
DEFLECTION NETWORKS: PERFORMANCE

EVALUATION, LIVELOCK PREVENTION,

AND FORMAL SPECIFICATION

By

NOBUYUKINEZU

Bachelor of Science
Gakushuin University

Tokyo, Japan
1991

Master of Science
Oklahoma City University
Oklahoma City, Oklahoma

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the . Degree of

DOCTOR OF PHILOSOPHY
July, 1999

DEFLECTION NETWORKS: PERFORMANCE

EVALUATION, LIVELOCK PREVENTION,

AND FORMAL SPECIFICATION

Thesis Approved:

H- c&
Thesis Adviser

~~

11

ACKNOWLEDGMENTS

I would like to thank Dr. H. Lu, who gave me valuable instruction and

consistent support throughout this research. I would also like to thank Dr. John P.

Chandler, Dr. K. M. George, and Dr. Sheldon Katz for their critical reviews and

suggestions. I am grateful to Dr. G. E. Hedrick for chairing the defense meeting.

111

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION .. 1
1.1 Motivations ... 2
1.2 Objectives .. 4
1.3 Organization of this Dissertation ... 4

II LITERATURE REVIEW AND BACKGROUND 6
2.1 Routing in Wide Area Networks ... 6
2.2 Local and Metropolitan Area Networks 8
2.3 Deflection Networks ... 8

2.3.1 Characteristics .. 9
2.3.2 Topologies .. 10
2.3.3 Node and Link Failures ... 15
2.3.4 Network Expansion and Node Addressing 17

2.4 Specification Methods .. 19

III PERFORMANCE EVALUATION .. 21
3.1 Topological Measures ... 22

3.1.1 Distance Measures .. 22
3.1.2 Attainable Throughput ... 23
3.1.3 Don't Care Node ... 24

3.2 Routing .. 24
3.2.1 Routing Scheme for MSN ... 25
3.2.2 Routing Scheme for HTN ... 27
3.2.3 Simulation Results .. 30

3.3 Routing in Irregular Topologies -... 36
3.4 Random Routing ... 40
3.5 Summary .. 41

IV LIVELOCK PREVENTION ... 49
4.1 Method .. 50
4.2 Simplified Method ... 54
4.3 Link Assignments for Higher Degree Networks 55
4.4 Summary .. 56

iv

Chapter Page

V FORMAL SPECIFICATION ... 57
5.1 Overview of UNITY .. 58

5.1.1 UNITY Computational Model 58
5.1.2 UNITY Logic .. 59

5.1.2.1 Notation ... 59
5.1.2.2 UNITY Logic Operators 60

5.2 Specification ... 63
5.2.1 Requirements ... 63
5.2.2 Basic Model and Topology .. 64
5.2.3 I/0 Queues and Network Medium 65
5.2.4 Packet Representation .. 67
5.2.5 Packet Move ... 70
5.2.6 Selecting Switching Configurations 75
5.2. 7 Contention Resolution and Livelock Prevention 77
5.2.8 Lockout Prevention ... 82

5.3 Constructing A Simulator Program 84
5.3.1 Data Types and Representations 85
5.3.2 Initialization ... 86
5.3.3 Assignment Statements ... 86

5.4 Summary .. 88

VI CONCLUSION .. 90
6.1 Contributions .. 90
6.2 Future Research Problems and Discussion 92

BIBLIOGRAPHY ... 95

V

LIST OF TABLES

Table Page

3.1 Diameter and Average Inter-nodal Distance 22
3.2 Maximum Attainable Throughput ... 24
3.3 Throughput and Delay of Bidirectional Loop 30
3.4 Nodal Throughput and Average Delay 31
3.5 Deflections Density in MSN (Random CR) 43
3.6 Deflections Density in HTN {Random CR) 44

· 3.7 Deflections Density in MSN {Hop CR) ;44
3.8 Deflections Density in HTN (Hop CR) 44
3.9 Deflections Density in MSN (Deflec, CR) 45
3.10 Deflections Density in HTN {Deflec. CR) ·. 45
3.11 Performance of Non-square Networks . , ;·. 45
3.12 Throughput and Delay of HTN {DA) ; 45
3.13 Deflections Density in HTN (DA) ... 46
3.14 Nodal Throughput and Average Delay of Irregular HTN 46
3.15 Nodal Throughput and Average Delay of Random Routing 46

Vl

LIST OF FIGURES

Figure Page

1.1 A toroidal network ... 2

2.1 A two-connected network .. 9
2.2 A Manhattan Street Network ... 11
2.3 A Highway Transfer Network .. 12
2.4 A Shuffle Exchange Network .. 13
2.5 A 3D-torus network ... 15
2.6 A Multidimensional (3D) Manhattan Street Network 15
2.7 A link failure in the MSN ... 16
2.8 Fractional addresses ... 17
2.9 The reduced-binary addressing scheme 17

3.1 Relative addresses in an MSN ... 25
3.2 Routing (link selection) rules for the MSN 26
3.3 A path from a source to a destination in the HTN 28
3.4 Switching in the HTN DA algorithm 29
3.5 Nodal throughput ... 32
3.6 Average delay , 32·
3.7 Throughput .. 33
3.8 Relative throughput .. 35
3.9 A routing (link selection) algorithm for the MSN 36
3.10 An algorithm to select a switching configuration in the MSN 37
3.11 A routing (link selection) algorithm for the HTN 37
3.12 An algorithm to select a switching configuration in the HTN 38
3.13 The deflection avoidance algorithm for the HTN 39
3.14 Switching configurations .. 39
3.15 A routing algorithm for irregular HTNs 40
3.16 Irregular networks .. 47
3.17 An irregular network .. 48

4.1 Process of partitioning a set of five packets into five classes of size 1 52

5.1 Locations in a node ... 67

vii

CHAPTER I

INTRODUCTION

A proliferation of network users has led to the introduction of metropolitan area net­

works. (MAN s). MAN s interconnect larger numbers of users and span longer distances

than conventional local area networks (LANs). A recent generation of MANs is based

on linear structures (bidirectional loops and buses). As in the case of LANs, these

networks trade their throughputs for simple access strategies. The performance of

linear structure networks degrades with increasing numbers of users.

As alternatives to linear structure networks, two-dimensional toroidal networks

with deflection routing have been proposed for MANs. A toroidal (or torus) network

is a grid network with boundary connections (Figure 1.1). The boundary connections

eliminate edge effects and decrease inter-nodal distances. The symmetry (transitivity)

and the global consistency (sense of direction) of toroidal networks support simple

and locally implementable routing schemes. Toroidal networks provide multiple paths

between a source and a destination and increase their throughputs with the number

of nodes by decreasing the fraction of the network capacity needed to communicate

between nodes. The reliability of networks is also increased [7, 53, 74].

Deflection routing, which supports communications in toroidal networks, elim-

1

2

Figure 1.1: A toroidal network.

inates buffering resources. As a consequence, the networks do not suffer internal con­

gestion. Packets can be accepted as long as there is room in the networks. This makes

the behavior of the networks similar to that of LANs. The elimination of buffering re­

sources also enables nodes to follow the linkspeed as close as possible. The deflection

networks naturally provide high-speed adaptive datagram services [4, 7, 14].

Note that toroidal topologies and deflection routing are also applicable to

(processor) interconnection networks for parallel processing computers [48, 74, 83].

1.1 Motivations

Toroidal deflection networks have potential as high-speed metropolitan area commu­

nication infrastructures. The performance of toroidal networks scales better than

that of bus and loop networks. The elimination of buffers simplifies and accelerates

the network operations. It is also important for the design and implementation of

all-optical networks, which will be the basis for future communication systems.

Although the structures of deflection networks are simple, because of the in­

herent unpredictability of routes taken by packets, the performance analysis of deflec­

tion networks is difficult. The dynamic behavior of the networks may be best studied

3

through (discrete event) simulation [45, 78]. The quantitative results obtained by

simulation can be used in assessing the feasibility of routing algorithms.

It seems unlikely that the topologies of realistic networks are perfectly symmet­

ric. Hence, routing algorithms should be able to overcome topological irregularities.

Naturally, deflection routing is capable of handling certain topological irregularities,

yet the issue needs to be addressed.

One problem unique to deflection networks is livelock (the indefinite circulation

of packets without reaching destinations), the counterpart of deadlock in store-forward

networks. Livelock needs to be eliminated from deflection networks in order to ensure

the eventual delivery of every injected packet.

As in the case of many proposed parallel and distributed systems, formal

specifications for deflection networks have not appeared in the literature. For most

systems, the existence of the interactions of the concurrent components of the systems

and their environments is making the development of rigorous specifications (and the

development of the systems themselves) a difficult task.

Formal methods are mathematical techniques for specifying and verifying com­

plex systems. The use of formal methods eliminates inconsistencies, ambiguities, and

incompletenesses that may remain undetected with informal specifications (24].

It is desirable that a specification language, besides being rigorous, should be

compact and easy to learn for those who are new to formal specification (both the

designers and the readers of the specifications). The logic of UNITY (Unbounded

Nondeterministic Iterative Transformations) [17, 61, 62, 79), which has been designed

for the specification and verification of concurrent systems, can be used as such a

4

language.

1.2 Objectives

The objectives of this research are:

1. to investigate the feasibility of using toroidal deflection networks as metropolitan

area communication infrastructures and

2. to provide a logical framework for reasoning about routing and control functions

of deflection networks.

The research encompasses the analysis of throughput and delay characteristics, the

development of routing and livelock prevention schemes, and the modeling and spec­

ification of deflection networks.

1.3 Organization of this Dissertation

The materials presented in this dissertation cover many key issues of deflection net­

works. The dissertation is organized as follows. In Chapter II, routing in wide area

networks, local and metropolitan area networks, topologies of deflection networks,

and formal specification methods are reviewed. Deflection routing is introduced. The

characteristics of deflection networks are described. The materials of Chapter II pro­

vide background knowledge for the following chapters. The performance of deflection·

networks is studied in Chapter III. The bulk of the results in Chapter III are from

(68], except the examination of deflection routing on irregular networks in Section 3.3

and random routing in Section 3.4. Section 3.3 demonstrates that a simple routing

scheme can function on irregular networks, which may be incrementally constructed.

5

The examination of the random routing in Section 3.4 gives an interesting insight into

the topological characteristics of networks. A livelock prevention mechanism, which

is based on [69], is presented in Chapter IV. In Chapter V, a formal specification

for deflection networks is developed. The UNITY computational model and logic are

introduced. The operators of [61, 62], which are derived from the original work of

UNITY (17], are re-defined by using the notion of the strongest invariant [BO]. A

network is modeled as a closed system with unbounded 1/0 queues. UNITY logic

is used to formulate the properties of the network. The developed specification is

mapped to a UNITY program (a network simulator in pseudocode). The basic idea

of Chapter V is from (70]. Chapter VI evaluates and concludes this dissertation. A

discussion of future research problems is also given in the final chapter.

CHAPTER II

LITERATURE REVIEW AND BACKGROUND

In this chapter, we review routing in general wide area networks, local and metropoli­

tan area networks, deflection networks, and formal specification methods. This chap­

ter provides background knowledge for the following chapters.

2.1 Routing in Wide Area Networks

Routing methods can be classified as centralized or distributed; static or adaptive;

and link-state approach or distance-vector approach (The link-state approach repli­

cates the entire network topology information at each node, whereas the distance­

vector approach, at each node, stores only the distances to other nodes) (63, 71].

Computing the shortest (delay) paths in a distributed adaptive manner typically re­

quires periodical routing information (e.g., the congestion of links/queues) exchange

among nodes. In this section, we briefly review the routing methods used in the

ARPANET [9, 30, 58, 81, 87], which was formed by the Advanced Research Project

Agency (ARPA) of the U.S. government and has now grown into the worldwide In­

ternet.

The first ARPANET routing algorithm was implemented in 1969. It is a dis­

tributed adaptive algorithm based on shortest path routing. Each packet is forwarded

6

7

to its destination along the path that minimizes the estimated delay (transit delay).

The delay (cost) of a link is measured based on the number of packets waiting for

transmission in the queue of the link. Each node exchanges its routing informa­

tion (i.e., the estimated delays from the node to all destinations) with neighboring

nodes periodically as short as every 2/3 seconds. The Bellman-Ford algorithm [8, 33]

(distance-vector approach) is used to update the routing information (i.e., calculate

the shortest delay paths). Because of the rapid routing information (link costs) up-.

dates, the algorithm had faced problems with message re-assembly (i.e., the packets

of a message arrived at the destination from different paths out of the transmitted

sequence) and looping. The rapid link cost changes (updates) caused routing path

changes and the routing path changes again caused the link cost changes. To stabi­

lize this situation, a large constant was added to each link cost. This, unfortunately,

made the algorithm less sensitive to the congestion of links.

A decade later, the second algorithm, which is known as Shortest Path First

(SPF), was implemented and replaced the first one. In the second algorithm, the

update interval was changed to 10 seconds. Each link cost is calculated as the average

packet delay (including processing, queueing, transmission, and propagation delays)

on the link since the previous update (i.e., during the past 10 seconds). Each node

broadcasts the costs of its outgoing links (by flooding) at least every 60 seconds. Based

on the broadcasted link costs, each node individually calculates the shortest paths

using Dijkstra's algorithm [31] (link-state approach). The algorithm improved the

stability although later an increase in traffic load lowered the stability and necessitated

a revision of the method for calculating link costs. In the 1987 implementation, the

8

· range of link cost and the rate at which the cost can change were drastically reduced.

As a result, the dynamic behavior of the algorithm improved substantially. The

successor of the algorithm, which was named Open SPF (OSPF), was standardized

by the Internet Engineering Task Force (IETF) in 1990. The standard are now

supported by many router vendors.

2.2 Local and Metropolitan Area Networks

Generally, local and metropolitan area networks (LANs and MANs) have very simple

topologies and do not require algorithmically sophisticated routing methods used in

wide area networks. The Ethernet and the token ring are two popular local area

networks [84]. The Ethernet is a bus network. The token ring is a single loop

network. In both networks, only one node is allowed to transmit data at a time. The

performance of the networks degrades linearly with the number of nodes. The Fiber

Distributed Data Interface (FDDI) Network [77] and the Distributed Queue Dual Bus

(DQDB) Network [64] use bidirectional loops and buses and have been proposed for

metropolitan area networks. These networks simply double the throughput of earlier

networks and can survive a single link failure.

2.3 Deflection Networks

In this section, we examine the characteristics, topologies, possible failure recovery

mechanisms, and expandability of deflection networks.

9

Figure 2.1: A two-connected network.

2.3.1 Characteristics

Deflection routing, which is similar to hot-potato routing [6], is a distributed adaptive

routing method that can be applied to the networks in which the in-degree and the

out-degree (the number of incoming links and the number of outgoing links) of each

node are equal. An example of such a network is shown in Figure 2.1. The network is

two-connected (i.e., every node has two incoming links and two outgoing links). Note

that deflection networks are not necessarily regular. Different nodes in a network

may have different connectivities. The networks operate in a slotted mode with fixed

length packets. The switching and transmission processes take place on a time slotted

basis. Generally, all links are one slot in length (i.e., every packet travels one link

per slot). (Links may be multiple slots long in some networks.) A packet (from

an input source) enters a network if an empty slot is available. When two or more

simultaneously arriving packets contend for the same output link, a local contention

resolution rule is used to select the packet that gets the use of the link. The packets

that lost a contention are deflected (misrouted). Because the in-degree and the out­

degree of a node are equal, it is always possible to assign each one of simultaneously

10

arriving packets to a distinct output link.

