path available to it. Second, if the

virtual circuit requires supply from all links on the path simultaneously (as in TDM networks), DON’T allows the

bid to sit in the bid tables of available links free of charge while service is sought at unavailable links.

98

4. SIMULATION

4.1. Simulator

We wrote a simulator to examine the behavior of this network allocation strategy. This 750 line program

implements link managers and VC agents as processes created through CSIM routines [4]. The specific network

simulated has a multislot TDM paradigm. The many slots per frame on a link can be allocated in any amount to the

virtual circuits requesting resources. A virtual circuit is required to have a complete path before using the circuit

This is enforced to restrict the necessary queuing. The simulator implements the three options discussed in the pre­

vious section. However, in our implementation LAR is one of two values: the desired rate or zero; that is, either the

agent will not settle for any allocation less than the requested allocation, or the agent will be happy with any rate

that can be granted. For simplicity all links have a base charge of 1.00.

The difficulties in implementing the proposed network resource allocation scheme lie in the design of the VC

agents. Here we do not make a detailed investigation of agent strategies. For instance, while agents send bids to

managers through mailboxes (simulating free reserved bandwidth), agents are given perfect knowledge of the inter­

nal state of the system. In an actual implementation where the agents do not have perfect knowledge of the state of

the links, decisions must be made regarding the frequency and contents of state information feedback from

managers to agents. These factors would be specified by agent-selected options, and, again, we are not attempting

the difficult problem of determining optimal agent strategy.

Instead we provide only two types of agents: passive and aggressive. A passive agent selects a price it is wil­

ling to pay for each link and then bids that price for each link on its fixed path. A passive agent uses the DON’T

option to avoid buying resources on nonscarce links until it believes that it has a complete path. Other than using

DON’T, a passive agent takes no action to attempt to increase its performance.

An aggressive agent, on the other hand, has all the characteristics of a passive agent along with two more.

Aggressive agents specify the STAY option so that, once they occupy resources, they hold those resources until

their job is finished regardless of the price they must pay. The second difference separating the aggressive agent

from the passive agent is that the aggressive agent will raise its bid for each link to the current charge on that link if

that charge exceeds its bid. We do not investigate the results of raising the bid to the current charge plus a small

increment.

99

Virtual circuits are introduced into the network at an exponentially-distributed rate of mean X. and are directed

between a source and destination chosen at random uniformly. The price willing to pay, or bid, of each VC is

drawn from an exponential distribution shifted to 1.00 with a mean p. Of course, the actual mean does not matter in

our simulator since all decisions made by the link managers are based on relative values of bids and our VC agents

are not concerned with their absolute expenditures. The total traffic a virtual circuit needs to transmit is drawn from

a uniform distribution. The virtual circuit finishes and releases its resources when it has transmitted an amount of

data equal to or exceeding its chosen limit The rate at which it transmits, its request, is drawn either from a uniform

distribution or a truncated exponential distribution.

42. Experiments

We performed experiments on the network in Figure 2. The number beside each link indicates the units of

resource, in slots per frame, in each direction of the link. Note that there is no choice of path in this network.

The experiments performed on the simulated network had one main feature in common: enormous variance.

Very few trends are visible in the majority of the results. This is not entirely unexpected; a cornerstone of our

scheme is the diversity and intelligence of VC agents. We simulate neither diversity nor intelligence. However,

two experiments we performed are quite instructive, giving good results.

100

4.2.1. Overtime as a function of bid

In our simple TDM network, an excellent measure of performance for a virtual circuit is a ratio called over­

time. Overtime is defined as the time a VC takes to complete its job divided by the time it should have taken, where

the time it should have taken is given by the total traffic of the job divided by the rate of the circuit An overtime of

one is ideal, and implies a net delay of zero in transmission.

Figure 3 shows overtime as a function of bid. The bids are blocked into increments of .20, and the overtime

given is the average of all overtimes in each bid block. The solid bars are for an experiment with a rate request

drawn from an exponential distribution shifted to 1, with mean 3, truncated at 5. The dotted bars are for an experi­

ment with a constant rate request of 3. All agents in these experiments are passive.

We notice on the graph that there is a monotonic decrease in overtime as bid increases. This result is to be

expected since, with passive agents, the link managers simply run a preemptive priority queue, where bid represents

the priority.

4.2.2. Overtime and cost as a function of agent and load

A number of interesting results are found in another collection of experiments. These experiments vary net­

work load and the mix of different agent types to investigate how effectively aggressive agents increase their own

Overtime

Figure 3. Overtime as a function of bid.

101

performance without excessively harming the performance of passive agents. The data in Table 2 are the average

values from 10 simulations. The two columns are overtime and cost, the actual cost per unit for the average VC to

complete its job. Three separate ratios of passive and aggressive agents are shown. In the first block, all agents in

the network are passive. In the second block, all agents in the network are aggressive. The third, fourth, and fifth

blocks give data for experiments in which half of the agents are passive and half are aggressive. This condition for

each agent is chosen at random, irrespective of its bid. The third block is the overall results for this mix of agents.

Blocks four and five separate the data for passive and aggressive agents in the mixed system.

The first item to which we should draw our attention is the effect aggressive agents have on overall overtime.

Comparing the overtimes of the passive block and the mixed (overall) block, we see that average overtime is not

significantly increased, and, in fact, is decreased for high load. Of course, the prices also are higher due to increased

competition for the links.

Another result to notice is the superior overtimes of aggressive agents compared to passive agents. In the

mixed experiments, the aggressive agents suffer less delay, while paying relatively little more in cost. Comparing

the experiments of all aggressive agents to all passive agents, we find that, at low loads, the competition among all

involved agents causes overtime to increase for the aggressive agents while they pay much more for service. At

high load, however, the passive agents suffer high overtimes while the aggressive agents do not. However, the

Table 2. Overtime and Cost vs. Agent Type and Load.

Agents Load Overtime Unit Cost

Passive
Low
Med.
High

1.04
1.24
6.60

1.01
1.02
1.22

Aggressive
Low
Med.
High

1.11
1.34
3.48

1.08
1.27
3.73

Mixed
(Overall)

Low
Med.
High

1.06
1.26
5.77

1.02
1.05
1.64

Mixed
(Passive)

Low
Med.
High

1.07
1.36

10.24

1.01
1.04
1.56

Mixed
(Aggressive)

Low
Med.

.High

1.05
1.16
1.67

1.02
1.06
1.72

102

aggressive agents do end up paying a high price for their low overtime.

Some of the results in Table 2 are explained by a hidden factor in the simulations. As mentioned previously,

the DON’T option is used in both passive and aggressive agents to allow a bid to remain in the bid tables without

receiving (or paying for) service. When VC agent a recognizes, through the complete state information available to

it, that supply exists at every link along the path, it rescinds its DON’T specification, telling all managers in the path

to consider it for allocation. If, however, any link in that path receives a request before the next auction which takes

the supply agent a thought it had, VC a will not have a complete path. Furthermore, all links which are able to get

resources must pay for them, at least for one frame, even though they are completely useless to the TDM virtual cir­

cuit. Thus occasional bursts of charges can be generated without any work being done.

The effect of this misallocation can be very bad. Since the VCs with the lowest bids are the ones waiting in

tables the longest, they suffer this costly misallocation more often then other VCs. Thus for the all-passive, high-

load experiment, an appreciable amount of the cost 1.22 is likely due to spurious allocations. In fact, examining unit

cost, the actual charge per unit transmitted, as a function of bid can show a fairly level curve; the lower bidding

agents charges are artificially increased by useless allocations. Investigations into the magnitude of this problem’s

effects and possible solutions is needed.