For each time slot, a node of a deflection network

1. extracts a packet addressed to the node,

2. injects a source packet if the node obtains an empty slot (i.e., a slot has been

received empty or a packet has been extracted), and

3. selects a switching configuration.

The switching and transmission of packets follow the above steps.

The buffering resources required by the standard store-forward method are

eliminated in deflection networks. Hence, there is no internal congestion. The behav­

ior of the networks is stable. Packets are accepted as long as nodes recognize empty

slots. Deflection routing is naturally adaptive to hot spots that may arise under

certain fixed routing schemes. No routing information exchanges among the nodes

are required. It is also noted that deadlock due to buffer overflow will not occur in

deflection networks.

One problem uniquely associated with deflection networks is livelock (the in­

definite circulation of packets without reaching destinations). Although livelock may

be rare in practice, as deadlock needs to be prevented for store-forward networks,

livelock needs to be prevented for deflection networks. This issue will be addressed

in a later chapter.

2.3.2 Topologies

The topology of a deflection network plays an important role in developing routing al­

gorithms that require no routing tables and accelerate nodal processing. In reviewing

11

Figure 2.2: A Manhattan Street Network.

the previous works, we classify deflection networks by topology.

The most widely studied deflection network is the Manhattan Street Network

(MSN) (52, 53] (Figure 2.2). The MSN is a toroidal network. Its topology resembles

the one-way streets and avenues in Manhattan. The alternation of row and column

link directions keeps inter-nodal distances small, but also restricts the number of rows

and columns to even. The network has two incoming links and two outgoing links

at each node and hence has the same degree of connectivity (the same number of

transmitters and receivers) as the bidirectional loop network.

Deflection routing strategies for the MSN have been studied extensively in the

literature [35, 54, 75]. The relative superiority (higher throughput and reliability) of

the MSN over linear topology networks (the FDDI Network and the DQDB Network)

are reported in [15, 42, 57]. In [19], buffered deflection routing in the MSN is studied;

it is reported that the use of a few buffers (to hold some transit packets) provides

a significant improvement in performance. (Note that no buffers, except some delay

Figure 2.3: A Highway Transfer Network.

lines, may be available in optical networks.)

12

The two-connected toroidal topology shown in Figure 2.3 has been used for the

Highway Transfer Network [44], the Manhattan Fiber Distributed Data Interface (M­

FDDI) Network [38], the Token Grid Network [89], and the Multimesh Network [90].

(The Highway Transfer is a fast packet forwarding technique. The M-FDDI Network·

extends the FDDI Network. The Token Grid Network uses a hierarchical token pass­

ing protocol. The Multimesh Network is a generalization of the Token Grid Network.)

As in [7], which briefly introduces [44], we call a network with the topology a High­

way Transfer Network (HTN). Previously, in the literature, the HTN has not been

studied as a deflection network, perhaps, because of its large deflection penalty (the

least upper bound on the number of "extra" hops that a packet has to make after a

deflection), which grows with the network size. However, the network also has a high

density of so-called don't care nodes (from which packets can be transmitted through

any outgoing link without being deflected) and hence the number of deflections can

13

Output

Input

Figure 2.4: A Shuffle Exchange Network.

be kept small. The network is defined for any numbers of rows and columns. The

structural requirement is relaxed. The HTN supports a considerably simpler routing

scheme than the MSN. A high performance/cost ratio can be expected. The HTN

may be used as an inexpensive alternative to the MSN. The performance of the HTN

is investigated in a later chapter.

Networks based on the perfect shuffle interconnection have also been studied

as deflection networks; The Shuffle-Exchange Network [41, 53] (Figure 2.4) has a

smaller diameter (log2 N, where N is the number of nodes in the network) than the

MSN. However, the Shuffle-Exchange Network has a greater deflection penalty than

the MSN and is not defined for an arbitrary number of nodes (the number of nodes

must be a power of two). Alternate paths are much longer than the shortest paths.

Very few nodes have alternate paths that have the same distance to the destinations.

The physical layout of the network does not make sense geographically. The network

can be used only in a small area. The Shuffle-Exchange Network does not have the

characteristics of the MSN that cause deflection routing to perform well. Without

buffers (to hold some transit packets), the throughput of the Shuffle-Exchange Net­

work is lower than that of the MSN [55]. The network is highly structured and hence

expansion (node addition) is difficult (requires re-wiring of links and re-addressing of

14

nodes).

Bidirectional extensions of the MSN have also been studied in the literature (1,

2, 3, 4, 11, 12, 13, 14, 91). The use of bidirectional links doubles the maximum

attainable throughput of the MSN. However, the complexity of routing decisions is

not just twice of that in the MSN. For networks with unidirectional links, there are

only 22 = 4 possible preferred packet moves at a node, 2 of which require contention

resolutions. For bidirectional extensions, the number of possible packet moves a~

a node increases to 34 = 81 [11). Node construction becomes increasingly difficult.

Deflection routing may be difficult to implement for the networks with a high degree of

connectivity. A large number of possible switching configurations in high connectivity

networks makes cost efficient, high performance implementations challenging. The

distance measures of the MSN and the bidirectional extensions are fairly close, yet

only half the number of transmitters and receivers of the bidirectional extensions is

required in the MSN (23). One advantage of the bidirectional extensions is that the

in-degree and the out-degree of each node are always the same even after link failures.

No protocol (that involves multiple nodes) to recover from a link failure is required.

Toroidal networks can be naturally extended into higher dimensions. (A three­

dimensional network is shown in Figure 2.5.) A notable multidimensional extension

is the Multidimensional Manhattan Street Network (MMSN) (20, 22) (Figure 2.6).

Although the MMSN spans multidimensionally, it remains two-connected. Unfortu­

nately, routing and node addition in the MMSN become more difficult than those in

the MSN. As in the case of general multidimensional extensions, the reduction of the

diameter from the MSN to the MMSN is not as great as that from the loop network

Figure 2.5: A 3D-torus network.

Figure 2.6: A Multidimensional (3D) Manhattan Street Network.

to the MSN (i.e., from one to two dimensions).

2.3.3. Node. and Link Failures

15

Node failures considered here are those that caused by local power outage, which is

the most common cause of node failures. In physical implementations, it is assumed

that a non-switching relay is used to bypass a failed node. The relay is open when

there is power and closes (so that packets will pass straight through the node) when

power is lost [54]. (Packets that would have made a turn at the failed node are

regarded as deflected packets.)

16

~---~

~: +r
Figure 2.7: A link failure in the MSN.

Nodes in a typical deflection network (slotted network) transmit data contin-

uously to reduce timing acquisition problems [57]. Continuous data transmission also

enables the detection oflink failures (and also node failures) by downstream nodes. A

node recognizes an incoming link failed when no data are coming from the link. Then,

the node may stop transmitting data from one of its outgoing links [54]. This proce-

dure is illustrated in Figure 2.7 for the MSN. The equality of the in- and out-degrees

of nodes will be preserved and hence once the procedure has completed, no packets

will be lost. The deflection mechanism bypasses failed links as it tries alternate paths.

Note that a link is merely a cable and only physical destructions, which are.

less likely than node failures caused by power outage, can cause link failures.

In practical networks, packets that cannot reach their destinations due to

node or link failures must be removed from the networks. Packets that have spent

a certain amount of time in the networks without reaching their destinations should

be removed. This also removes packets that are livelocked. Acknowledgments are

required to recover the lost packets [56].

17

!113! :213:
119 219 i ~ 5~ i 7~ 819

"?i 5f!
10/911/9 ! 13/914/9 ! 16/917/9

l ~ I ~ l ~ l ~ ~~~ ~~l ~

Figure 2.8: Fractional addresses.

000 001 010 011 100 101 110 111

(a)

0 001 010 01 10 101 110 1

(b)

0 0010 010 0110 10 1010 110 1110
o--o--~ •• -- -... •0--0-•-0-0- •••••0--0- - -0--0- --- - ----0--0-•-0--0

0001 001 0101 01 (C) 1001 101 1101 1

Figure 2.9: The reduced-binary addressing scheme.

2.3.4 Network Expansion and Node Addressing

Node addressing is an issue that needs to be addressed for network expansion. Gener-

ally, routing algorithms in structured networks assume that the nodes in the networks

are properly addressed.

For the MSN, the fractional addressing scheme (54] and the reduced-binary

addressing scheme (47] have been proposed. Both schemes allow new nodes to be

inserted into the network without changing the addresses of the existing nodes. The

schemes support gradual and modular growth of the MSN.

Figure 2.8 shows fractional addresses in the MSN. The first two rows (or

- -

columns) are labeled O and 1. Rows are added in pairs and are labeled as two fractions,

1/3 of the way between two other rows. New rows that are added between 1 and 0

are considered to be between 1 and 2.

The reduced-binary addressing scheme in the MSN is illustrated in Figure 2.9.

Axis (a) is a binary number axis. Axis (b) shows reduced-binary addresses. Each

number in (b) is obtained from the corresponding number in (a) by eliminating the

18

bit in the least significant position if it is equal to the previous bit. Axis (c) shows

the axis after 8 nodes are added to axis (b). The shorter address string needs to

be extended to the same length as the longer address string by repeating its last bit

before any operations are performed on the address strings. The axis is piecewise­

continuous. New nodes can be inserted only in continuous segments (solidliens). No

node can be inserted in non-continuous segments (dashed liens). The reduce-binary

addressing scheme is designed for high-speed hardware implementation.

Naturally, both the fractional addressing scheme and the reduced-binary ad­

dressing scheme can be applied to the HTN and the bidirectional extensions of the

MSN.

In the MSN, new node additions may degrade the performance of the routing

algorithm. (The address transformation algorithm [54] may displace the destinations

from the center of the network. As a result, packets may follow longer paths to the

destinations.) A care should be taken for new node additions (e.g., new nodes should

be evenly distributed over the grid).

For most networks, if fractional addresses are used, the determination of the

shortest paths becomes difficult (simple arithmetic operations on node addresses will

no longer give correct distances between nodes). Further more, if irregularities are

introduced in the network topology (as a result of network expansion), the given rout­

ing scheme may no longer work on the network. Apparently, network irregularities,

make routing a difficult task [65, 66, 67].

19

2.4 Specification Methods

The logic of UNITY (Unbounded Nondeterministic Iterative Transformations) [17,

61, 62, 79] has been chosen as the language for the specification of deflection net­

works in this research. It is closely related to temporal logic [43], which defines

temporal relationships of predicates over infinite sequences of states. In the UNITY

model, a program is viewed as a mathematical object and not in terms of its possible

executions. The elimination of operational reasoning makes UNITY logic a formal

method. UNITY enables us-to develop descriptive, non-operational specifications for

programs.

The computational model of UNITY separates the concept of termination,

which is central in traditional transformational programs, from the problem solving

process. The UNITY model captures parallel and distributed programs that are

ongoing (reactive) and nonterminating.

UNITY logic is surprisingly simple and compact. Its design decisions avoided

introducing notational artifacts.

In his forward to Chandy and Misra's work of UNITY [17], Hoare states that

a complete theory of programming includes methods for

• specifying programs,

• reasoning about specifications,

• developing correct programs, and

• transforming programs for executions on available machines.

20

Dijkstra's work [32) provides the methods for sequential programming. Chandy and

Misra's UNITY does the same for parallel and distributed programming.

The UNITY methodology has been applied to a variety of design and specifi­

cation problems [26, 27, 28, 39, 40, 72, 85, 86). Its versatility has been demonstrated.

The UNITY logic operators are formally defined in a later chapter. In the

rest of this section, other notable specification methods for parallel and distributed

systems are cited. Hoare's CSP (Communicating Sequential Processes) [37), which

is a pr.ocess-based formalism, has been studied widely. Milner initiated the alge­

braic approach through his CCS (Calculus of Communicating Systems) [60). Besides

UNITY, several temporal logic based methods [46, 50, 51) have been proposed in

recent years. The studies of temporal logic in computer programming can be traced

back to the works of Burstall [16) and Pnueli [73) in the late 1970's. (Historical re­

marks on the development of temporal logic itself can be found in [43).) Automata

have also been used for describing the.behavior of concurrent systems [49). Methods

based on Petri Net, which is an extension of automata, have also been studied [59).

ISO (International Organization for Standardization) has developed a standardized

language LOTOS (Language for Temporal Ordering Specifications) for concurrent, ·

distributed, and nondeterministic systems. The specification of dynamic behaviors

in LOTOS is predominantly based on CCS, while the treatment of concurrency and

parallelism has been strongly influenced by CSP [88).

CHAPTER III

PERFORMANCE EVALUATION

In this chapter, the performance of deflection routing in two-connected toroidal de-

flection networks: the Manhattan Street Network (MSN) and the Highway Transfer

Network (HTN) is investigated. Both the MSN and the HTN have two incoming links

and two outgoing links at each node and hence have the same degree of connectivity

(the same number of transmitters and receivers) as the bidirectional loop network.

Several contention resolution methods are examined. A routing algorithm for the

HTN is proposed.

This chapter is organized as follows. In Section 3.1, the topological measures

of the MSN, the HTN, and also the bidirectional loop network are examined and the

maximum attainable throughputs of these networks are estimated. Section 3.2 gives

the descriptions of the routing schemes for the MSN and the HTN. The dynamic

behavior of the schemes has been studied by simulation. The results are reported.

Routing in irregular networks and random routing are examined in Section 3.3 and

Section 3.4. Section 3.5 summarizes this chapter.

21

Table 3.1: Diameter and Average Inter-nodal Distance
Network

MSN (n x n)
HTN (n x n)

BLN (N)

Diameter
approx. n
2(n -1)

N/2

Average Distance
approx. n/2
n2/(n+l)

approx. N/4

3.1 Topological Measures

22

Topological measures can be used to estimate the performance of networks. In this

section, the topological measures of the MSN, the HTN, and the bidirectional loop

network are summarized and the maximum attainable throughputs of the networks

are estimated. The definition of the don't care node is also given in this section.

3.1.1 Distance Measures

The inter-nodal distance between two nodes is the shortest path length (the smallest

number of hops) between the nodes. The diameter, which is the maximum inter-nodal

distance between any two nodes, and the average inter-nodal distance are directly

related to packet delays in communication networks (though delays are not solely

determined by distances). Table 3.1 shows the diameters and the average inter-nodal

distances of the MSN, the HTN, and the bidirectional loop network (BLN). Note that

the values for the MSN are approximate and are due to [21, 76].

The deflection penalty of a network is (the least upper bound on) the number

of "extra" hops that a packet has to make after a deflection. For n x n HTNs, the

deflection penalty is n, whereas it is 4 (which is constant) for MSNs of all sizes.

23

3.1.2 Attainable Throughput

The throughput of a network is the average number -Of packets accepted into the

network per slot (one unit of time). The maximum attainable throughput of a network

can be estimated based on its topological properties. If all links are one slot in length

(i.e., every packet travels one link for each time slot), the average inter-nodal distance

gives the average amount of time a packet must spend in the network before it reaches

its destination. In other words, the average inter-nodal distance gives the average cost ·

per packet transmission in terms of time or the number of links. Given the following

assumptions:

• the network is symmetric,

• all links are one slot 1n length,

• all packets are routed along the shortest paths to their destinations,

• an infinite amount of buffer space is available at each node so that no packets

are deflected or lost,

• the traffic is uniform (i.e., for each packet, any node is equally likely as a des-

tination), and

• the packet arrival rate is the same at every node,

the maximum attainable throughput T can be expressed as

L
T= h' (3.1)

where L is the total number of links in the network and h is the average inter-nodal

distance (7].

24

Table 3.2: Maximum Attainable Throughput
MSN (n x n) HTN (n x n) BLN

4n 2n 8

The maximum attainable throughputs (approximate values) of the MSN, the

HTN, and the bidirectional loop network (BLN) are shown in Table 3.2. The values

for the MSN and the HTN increase with the network size, whereas the value for the

bidirectional loop network is constant.

From formula 3.1, the nodal throughput, which is the throughput per node, can

also be estimated (T/N, where N is the number of nodes in the network). Naturally,

a network cannot be operated at the packet arrival rate to a node exceeding the

maximum attainable nodal throughput.

3.1.3 Don't Care Node

The number of deflections that packets get should be as small as possible so that

the packets travel shorter distances and arrive at their destinations in the order of

their transmissions. A node is a don't care node for a packet if all outgoing links of

the node lie on the shortest paths to the packet's destination node. A packet cannot

be deflected at its don't care nodes (the larger the number of don't care nodes, the

smaller the number of deflected packets). The density (fraction) of don't care nodes

for a packet is approximately 1/2 in MSNs (35] and it is (n - 1)2 /n2 inn x n HTNs.

3.2 Routing

This section gives routing schemes for the MSN and the HTN. The scheme for the

MSN is based on [54]. The schemes with several contention resolution (CR) methods

25

Figure 3.1: Relative addresses in an MSN.

were tested by simulation. The results are reported. It is assumed that the links

of a network are locally labeled at each node with a globally consistent orientation

and the nodes are sequentially numbered (addressed) according to the orientation

(i.e., the nodes are integer row-column addressed). An outgoing link of a node is a

preferred link of a packet at the node if the link lies on a shortest path to the packet's

destination node. The schemes try to route packets along their preferred links.

3.2.1 Routing Scheme for MSN

Routing in the MSN involves address transformation. For each packet, the relative

address of the current node, at which the packet is in transit, is calculated with respect

to the destination node, which is considered to be in the center of the network and has

the address (0, 0). Figure 3.1 shows relative addresses in an MSN. The destination

node is located at the lower left corner in the upper right quadrant with its outgoing

links directed toward increasing numbered nodes.

26

Q, Q,

r··> +
c, ~ e

L t ~
--e--J

Q, Q.

r •

Figure 3.2: Routing (link selection) rules for the MSN.

Outgoing links for packets are selected based on the relative address of the

current node. The rules are given in Figure 3.2. A node with relative address (r, c)

is in Q1 if r ~ 0 and c ~ O; Q2 if r > 0 and c < O; c2 if r = 0 and c < O; Q3

if r < 0 and c < O; Q4 if r < 0 and c > O; r4 if r < 0 and c = 0. Solid arrows

indicate preferred links and dashed arrows indicate alternate links. For example, if

the relative address of the current node is in Qi, a link directed to the left and a link

directed down are preferred links. An alternate link in Q2 (Q4) may be selected for a

packet if the current node does not have a preferred link. Note that the direction of

a link in Figure 3.1 may not be the same as the direction of the link before address

transformation. The detailed algorithm, from which the simulator program is built,

is given in Figures 3.9 and 3.10. In Figure 3.9, a packet is currently at (rs, cs) and

its destination is (rd, cd)- The variable Nr (Ne) is the number of rows (columns) in

the network. The vertical (horizontal) link is a preferred link if O E S (if 1 E S). In

Figure 3.10, the variable S0 (S1), which is calculated by the algorithm in Figure 3.9,

27

indicates the preferred links of the packet arrived from the vertical (horizontal) link.

For an empty slot, So (or S1) is assumed to be 0. The variable config indicates one

of the configurations in Figure 3.14. The variable random is a random variable that

is either O or 1. Contentions are resolved in a random manner in the algorithm.

3.2.2 Routing Scheme for HTN

Routing in the HTN is extremely easier than in the MSN. The routing scheme does

not require calculation of relative addresses and quadrants or examination of link

directions.

For typical source (current) and destination nodes in an HTN, both two out­

going links of the source (current) node lie on the shortest paths to the destination

node. A packet does not have any preference in moving directions until it reaches

one of its care nodes (critical nodes), which are on the same row or column as the

destination node. Hence, a packet can be routed in a random manner until it reaches

a care node. Upon reaching a care node, the packet must go straight to its desti­

nation. Otherwise, the packet gets a large deflection penalty. Figure 3.3 illustrates

this routing scheme. The pseudocode for the scheme is given in Figures 3.11 and

3.12. In Figure 3.11, a packet is currently at (rs, cs) and its destination is (rd, cd)­

The vertical (horizontal) link is the (only) preferred link if S = 0 (if S = 1). In

Figure 3.12, the variable 80 (S1), which is calculated by the algorithm in Figure 3.11,

indicates the preferred link of the packet arrived from the vertical (horizontal) link.

For an empty slot, So (or S1) is assumed to be 2. The variable config indicates one

of the configurations in Figure 3.14. The variable random is a random variable that

28

Source

Go Straight
.................... ······················: ······!

·······;:J:o, ; i
Destination

Figure 3.3: A path from a source to a destination in the HTN.

is either O or 1. Contentions are resolved in a random manner in the code. In the

HTN, the distinctions of links are important only at care nodes that are on the same

rows or columns as destination nodes. This fact has produced the simple switching

algorithm. The routing scheme is expected to inherit the properties of random rout-

ing [54] (i.e., it is easy to implement and is tolerant of network irregularities). Note

that this routing scheme does not depend on the sequential ordering of the nodes.

The scheme only assumes that the nodes on the same row (column) have the same

row (column) address.

Because a packet may be deflected only while it is moving straight to its desti-

nation, shortening the distance of the final straight move will reduce the probability

of deflection. The switching algorithm developed based on this idea is shown in

Figure 3.13, which replaces the last else-block of the algorithm in Figure 3.12. In Fig-

ure 3.13, two packets are currently at their common don't care node (rs, cs). Nodes

(r0 , c0) and (r1 , c1) are the destinations of the packets arrived from the vertical link

and the horizontal link, respectively. The variable Nr (Ne) is the number of rows

(columns) in the network. The variable config indicates one of the configurations in

29

B

A

Figure 3.4: Switching in the HTN DA algorithm.

Figure 3.14. The variable random is a random variable that is either O or 1. For the

sake of brevity, the case that only one packet is in transit is omitted in Figure 3.13.

This algorithm is referred to as the Deflection Avoidance {DA) algorithm. At each

· node, the algorithm tries to forward a packet to the node in the direction that does

not shorten the {shortest) distance to a care node. It routes the packets along their

don't care nodes as long as possible so that deflections are avoided. Note that there

may be a conflict between two packets coming into a node. Examples of switching

is shown in Figure 3.4. {Nodes X and Y are the destinations of packets A and B,

respectively.)

As an alternative, one may consider using simple zig-zag routing, which for­

wards packets in alternating directions at every hop (as long as possible). Such a

scheme has been tested. The results show no significant performance improvement

over the scheme with random packet moves.

Table 3.3: Throughput and Delay of Bidirectional Loop
Size

64
100
144
196
256

3.2.3 Simulation Results

Nodal Throughput
.115
.075
.053
.040
.031

Average Delay
16.503
25.536
36.526
49.482
64.501

30

The performance of the routing schemes was studied through simulation. At a low

link utilization (under a light traffic load), fewer deflections are expected and so are

shorter delays. We are interested in the performance of the networks at a high link

utilization (under a heavy traffic load). The networks were operated at the link

utilization of 100%, which may not be achieved in store-forward networks without

creating congestion. A packet with a random destination (uniform traffic) was injected

for every empty slot obtained by nodes. All links were assumed to be one slot in

length. Delays were measured in slots (hops). (Note that the duration of a (time)

slot may differ in different types of networks.) Although the use of a small amount of

buffer (queue) space for each link (to hold a few packets) could reduce the number of

deflections, no such space was used. At the level of current technology, buffering may

be difficult in optical networks without electro-optic and optic-electro conversions,

which prevent high speed nodal processing [7].

Table 3.3 shows the nodal throughput and the average delay of the bidirectional

loop network. The results are close to the maximum attainable values of the network.

The nodal throughput decreases linearly as the number of nodes increases. A packet

generated for an empty slot was injected only if the packet would be forwarded along

the shortest path to its destination. Otherwise, the generated packet was discarded.

31

Table 3.4: Nodal Throughput and Average Delay
Random CR Hop Counter CR Deflection Counter CR

Size Nodal Average Nodal Average Nodal Average
nxn Throughput Delay Throughput Delay Throughput Delay

Manhattan Street Network
8x8 (64) .201 9.941 .217 9.208 .205 9.739

10 X 10 (100) .164 12.227 .179 11.149 .169 11.812
12 X 12 {144) .140 14.250 .154 12.971 .146 13.734
14 X 14 {196) .123 16.290 .136 14.678 .129 15.550
16 X 16 {256) .111 18.057 .123 16.281 .116 17.248
20 X 20 {400) .. 093 21.597 .103 19.383 .098 20.471
24 X 24 (576) .080 24.877 .090 22.316 .085 23.502
28 X 28 (784) .071 28.087 .080 25.140 .076 26.472
32 X 32 (1024) .064 31.142 .072 27.896 .068 29.299

Highway Transfer Network
8x8 {64) .199 10.053 .202 9.888 .198 10.094

10 X 10 {100) .154 12.941 .157 12.709 .154 12.974
12 X 12 {144) .126 15.826 .129 15.551 .126 15.893
14 X 14 (196). .107 18.747 .109 18.390 .106 18.853
16 X 16 {256) .092 21.618 .094 21.210 .092 21.787
20 X 20 (400) .073 27.492 .074 26.892 .072 27.699
24 X 24 (576) .060 33.255 .061 32.598 .060 33.590
28 X 28 {784) .051 39.101 .052 38.230 .051 39.517
32 X 32 (1024) .044 44.968 .046 43.906 .044 45.431

Hence, the network was operated at a link utilization slightly lower than 100%. In

the bidirectional loop network, the delays remain the same under lower traffic loads

since no deflections can occur in the network.

Several contention resolution (CR) methods have been proposed for the MSN

in the literature. In this study, random CR, hop counter CR, and deflection counter

CR have been tested for both the MSN and the HTN in various sizes. (The perfor-

mance of 8 x 8 MSNs with those CR methods has been reported in [75]. As can be

seen from Table 3.4 and Figures 3.5-3.6, for the network size 8 x 8, there is not much

difference in performance between the MSN and the HTN.) Hop counter CR and de-

flection counter CR deflect the packets with lower counter values, which are increased

by 1 for each hop or deflection. Tie-breaking is done by using randomization. The

nodal throughputs and the average delays of the networks with those CR methods

0.24

0.22

0.2

0.18

1 0.16

I 0.14

I 0.12

0.1

0.08

0.06

0.04
s

so

45

40

. 35

i;'

~ 30

j 25

20

IS

10

s
s

10 IS 20
Sizen

MSN Random CR -+­
MSN Hop Counter CR -+-­

MSN Deflection Counter CR -EI-­
H1N Random CR ··>E·­

H1N Hop Counter CR _._._
HTN Deflection Counter CR -,llE- •

H1N Deflection Avoidance -•- ·

25 30

Figure 3.5: NC>cl_al throughput.

10 IS 20
Sizen

MSN Random CR -+­
MSN Hop Counter CR -+-­

MSN Deflection Counter CR -El-·
H1N Random CR -IE·-·

H1N Hop Counter CR_ .•
HTN Deflection Counter CR -,llE-·

H1N Deflection Avoidance -•- •

25 30

Figure 3.6: Average delay.

32

35

35

are shown in Table 3.4 and are also plotted in Figures 3.5 and 3.6. (Unfortunately,

the nodal throughputs of both networks decrease with increasing numbers of nodes

under uniform traffic; however, their (total) throughputs increase as shown in Fig-

ure 3.7. Note that all networks tested in the simulation have even numbers of rows

and columns since the MSN is defined only for even numbers of rows and columns.)

Tables 3.5-3.10 show the probability density of the number of deflections experienced

by packets. The maximum delays observed are also shown in the tables.

80

70

60

:l 50
§
=
~ 40

30

20

10
5

,+
//.l<l

/:<·····
/'r:r·'

,,"'' ... ··
/;>···· .o·

.0

~,~:~f
• HTN Hop Counter CR_ ..

~h · <> HTNDeflectionCounterCR *·
HTN Deflection Avoidance -~- -

10 15 20
Sizen

25

Figure 3.7: Throughput.

30

33

35

Although it is better to keep the networks in square shapes, they tend to

perform well even if they are non-square. Table 3.11 shows the nodal throughputs

and the average delays of some non-square networks (Hop Counter CR). The results

are close to those of square 256 and 400 node networks though the difference becomes

larger for networks with a smaller row/column ratio.

Note that if links operate at lGb/s, the nodal throughput of 0.1 corresponds

to the data rate of lOOMb/s to a node.

Although the maximum attainable throughput of the MSN is approximately

twice as much as that of the HTN, the difference in the actual throughput is much

smaller for the range of network size in Table 3.4.

Counter based CR methods reduce the maximum delays observed under ran-

<lorn CR. For both networks, hop counter CR performs better than other CR methods

though the differences are small in the HTN. The effect of the CR methods in the

HTN can be seen in Tables 3.6, 3.8, and 3.10.

It is interesting to see that deflection counter CR in the MSN keeps the max-

34

imum number of deflections experienced by packets smaller than hop counter CR

(Tables 3. 7 and 3.9) though the performance of hop counter CR is better (higher

throughput and lower delay) than that of deflection counter CR. Deflection counter

CR deflects packets regardless of the distances they have traveled. In the MSN, a

packet has to pass through a care node at every other hop while moving inside a

quadrant. Hence, the packets destined for distant nodes have higher chances of get­

ting deflected. In the networks with hop counter CR, the packets destined for distant

nodes tend to be deflected fewer times than the packets destined for closer nodes. As

a result, the average delay is reduced.

As can be seen from Tables 3.6, 3.8, and 3.10, the probability density of the

number of deflections experienced by packets in the HTN is much the same for the

range of network size in the tables, whereas it varies in the MSN for the same range

of network size. (The majority of the packets in the HTN reach their destinations

without getting deflected.)

Figure 3.8 shows the relative throughputs (the actual throughput divided by

the maximum attainable throughput) of the MSN and the HTN (with hop counter

CR). The value indicates the efficiency of the routing scheme (the higher the relative

throughput, the more efficient the routing scheme). The relative throughput of the

MSN increases with the network size. On the other hand, the relative throughput of

the HTN decreases as the number of nodes increases although it is higher than that

of the MSN for the range of network size in Figure 3.8.

Table 3.12 shows the nodal throughput and the average delay of the DA algo­

rithm with hop counter CR. The throughput and the delay are also plotted in Fig-

0.9

0.8

I
! 0.7

.i ..
~

0.6

0.5

0.4
s

13--··G····G-···G····G·······-··13········ e a El

""---
-......................... ________ +--------+--------+---------+

10 IS 20
Sizen

2S

MSN+­
H1N -+-­

H1NDA ·El··

30

.. figure 3.8: Relative throughput.