5. EXTENSIONS

We have proposed a mechanism for allocating resources according to real world supply and demand laws

through the real world medium of money. Extensions to this mechanism can also be drawn from economics. One

aspect of our scheme is the uncertainty of receiving resources. If some other user is willing to spend an enormous

amount of money, he could purchase entire links, and service expected by some other user would be gone. Thus

some sort of reservation system would be valuable. This reservation system could be in one of two forms: futures

trading or insurance.

In futures trading a user could purchase a resource for a period of time in the future at some price. The

immediate difficulty of this proposal is that the price must be determined by the link manager. This requires the

introduction of some type of intelligent decision making into the manager. Possible strategies for a manager to use

in setting future prices are taking bids for the future and prediction from past use (such as the same time last week).

103

Insurance, on the other hand, is paid by the agent to insure that it will not be asked to pay more than a certain price

for its future use of the resource. The pricing scheme for this insurance feature is even more difficult than that for

futures trading.

To introduce another extension, note that we are not suggesting that a network owner necessarily fleece his

customers if their demands drive up their own prices. The actual cost to the owner of this higher load is probably

negligible. The owner could uniformly scale down the users’ accounts so that the sum of all accounts equals his

costs plus profits. Such a rebate should not seriously alter the actions of supply and demand on resource allocation,

but it would make it more difficult for the VC agents to predict how much money they are actually spending. Fre­

quent announcements from a network manager of how much above cost the system is as a whole would help the VC

agents in their bidding.

Of course, the wise network owner would take excess profit and reinvest it into new or higher capacity links,

thus relieving the overutilization of the links which, after all, produce the excess profit. Whether this sort of rein­

vestment is worthwhile to the owner is a very interesting economic question. If the charges brought by new users

drawn to the improved link are greater than the charges brought by the original users competing for the original link,

the move results in a net profit for the owner without any adjustment of rates. If there is a profit to the owner, then

everybody is happier with the new link, and expansion of the network to decrease overutilization is economically

natural.

6. CONCLUSIONS

We have presented two economically-inspired approaches to the network resource allocation problem.

Ferguson’s approach equates supply and demand in the network with supply and demand in economics, develops

algorithms to implement the balancing of supply and demand through pricing, and uses economic theory to prove

the optimality of his algorithms. The economic measure of fairness Ferguson brings to network allocation is

pareto-optimality, in which no user or group of users can receive a better allocation without forcing a worse alloca­

tion on other users.

In this paper we have developed another approach to applying economics to resource allocation. We began

with the goal of making conflicting demands for the scarce network resources subject to economic laws of the real

104

world. The mechanism proposed for this is charging high prices for the use of overutilized links. The charges are

determined by the prices users displaced from the links are willing to pay to receive service. We described a simple

link manager to take care of this charging, and proposed features intelligent and diverse virtual circuit agents could

have. We also presented results of simulations of this strategy.

Future research in this area includes the simulation of more flexible networks than our TDM network. Also,

studies into more intelligent and diverse agents are needed, as they are the foundation of the successful implementa­

tion of our network resource allocation strategy. The nature of our scheme warrants investigations into its behavior

with respect to the discontinuities inherent in auctioning of resources and with respect to convergence to some

equilibrium. Another area for future research is the comparison of our strategy with other allocation strategies,

using an appropriate overall measure of goodness. And, finally, a true economic analysis should be performed to

see if everyone does indeed profit if the charges paid by users overutilizing a link go to the expansion of that link.

For, if this is the case, then our scheme is an ideal way to manage network resources, and it truly does bring

economics in the real world to bear on the problem of resource allocation in the network world.

105

REFERENCES

[1] B. A. Huberman, ed., The Ecology of Computation. Amsterdam: North-Holland, 1988.
[2] D. F. Ferguson, “The application of microeconomics to the design of resource allocation and control

algorithms.,“ PhD Thesis, Columbia University, 1989.
[3] L. Zhang, “ A new architecture for packet switching network protocols,“ PhD Thesis, Massachusetts

Institute of Technology, 1989.
[4] H. D. Schwetman, “CSIM: A C-based, process-oriented simulation language,” Tech. Report PP-080-85,

Austin, Texas, 1985.

106

QUEUE LENGTH DISTRIBUTIONS IN THE

PACKETIZED TRANSMISSION OF REAL-TIME TRAFFIC

Upamanyu Madhow

Consider a slotted communication channel with a periodic arrival process. There are K independent

periodic sources, each generating one fixed-length packet every M slots. One packet can be transmitted in every

time slot Packets are queued upon arrival, and no packets are lost, so we need K < M for stability. In this

paper, we consider the distribution of the typical and the maximum queue lengths for such a system. Several

recent papers [1, 2, 7, 8] have considered various aspects of this problem. The queueing system here can be

thought of as modeling a link in a network operating in asynchronous transfer mode (ATM), with the periodic

arrivals modeling real-time traffic. An understanding of the buffering problems in this system, therefore, is a

first step towards the analysis of ATM networks, which are becoming increasingly popular as a means of

integrating a wide variety of traffic types.

An elegant 0(K 2) algorithm is given in [1] for computing the distribution of the typical queue length. An

0(M 3K) algorithm for computing the distribution of the maximum queue length is given in [7]. It is shown in

[8] that if KIM is held constant at X, then the typical queue length is increasing in M with respect to a stochas­

tic convex ordering, and the limiting distribution is that of an M/D/l queue with arrival rate X.

In this paper, we first present an 0(M K4) algorithm for computing the distribution of the maximum

queue length. The algorithm is based on the methods of [1]. Next, we consider, for the special case K = M,

the asymptotics of the distribution of the typical queue length and the maximum queue length as M -> both

of which are shown to grow as M'A.

II. Computation of the Maximum Queue Length Distribution

Let Qt be the queue length at the end of the i-th slot, and let at be the number of arrivals in the r-th slot.

A frame is defined to be M consecutive slots. The time at which any one of the K independent periodic

sources produces a packet is assumed to be uniformly distributed over a given frame interval. We have that

at = a, ^ M, and t o (flf, • • • .tff+M-i) are interchangeable, identically distributed random variables that sum to

K . Starting from an empty system, we have

Qt = (Qt-i-l)+ + « t , t > 0,

107

Go = 0 .

It is easy to see [1, 2] that [QtJ t> M] is periodic, with period M. Thus, we assume, for convenience, that the

periodic pattern is established for all time, i.e., for ie(-oo,-H»). It follows [1] that

Consider a typical slot, say slot 0. Since {Qt) is periodic, it suffices to consider this slot and the (M -l)

previous slots to compute the distribution of the maximum queue length Q*. We can write

P[Q*>L] = f ; i 3[G*>L,G0=/] • (?)
/=o

For l > L , we have

P[Q*>L,Q(f=l] =P [Q 0 = l] , / >L ,

so that

£P[Q*^,Qo=/]=/>[Q<£L] •
l=L

The right hand side above can be computed with 0{K) complexity [1]. For / <L , we have, conditioning on

the number of arrivals j in the 0-th slot, that

PlQ'>L,Qg=l} = (X P[Q’ >L,Q-t=l-j+l\ao=j}pMjc<j))
i-o

+ (PlQ">L,Q.1=l\a^n + P[Q’ iL,Q^=Oia^l])pUJc(l) , (3)

where pMJc is the probability mass function of a binomial distribution with parameters K and l/M. We proceed

similarly with each of the joint probabilities on the right hand side, conditioning on the number of arrivals in

slot -1, and so on. As we repeat this, a typical term to be evaluated is of the form

P [Q*>L,Q-n = r|a0 = ;o*-i = = 7,-iJ,1* » < M -l. Since r = / <L for n = 0, and since the

value of r can increase by at most one (whenever some j) = 0) as n increases, this term need never be com­

puted for values of r exceeding L . This is because, when r = L , we have

P [Q * > L ,Q -n=L\dQ = j o , . . . ,a n- i = j n- { \ = P [Q - n= L \a 0 = j 0, . . . ,¿*-<*-1) = jn -il • (4)

108

To compute the right hand side of (4), it suffices to consider arrivals only in slot -n and in the (M -l)

slots that precede it By periodicity of the arrival process, the arrivals in n of those slots are already con­

strained. Specifically, we have a.n̂ M. x)=jn. x, . . . , a ^ - j 0. The backlog due to these at the end of slot

-(M -l) is given by

bn =max{OJ(rlJo+ji-2,"Jo+ji+-+jn-i-n } •

We can therefore consider the following reduced problem: find the probability of a queue length of L at the end

of the last slot (slot — n) in a frame of length M' = M—n, given that there are K' = K-jo-...—jn- X arrivals in the

frame, and that the initial backlog is bH. Using methods based on a ballot theorem, as in [1], this can be done

in 0(K) computations, as will be shown later. Note that we need not have K' < M' here.

In order to do this terminal computation, however, we need to propagate efficiently the value of bn until

condition (4) is satisfied. To this end, define the running sum

»—1
Sn = YjJi ~ n •i=0

Note that

bn = max{/?„_!̂ „_i + On-i-1)} .

and

sn = i + (¿.-l-l) •

Thus, it suffices to preserve the values of bn and sn to compute the initial backlog for the reduced problem

which must be solved when the termination condition (4) is satisfied. To make the recursion more explicit, we

establish a new notation for the intermediate probabilities P[Q*>L,Q-n=r\a0 = j 0, . . . ,a_(n-i) =

Renumber slot -n to be slot 0 in a reduced problem with K' = (K -j0-...-jn- 1) arrivals in M' = (M-n) slots,

numbered from -(M'-1),...,0, with a running sum s' = sn and a backlog b' = bn as defined above. Denote the

probability of interest by PM’tK>[Lf\s'Jb']. The recursion for this function is then given by conditioning on the

number of arrivals in the slot being considered, and then shifting the time axis one unit to the left. This yields

r—1
PM'jc(Ls\s',br) = 2 PM’-\jr-j[LS-j+l\s'+j-l,max(b V)

;=o

109

+ (PM'-ijr-i[L>l\s'+l-ljnax(b,j '+ l- l)]+ P M'-ìjr-t[LMs'+l-hmax(b,,s,+l-l)])pM'tK'(l) . (7)

The quantities of interest are PMJC(L,/|0,0), 1 = 0 ,. . .¿ -1 . The termination conditions are as follows:

P i jr [L s \ b 'j '] = (8)

PM'jr[L ,r\b ',s'] = 0 , K ' + b ' < L , (9)

and

PM'jc'[LMl>'j']=PM'jr[L\b'] . (10)

Condition (8) deals with the degenerate case of a one-slot frame and condition (9) specifies the probability to be

zero when there are too few packets in the reduced problem to attain a maximum queue length of L . The last

condition, (10), has already been discussed and is the only condition that requires non-trivial (0 (K)) computa­

tion upon termination.

To compute the complexity of this algorithm for a given L , we first count the number of points to be

computed. Note that s ' in (7) is completely specified by M' and K', since

= (K-K*) - (M-M 0 .

We then have that l < M ' < M , 0 < K ' < K , 0 < b ' < K - 1, and 0 < r < L, where the last condition is by vir­

tue of (10). Thus, there are 0 (M K 2L) points to be computed in the recursion. The computation for each of

these points is trivial except for points that terminate in (10) due to r = L . There are O (M K2) of the latter,

and the computation at each of them is of complexity 0 (K) . This results in a complexity of 0 (M K3). Thus,

in our original notation, for any given L, the computation of P[Q*>L,Q(f=l] , l = 0,...JL—1, can be done in

0 (M K 3) computations. Thus, the complexity of computing P [Q * > L] using (2) and the recursion (7), is

0 (M K 3) for each L . Since this needs to be done for L = 1„.J5T, we have an overall complexity of 0 (M K4)

for the distribution of Q *.

It remains to show that the computation of the right hand side of (10), which corresponds to solving a

reduced problem as described earlier, has 0(K) complexity. We replace M', K' and b' with M , K and b ,

respectively, for notational convenience. These are not to be confused with the parameters of the original prob-

110

lem. We want to compute P[Qo>q], given that there are K uniformly distributed arrivals in the M slots num­

bered -(M -l)....0, and that the backlog at the end of slot -(M -l) is b. Let a, be the number of arrivals in

slot j . Then

Qo = max <KO , (11)
0£i<M

where

o
<Ki) = £ d j - i , 0 < i < M -2 , (12)

y=-*

<|)(M-1) = b+ £ aj - (M -l) = b + K - M + 1 . (13)
1)

We have P [Qo > q] = 1 if <K^~1) ̂q + 1, so we assume <f>(M- l) = b + K - M + l < q + l to avoid trivial­

ity. This implies, using (11), that there exists an i < M -l such that <t>(i) = q + 1, since <j)(z) can increase by at

most one as i decreases, and Qo > <7 • Let (x-1) be the largest such i . Define the following events:

o
Ax = {<K*-1) = <? + !} = { £ a; =q + x) ,

y—<*-D

Bx = i m < q + 1 . “(M -l) < i < -x) .

Then

P lQ aX l'i = I , P lA xr f i ,] = I 1P lA ,] P lB x\Ax} .
X X

We have

(14)

P[AX] =

’ K '
< q+x

0

(x/M)q+x (1 -x/Mf-*-

, else .

, 0 < x < K-q , (15)

Notice that P [BjA*] = P with

Bx = { E ai < (*-*+1) »* = x,...,(M-2)) ,

where we have subtracted the (^+x) arrivals in the last x slots, and have used the assumption that

<j)(M-l) < q + 1. Due to the independence of the sources, the event Ax influences the conditional probability of

111

Bx only by specifying the number of arrivals in the (M-x) slots numbered -(Af-1),...,-x to be (K -q -x). Con­

ditioning further on the number of arrivals in the first slot -(Af-1), we have by a ballot theorem (see [1]) that

P = 1 - (K-q-x-a-(M-\))/(M-x) .

Conditioned on Ax, a_0/_d is binomial with parameters {K -q -x) and 1 /(M-x), so we can remove the condi­

tioning on a t0 obtain

P [BX]AX] = 1 - (K-q-x)/(M-x) + (K-q-x)/(M-x)2 ,1 < x < M -1. (16)

Recall that it was assumed that K+b-(M -l) < q+1 to avoid triviality. This implies that K -q<M -1.

Thus, from (15) and (16), the range of x of interest is 1 < x < K -q , so that, substituting (15) and (16) into (14),

we get an 0(K) complexity for the desired computation as promised. It is interesting to note that the expres­

sion for the resulting probability does not depend on the initial backlog b. We have for b<q+M-K ,

PMjc[Q6><l\b] - 2
X=1

K

lq+x)
(x/M)^x(\ - x/Mf-*-* [l-(K-q-x)/(M -x) + (K-q-x)/ (M -x)2] ,

and for b >q +M -K ,

PMjdQ*xi\b] = l •

This completes the description of the algorithm for computing the maximum queue length distribution.

The overall complexity is O (M K4) as shown earlier. The algorithm in [7] has complexity 0(M3K), and is

therefore better for typical applications, in which K is 0(M). Our algorithm will be competitive only for

K < M2*.