35

35

ures 3.5 and 3.6. (The (total) throughput is plotted in Figure 3.7.) The deflections

density is shown in Table 3.13. Although the scheme also increases the complexity of

routing, the improvement in performance is remarkable. The number of packets that

were delivered without any deflection increases with the network size. In a 256 x 256

network, more than 98% of packets were delivered to their destinations without a

deflection. As can be seen from Figure 3.8, the DA algorithm (gradually) increases

the relative throughput of the HTN with the number of nodes.

It is noticed that formula 3.1 with h as the average delay approximates the

. ··actual throughputs of.both-the MSN.and the HTN.

The values reported in Tables 3.3, 3.4, and 3.12 (except the last three rows of

Table 3.12) are the averages of measurements from 5 independent simulation runs.

In each run, a network was simulated for 5000 slots and the first 500 slots of data

were discarded. Each value lies within the 95% confidence interval of width less than

3% of the value. (For most results, the width of the 95% confidence interval is less

than 1% of the value.) Each value in Tables 3.5-:3.10, 3.13 and the last three rows

{ address transformation }
r := (r8 + Nr + Nr/2 - (cd mod 2) - rd) mod Nr;
c :=(cs+ Ne+ Ne/2 - (rd mod 2) - Cd) mod Ne;
if rd mod 2 = 0 then c := c - Ne/2
else c := Ne/2 - 1 - c;
if Cd mod 2 = 0 then r := r - Nr /2
else r := Nr/2 - 1 - r;

{ link selection }
S:=0;
if (r = 0) and (c < 0) then S := {1}
else if (r < 0) and (c = 0) then S := {O}
else if (r ~ 0) and (c ~ 0) then begin

if r mod 2 :f. 0 then S := {1};
if cmod 2 :f. 0 then S := SU {O}

end
else if (r > 0) and (c < 0) then begin

if c mod 2 :f. 0 then S := {O}
else if r mod 2 = 0 then S := {1}

end
else if (r < 0) and (c < 0) then begin

if r mod 2 = 0 then S := {1};
if c mod 2 = 0 then S := SU {O}

end
else if (r < 0) and (c > 0) then begin

if r mod 2 :f. 0 then S := {1}
else if c mod 2 = 0 then S := {O}

end

Figure 3.9: A routing (link selection) algorithm for the MSN.

36

of Table 3.12 is based on a 10 000 slot simulation run with the first 500 slots of data

discarded.

3.3 Routing in Irregular Topologies

As noted earlier, deflection routing also works in irregular topologies, which

may be incrementally constructed. This section presents simulation results for deflec-

tion routing in irregular HTNs shown in Figure 3.16. (Arrows indicating the directions

of links are omitted in the figure.)

The networks were created in a random manner. Each of networks 1 and 2 was

if ((So= {0,1}) and (S1 = {1})) or
((So= {O}) and (S1 = {O, 1})) or
((So= {O}) and (S1 = {1})) or
((So= {O}) and (S1 = 0)) or
((So= 0) and (S1 = {1})) then
cmifig := 0

else
if ((So= {0,1}) and (S1 = {O})) or

((So= {1}) and (S1 = {O, 1})) or
((So= {1}) and (S1 = {O})) or
((So= {1}) and (S1 = 0)) or
((So= 0) and (S1 = {O})) then
cmifig := 1

else
cmifig := randam

Figure 3.10: An algorithm to select a switching configuration in the MSN.

if Cs = Cd then S := 0
else if rs = rd then S := 1
else S := 2

Figure 3.11: A routing (link selection) algorithm for the HTN.

37

created by deleting randomly-chosen 144 nodes from a 20 x 20 network. For each of

networks 3 and 4, 320 nodes were deleted from a 24 x 24 network. All the networks

have 256 nodes. (The topologies follow the definition of the quasi-torus given in [18],

except that the irregular HTNs use unidirectional links.) Networks 1 and 2 (3 and 4)

are denser (sparser) than_networks _3 and 4 (1 and 2).

The performance of two algorithms (with hop counter CR) under random traf-

fie is shown in Table 3.14. The basic algorithm is the one that involves random packet

moves presented earlier. The second algorithm, which is referred to as the lookahead

algorithm in Table 3.14, is shown in Figure 3.15. In Figure 3.15, a packet is currently

at (rs,cs) and its destination is (rd,cd)· The vertical and horizontal outgoing links of

(rs, cs) are connected to (rn, cs) and (rs, en), respectively. The vertical (horizontal)

if ((So = 0) and (81 = 1)) or
((So= 0) and (81 = 2)) or
((So = 2) and (81 = 1)) then
config := 0

else
if ((So = 1) and (81 = 0)) or

((So = 1) and (81 = 2)) or
((So= 2) and (81 = 0)) then
config := 1

else
con/ ig := random

Figure 3.12: An algorithm to select a switching configuration in the HTN.

38

link is a preferred link if O E S (if 1 E S). The switching algorithm for the lookahead

algorithm is the same for the MSN. The algorithm requires each node to know their

downstream nodes.

As expected, the basic algorithm did not perform well in sparse networks

(networks 3 and 4). The lookahead algorithm performed well in all the networks.

The results are comparable to those of non-irregular 16 x 16 networks (256-node

networks).

Each value in Table 3.14 is based on a 10 000 slot simulation run with the first

500 slots of data discarded.

Note that the basic algorithm and the lookahead algorithm work in the same

manner in non-irregular networks.

The DA algorithm (with or without the lookahead algorithm) may not work

well in irregular networks. In certain cases, the DA algorithm may cause packets to

loop. Consider the network in Figure 3.17. Suppose there is a packet at node (1, 1)

destined for node {2, 2). At node {1, 1), if the lookahead algorithm is used, neither

outgoing link will be considered as a· preferred link of the packet. {Since both the

Xo := (Co - Cs+ Ne) mod Ne;
Yo:= {ro - rs+ Nr) mod Nr;
X1 := (c1 - Cs + Ne) mod Ne;
Yl := (r1 - rs+ Nr) mod Nr;
if ((xo < Yo) and (x1 > Y1)) or

((xo > Yo) and (x1 > Y1) and (yo> Y1)) or
((xo < Yo) and (x1 < Y1) and (xo < x1)) or
((xo < Yo) and {x1 = Y1)) or
((xo = Yo) and (x1 > Y1)) then
config := 0.

else
if ((xo > Yo) and (x1 < Y1)) or

((xo > Yo) and (x1 > Y1) and (yo < Y1)) or
((xo < Yo) and (x1 < Y1) and (xo > x1)) or
((xo > Yo) and (x1 = Y1)) or
((xo = Yo) and (x1 < Y1)) then
canfig := 1

else
canfig := random

Figure 3.13: The deflection avoidance algorithm for the HTN.

Figure 3.14: Switching configurations.

39

links are non-preferred links of the packet, the DA algorithm will not be used at

node (1, 1).) The packet may be forwarded to either node ((1, 3) or (3, 1)). If the

lookahead algorithm is not used at node (1, 1), both outgoing links will be considered

as preferred links of the packet. The DA algorithm will find that neither of the links

is better (for the packet) than the other (i.e., the packet can be forwarded to either

node). (The DA algorithm uses the distances given by the node addresses.) In either

case, if the packet is forwarded to node (1, 3), the DA algorithm will route the packet

to node (1, 0) and then back to (1, 1). Analogously, if the packet is forwarded to node

(3, 1), the DA algorithm will route the packet to node (0, 1) and then back to (1, 1).

s := 0;
if (cs< en) and not ((cs~ cd) and (cd < en)) then

S := SU {1}
else if (cs > en) and (en ~ cd) and (cd < Cs) then

S:=SU{l};
if (rs < rn) and not ((rs ~ rd) and (rd < rn)) then

S := SU {O}
else if (rs > rn) and (rn ~ rd) and (rd< rs) then

S := SU{O}

Figure 3.15: A routing algorithm for irregular HTNs.

40

Note that if the DA algorithm is not used, the packet at node (3, 1) may be forwarded

to node (3, 2) and the loop is avoided; probabilistically, the packet has a chance to

reach its destination.

As noted in [54), the routing scheme for the MSN presented earlier may not

work in irregular MSNs. For the MSN, incremental construction of the network is

not straightforward and is one of the major disadvantages of the MSN.

3.4 Random Routing

Random routing is not a practical routing method. However, random routing is

tolerant of network irregularities and easy to implement. It may be used when certain

node or link failures are causing packets to loop (i.e., the primary, non-random routing .

scheme is not functioning).

Random routing was tested on both the MSN and the HTN. The results are

shown in Table 3.15. Each value in Table 3.15 is based on a 50 000 simulation run

with the first 500 slots of data discarded. Interestingly, random routing performed

better in the HTN than in the MSN even though the MSN connects nodes closer

than the HTN. In the MSN, a packet can travel (stay) only in a certain local area of

the network, whereas in the HTN, a packet cannot stay only in a certain local area.

41

Packets explore the network faster in the HTN than in the MSN. This fact resulted

a better performance in the HTN although the performance is no better than that

of linear topology networks. The performance of the MSN and the HTN tends to

degrade sublinearly with the network size.

3.5 Summary

A study of two-connected toroidal deflection networks has been presented. The

throughputs and delays of the Manhattan Street Network (MSN) and the Highway

Transfer Network (HTN) are examined. Both networks increase their throughputs

with the number of nodes. Numerical results carried out by simulation are reported.

The results show that the HTN, despite its large deflection penalty, can achieve ap­

proximately 80% of the MSN's throughput for networks with a few hundred nodes.

The results also show that an effective use of don't care nodes can increase the HTN's

throughput to 90% of the MSN's. As the network size increases, the scheme decreases

the number of deflections. In a 256 x 256 HTN, over 98% of packets were delivered

without any deflection. This fact is notable considering the network was operated

at the link utilization of 100%. The MSN increases the relative throughput with the

number of nodes, whereas the HTN with a simple routing scheme does not (although

the relative throughput of the HTN is higher than that of the MSN for the network

sizes examined in the simulation). For the HTN, a switching algorithm that signif­

icantly reduces the number of deflections and increases the relative throughput has

been proposed and demonstrated.

Routing in irregular topologies has also been studied. A simple routing scheme

for irregular HTNs has been proposed and tested. The results are comparable to those

42

for non-irregular networks.

Random routing, which is tolerant of network irregularities, has also been

examined. For pure random routing, the HTN provides a better performance than

the MSN.

Although deflection routing may waste the transmission capacity, the stable

network behavior provided by deflection routing is very attractive for MANs.· Note

that in order to avoid congestion, the general store-forward networks cannot be op­

erated at a high link utilization.

43

Table 3.5: Deflections Density in MSN (Random CR)
Deflections 8x8 16 X 16 32 X 32

0 .43 .27 .14
1 .22 .20 .14
2 .13 .15 .13
3 .079 .10 .11
4 .047 .078 .098
5 .029 .055 .080
6 .018 .039 .063
7 .011 .027 .049
8 .0067 .019 .038
9 .0040 .013 .029
10 .0025 .0096 .022
11 .0015 .0067 .016

---~------ 12 - .. 00086 - ··.0050 .012
13 .00056 .0033 .OQ93
14 :00033 .0024 .0073
15 .00027 .0017 .0051
16 .00010 .0012 .0039
17 .000049 .00088 .0030
18 .000065 .00055 .0022
19 .000024 .00041 .0016
20 .000024 .00032 .0013
21 .0000081 .00021 .00095
22 .o .00010 .00066
23 .o .000081 .00049
24 .0000081 .000074 .00038
25 .o .000074 .00027
26 .0 .000048 .00021
27 .o .0000074 .00016
28 .0 .000022 .00013
29 .0 .000014 .000099
30 .0000081 .0000074 .000062
31 .0 .000011 .000043
32 .0 .000011 .000038
33 .0 .0000074 .000030
34 .o .0 .000015
35 .0 .o .000014
36 .0 .0 .0000095
37 .0 .0000037 .0000095
38 .o .o .0000031
39 .o .0 .0000063
40 .o .o .0000047
41 .o .o .0000015
42 .0 .o .0000015
43 .o .o .0
44 .0 .0 .o
45 .0 .0 .0
46 .0 .0 .o
47 .o .0 .o
48 .0 .o .0000015
49 .o .0 .o

Max Delay 108 153 176

44

Table 3.6: Deflections Density in HTN (Random CR)
Deflections 8x8 16 X 16 32 X 32

0 .74 .73 .72
1 .17 .17 .17
2 .053 .061 .065
3 .016 .020 .022
4 .0050 .0072 .0081
5 .0016 .0025 .0030
6 .00046 .00094 .0011
7 .00014 .00031 .00037
8 .000057 .000053 .00016
9 .0000082 .000022 .000039

10 .000016 .000022 .000032
11 .o .0 .0
12 .0 .0 .0
13 .o .0 .0000023
14 .0 .0 .0000023
15 .0 .0 .0

Max Delay 84 185 461

Table 3.7: Deflections Density in MSN {Hop CR)
Deflections 8x8 16 X 16 32 X 32

0 .28 .15 .084
1 .30 .20 .12
2 .25 .23 .16
3 .11 .20 .17
4 .027 .12 .16
5 .0033 .053 .12
6 .00022 .016 .082
7 .0000075 .0032 .044
8 .0 .00041 .020
9 .o .000050 .0075

10 .0 .0000067 .0022
11 .o .0 .00059
12 .0 .o .00012
13 .o .0 .000017
14 .0 .0 .0000042
15 .o .0 .0

Max Delay 24 37 60

Table 3.8: Deflections Density in HTN {Hop CR)
Deflections 8x8 16 X 16 32 X 32

0 .69 .67 .66
1 .25 .26 .26
2 .041 .056 .064
3 .0014 .0027 .0034
4 .0 .000026 .000033
5 .o .o .o

Max Delay 34 74 152

Network
Size

14 X 18 (252)
16 X 24 (384)
12 X 20 (240)
12 X 32 (384)

Table 3.9: Deflections Density in MSN (Deflec. CR)
Deflections 8x8 16 X 16 32 X 32

0 .23 .096 .036
1 .29 .14 .057
2 .31 .25 .11
3 .13 .29 .20
4 .016 .16 .28
5 .00045 .032 .22
6 .0 .0021 .070
7 .o .000088 .0071
8 .0 .0 .00022
9 .0 .0 .0000075

10 .0 .0 .0
Max Delay 29 43 63

Table 3.10: Deflections Density in HTN (Deflec. CR)
Deflections 8x8 16 X 16 32 X 32

0 .67 .64 .62
1 .28 .29 .30
2 .040 .056 .066
3 .0011 .0021 .0029
4 .o .0000089 .000028
5 .0 .o .0

Max Delay 38 81 177

Table 3.11: Performance of Non-square Networks
MSN HTN

Row:Col Nodal Average Nodal
Ratio Throughput Delay Throughput

1: 1.29 .122 16.433 .094
1: 1.50 .101 19.802 .073
1: 1.67 .119 16.741 .092
1: 2.67 .087 23.054 .061

Table 3.12: Throughput and Delay of HTN (DA)
Size
8x8

10 X 10
12 X 12
14 X 14
16 X 16
20 X 20
24 X 24
28 X 28
32 X 32
64 X 64

128 X 128
256 X 256

Nodal Throughput
.224
.178
.148
.127
.111
.090
.076 ·
.065
.057
.030
.015
.008

Average Delay
8.942

11.246
13.534
15.741
17.942
22.243
26.461
30.690
34.784
67.324

131.565
259.370

45

Average
Delay
21.368
27.344
21.840
32.717

46

Table 3.13: Deflections Density in HTN (DA)
Deflections 8x8 16 X 16 . 32 X 32 64 X 64 128 X 128 256 X 256

0 .78 .83 .88 .93 .96 .98
1 .19 .15 .010 .060 .031 .016
2 .017 .012 .0071 .0034 .0015 .00067
3 .00036 .00019 .000075 .000015 .0000033 .00000083
4 .o .0000036 .0 .0 .0 .0
5 .0 .o .0 .0 .0 .0

Max Delay 32 70 129 233 475 910

Table 3.14: Nodal Throughput and Average Delay of Irregular HTN
Basic Lookahead

Network Nodal Throughput Average Delay Nodal Throughput Average Delay
1
2
3
4

.081 24.661 .099 20.120

.081 24.653 .099 20.120

.071 28.326 .095 21.005

.071 28.307 .097 20. 725

Table 3.15: Nodal Throughput and Average Delay of Random Routing

Network Size
10 X 10 (100)
20 X 20 (400)
30 X 30 (900)

MSN HTN
Nodal Throughput Average Delay Nodal Throughput

.01780 112.321 .02199

.00375 531.513 .00507

.00152 1292.508 .00219

Average Delay
90.974

393.185
902.429

Network#l

Network#2

Network#3

Network#4

Figure 3.16: Irregular networks.