III. Asymptotic Results for K=M

We are interested in the asymptotic behavior of Qo and Q* as Af -» °°, with K = M . Assume, as in the

previous section, that the periodic pattern has been established. Then the queue length at a typical slot is written

as

o
Qo = max { £ a, - i }

o*<M jZi

Define

112

<K0 = £ aj - * * - 0 •
0

Note that this definition is slightly different from that of the previous section. By periodicity and interchangea­

bility, has the same distribution as (a0ai , . . . ,aM-\), so we can write £ 0 = max <KO

without changing the distribution of Q0. The maximum queue length Q* can also be written as a function of

the <j>(i). It is easy to see that

Q* = max max[<j)(0 - <K-y)l •
s t>s

Since K = Af, we have <J>(i + j M) = <J>(0. 0<i<MJ>\. This implies that we can express Q* as

Q* = max <b(i) - min <j>(z) .
0 <i<M OZi<M

Let Gm(x) be the empirical distribution of M independent and identically distributed samples from the

uniform distribution over the unit interval. Since

»-i
(l/M)<Ki-l) = (£ aj)/M - i/M + 1/M ,

o

so that

(1/Af 1) = - i/M) + 0(VM) .

Denote M'a(Gm(x)-x) by pM(x). It is known [4] that pw converges weakly to the Brownian bridge WQ, which

is given as

W0(x) = W (x) - x W (1) , 0<x<l ,

where W is standard Brownian motion starting at the origin. Let H be a functional on the space of CORLOL

functions on the unit interval. If H is continuous with respect to the sup metric, we have H (pw) -» H(W0) in

distribution as M —> The two functionals of interest here are

Hl(f) = sup f i x) ,
0£x£l

and

H2(f) = sup f i x) - inf f i x)
(KxSl (KxSl

113

Both these functionals are easily seen to be continuous in the sup metric.

We now have

AT* Qq = max M'\GM(i/M) - i/M) + O (M~'A) , M .
1 SUM

Similarly,

AT* Q* = max M\Gm(HM) - i/M) - min M'\Gm(HM) - i/M) + 0 (M “*) , Af -> «» .
ISiSAf ISiSAf

Note that for 0<x<l, we have

GMixM}/M) - \xM\/M - MM < Gu {x) - x < Gm$xM])/M - {xM]/M + MM ,

so that

max (GM(i/M)l<i<M
i/M)= sup (Gm(x) - x) + 0(MM) , Af

and

min (GM(i/M) - i/M) = inf (GM(x) - x) + 0(MM) , M -» °°,

Thus, we can write

Arw2o = Hi(P«) + 0(M ',A) , M - * ~ ,

and

Af"* (2* = H2(pM) + 0(AT*) , Af oo .

It now follows that M~'AQ0 converges in distribution to H^Wq), which we denote here by X0. Similarly,

M~l/lQ* converges in distribution to H2(W0), which we denote by X*. The distribution of X0 is given by [9]:

P[X 0<x] =
1 - exp(-2X 2) jc > 0 ,
0 , x < 0 ,

which yields £[Xq] = 1/i(ji/2)v\ The distribution of X* is the same as that of the maximum of a Brownian

excursion [10], and is given by [3]

114

P[X* <x] =

1 - 2 Y, (4 k2* 2 - 1) exp(-2k2*2) , x > 0 ,
t=i

0 , x < 0 .

It is shown in [3] that E[X*] = (tc/2)'a.

Thus, roughly speaking (convergence in distribution does not imply convergence of means), Q0 grows as

1/£(7c/2)ViAfv\ and Q* as (k12)'aM'a for large M. It would be interesting to examine the asymptotic behavior of

these quantities for K = M - c Afa, for 0 < a < 1. For KIM = X, the system behavior tends to that of an

M/D/l queue with unit service time and arrival rate X (see [8]). The queue becomes unstable for X = 1, so both

Qo and Q* will grow with M for K = M - c Ma. We would like to find the growth rate as a function of a.

The problem is to find an appropriate normalization for <KO- We have to account for the fact that 4> is no

longer periodic; in fact, we have <}>(z+M) = <{>(/)- c Ma.

TV. Conclusions

We have given an 0(M AT4) algorithm for computing the maximum queue length distribution for an ATM

link with periodic arrivals. When the system is operating at maximum load, i.e., K = M, we have shown that

both the typical queue length and the maximum queue length grow as M'a by showing that the asymptotic distri­

butions of M_v40 o and M~*Q* are equal to those of the maximum of a Brownian bridge and Brownian excur­

sion, respectively. These are also the limiting distributions of certain Kolmogorov-Smimov statistics, and this

was implicit in the development in Section III.

It would be interesting to examine the system behavior for large M when K = M - c Ma for 0 < a < 1,

as pointed out at the end of the previous section. Another open problem in ATM systems is the analysis of net­

works of links; it is necessary to understand the output process from a single link in order to carry out such an

analysis. The assumption of independent sources breaks down if the input to a given link is the output from

some other link(s). In a somewhat different vein, if low priority aperiodic traffic is also present at a given link,

we would like to compute the delay it suffers. If we assume that the aperiodic traffic can only use the slots that

are left over after in a frame after the periodic traffic is served, the expected delay can be computed as a func­

tion of the number and spacing of the available slots [2, 6]. It can be shown, using a result of Hajek [5], that

the expected delay is minimized for equally spaced slots, if the number of available slots in a frame is given.

115

This provides a lower bound for the expected delay. A better lower bound can be obtained by accounting for

the fact (see [5]) that the spacing between the available slots has to be an integer. We conjecture that, given the

number of available slots in a frame, the expected delay is maximized if there is no spacing between the avail­

able slots in a frame.

ATM is becoming increasingly popular for networks that provide integrated services, and a great deal of

research effort is currently being devoted to gaining a basic understanding of ATM systems. This paper consid­

ers some analytical problems that arise in this context: some partial solutions are given, and some open problems

are pointed out

References

[1] A. Bhargava, P. Humblet and M. G. Hluchyi, "Queuing analysis of continuous bit-stream transport in

packet radio networks," Proc. IEEE Globecom 1989, pp. 25.6.1-25.6.5.

[2] I. Cidon and M. Sidi, "Performance analysis of asynchronous transfer mode (ATM) systems," preprint,

November 1988.

[3] R. T. Durrett and D. L. Iglehart, "Functionals of Brownian meander and excursion," Ann. Probability, vol.

5, pp. 130-135, 1977.

[4] P. Gaenssler and W. Stute, "Empirical processes: a survey of results for independent and identically distri­

buted random variables," Ann. Probability, vol. 7, pp. 193-243, 1979.

[5] B. Hajek, "Extremal splittings of point processes," Math. Operations Research, vol. 10, pp. 543-556,

November 1985.

[6] M. Hofri and Z. Rosberg, "Packet delay under the golden ratio weighted TDM policy in a multiple-access

channel," IEEE Trans. Inf. Theory, vol. IT-33, pp. 341-349, May 1987.

[7] T. Ott and J. G. Shanthikumar, "On a buffer problem for packetized voice with an N -periodic strongly

interchangeable input process," preprint, July 1989.

[8] T. Ott and J. G. Shanthikumar, "Structural properties and stochastic bounds for a buffer problem in packet­

ized voice transmission," preprint, October 1989.

116

[9] R. J. Serfling, Approximation Theorems of Mathematical Statistics. New York: Wiley, 1980.

[10] W. Vervaat, "A relation between Brownian bridge and Brownian excursion," Ann. Probability, vol. 7, pp.

143-149, 1979.

117

Branko Radosavljevic
High Speed Computer Communication Networks
EE 497 BH
Spring 1990
Prof. Hajek

Head of Line Blocking in Packet Switches

I. Introduction

This paper contains an analysis of Head of Line (HOL) blocking in inter­

nally nonblocking packet switches. HOL blocking occurs when too many

packets simultaneously request the same output. Initially, only a portion of

these packets can be delivered, due to the finite capacity of each output port.

The other packets must wait in a queue. This effect limits the maximum

throughput of a switch, and determining this throughput is the subject of this

work.

The model is defined as follows. The packet switch has N inputs and N

outputs. Each output consists of r trunks or servers. When a packet

requests a given output, it considers the r associated servers to be equivalent

destinations. The switch is internally nonblocking, which means that blocking

occurs only due to output contention. Thus, if m HOL packets request the

same output, then mAr of them will immediately start transmission through

the switch. The rest of the packets must wait in queues; a queue is associated

with each input port of the switch. The method for determining which HOL

packets win an output contention is arbitrary, as long as it does not depend

118

on the destinations of the other packets in the input queues. This decision

influences packet delay, but not throughput.

Each input of the packet switch receives packets according to a Poisson

process with rate X, and arrivals at different inputs are independent. The

packet destinations are independent and uniformly distributed over the set of

outputs. Concerning packet lengths, two different cases are considered. For

the continuous time case, packet lengths are independent and exponentially

distributed with mean l//x. For the discrete time case, time is slotted, and

each packet requires one slot for transmission. In what follows, the HOL

queue for output i is defined to be the virtual queue consisting of the HOL

packets that request output i .

In this paper, results are derived concerning the saturation throughput of

a switch, which is the expected throughput when each input queue (as

opposed to HOL queue) is never empty. This quantity equals the maximum

throughput, which can be shown by sample path comparison. Section II con­

siders the saturation throughput for the continuous time case, and Section III

studies the discrete time case. Section II also discusses the equivalence

between packet switches and closed networks of queues. Concluding remarks

are presented in Section IV.

119

n . The Continuous Time Case

A. One server per output

This section considers the continuous time m odel with r, the number of

servers per output, equal to one. A s discussed in Section I, I assume the

switch is saturated. This system can be m odeled as a continuous time Mar­

kov chain, with state space

S —
N

(x v . . . ,XN) : x i > 0, = N
i- 1

where x i is the size o f the H O L queue for output i. The allowable transitions

take the form

» ' i — * » - 1

X' j*— X j + 1

where i must satisfy x i > 1. This corresponds to a packet with destination i

com pleting service (i.e ., transmission) and being replaced by a packet with

destination j . The corresponding rate is f i / N , since a packet com pletes ser­

vice at rate ¿¿, and the next packet in the input queue has destination j with

probability 1 /N .

Then 7r(s)=iC for som e constant K is a stationary distribution. This fol­

lows from the fact that if s and s ' are two states in 5 , then s —►$' implies

s '—*s, where the arrow notation denotes one-step reachability. In addition,

the transition rate is the same in both directions. Thus, 7r(s)= K satisfies the

120

local balance equations. This shows 7r(5) is stationary, as well as that the pro­

cess is reversible. To determine K , note that the number of states in S equals

the number of ways to put N indistinguishable balls into N distinct bins.

Thus,

To determine the saturation throughput, v, let

P q— P(*, = 0)

where i is arbitrary and P is calculated according to the stationary distribution

7r. Then

N - l

2iV-l

since the number of states with x i = 0 equals the number of ways to put N

balls into N —1 bins. Then v is given by

v = (X -P o)V ‘

N
= ---------- P

2 N - 1

Note that v > 1/2, and lim v — 1 / 2 . This behavior agrees with the approxi-
N—+00

mate analysis performed in class.

121

B. Many servers per output

Now we allow r, the number of servers per output, to be greater than

one. Again we model the system by a Markov chain, with the same state

space S defined in Section LA. We have the same set of allowable transi­

tions, but now the transition defined by

x ' j x j + 1

has rate (^ A r) f j , / N , since x tl\r is the number of busy servers for output i.

The corresponding stationary distribution is given by

where

n «*,)
/ - I

f t x) =

x\

x —r ,
k r r!

x < r

x > r

and G , a normalizing constant, is given by

<?= 2
s e s n « * »)

i-1

It is easy to verify that 7r(s) satisfies the local balance equations, which implies

that 7r(s) is stationary and the process is reversible.

122

Notice that 7r(s) has the form of the joint pdf of a set of N iid random

variables, conditioned on the event that their sum equals N . Therefore, one

can use tilted probabilities to find the limit of the marginal distribution of x i

as N goes to infinity. (This is a well-known result; see, for example, Van

Campenhout and Cover (1981).) Then

P k = lim P(*, = £)
N—+00

1 &1 OL

' G (a) lS (k)

where

oo k
OL

G (a)= £
*-o m

and a satisfies

E[x,.]= 1

Then the saturation throughput v is given by

v = E^.Ar] n

p °° ak
= - ^ E (* A r) --------

° (“) *_! m

p °° c t
= - ^ E -------------

G (a) M 1)

= a(i

I wrote a computer program to compute a given r . It uses the bisection

123

m e th o d , together with the fo llow in g form u las.

r—1 ka a
G (a) = S — + ,

k_Qk\ r ! (l —a/r)

1 r~2 a* aT (a/r + r — a)
E [*J = — « E - + — -------------- --G(a)

L A:=0
k\ (1 - a/ry

T h e results are show n in Figure 1.

r a
1 .5000
2 .8284
3 .9611
4 .9934
5 .9990

Figure 1. N orm alized throughput, a , as a fun ction o f the n u m ber o f servers

per output, r , fo r exponentially distributed packet lengths.

C. Equivalent systems

This section d iscusses the similarities betw een packet sw itches and closed

netw orks o f queu es. First, w e define a c losed netw ork o f M ark ovian queues

as fo llow s. T h ere are M n od es and K cu stom ers. N o d e i consists o f a queue

and rx exponential servers, each with rate /¿f.. U p o n com p letion o f service at

M
n od e i , a cu stom er m oves to n od e j with probability r w here Y j ri j ~ E

124

Then a saturated packet switch with exponential packet lengths

corresponds to a closed network of Markovian queues with M = K — N ,

ri ~ r> V'i ~ A4» anĉ rij — 1/AA. Specifically, the two systems behave as con-

tinous time Markov chains with the same state space, the same set of allow­

able transitions, and the same transition rates. For the packet switch, the

state is defined as in Section I.B, where the state equals (x v . . . , x N) and x i

is the size of the HOL queue for output i . For the network of queues, x i is

simply the queue size at node i .

An unsaturated packet switch can be modeled as a closed network of

Markovian queues as well. Here we assume exponential packet lengths and

Poisson arrivals to the switch with rate X. The corresponding network of

queues is the same as that for a saturated switch, except that an extra node is

added with an infinite number of rate X servers to model the arrival process.

Networks of Markovian queues were studied by Gordon and Newell

(1967). They determined the unique stationary distribution for the associated

Markov chain, and also considered the limiting behavior of the marginal dis­

tribution of a subset of the state vector as M and K go to infinity. The sta­

tionary distribution is given by

M a*'
p(xp . . . , %) = g n

¡ .1 # (* ,)

where G is a normalizing constant, ^ satisfies

125

M

Vi ai = E i = 1,2,... , M

7-1

and /?. is the function ft defined in Section I.B with r — rr This result agrees

with those presented in Sections I.A and I.B. Jackson (1963) considered an

open network of Markovian queues where the customer arrival process

depends on the total number in the system, and the service rate at a node

depends on the number on the number of customers at that node. This

includes the closed network as a special case.

Packet switches with packet length distributions other than exponential

can be modeled as networks of queues as well. The queues have service time

distribution equal to the packet length distribution. However, it is difficult to

analyze general networks of non-Markovian queues.