47

48

Figure 3.17: An irregular network.

CHAPTER IV

LIVELOCK PREVENTION

One problem uniquely associated with deflection networks is that packets may cir­

culate indefinitely without reaching their destinations. This condition is known as

livelock.

It has been shown that the use of randomization in contention resolutions

provides a probabilistic guarantee that livelock is avoided [15, 56). This chapter

presents a method that provides a deterministic guarantee that livelock is avoided

(i.e., every packet that is injected into a network is 100% guaranteed to reach its

destination).

One (e.g., [10)) may argue that the use of hop counter values or time stamps

(in packet headers) as priorities in contentions will prevent livelock since any packet

will eventually have the largest counter value or be the oldest packet (i.e., the highest

priority packet) that cannot be deflected by any other packet.

It may be rare, but is conceptually possible to have multiple oldest packets

(packets with the same largest counter value) that are endlessly contending against

each other and are not reaching their destinations. The proposed method eliminates

such conditions. Thus, the eventual delivery of every injected packet is ensured.

49

50

We assume two-connected networks in which all links are one slot in length,

but do not assume specific topologies (i.e., the method is topology independent). In

order for the method to work in higher degree (node connectivity) networks, link

assignments (switching) must be carefully done. We discuss this problem in a later

section. It is assumed that a packet injected into a network will reach its destination

(but not necessarily along a shortest path) if there are no contentions (deflections).

4.1 Method

The method uses two counters in the packet header. One is the hop counter and

the other is the deflection counter. The hop counter is used as in previously studied

contention resolution methods (e.g., [68]). The counter value is increased by 1 for each

hop and the packet with a larger counter value has a higher priority in a contention.

The use of the deflection counter differs from that in previous studies. (In previous

studies, the deflection counter (if used) was used alone without the hop counter.)

The deflection counter value of a packet is increased only when the packet loses a

contention against another packet with the same hop and deflection counter values.

Tie-breaking is done by using randomization. The loss of a contention against a

packet with a larger hop counter value does not increase the deflection counter value.

The value of the deflection counter is used in a contention between the packets with

the same hop counter value (the packet with a larger deflection counter value will get

the link). Initially (when a packet is injected into the network), both the hop counter

value and the deflection counter value are 0.

The deflection counter values create classes among the packets with the same

hop counter value. Let S be the set of packets with the same largest hop counter

51

value in a network at a certain time (measured in slots). The packets in S can be

deflected only by other packets in S. The packets in S (as long as in the network)

always have the hop counter value larger than the hop counter value of any other

packet (not in S) at any time. Unless the packets in S continually contend against

each other, they will reach their destinations. The packets with the same deflection

counter value form a class in S. Contentions among the packets in S (if no packets

in S have reached their destinations) will eventually divide S into n classes of size 1,

where n is the number of packets in S. The n classes include one packet with the

counter value n-1, one packet with the counter value n-2, ... , one packet with the

counter value 1, and one packet with the counter value 0. The same two packets in

S may contend against each other several times and also some (or even all) packets

in S may reach their destinations before S is partitioned into n classes mentioned

above. The establishment of the classes of size 1 is the establishment of a total order

of the packets. There will be no more continual contentions among the packets when

the size of every existing (non-empty) class becomes 1. The priorities of the packets

will be based on the total order and hence no two packets will have the same priority.

Each of the packets will reach its destination in a finite number of hops.

Clearly, a packet cannot involve in more than one contention at the same time.

The proposed method is conceptually equivalent to the following sequential procedure.

Imagine that S is a "bag" containing n packets (with the same hop counter value)

and the deflection counter values of all packets are 0.

1. Draw a pair of packets (randomly) from S.

2. If both two packets have the same deflection counter value, select one of the

1

3

3

1

2

2

1

1

1

1

1

2

2

1

1

2

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

52

Figure 4.1: Process of partitioning a set of five packets into five classes of size 1.

packets (randomly) and increase .the counter value of the packet by 1.

3. Put the packets back in S.

4. Go to Step 1.

Figure 4.1 illustrates the procedure. It shows the process of partitioning a set of five

packets into five classes of size 1. A number in a box indicates the number of packets in

a class. The number at the bottom of a box indicates the number of packets with the

deflection counter value 0, the second number from the bottom indicates the number

of packets with the deflection counter value 1, and so on. The existence of numbers at .

higher positions in a box indicates the existence of higher priority packets. An arrow

indicates an occurrence of .a contention between two packets in the same class. The

procedure operates sequentially although in a real network, several contentions may

occur at the same time. Multiple steps in the figure may be one slot in the network

(e.g., the first two steps (two contentions) in the figure may happen in a single slot

in the network).

Note that drawing in the procedure is not necessarily at random although in

53

such a case, the procedure may not create n classes of size 1. However, the packets that

have not increased their deflection counter values for a certain number of iterations

should be considered to be delivered to their destinations in the network and may be

ignored in the procedure. A packet with the largest hop counter value will reach its

destination within a finite number of hops (no more than the diameter given by the

routing scheme) if it will not be deflected by other packets.

Let Si (~ S) denote the set (class) of packets with the deflection counter value

i and #si denote the number of packets in Si.

Clearly, if #so = k for some k > 0, then #so ~ k after an iteration of the

procedure. Each time two packets are drawn from s0 , one of the packets increases

its deflection counter value by 1 and hence #so decreases. Since drawing of packets

is done at random, a pair of packets belonging to s0 will eventually be drawn as

the execution of the procedure continues. Therefore, #so will continue to decrease

and will eventually be 1. The only packet left in s0 may be drawn as the execution

of procedure continues; however, the deflection counter of the packet will not be

increased since the other packet (drawn with the packet in s0) must be drawn from

some other class and hence #so will remain 1.

If #si = 1 and #si+l = k for some k > 0, then #si+1 · ~ k after an iteration

of the procedure. In order for an iteration of the procedure to increase #si+i, two

packets must be drawn from Si and hence #si must be at least 2. If #si = 1, then

an iteration will not increase #si+I · The iteration may decrease #si+l by drawing a

pair of packets from Si+1 if #si+1 ~ 2. If #si will remain 1 for a substantial number

of iterations, then #si+1 will decrease and will eventually become 1.

54

Inductively applying the arguments above, we can show that for any i, #si

will eventually become 1.

Note that increasing the deflection counter value by 1 every time a packet is

deflected as in a conventional method will not create the classes mentioned above;

the packets in S may continually contend against each other and indefinitely increase

their deflection counter values.

4.2 Simplified Method

It is p-ossible to-assign -a node id and a link id to each packet. Generally, a packet

stores its source node id in its header. Likewise, the id of the link from which the

packet is injected into the network can also be stored in the header. (Each outgoing

link at a node should have its own unique number that locally identifies the link at

the node.) Since only one packet can be injected into the network through a link at a

time, the combination of a node id and a link id uniquely identifies packets among the

packets injected into the network at the same time (i.e., the packets with the same

time stamp or equivalently the same hop counter value). A total order (the priorities)

of the packets can be defined based on the the combination of the id numbers.

-·This method is··static (i.e., the priorities of packets that are injected into

the network at the same time will not change while they are in the network). In

contentions, the packets from certain nodes will always be discriminated against.

However, the costs of implementation and nodal operation can be reduced and livelock

is still prevented.

55

4.3 Link Assignments for Higher Degree Networks

In the earlier discussion, we assumed that the networks are two-connected. In order for

the proposed methods to work in higher degree networks, link assignments (switching)

must be carefully done. In this section, we discuss this problem.

Although in higher degree networks, preferences may be given to certain non­

shortest path links for optimized switching (some non-shortest path link may be more

preferable to another non-shortest path link), in this discussion, no preferences will

be given to non-shortest path links (no preference of one over another).

Packets are assigned to (possibly their preferred) links one by one according

to their priorities, which are based on the hop and deflection counter values of the

method given in an earlier section. Hence, no preferred links may be available for

lower priority packets (i.e., lower priority packets may be deflected). (Tie-breaking

(priorities of packets and preferences of links) is done by using randomization.)

First, the highest priority packet will be assigned to its preferred link. If

there are several packets with the same highest priority, one of them will be selected

randomly. Likewise, if the (selected) highest priority packet has several preferred

links, one of them will be selected randomly. Then the second highest priority packet

(or one of the remaining highest priority packets) will be assigned to its preferred

link. If no preferred link is available, one of the unassigned links (non-shortest path

links for the packet) will be selected randomly for the packet. The remaining packets

will be assigned to the remaining links in the same manner.

In higher degree networks, a routing algorithm (in order to increase the per­

formance) may select a switching configuration that minimizes the total remaining

56

distance (number of hops) of packets [4, 14]. In general, there is no guarantee that

livelock is avoided by such a method.

4.4 Summary

Livelock is a problem unique to deflection networks. We have studied a method that

prevents livelock in this chapter. The method will dynamically establish a total order

of the packets that have been in the network longest. The packets have priorities based

on the established total order. As a result, no two packets have the same priority. This

stops continuaJcontentions a.inong the packets. The method guarantees that livelock

is avoided. We have also studied a simplified method for low cost implementations

and link assignments for higher degree networks.

Aside: The argument in the paper [10], which is discussed in the beginning of

this chapter, indeed motivated this study. However, the importance of the problem

was not realized until the development of the specification for the networks, which is

presented in the following chapter, was half done. The experiences gained from the

earlier simulation studies were giving the author an impression that the problem is

less important. It was found that the problem must be solved for completeness of the

specification-and the solution was produced. It will be noticed that the conceptual

algorithm used to show the correctness of the proposed method is influenced by

the computational model of UNITY, which is used for developing the specification

presented in the following chapter. End of aside.

CHAPTER V

FORMAL SPECIFICATION

We model a deflection network as a closed system and develop a specification for the

network using the logic of UNITY (Unbounded Nondeterministic Iterative Transfor-

mations) '(17, 61, 62, 79].

In [26, 27], formal specifications for a static {fixed routes) wormhole message

router for a multiprocessor interconnection network (a grid of N x M switches, where

N is the number of input lines and M is the number of output lines) are studied.

The router is modeled as a closed system in [26]. Whereas, [27] attempts to model it

as an open system. Our closed-system assumption in modeling deflection networks is

influenced by [26].

The goals of this chapter are to develop a formal specification for deflection

networks and to identify methodological elements that provide a common foundation

for the design and specification of data networks. ·

This chapter is organized as follows. Section 5.1 gives an overview of the

UNITY computational model and logic; we re-define the operators of [61, 62], which

are derived from [17], using the notion of the strongest invariant [79]. A formal specifi-

cation for deflection networks is developed in Section 5.2. The developed specification

57

58

is mapped to a UNITY program (a network simulator in pseudocode) in Section 5.3.

Section 5.4 summarizes this chapter.

5.1 Overview of UNITY

This section gives an overview of the UNITY computational model and logic.

5.1.1 UNITY Computational Model

The UNITY computational model (program model) is built upon a traditional im­

perative foundation and a state-transition system.

A UNITY program consists of a declaration/initialization of variables and a

set of atomic, terminating, deterministic, guarded, multiple-assignment statements.

A UNITY program has no control statements. In each step of execution, a statement

is selected nondeterministically and executed. (Executing a statement whose guard

is false does not change the values of the variables.) Nondeterministic selection is

constrained by the fairness rule; every statement is selected infinitely often.

The execution of an assignment statement corresponds to the transition from

one state to the next. An execution sequence will be either infinite or end in a state in

which no statement leading to another state exists (i.e., a fixed point of the program

is reached).

Fairness is an important hypothesis in the study of parallel programs. It guar­

antees that the computations exhibit all behaviors manifested by the execution of

programs. In a multiprocess program, different processes (represented by the state­

ments in a UNITY program) will be individually allowed to proceed [5, 34, 50, 61].

59

5.1.2 UNITY Logic

The verification of a sequential program involves placing predicates at specific points;

the predicates hold when the control reaches the points. This is not the case for a

UNITY program since UNITY does not have the notion of program control. The

properties that must be satisfied are associated with the entire program.

5.1.2.1 Notation A quantified expression is written in the form

(Op x: R(x) : T(x)),

where Op is an associative and commutative operator (e.g.,/\, V, +, etc.), xis a list of

dummy variables whose scope is delimited by the angle brackets, R(x) is a predicate

giving the ranges of dummy variables over which the quantification is to be done, and

T(x) is the term of the quantification. (When T(x) is a predicate, we write V instead

of I\ and :l instead of V. Note that R(x) may be omitted if the ranges (domains) of

dummy variables are understood.)

The Hoare triple [36] has the form

{p}s{q},

where p and q are predicates and s is a program statement. Its meaning is that ifs

is executed in a state where p holds, then q holds after the execution of s.

An inference rule is written as

p

Q'

where P and Q are lists of properties. Its meaning is that if P holds, then we may

infer that Q holds as well.

60

A set consisting of all elements x that satisfy the property P is written in the

form

{x IP}.

A finite set may be specified by enumerating its elements between curly brackets.

The cardinality of a finite set A is denoted by #A.

The operators·that we use are summarized below, ordered by increasing bind-

ing power.

~,::::}

initially, co, stable, constant, invariant, transient, i-+

/\,V

-,

=,#,<,~,>,~,E,(/.
+,-,min,max

"." {function application)

The definitions of operators initially, co, stable, constant, invariant,

transient, and i-+ are given later. All other operators have their usual meanings.

5.1.2.2 UNITY Logic Operators We adopt the notion of the strongest in-

-·variant [79]--andre-define the operators-of [61, 62]. Note that although the operators

of [61, 62) are derived from the original work of UNITY [17), they are developed

for generic {discrete) action systems {which consist of a number of actions that may

change the state of the system) and are not specific to UNITY.