HI. The Discrete Time Case

We now assume time is slotted, and each packet requires one time slot

for transmission. For a given output i, the dynamics of its HOL queue are

given by

<?n+l ==<7»-<7nA ' ' + Vn+l

where qn is the size of the HOL queue at time n , r is the number of servers

per output, and vn+1 is the number of new arrivals at time n + 1 (i.e., new

HOL packets that request output i). To simplify the analysis, I assume vn+1

is Poisson with mean X and independent of qn. This follows the approach

126

taken by Hui and Arthurs (1987) for the case r = 1. This is a reasonable

assumption for large N because then the number of empty input queues is

approximately constant. If it were constant, then vn+1 is the sum of a large

number of improbable events, which is approximately Poisson. That the

mean of vn+1 equals X follows from stability.

To determine v , the saturation throughput, we will determine the

minimum value of X for which saturation occurs. Equivalently, this is the

smallest value of X for which E\q\, the steady state expected queue size,

equals one (Section I). Then u— X. For r — 1, the dynamic equation for qn+l

is the same as for an M /D /l queue, which is well understood. However,

when r > 1, the update equation corresponds to that of an M /D/r queue with

gated service (i.e., service starts only at slot boundaries). As far as I know,

there is no closed form solution for E[#]; no results in this direction are

presented in the books by Kleinrock or Kelly. In general, the queue M /G/r is

not well understood (as opposed to G/M /r).

The random process (qn)n>0 is a discrete time Markov chain. A station­

ary distribution vector tt must satisfy tt— 7rP, where P is the transition matrix.

One way to solve for tt is through the method of successive approximations.

Start with an initial distribution 7r , and successively compute

(n+l) («)t>

Expanding the matrix P, we obtain

127

where

7r(n+1)(/c)= ' £ a k ^ " \ i) + T , a k + r - i 7r''l ' (i)

r—1
»

k+r

i-O ¿—r

is the Poisson distribution.

A computer program was written to implement this procedure. Given r

and X, it iterates to find the stationary distribution, and uses this to compute

E [q] . Due to finite memory and processing time, only the first one hundred

elements of were stored. The iterations stop when there is no change in
_JJ

E[g] (with resolution 10). The bisection method was then used to find ¿/,

which is the value of X that gives E[#] = 1. The results are shown in Figure 2.

The result for r — 1 agrees with the value obtained by Hui and Arthurs.

r V

1 .5858
2 .8845
3 .9755
4 .9956
5 .9993

Figure 2. Saturation throughput, v , as a function of the number of servers
per output, r, for slotted time and fixed length packets.

128

The following formula was used to compute E[g].

E M -
r/4.̂ — ^ H" X

2 (r -X)

where

r—1
j> o

k=0

This expression has the advantage that it does not require an infinite sum to

be evaluated. It is obtained by squaring both sides of the dynamic equation

for qn+l, taking expectations, and assuming steady state behavior. It also uses

the relation

r A 0 — A x = r — \

which is obtained by simply taking expectations of both sides of the dynamic

equation for qn+1 and assuming stability. It would be desirable to obtain a

closed form expression for r A 1— A 2 in terms of r and X, because then it

would not be necessary to determine the distribution 7r in order to obtain

E[q]. I have not obtained this. However, it is known that r A 1 — A 2 converges

to r \ — X2— X for r » X.

TV. Conclusions

In conclusion, this paper presented an analysis of Head of Line (HOL)

blocking in an internally nonblocking packet switch with r servers per output.

Results were obtained concerning i/, the saturation throughput. For the

129

continuous time case with exponential packet lengths and r = 1, v was

obtained as a function of N , the number of switch inputs. For r > 1, the

asymptotic value of v was obtained as N goes to infinity. In addition, the

packet switch was shown to behave equivalently in a sense to a closed net­

work of queues. For the discrete time case with fixed length packets, an

approximate analysis was performed to determine the asymptotic value of v

for large N .

For both the continuous time and discrete time models, v quickly

approached 1 with increasing r, and u > .999 for r — 5 (both cases). The

discrete time value was always higher, but the relative improvement decreased

with increasing r . The discrete time case may perform better because of zero

variance in the packet lengths, unlike the exponential packet length case.

As stated before, the analysis for the discrete time case was approximate.

For future work, it would be desirable to obtain similar results through an

exact analysis. The author conjectures that the results obtained through the

approximate analysis are correct asymptotically in N .

References

Gordon, W. J. and G. F. Newell, “Closed Queueing Systems with Exponen­
tial Servers,” Operations Research , 15, pp. 254-265 (1967).

Hui, Joseph Y. and Edward Arthurs, “A Broadband Packet Switch for
Integrated Transport,” IE E E Journal on Selected A reas in C om m unications ,
SAC-5, pp. 1264-1273 (1987).

130

Jackson, J. R., “Jobshop-Like Queueing Systems,” M a n a g em en t S c ien c e , 10,
pp. 131-142 (1963).

Van Campenhout, J. M. and T. M. Cover, “Maximum Entropy and Condi­
tional Probability,” I E E E T ran s, o n In fo rm a tio n T h e o r y , IT-27, pp. 483-489
(1981).

131

Matthew T. Busche
May 10,1990
EE 497

SWITCHING ARCHITECTURE OF THE 5ESSTM

INTRODUCTION

The 5ESS switching system is the first 'world class' switch, capable of operating in both
American and European networks [1 and 2] despite differences in operations standards in
these two environments. The 5ESS is also one of the first switches designed to support all
functions required for ISDN data formats and protocols.

This paper examines the underlying Time-Space-Time architecture of the 5ESS. All major
elements affecting end to end data flow are examined. The paper closes with a brief
discussion of the 5ESS switching capacity.

The 5ESS has a distributed architecture based on three major components: an administrative
module (AM), a communications module (CM) and a number of switching modules (SM).
See Figure 1. Each SM contains a time slot interchanger (TSI) and the CM contains a time
multiplexed switch (TMS). The CM and SMs are networked together to give the 5ESS its
time-space-time (TST) switching function.

With special interface equipment a SM can be configured to operate remotely (up to 100
miles away). The remote switching module (RSM) interfaces with a host SM rather than
the CM. The RSM provides an economical means to support customers in sparsely
populated areas.

1 . ADMINISTRATIVE MODULE

The AM provides interfaces to operate and maintain the switch. Processing is performed
by the administrative processor (AP), an AT&T 3B20D computer. The AP is fully
duplicated for reliability. If a fault occurs in the active AP control is transferred to the
backup with no loss of data.

The call-processing functions performed by the AP are routing and time slot allocation.
Routing is the determination of the destination SM from dialed digits. If a call is destined
for a trunk group (as opposed to a customer line) the AP will also select an available trunk
within the group as a part of the routing function.

The AP has a disk memory for storage of call data, routing data and programs used by the
AP and SMs. The AP also interfaces with an I/O Processor which supports video display
units, hard copy printers, magnetic tape drives and a Master Control Center (MCC).

The MCC provides the 5ESS with a man-machine interface. Functions performed by the
MCC include system status display and manual control of system operations.

2 . COMMUNICATIONS MODULE

132

The C M contains two 32x32 (i.e. 32 input and 32 output) single stage time multiplexed
switches (T M Ss). Each TM S is connected to each S M by two fiber optic lin k s-on e input
link and one output link. Thus a SM is connected to the C M by four fiber optic links—two
links for each IM S within the C M . See Figure 2. Both T M Ss and all fiber optic links are
duplicated for reliability. So there are actually four TM Ss in the C M o f which two are
active. Similarly each SM is actually connected to the C M by eight fiber optic links o f
which four are active.1

Each link transmits data at a rate o f 32 .768 M b/s. Data on the links is partitioned into
frames. Frames are further partitioned into 256 time slots, with each time slot carrying 16
bits o f data. 8000 frames per second are carried over the links. Each TM S changes its
connection pattern 2.048 million times per second-one switch setting for each time slot

One input and output on each TM S is reserved for testing. Another input and output on
each IM S is used by the message switch (M SG S) as described below . The remaining 30
inputs and outputs may be used by SM s. Thus, the C M may support up to 30 SM s as
depicted in figure 2.