A predicate p is stronger than predicate q if p::::} q. The strongest invariant

SI of a program is the strongest predicate X that satisfies the following condition:

{initial condition::::} X) I\ (Vs: s E F: {X}s{X}),

61

where Fis the program (a set of program statements) and sis a program statement.

The strongest invariant characterizes the set of states that are reachable during some

execution of a program.

• initially p means that p holds for the initial state of every execution sequence:

initially p = initial condition => p.

• p co q (p constrains q) means that if p holds for some reachable state, then q

holds for the next state:

p co q =(Vs: s E F: {SI /\p}s{q}).

• stable p means that if P, holds for some reachable state, then p continues to

hold for all succeeding states:

stable p = p co p.

(In the program model, once pis established, it is preserved by every statement.)

• constant p means that p is true for all reachable states if p is initially true and

false for all reachable states if it is initially false:

constant p = (stable p) I\ (stable ,p).

• invariant p means that p holds initially and ~ontinues to hold for all succeeding

states:

invariant p = (initially p) I\ (stable p)

or simply

invariant p = SI => p.

62

(In the program model, p is preserved by every statement.)

• transient p means that if p holds for some reachable state, then ,p holds (p

being falsified) for a later state:

transient p = (:3s: s E F: {SI /\p}s{,p}).

(In the program model, if p holds at a point, there is at least one statement

"
whose execution falsifies p and that statement is going to be selected for execu-

tion due to the fairness rule of the model.)

• p i---+ q (p leads to q) means that if p holds for some reachable state, then q holds

for a later state (within a finite number of execution steps). Formally p i---+ q

holds if and only if it can be derived by a finite number of applications of the

following three inference rules:

1. (Basis)

2. (Transitivity)

p I\ ,q cop V q, transient p I\ ,q
p 1--t q

p i---+ q, q i---+ r
pi---+ r

3. (Disjunction) For any set S of predicates,

(Vp : p E S : p i---+ q)
(:3p : p E S : p) i---+ q.

The operators co, stable, constant, and invariant are used to specify safety

properties, which claim that undesirable state transitions will not occur during the

execution of the program. The operators transient and i---+ (leads-to) are used for

progress properties, which claim that the program performs useful work.

63

Note that UNITY has introduced only two basic operators co and transient;

all other operators are defined in terms of those two operators.

5.2 Specification

We are interested in developing a specification that clarifies the structures of deflection

networks and can aid the construction of physical networks. We develop a topology

independent, packet-level specification for two-connected networks. The specification

is based on a global observation. A network is modeled as a closed system.

The development of the specification proceeds with the following principles:

The specification for a system should be sufficiently strong to rule out any undesired

behaviors. At the same time, the specification should be sufficiently weak to provide

implementers with the freedom to satisfy the specification in the most convenient and

efficient way. In other words, it should avoid overspecifying the elements that are not

essential to producing the desired system [86].

5.2.1 Requirements

Before we proceed to the development of the specification, we summarize the general

requirements of packet communication networks below.

• The values of packets must not be changed, except the values for routing control

purposes.

• Packets must not be lost.

• Packets must eventually be delivered to their destinations.

64

5.2.2 Basic Model and Topology

We start with the general graph model and make refinements to the model so that

sufficient details of deflection routing can be specified.

A network is a directed graph G = (V, E), where Vis a set of nodes (vertexes)

and E is a set of directed links (edges). The set E is a binary relation on the set

V. (Note that the general graph model does not allow multiple links connecting two

nodes in the same direction. That is the case for most general data networks.)

We identify each node in a network by a unique integer. Let n be the number

of nodes in the network. Then the set V is defined as

V = {v Iv EN, 1 ~ v ~ n},

where N denotes the set of natural numbers. Self-loops are excluded from E:

(Vv : v E V : (v, v) fj. E).

A deflection network has the following topological properties:

(\:/v,w: v,w EV: (v,w) EE+),

where E+ denotes the transitive closure of E, and

(Vv: v EV: #{w I (w,v) EE}= #{w I (v,w) EE}).

The first property specifies that a deflection network is strongly connected. The

second property states that each network node has equal in- and out-degrees, which

are denoted as dv for each node v:

dv = #{w I (w,v) EE}

65

or equivalently

dv = #{w I (v,w) EE}.

For the rest of this chapter, dv = 2. Note that the transitive closure R+ of a relation

R can be constructed by the following rules:

(a, b) ER
(a,b) ER+'

(a, b) ER, (b, c) ER
(a, c) ER+

A path from node v to node w is a non-null sequence of links such that the first

link in the sequence is directed away from v; the last link in the sequence is directed

toward w; for every successive pair (a, b), (c, d) of links in the sequence, b = c. The

length of a path is the number of links in the path. The distance from node v to node

w is given by the function ~ (from E+ to N), such that

~ () = { the length of the minimum-length path from v tow if v =/=- w;
. V, W Q if V = W.

The topological properties are static. We assume that there are no topological

changes during the execution of the system. The following statements are assumed:

(Vv :: constant v EV),

(Vv, w :: constant (v, w) EE).

5.2.3 1/0 Queues and Network Medium

In order to model the behavior of a deflection network, we must be able to distinguish

the locations of packets in the network precisely according to the topology and the

nodal structure of the network. We abstract the inputs and outputs as unbounded

66

queues of packets. Let S, D, and M be the set of locations in the input (source)

queues, the set oflocations in the output (destination) queues, and the set of locations

in the network medium. We define the sets as follows:

Q _ {(t,v,i,k) I t,i,k EN, v EV, 1:::; t:::; 2, 1:::; i:::; dv, 1:::; k},

S = {(t,v,i,k) I (t,v,i,k) E Q, t = 1},

D = {(t, v, i, k) I (t, v, i, k) E Q, t = 2},

M - {(t, V, i) It, i EN, V E V, 1 :::; t:::; 3, 1 :::; i :::; dv}.

The components v, i, and k are a node id, a link id, and a position number. The

component t of an element in M indicates the location of a packet inside a node

(Figure 5.1). The details appear later.

The sets S and D have countably infinite elements. An order of elements in

the sets may be given by Cantor numbering. The order of locations is important only

in the same queue. The component k determines the order of locations in a queue.

Instead of writing locations in the forms (t, v, i, k) or (t, v, i) in the specifica­

tion, we often use the following more intuitive notations of the forms: srcv ik denoting

(1, v, i, k), dst\k denoting (2, v, i, k), invi denoting (1, v, i), swvi denoting (2, v, i),

and outvi denoting (3, v, i).

Figure 5.1 shows the locations in a node. (The node id is omitted in the

figure.) We assign an input queue and an output queue to each link. This clarifies

the nodal processing of deflection networks.

The symbol I- is used to indicate the connection of nodes (which outgoing

link of a node is connected to which incoming link of another node). The expression

67

in I SWJ - out I_
- - - - -

• Switching

in2 _sw2 - Fabric out2
- - - - -

''

:&I"
I I

"""'
N

~ &-
~ ~ ~ . """'

N
"""'

N

Figure 5.1: Locations in a node.

outvi I- inw; is true ifoutput link i of node_ v is connected to input link j __ of node __

w. The operator has the same binding power as =, =I, and the like. The following

statements hold:

(Vv,w :: (v,w) EE# (3i,j :: out\ I- inw;)),

(w · · ·I ·I • • tv I- · w tv I- · w · _ ·I · _ "') vv,w,i,J,i,J .. ou i m ;/\ou i' m ;•#i-i /\J-J.

As mentioned earlier, topological properties are static. We assume the follow-

ing property:

(Vv,w,i,j :: constant outvi I- inw;).

5.2.4 Packet Representation

A packet has seven components: the source node id, the destination node id, the

queue (link) id, the packet (position) number, the hop counter value, the deflection

counter value, and the data portion. (The third and fourth components above are

not necessary in implementations. We augment the packets with those components

in order to uniquely identify each packet in the model.)

68

Using the static components of packets (source node id, destination node id,

queue (link) id, packet (position) number, and data portion), we define the set P*

(the set of all logical packets) as follow:

P* = {(s,r,i,k,z) I s,r EV, i,k EN, 1 ~ i ~ ds, 1 < k, z EA},

where A is the set of all strings (data that can be represented by computers).

Let P be the set of all physical packets. The physical packets are the packets

that actually exist in the system. The set P is a subset of P*. In the specification, a

packet is represented by a variable (a or /3). The components of a packet are accessed

through the following access functions: source, destination, queue, number, and data.

For the variable components of packets (hop counter and deflection counter), we use

two functions (from P to N) hcount and dcount. Throughout the execution of the

model, the set P is unchanged.

Packet Existence

(Va: a E P*: constant a E P) (5.1)

Property 5.1 states that no packets will be created or destroyed in the model. Only

packets that initially exist continue to exist.

The location of a packet in the system is given by the function 8, which is

defined as

8: P-t SU MUD.

We define a predicate empty as

empty.x = (Va: a E P: 8.a =/- x).

69

The predicate empty.xis true if there is no packet at the location x and false otherwise.

For the rest of this chapter, the domain of packets is P and may be omitted

in an expression.

Packet Location

invariant (Va, f3 : a =I- f3 : 8.a =/- 8./3) (5.2)

Property 5.2 means that no two packets have the same location (i.e., the function 8

is a one-to-one function). (This implies that a packet cannot move to a location that

is occupied by another packet.)

Network Initialization

initially (Va :: 8.a E S) (5.3)

Property 5.3 means that initially all packets are in the input queues and there are no

packets in the output queues and in the network medium.

Packet Validity

initially (Va, v, i, k :: 8.a = srcv ik ~

source.a= v I\ queue.a= i I\ number.a= k)

initially (Va :: (:3v :: destination.a= v))

initially (Va :: (:3z :: data.a = z))

(Va, v, w, i, k, z :: stable source.a= v I\

destination.a= w I\ queue.a= i I\

number.a= k I\ data.a= z)

(5.4)

(5.5)

(5.6)

(5.7)

70

Properties 5.4-5.7 state that each packet must have valid component values which

must not be changed during the execution of the system. Note that properties 5.5-5.7

simply follow property 5.1; they are merely repeated here.

The position number of a packet is unique in its input queue. The number is

assigned to each packet based on the initial location of the packet. The triple (s, i, k),

where s, i, and k are a source node id, a queue (link) id, and a position number,

uniquely identifies a packet in the model. This allows the existence of multiple packets

that have the same source node id, the same destination node id, and the same data

value in the model (i.e., in the set P).

Note that the hop and deflection counters, which should be included in the

packet header in implementations, are not included in packets in this model; they are

given by functions from P to N (hcount and dcount).

5.2.5 Packet Moves

The most fundamental property that must be implemented is

(Va :: 8.a E SM 8.a E D).

Every packet in input queues must eventually move into some output queue. More

precisely,

(Va, V :: destination.a= V M (:Ji, k :: e.a = dst\k)).

Every packet must eventually reach its destination. We define the detailed properties

of packet moves below.

Queue Move

(Va, v, i, k: k > 1: 8.a = src\k co 8.a = srcvik V 8.a = srcvik - 1)

(Va, v, i, k: k > 1 : 8.a = srcvik 1-t 8.a = srcvik - 1)

(Va, v, i, k: k > 0: 8.a = dstvik co 8.a = dseik V 8.a = dstvik + 1)

(Va, v, i, k: k > 0: 8.a = dst\k 1-t 8.a = dstvik + 1)

71

(5.8)

(5.9)

(5.10)

(5.11)

Properties 5.8-5.11 define the packet moves in input and output queues. Property 5.8

states that a packet at the position k in an input queue will either stay at the same

position or move to the position k - 1 and there are no other possible moves. Prop­

erty 5.9 guarantees that the packet will move to the position k- 1 in a finite number

of execution steps. Properties 5.10 and 5.11 specify the analogous moves for packets

in output queues.

Generally, a pattern of system behavior is specified by a pair of properties (a

safety property and a progress property).

Injection

(8.a = sw\ I\ hcount.a = 0 I\ dcount.a = 0)) (5.12)

(Va, v, i :: e.a = src\l 1-t e.a = SWvi) (5.13)

Properties 5.12 and 5.13 specify that the packet at the head of an input queue must

be injected into the network within a finite number of execution steps and there are

no other moves. Property 5.13 must be implemented for property 5.9. Recall that no

72

two packets can be at the same location (property 5.2). Hence, the packet at the head

of an input queue must be injected into the network so that the following packets in

the queue can make their moves. (All packet moves must satisfy property 5.2.)

Note that for any packet in an input queue, there are only finitely many packets

ahead of it in the queue. The packet will be out of the input queue within a finite

number of execution steps.

The following properties define the packet moves in the network medium.

Node-to-Node Hop

('i/a, v, i, k, l :: 8.a = out vi I\ hcount.a = k I\ dcount.a = l co

(8.a = outvi I\ hcount.a = k I\ dcount.a = l) V

((3w,j :: outvi I- inwj I\ e.a = inwj} I\ hcount.a = k + l /\ dcount.a = l)} (5.14)

(5.15)

Property 5.14 specifies that the hop counter value increases by 1 every time a packet

makes a hop, while the deflection counter value remains the same.

Delivery

('i/a, v, i :: e.a = invi I\ destination.a= v co e.a = invi Ve.a= dstvil} (5.16)

('i/a, V, i :: 8.a = invi I\ destination.a= V 1--t 8.a = dst\l} (5.17)

Transit

_ _ Switching_

(Va, v, i, k, l :: 8.a = in\ A. destination.a =I= v

A. hcount.a = k A. dcount.a = l co

(8.a = invi A. hcount.a = k A. dcount.a = l) V

(8.a = sw\ A. hcount.a = k A. dcount.a = l))

(Va, v, i :: e.a = in\ A. destination.a =I= Vt-+ e.a = SWvi)

(Va, v, i, k, l :: 8.a = sw\ A. hcount.a = k A. dcount.a = l co

(8.a = sw\ A. hcount.a = k A. dcount.a = l) V

73

(5.18)

(5.19)

((:3j :: 8.a = outv;) A. hcount.a = k A. (dcount.a = l V dcount.a = l + 1))) (5.20)

(Va, v, i :: 8.a = sw\ t-t (:3j :: 8.a = out\)) (5.21)

In an implementation, the routing algorithm at each node determines the value of

j in properties 5.20 and 5.21. The deflection counter value may be increased by

1 during switching. We will make refinements to property 5.21 later for a Specific

implementation.

Up to this point, we have specified only individual packet moves. Now, we

must model and specify synchronized packet moves. First, we define an invariant for

packet locations. Then the synchronized packet moves are specified in terms of the

number of packets at a node.

Relative Packet Location

(Vt, v, i :: invariant -iempty.(t, v, i) => (Vs, j : s =I= t : empty.(s, v, j))) (5.22)

74

Property 5.22 specifies the relative locations of packets in a node. For example, if

there is a packet at in\ for some i, no other packets can be at swvi and outvk for all

j and k at the same time.

Synchronized Packet Move

(Vt,v,k: k > 0: #{i j ,empty.(t,v,i)} = k co

#{i j ,empty.(t,v,i)} = kV#{i j ,empty.(t,v,i)} = 0) (5.23)

Property 5.23 implies that the switching and transmission of packets need to be syn­

chronized. The number of in\'s (i ranging from 1 to dv) that have packets will remain

the same or drop to zero. This implies that the packets at invi's must move at once.