Since there is no need for unidirectional channels in a telephone network, all data channels
are bidirectional (i.e. full duplex). Unidirectional data paths between SM s are set up in
pairs. Here, a unidirectional data path from SM A to SM B refers to a fixed time slot in
each frame o f one o f the output links from A and the same fixed time slot on the
corresponding input link to B . A channel between two SM s A and B consists o f two
unidirectional data paths, one from A to B and one from B to A . The two data paths use
the same time slot through the T M S. W ith 256 time slots on the fiber optic links and one
link to and from each I M S , a SM has the potential to support five hundred twelve 128 kb/s
full duplex channels.

In addition to the two T M Ss, the C M also contains a message switch (M SG S). Like a SM
the M SG S has one input link and one output link for each T M S . The M SG S is a relay
station for control messages sent from SM to SM and from SM s to the A M . Every SM is
assigned a unique control time slot from the available 256 time slots. This time slot is
fixed.

M essages carried over the control channels are sent in packet form by the CC ITT X .2 5
level 2 protocol [1, pg. 1342]. Types o f control messages carried over these control
channels include call routing requests, time slot allocation directives, and synchronization
signals.

Data originating from a SM on a control time slot is automatically switched through the
TM S to the M S G S . To send control messages to a SM , the M SG S need merely send the
message to the TM S in the control time slot associated with the destination SM . Every SM
thus has two permanent channels (one through each T M S) with the M SG S.

The network clock is responsible for synchronization. It also resides in the C M and
interfaces with the M SG S. Buffering between the C M and SM s allow for up to one full
frame o f delay so cable length matching is not required [1 , pg. 1425].

3 . S W IT C H IN G M O D U L E

1 High reliability requirements of telephone switches necessitate the redundancy of critical elements within
the switch. It is highly improbable, for example, that without a good deal of knowledge about the
construction of a switch, that one could bring it down with a single blow of a hammer.

133

The SM consists o f three major sections: the control unit, the time slot interchanger unit
(TSIU) and peripheral equipment See figure 3 . SM s w ill vary in the type and quantity o f
peripheral equipment depending upon the characteristics o f the lines and trunks terminating
on the SM . The TSIU and control unit are the same in all SM s however, and since these
units are critical to the operation o f the SM , components within them are fully duplicated
for reliability.

3 .1 C O N TR O L U N IT

The control unit is based on a 32-bit processor. 95% o f call processing functions required
by the lines and trunks terminating on a SM are performed by the control unit (with the
remainder being performed by the A P). The control unit also provides maintenance
functions and control over the peripheral equipment.

3 .2 TIME SLOT INTERCHANGER UNIT

The TSIU contains a duplicated full duplex TSI. Functionally the TSI performs the job o f
two unidirectional TSIs with the input-output permutation o f one just the inverse o f the
other. Figure 4 depicts the major function o f the TSIU which is to provide switching
between peripheral equipment and the C M . Note that the TSI has been separated into two
unidirectional TSIs for clarity.

Each frame through the TSI has 512 time slots o f 16 bits each for a data rate o f 65 .536
M b/s. The dual link interface (DLI) connects the TSI to the four multimode fiber optic
links which in turn are connected to the C M . The D LI uses LEDs for optical transmission
on two o f the links and a pin photo diode as a light transducer for reception on the other
two links. Information is transmitted in non return to zero format at 32 .768 M b/s.

Serial output from the TSI directed to the C M is demultiplexed in the D LI onto the two data
links by sending odd time slots on one data link and even time slots on the other. Frames
on the data links then have 256 time slots. Input links to the TSI from the C M carry data in
the same format, which the D LI multiplexes into a serial data path for use by the TSI.

The data interface (DI) connects 32 peripheral interface data buses (PIDBs) to the TSIU.
Each PIDB has 32 channels. Peripheral units may use one or more PIDBs for connection
to the TSIU . 32 PIDBs with 32 channels each introduce 1024 channels to the TSIU . The
TSI can only operate on 512 o f these channels. The D I multiplexes the 32 data busses and
performs a 2 :1 concentration function generating 512 serial channels for the TSI.

Often calls originating at a SM are destined for another customer homed on the same SM .
Instead o f routing these calls to the C M and back again, a special switching function is
provided in the TSIU allowing these types o f calls to loop back to the peripheral units. See
figure 5. In the figure the two directions o f data flow have again been separated for clarity.

The TSIU also provides special switched access for the Local Digital Service Unit (LD SU).
The L D SU is equipped with a universal tone generator (U TG) that provides a large variety
o f call progress tones, including dial tone ringing tone, busy tone, congestion tone, call­
waiting tone, as well as multi-frequency tones used on inter-exchange circuits. A universal
tone detector (U TD) detects M F as well as dual tone multi-frequency (D TM F) signals. The
LD SU can also be equipped with recorded announcement circuits.

Figure 5 also shows two channels used for control data entering the TSIU from the control
unit Note that these channels bypass the TSI and are connected directly to the D LI. The

134

D LI replaces two consecutive time slots from the TSI with the control data. The two
control channels traverse different data links, but in the same time slot. In the other
direction the D LI extracts data from the control time slot on each link and directs it to the
control unit

3 .3 PERIPHERAL EQ UIPM EN T

Four types o f line and trunk peripheral units are available. Line units (LU s) interface to
analog subscriber lines. Analog trunk units (A T U s) interface to analog trunks. Integrated
services line units (ISLUs) interface to both analog and digital subscriber lines. Digital
trunk units (D TU s) interface with digital trunks, R SM s and subscriber multiplex systems.2
It is important to note that much circuitry within peripheral equipment must be dedicated to
the lines or trunks that they serve. Thus to serve a large number o f customers, a large
number o f peripheral circuits are required. The dedicated circuitry required in peripheral
equipment generates most o f the hardware expense for the switch.

3 .3 .1 LIN E U N ITS

LU s terminate all circuits in the subscriber line category, including payphone lines and
private automatic branch exchange (P A B X) lines. The L U interfaces with the TSIU
through two PIDBs. A LU provides all circuitry to provide subscriber lines with the
B O R SC H T [3] services. The B O R SC H T services are:

Battery The provision o f power to a customer line.

Overvoltage protection

Ringing

Protection o f the LU and the rest o f the switch from
lighting hits on customer lines and other high
voltages generated by the switch itself (e.g. ringing
and test signals can exceed 100 volts).

Ringing includes, 20 Hz 88 V rms ringing voltages
and 130 V olt coin control pulses.

Supervision Supervision determines when a customer has gone
o ff hook.

Coding and decoding A to D and D to A conversion.

Hybrid Customer lines carry a two way data path over two
wires. Hybrid circuits provide 2 wire to 4 wire
conversion.

Testing Customer lines are regularly tested to detect
impairments and to measure impedance and losses.

Figure 6 shows a diagram o f a L U . The L U consists o f 64 channel circuits, an access
network, high level service circuits (H LSCs) and a concentration network.

The 64 channel circuits permit up to 64 simultaneous customer connections. Each channel
circuit provides the B O C H portion o f the B O R SC H T services for an active line. Channel

2 A subscriber multiplex system multiplexes several customer lines onto one service circuit. [3,341-342]

135

circuits also contain supervision circuitry which periodically pole inactive customer lines to
detect o ff hook status.

H LSC 's perform the ringing and test functions. The H LSC's interface with the analog
circuits through a space division access network.

The concentration network is constructed o f gated diode crosspoints (G D X). G D X is a
solid state silicon based 590 volt technology. High voltage circuitry is needed to switch
power and ringing and test voltages and also to protect from lightning. The G D X network
provides concentration ratios from 2:1 to 10:1. W ith a 10:1 concentration ratio the LU can
support a maximum o f 640 subscriber lines.

3 .3 .2 A N A L O G T R U N K U N IT

The A T U uses two PIDBs to provide terminations for 64 analog voice-frequency trunks.
Each trunk has an associated trunk circuit which provides A to D and D to A conversion, dc
signalling and test access functions. The A T U also has a set o f common circuits that
perform testing, alarming and multiplexing functions.

3 .3 .3 IN TEG R A TED SERVICES LINE U N IT

A n ISLU allows for the connection o f both analog and digital subscriber lines. The ISLU
has the same components as a LU to provide analog service, but in addition it provides an
interface for the ISD N 144 kb/s basic rate interface (BR I). [4] The ISLU can support a
maximum o f 512 lines analog or digital. Concentration ratios for digital lines can be varied
from 2:1 to 16 :1. Analog concentration may be varied from 1:1 to 8 :1 . Another difference
between the ISLU and the LU is that maximum number o f terminations is not affected by
the concentration ratio. Rather the number o f PIDBs is affected. The number o f PEDBs
may vary from 2 to 16.

3 .3 .4 D IG IT A L T R U N K U N IT

The D T U interfaces with 1.544 M B /s T1 facilities (or 2 M b/s facilities for European
applications). The primary function o f the D TU is to convert the bipolar T1 carrier format
into a unipolar format and distribute the T1 carrier frame onto a 32 time PIDB. The 24
PCM time slots from the T1 line are evenly distributed over the 32 time slots available on a
PIDB. Idle code is used to fill the remaining time slots.

The D T U provides the 1.544 M b/s ISD N primary rate interface (PRI) and connection o f the
5ESS to other exchanges. Another important function o f the D TU is interface with a R SM .
See below.

4 . R E M O T E S W IT C H IN G M O D U L E

The R SM provides economical service to customers in sparsely populated areas up to 100
miles from the rest o f the 5ESS. The R SM is simply a SM with special circuits to connect
it to a host SM . The data links from the R SM 's D LI are converted to T1 data format and
transmitted across T1 facilities to the host SM . A maximum o f 20 T1 lines with 24
channels each may connect the R SM to its host SM . The R SM can support a maximum o f
4096 lines with a concentration ratio o f 8 :1 .

5 . 5E S S C A P A C IT Y

5 .1 TER M IN ATIO N C A P A C ITY

136

The number o f lines and trunks that can be terminated on the 5ESS is limited by the PIDBs.
A trunk uses a dedicated channel on a PIDB while a line can share a PIDB channel with
several other lines. The total number o f lines and trunks w ill depend on the concentration
ratio and the ratio o f lines to trunks. Figure 7 summarizes the termination capacity o f a
5ESS using 30 SM s for various line concentration ratios.

The TM S in the C M can be expanded to support a maximum o f 190 SM s. Figure 8
summarizes the termination capacities for the 190 SM exchange.

5 .2 TR AFFIC C A R R YIN G C A P A C IT Y

W ith 512 channels available, a SM can handle approximately 450 erlangs o f traffic. The
TM S is the bottle neck for the 5ESS as a whole. W ith 190 SM s, the 5ESS can handle
approximately 45 ,000 erlangs o f traffic.

5 .3 C ALL-PR O CESSIN G C A P A C IT Y

The 5ESS can process approximately 300 ,000 busy-hour calls, although call processing
capacity depends largely on signaling arrangements, call mix and feature options selected.

C L O S IN G C O M M E N T S

Although this paper examined only the 5ESS it should be noted that most telephone
switches are similar in architecture. The time-space-time architecture for example is very
popular (e.g. A T & T s System 85 P B X). A ll switches that are designed to serve customer
lines must provide the B O R SC H T services and interface with analog trunks requires A to D
and D to A conversion. Thus, peripheral equipment among different telephone switches is
similar. In short, the uniform functionality o f a telephone switches to a large extent forces
uniformity in architecture.

137

R E F E R E N C E S

1 W .S . Hayward, editor, Special issue on the 5ESS Switching System , A T & T
Technical Journal, vo l-64 no. 6 Part 2 , July-August 1985.

2 A T & T and Phillips Telecommunications promotional document, "5E S S -P R X
Digital Switching System, The Network M achine" A T & T en Philips
Telecomm unicatie, Bedrijven B .V ., P .O . Box 1 1 6 8 ,1 2 0 0 B D Hilversum,
The Netherlands

3 R. F. K ey, Editor, E ngineering and operations in the B ell S ystem , second edition,
A T & T Bell Laboratories, 1986

4 A .S . Tanenbaum, C om pu ter N etw orks, second edition, Prentice H all, Englewood
C liffs, 1988

R E F E R E N C E S D E S C R IB IN G O T H E R T E L E P H O N E S W IT C H
A R C H IT E C T U R E S

5 A . E . Spencer et. a l., Special issue on thee 4ESS switch, B ell System Technical
Journal, v o l-6 1 , no. 4 , Sept. 1977.

6 C . D . W eiss, et. a l., Special issue on the System 75 Digital Communications
System , B ell System Technical Journal, v o l-64 , no. 1 part 2 , January 1985.

138

A C R O N Y M S A N D A B B R E V IA T IO N S

1 A t o D
■ A M

AP
■ A T U
■ BR I

B O R SC H T
■ CCITT
1 CM

D to A
_ DI
1 D U
■ DTM F

ISD N
| ISLU
1 LU

LD SUm M C C
■ M F
* M SG S

P A B X
K PIDB
• PRI

R SMm SM
■ TM S

TSI
_ TST
1 T U
■ UTD

U T G

Analog to Digital
Administrative M odule
Administrative Processor
Analog Trunk Unit
Basic Rate Interface
Battery, Overvoltage, Ringing, Supervision, Coding and decoding
International Telegraph and Telephone Consultative Committee
Communications Module
Digital To Analog
Data Interface
Dual Link Interface
Dual Tone Multi-Frequency
Integrated Services Digital Network
Integrated Services Line Unit
Line Unit
Local Digital Service Unit
Master Control Center
Multi-Frequency
M essage Switch
Private Automatic Branch Exchange
Peripheral Interface Data Bus
Primary Rate Interface
Remote Switching M odule
Switching M odule
Tim e Multiplexed Switch
Tim e Slot Interchanger Unit
Time-Space-Time
Trunk Unit
Universal Tone Detector
Universal Tone Generator

139

P l t U R t l . 5“ b S S HU G ri L E . V £ L _

A R C H I T E C T U R E

140

l-X C -U ßEZ. T H E c o i n o m u N i r c A T i o N s

141

"THE
3
S w t t c HXIM G-

M O b U L E

142

? T f c S s

P
e
R u

A
L»

F i g - u r s 4

ftìAToa S W T T c r t XM Gr Fu NCTrûN l
o p t * e T s r o

143

r'
T

>F
>

m
x

'0
H

7
:,

(H
X

)

t'
M

 H
 z

 c

pn cr* ?a 6 L t>

T H- E T s i U

144

Fig. 6—Subscriber line unit.

145

(oo*\ tone*''*'1* i ' o*\

«• "7
(, ;nj ¿ t Cok̂ a c%Vî _S

íbP C
LtAc A *TV«*»s ic ca^«x«-í Vi < i

fóc ^ 0 A*o 4h (« -€.̂ C-X.̂ Aj C

146