The same property holds for packets at swv i's and outv /s. Although the property

is written in terms of the number of packets in a node, it globally synchronizes the

node-to-node packet moves in the network. Packets coming into a node must be com­

ing at the same time. Since all those packets are coming from different nodes, the

transmission of the packets at the nodes must be synchronized.

The packet at src\1 (the head of an input queue of a node) can be injected

into the network if there are no other packets in the node or it may be injected at

the same time that the packet at invi is moved to dstvil (i.e., an incoming packet on

link i is extracted). There are no other cases that the packet at the head of an input

queue can be injected into the network. Transit packets have higher priorities than

source packets. This means that if a node always receives transit packets, the node

cannot inject its source packets. In other words, property 5.13 may not hold. Certain

injection control mechanisms must be implemented to prevent this situation, which

75

is generally known as source lockout. We will deal with this problem later.

The basic network hardwares such as cables, transmitters, and receivers should

support the properties specified above for packet moves although the functions of the

hardware components alone cannot guarantee all the properties. (It appears that the

properties for the packet moves can be guaranteed solely by the network hardware

components; however, many of the properties cannot be guaranteed by the functions

of the hardware components alone.) In the following subsection, we specify a routing

scheme for general two-connected networks.

5.2.6 Selecting Switching Configurations

The following properties specify shortest path routing if there is no contention.

Shortest Path Routing

((A.(w1 , destination.a) < A.(w2 , destination.a) I\

A.(w1 , destination./3) 2:: A.(w2 , destination./3)) V

(A.(w1 , destination.a) ~ A.(w2 , destination.a) I\

A.(w1 , destination./3) > A.(w2 , destination./3)))

I-+ e.a = outv1 I\ 8./3 = outv2) (5.24)

((A.(w1, destination.a) > A.(w2 , destination.a) I\

A.(w1 , destination.{)) :5 A.(w2 , destination.{))) V

(A.(w1 , destination.a) ~ A.(w2 , destination.a) I\

A.(w1 , destination.{)) < A.(w2 , destination.{))))

A.(w1, destination.a) < A.(w2 , destination.a) ~ 8.a = outv1)

('va, v, W1, W2, i1, i2 :: 8.a = swv1 I\ empty.swv2 I\

OUtV 1 r inWl ii I\ OUtV 2 r inW2 i2 I\

A.(w1 , destination.a) > A.(w2 , destination.a) ~ 8.a = outv2)

(\fa, V, W1, W2, i1, i2 :: empty.SWvI I\ 8.a = SWv2 I\

outv 1 r inw1 i1 I\ outv 2 r inw2 i2 I\

A.(w1, destination.a) < A.(w2 , destination.a) ~ 8.a = outv1}

outv 1 r in wi i1 I\ outv 2 r inw2 i2 I\

A.(w1, destination.a) > A.(w2 , destination.a)~ 8.a = outv2}

76

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

77

Properties 5.24 and 5.25 may be simplified for faster processing in implementations.

Suppose a packet a destined for node b is at node a (a =/= b) and node a has

two adjacent nodes c1 and c2 (c1 =/= c2) (i.e., (a, c1), (a, c2) E E). For a to reach b, it

must pass through either c1 or c2. The shortest distance from c1 to bis .6..(c1, b) by

definition. Analogously, the shortest distance from c2 to bis .6..(c2, b). Therefore,

.6..(a.b) = 1 + (.6..(c1, b) min .6..(c2, b)).

Hence,

The routing scheme decreases the remaining distance to the destination. A packet

injected into a network will eventually reach its destination if there is no contention.

Note that the operator min is defined as

a = b min c = (a = b V a = c) I\ a :::; b I\ a :::; c.

5.2. 7 Contention Resolution and Livelock Prevention

We specify the livelock prevention method of Chapter IV. When two packets want to

use the same output link, the packet with the larger hop counter value gets the link

and the other packet is deflected. Similarly, when two packets with the same hop

counter value want to use the same output link, the packet with the larger deflection

counter value gets the link and the other packet is deflected. If both two packets have

the same hop and deflection counter values, one of them should be selected randomly

for the link and the deflection counter value of the other should be increased.

Contention Resolution By Hop Counter

.6..(w1, destination.a:) < .6..(w2, destination.a:) A

.6..(w1, destination.(]) < .6..(w2 , destination.(}) A

hcount.o: > hcount.(3 i---+ 8.a: = out\ A 8.(3 = outv2)

.6..(w1, destination.a:) > .6..(w2 , destination.a:) A

.6.. (w1, destination. (3) > .6.. (w2 , destination. (3) A

hcount.o: > hcount.(3 i---+ 8.a: = outv 2 A 8.(3 = outv 1)

.6.. (w1, destination.a:) < .6.. (w2 , destination.a:) A

.6.. (w1 , destination.(]) < ..6.. (w2 , destination.(]) A

hcount.o: < hcount.(3 i---+ 8.a: = outv2 A 8.(3 = outv1)

78

(5.30)

(5.31)

(5.32)

.6..(w1, destination.a) > .6..(w2, destination.a) A

.6..(w1, destination./3) > .6..(w2, destination./3) A

hcount.a < hcount./3 1-t E>.a = outv1 A E>./3 = outv2)

Contention Resolution By Deflection· Counter

.6..(w1, destination.a) < .6..(w2, destination.a) A

.6..(w1, destination./3) < .6..(w2, destination./3) A

hcount.a = hcount./3 A dcount.a > dcount./3

t-t E>.a = outv 1 A E>./3 = outv 2)

(Va, /3, v1 '1p1, w2, i1, i2 :: E>.a-:- sw\ A E>./3 = swv 2 A ·

outv1 r- inw1 i 1 A outv2 r- inw\2 A

.6..(w1, destination.a) > .6..(w2, d~stination.a) A

.6..(w1, destination./3) > .6..(w2, destination./3) A

hcount.a = hcount./3 A dcount.a > dcount./3

t-t E>.a = outv 2 A E>./3 = outv 1)

79

(5.33)

(5.34)

(5.35)

Ll.(w1, destination.a) < Ll.(w2, destination.a) I\

Ll.(w1, destination./3) < Ll.(w2, destination./3) I\

hcount.a = hcount.{3 I\ dcount.a < dcount.{3

i-+ 8.a = outv2 I\ 8.(3 = outv 1)

Ll.(w1, destination.a) > Ll.(w2, destination.a) I\

Ll.(w1, destination./3) > Ll.(w2, destination./3) I\

hcount.a = hcount.{3 I\ dcount.a < dcount.{3

i-+ 8.a = outv1 I\ 8.(3 = outv2)

80

(5.36)

(5.37)

81

Tie-breaking and Incrementing Deflection Counter

~.(wi, destination.a) < ~.(w2, destination.a) I\

~.(w1, destination.{3) < ~.(w2, destination.{3) /\.

hcount.a = hcount.{3 I\ dcount.a = k I\ dcount.{3 = k

t-+ (8.a = outv1 I\ 8.(3 = outv2 I\ dcount.a = k I\ dcount.{3 = k + 1)

V (8.a = outv2 I\ 8.(3 = outv1 I\ dcount.a = k + 1 I\ dcount.{3 = k)) (5.38)

~.(wi, destination.a) > ~.(w2, destination.a) I\

.6..(w1, destination.{3) > ~.(w2, destination.{3) I\

hcount.a = hcount.{3 I\ dcount.a = kl\ dcount.{3 = k

t-+ (8.a = outv2 I\ 8.(3 = outv1 I\ dcount.a = k I\ dcount.{3 = k + 1)

V (8.a = outv1 I\ 8.(3 = outv2 I\ dcount.a = k + 1 I\ dcount.{3 = k)) (5.39)

Given that the routing scheme is correct and livelock is prevented, we can say

(Va:: 8.a E Mt-+ 8.a ED).

If we can say

(Va:: 8.a E St-+ 8.a EM),

then we have the property (requirement) given earlier:

(Va:: 8.a ES t-+ 8.a ED).

82

Recall that t-+ is transitive. In the next subsection, we deal with the property

(Va:: 8.a E St-+ 8.a E M).

5.2.8 Lockout Prevention

As noted earlier, we must prevent potential source lockout and validate property 5.13.

Recall that source lockout is a situation that a node is busy routing transit packets

all the time and hence (source) packets cannot be injected into the network from the

node.

Knowing that in practice, source lockout is unlikely to occur in symmetric

networks with uniform traffic patterns and interrelating the problem to livelock pre­

vention, we present the following solution for our model. We force each node to send

a packet (dummy packet) to every node in the network once in a while (infinitely

often). (When a node receives and extracts a packet addressed to the node, the node

can inject one of its source packets into the network (i.e., the node is unlocked). In­

tuitively, lockout will be prevented if livelock is prevented (i.e., every injected packet

reaches its destination in a finite number of hops).) In the model, every input queue

contains infinitely many packets addressed to every node. This scheme may not create

a probabilistically uniform traffic pattern; nevertheless, there will be traffic between

every node pair.

Packet Destination

initially (Vv, w, i : v =/= w : (3a, k :: 8.a = src''ik A destination.a = w)) (5.40)

83

initially (Va, v, i, k : 8.a = src\k :

(3/3, m: m > 0: 8./3 = srcvi(k + m) I\ destination./3 = destination.a)) (5.41)

Property 5.40 specifies that each input queue of every node contains packets addressed

to all other nodes. Property 5.41 states that in each input queue, there are infinitely

many packets addressed to the same node.

Consider tracing a packet injected into a network (perhaps the first packet

injected into the network after the initialization) and its succeeding packets (i.e.,

the packets that will be injected into the network at the nodes receiving the traced

packet). Given that the routing scheme is correct and livelock is prevented, a packet

injected into a network will reach its destination node in a finite number of hops. The

node receiving the packet will inject a packet into the network. Again, the packet

will reach its destination node in a finite number of hops and the node receiving the

packet will inject a packet into the network. Nodes that have not received any packet

after a certain period of execution steps (if such nodes exist) may have been locked

out. The existence of such nodes implies that the injection of packets has occurred

only at a certain subset of the nodes in the network. If this situation will remain

unchanged (i.e., only a subset of the nodes in the network will be injecting packets

into the network), then because of properties 5.40 and 5.41, the nodes in the subset

will eventually (have to) inject packets addressed to the nodes that may have been

locked out. An input queue that continually injects packets will eventually inject a

packet addressed to every node in the network. Hence, no node can be indefinitely

locked out.

84

It is possible to implement other methods to prevent lockout. For example,

a node that can inject packets may voluntarily stop injecting packets so that down­

stream nodes will have chances to inject their packets. Property 5.13 says that a node

must eventually inject the packet at the head of an input queue into the network;

however, the property does not say that a node must inject a packet whenever it can.

Note that although indefinite source lockout can be avoided, temporary lockout

may happen at a node. More sophisticated mechanisms may be required to provide

fair access (or demand based access) to the network when a uniform traffic pattern

is not assumed. Lockout-free does not necessarily mean that fair network access is

provided.

It is not difficult to implement fair and guaranteed network access. For exam­

ple, every node could always have its own tokens (slots marked as tokens for the node)

in the network; a token can be used only by its owner. Unfortunately, the through­

put under such an implementation will be limited. Only a fraction of the network

capacity may be used for the actual communications. It is difficult to provide fair

and guaranteed network access for all nodes while also achieving a high throughput

level. Fortunately, recent practices of networking and distributed computing encour­

age balanced traffic loads (patterns), which will naturally provide fair network access

for all nodes.

5.3 Constructing A Simulator Program

This section gives an outline of the derivation of a (pseudo) UNITY program (a

network simulator in the UNITY computational model) from the specification. Since

the complete implementation will be lengthy and perhaps tedious, only important

85

issues for mapping the specification to a program are described.

5.3.1 Data Types and Representations

We use the data type "packet" as the basic data type in the program. (The data

type "packet" is a record. We use the same notation as in the specification to access

the fields of "packet" as we need in the program.) The data type of the locations

is "packet". In the specification, we have modeled a network with its environments

together as a closed system. In the program, we represents the 1/0 environments by

the data type "sequence of packet". The symbol J_ is used to denote a null-packet.

The program variables are declared as follows.

declare
in, out, sw: array[l..N, 1..2] of packet;
src, dst: array[l..N, 1..2] of sequence of packet;
net: array[l..N, 1..2] of 1..N;
dist: array[l..N, 1..N] of 1..N;

{ end of declare-section }

The constant N is the number of nodes in the network. The array net is used to

represent the node connections (topology), which is represented by the operator f- in

the specification. If node vis connected to node w by link k, then net[v, k] = w. The

array dist stores the shortest distances between nodes, implementing the function Ll

in the specification. The distance from node v to node w is given by dist[v, w].

We use the following operations on sequences:

head.s = head element of the sequence s,

tail.s = tail sequence of the sequence s,

(s; x) = sequence obtained by appending the element x at the end of the sequence s,

nil.s = s is an empty sequence.

86

The basic notation used in this section follows the UNITY program notation

in [17]. An assignment statement can be composed by several assignment components

separated by the operator II- The operator ~ separates the assignment statements in

a program.

5.3.2 Initialization

The initialization of the program is done as follows.

initially
{ Empty Network}
(II i, j : 1 ~ i ~ N, 1 ~ j < 2 : in[i, j], out[i, j], sw[i, j] = ..L, ..L, ..L) II
{ Define Topology }
net[l, 1], ... , net[N, 2], dist[l, 1], ... , dist[N, N] = · · ·

{ end of initially-section }

The network is initially empty as specified by property 5.3 (Network Initialization).

The arrays net and dist should be initialized with aprropreate values for the network

to be simulated.

5.3.3 Assignment Statements

The assignment statements that compose a UNITY program are shown below.

assign
{ Node-to-Node Hop }
(II i1, i2, j : 1 < i1 ~ N, 1 ~ i2 ~ N, 1 < j ~ 2 : in[i2, j], out[ii, j] := out[ii, j], ..L
if net[ii, j] = i2 A out[i1 , j] =I= ..LA (Vk : 1 ~ k ~ 2 : in[i2, k] = ..LA sw[i2, k] = ..L))

~· { Packet Moves Inside A Node }
(II i,j: 1 ~ i ~ N, 1 ~ j ~ 2:
sw[i,j], in[i,j] := in[i,j], ..L {Transit}
if in[i,j] =I= ..LA destination.in[i,j] =I= i A

(\/k : 1 ~ k ~ 2 : sw[i, k] = ..LA out[i, k] = ..L) II
sw[i,j], src[i,j] := head.src[i,j], tail.src[i,j] {Injection}
if ,nil.src[i, j] A in[i, j] = ..L A

(Vk : 1 ~ k ~ 2 : sw[i, k] = ..L A out[i, k] = ..L) II

dst[i, j], in[i, j] := (dst[i, j]; in[i, j]), J_ { Delivery }
if in[i,j] =/= J_ I\ destination.in[i,j] = i)

{ Switching}
(II i: 1 ~ i ~ N: out[i, 1], out[i, 2] :=
sw[i, 1], sw[i, 2]
if (dist[net[i, 1], destination.sw[i, 1]] < dist[net[i, 2], destination.sw[i, 1]] I\

dist[net[i, 1], destination.sw[i, 2]] ~ dist[net[i, 2], destination.sw[i, 2]]) V
· · · · · · · · · ""' { else }

sw[i, 2], sw[i, 1]
if (dist[net[i, 1], destination.sw[i, 1]] > dist[net[i, 2], destination.sw[i, l]] I\

dist[net[i, 1], destination.sw[i, 2]] ~ dist[net[i, 2], destination.sw[i, 2]]) V
.........)

{ end of assign-section }

87

For simplicity and clear presentation (but without loss of generality), the counter

manipulations and the details of switching are omitted in the program. (Assignment

operations should be done component by component if counter manipulations are

implemented.) We assume that the input queues are non-empty.

The first assignment is based on property 5.15 (Node-to-Node Hop). The

second assignment is based on properties 5.19 (Transit), 5.13 (Injection), and 5.17

(Delivery). The third assignment is based on properties 5.21 (Switching), 5.24 (Short-

est Path Routing), and 5.25 (Shortest Path Routing).

The program satisfies property 5.1 (Packet Existence). No packets will be ere-

ated or destroied in the program. The number of packets will be unchnaged after the

execution of any assignment statement in the program. Since every location in the

specification is represented by a valiable in the program, property 5.2 (Packet Loca-

tion) is deary satisfied. We assume that the sequence src satisfies Properties 5.4-5.6

(Packet Validity). The components of packets, except the counter values, will not be

changed by the program. Hence, property 5.7 (Packet Validity) is satisfied. Prop-

88

erties 5.8-5.11 (Queue Move) are implimented by sequences. Modeling synchronized

packet moves is strightforward in the program. Propery 5.23 (Synchronized Packet

Move) is implemented by using parallel assignments.

The assignment statements can be executed concurently in the computational

model; however, the execution of statements may be ordered (based on the packet

moves in the network) and iterrated in a sequential implementation.

5.4 Summary

We have developed a formal specification for deflection networks in UNITY logic. The

developed specification then was mapped to a UNITY program (a network simulator

in pseudocode).

The specification is descriptive and non-operational. A network is viewed as a

mathematical object. The advantage of this approach is that error prone operational

reasoning is eliminated in the specification.

The 1/0 queues as well as the locations in the network medium were repre­

sented by sets of distinct locations rather than sequence variables, the use of which

may seem to be more natural for communication networks. The set model allows us

to use the standard mathematical tools in the specification. This approach may be

applied to the specifications of routing schemes in other types of networks.

The development of the specification forced us to realize the logical problems

in the network. It appears that all individual properties can be guaranteed solely

by the network hardware components; however, many of the properties cannot be

guaranteed by the functions of the hardware components alone. The problems of

livelock and lockout have been addressed by specification.

89

A network with its environment together was modeled as a closed system. This

formulation avoids dealing with conditional properties, which add a certain degree of

complexity to the development of specifications. An open system model imposes an

. examination of the compositionality of the defined logic.

The notion of the strongest invariant was adopted in defining the UNITY

operators. The non-equivalence between the axiomatic and informal operational se­

mantics of the operators in [17] is eliminated. However, the properties specified are

weaker than those specified in the original logic of [17] in the sense that the properties

hold only for reachable states.

In practice, the difference in formulation of the logic has little effect on the

derivation of programs [80]'. A recent study of the compositionality of properties and

a discussion of the differences in logic formulations can be found in [25].

CHAPTER VI

CONCLUSION

6.1 Contributions

The materials presented in this dissertation have covered many issues of deflection

networks. The main contributions of the dissertation include the developments of a

high performance routing scheme for the HTN, topology independent methods that

prevent livelock, and a formal specification for deflection networks.

The throughput/delay characteristics of the MSN and the HTN with several

contention resolution methods have been investigated by intensive simulations. It is

demonstrated that the proposed routing scheme for the HTN increases the through­

put by effectively using don't care nodes. As the network size increases, the scheme

decreases the number of deflections. The simulation result shows that in a 256 x 256

HTN, over 98% of packets were delivered to their destinations without even a single

deflection under a complete network saturation condition (i.e., 100% link utilization).

The research also provides simulation case studies for routing in irregular networks

and random routing in the MSN and the HTN. The results obtained in this research

show that the deflection networks, yet simple in structure, are indeed more powerful

than popular linear structure networks and suitable as metropolitan area communi-

90

91

cation infrastructures.

Livelock prevention is one of key issues of deflection networks. It has been

known that in many cases (but not all cases), the introduction of randomization and

certain priority mechanisms in contention resolutions will avoid livelock. This study

provides a stronger result. The proposed methods guarantee that livelock is detenriin­

istically avoided (i.e., every packet that is injected into a network is 100% guaranteed

to reach its destination). Furthermore, the methods are topology independent and

can be applied to networks with a high degree of connectivity.

A formal specification (a high-level design specification) for two-connected de­

flection networks has been developed. A network was modeled as a closed system

with unbounded I/0 queues. The development of the specification, specially the

specification of progress properties, forced us to realize the logical problems in the

network. The basic network hardwares such as cables, transmitters, and receivers

should support the properties in the specification; however, the functions of the hard­

ware components alone cannot guarantee all the properties. The necessity of livelock

and lockout prevention mechanisms has been addressed by specification. We specified

the livelock prevention method proposed earlier and solved the problem of lockout in

the model by interrelating the problem to livelock prevention. The developed speci­

fication is weak in the sense that it leaves implementers with the freedom to satisfy

the specification in a convenient and efficient way. For example, for improved lockout

prevention and fair network access, an implementation may have a mechanism to con­

trol the packet injection rate at each node. As more sophisticated schemes are found

to be appropriate, they may be implemented without changing the specification. The

I

92

study demonstrates the effectiveness of the formal approach to the system design

problems. It also shows that the use of a small set of temporal logic operators (in

addition to the conventional mathematical tools) is sufficient to build a model for a

concurrent communication system. We have dealt with rather fundamental functions

of the networks in this study; however, the model and specification can be used as a

framework for designing and specifying other more complex functions of the networks

(e.g., broadcasting) As we have seen, simulators (and perhaps the actual systems) can

be build based on the specification. The simulators that have been used to carry out

the performance characteristics of deflection networks follow the specification, except

that livelock and lockout prevention issues are not addressed in the simulators. In the

specification, we have treated the system as rather a critical system whose functions

must be correct all the time. In realistic communication systems, certain errors (e.g.,

the loss of packets that may be resulted from buffer overflow or perhaps in deflection

networks, livelock or lockout prevention) are allowed to occur in general; however,

such an assumption, which may allow us to drop dealing with the problem of livelock

or lockout in our model, should not be made during the basic system design process.

The study yielded better understanding of the formal approach to the system design

and specification. The same approach can be applied to the design and· specification

of other types of data networks.

6.2 Future Research Problems and Discussion

There are several problems that may be studied to improve deflection networks. The

problems include bandwidth reservation, connection service, broadcasting, and mul­

ticasting.

93

Bandwidth reservation and connection service are closely related. Given that

the packet delay is much smaller than the end-to-end delay required by connection

service, the only resource to be managed is the rate of the network access granted to

a node [14].

Note that connection service through virtual circuits can hardly be provided

in deflection networks without buffering packets at intermediate nodes. The use of

the buffering resources increases the complexity of the nodal structures and slows

nodal operations down. Moreover, establishing virtual circuits requires (additional)

complex resource management.

Although deflection networks generally have regular topologies, which sup­

port simple routing schemes, broadcasting in the networks is not straight forward.

Broadcasting methods that involve packet replications at branching nodes (such as

flooding) are not suitable for deflection networks. Since the availability of links is

a random event, the replications of packets may not be possible at branching nodes

(immediately after the arrival of the packets).

In [29], Hamiltonian broadcasting (linear broadcasting), which involves no

packet replications, has been proposed for the bidirectional MSN (torus network). It

may not be difficult to find a Hamiltonian path in a structured network; however,

in general networks, the problem of finding a Hamiltonian path is an NP-complete

problem. Hence, Hamiltonian-path-based broadcasting is not always possible.

For the same reason for broadcasting being difficult, multicasting that involves

packet replications is also difficult in deflection networks. Furthermore, the problem

of constructing a minimum cost multicasting tree (the Steiner problem) is an NP-

94

complete problem even for regular networks such as meshes [82]. Efficient multicasting

seems to be inherently difficult in deflection networks.

Note that both broadcasting and multicasting can be done by repeated uni­

casting at the source node, of course.

All of the above problems come from the unpredictability of deflection routing.

As for formal specification, developing a specification for a large concurrent

system remains a difficult task. Research opportunities for providing large but non­

cumbersome case studies still exist.

BIBLIOGRAPHY

[1] G. Albertengo, R. Cigno, and G. Panizzardi. The deflection network: A reliable
high speed packet network for computer communication. In Proceedings of the
IEEE International Conference on Computer Systems and Software Engineering
(COMP EURO '91 the 5th Annual European Computer Conference), pages 84-88,
Bologna, Italy, May 13-16, 1991.

[2] G. Albertengo, R. Cigno, and G. Panizzardi. Optimal routing algorithms for the-- -­
bidirectional Manhattan street network. In Conference Record of the IEEE Inter­
national Conference on Communications (ICC '91}, pages 1676-1680, Denver,
Colorado, June 23-26, 1991.

[3] G. Albertengo, R. Cigno, and G. Panizzardi. Simplified routing algorithms for
the bidirectional Manhattan street network. In 0. Spaniol and A. Danthine,
editors, High Speed Networking, III, pages 127-135. Elsevier Science Publishers
B.V. (North-Holland), 1991.

[4] G. Albertengo, P. Civera, R. Cigno, G. Piccinini, M. Zamboni, F. Borgonovo,
L. Fratta, and G. Panizzardi. Deflection network: Principles, implementation,
services. European Transactions on Telecommunications, 3(2):195-206, 1992.

[5] K. Apt and E. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, New York, 1991.

[6] P. Baran. On distributed communication networks. IEEE Transactions on Com­
munication Systems, CS-12(1):1-9, 1964.

[7] C. Baransel, W. Dobosiewicz, and P. Gburzynski. Routing in multihop packet
switching networks: Gb/s challenge. IEEE Network, 9(3):38-61, 1995.

[8] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90,
1958.

[9] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs,
New Jersey, second edition, 1992.

[10] K. Bolding, M. Fulgham, and L. Snyder. The case for chaotic adaptive routing.
IEEE Transactions on Computers, 46(12):1281-1291, 1997.

95

96

[11] F. Borgonovo and E. Cadorin. HR4-NET: A hierarchical random-routing reliable
and reconfigurable network for metropolitan area. In Proceedings of the IEEE
Conference on Computer Communications, (INFOCOM '87}, pages 320-326,
San Francisco, California, March 31-April 2, 1987.

[12] F. Borgonovo and E. Cadorin. Routing in the bidirectional Manhattan network.
In L. Moraes, E. Silva, and L. Soares, editors, Data Communication Systems
and Their Performance, pages 181-189. Elsevier Science Publishers B.V. (North­
Holland), 1988.

[13] F. Borgonovo and E. Cadorin. Locally-optimal deflection routing in the bidirec­
tional Manhattan network. In Proceedings of the IEEE Conference on Computer
Communications {INFOCOM '90}, pages 458-464, San Francisco, California,
June 3-7, 1990.

[14] F. Borgonovo and L. Fratta. Deflection networks: Architectures for metropolitan
and wide area networks. Computer Networks and ISDN Systems, 24(2):171-183,
1992.

[15] J. Brassil, A. Choudhury, and N. Maxemchuk. The Manhattan street network: A
high performance, highly reliable metropolitan area network. Computer Networks
and ISDN Systems, 26(6-8):841-858, 1994.

[16] M. Burstall. Program proving as hand simulation with a little induction. In
Proceedings of the IFIP Congress {Information Processing 74), pages 308-312,
Stockholm, Amsterdam, August 5-10, 1974.

[17] K. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison­
Wesley, Reading, Massachusetts, 1988.

[18] Y. Chen and G. Sasaki. Routing in quasi torus networks. Networks, 28(4):195-
209, 1996.

[19] A. Choudhury and V. Li. An approximate analysis of the performance of deflec­
tion routing in regular networks. IEEE Journal on Selected Areas in Communi­
cations, 11(8):1302-1316, 1993.

[20] T. Chung. Design and Analysis of Manhattan Street Class of Doubly Linked
Networks. PhD thesis, North Carolina State University, 1989.

[21] T. Chung and D. Agrawal. On network characterization of and optimal broad­
casting in the Manhattan street network. In Proceedings of the IEEE Conference
on Computer Communications {INFOCOM '90}, pages 465-472, San Francisco,
California, June 3-7, 1990.

[22] T. Chung and D. Agrawal. Design and analysis of multidimensional Manhattan
street networks. IEEE Transactions on Communications, 41(2):295-298, 1993.

[23] T. Chung, N. Sharma, and D. Agrawal. Cost-performance trade-offs in Man­
hattan street network versus 2-D torus. IEEE Transactions on Computers,
43(2):240-243, 1994.

97

(24] E. Clarke and J. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.

(25] P. Collette and E. Knapp. A foundation for modular reasoning about safety and
progress properties of state-based concurrent programs. Theoretical Computer
Science, 183(2):253-279, 1997.

(26] C. Creveuil and G. Roman. Formal specification and design of a message router.
ACM Transactions on Software Engineering and Methodology, 3(4):271-307,
1994.

(27] H. Cunningham and Y. Cai. Specification and refinement of a message router.
In Proceedings of the Seventh International Workshop on Software Specification
and Design, pages 20-29, Redondo Beach, California, December 6-7, 1993.

(28] H. Cunningham, V. Shah, and S. Shen. Devising a formal specification for an
elevator controller. Technical Report UMCIS-1994-10, Software Methods Re­
search Group, Department.of Computer and Information Science, University of
Mississippi, 1994.

(29] M. Decina, V. Trecordi, G. Zanolini, and D. Zucca. Two simple techniques for
broadcasting in deflection routing multichannel MANs. Computer Networks and
ISDN Systems, 26(6-8):1023-1041, 1994.

(30] M. Dickie. Routing in Today's Internetworks: The Routing Protocols of IP,
DECnet, NetWare, and AppleTalk. Van Nostrand Reinhold, New York, 1994.

(31] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

(32] E. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

(33} L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Jersey, 1962.

(34] N. Francez. Fairness. Springer-Verlag, New York, 1986.

(35] A. Greenberg and J. Goodman. Sharp approximate models of deflection routing
in mesh networks. IEEE Transactions on Communications, 41(1):210-223, 1993.

(36] C. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-580,583, 1969.

(37] C. Hoare. Communicating Sequential Processes. Prentice-Hall, New York, 1985.

(38] S. · Kartalopoulos. A Manhattan fiber distributed data interface architecture. In
Proceedings of the IEEE Global Telecommunications Conference {GLOBECOM
'90}, pages 141-145, San Diego, California, December 2.:_5, 1990.

98

[39] E. Knapp. An exercise in the formal derivation of parallel programs: Maximum
flows in graphs. A CM Transactions on Programming Languages and Systems,
12(2):203-223, 1990.

[40] E. Knapp. Derivation of concurrent programs: Two examples. Science of Com­
puter Programming, 19(1):1-23, 1992.

[41] A. Krishna and B. Hajek. Performance of shuffle-like networks with deflection. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM
'90}, pages 473-480, San Francisco, California, June 3-7, 1990.

[42] R. Krishnan and N. Maxemchuk. Life beyond linear topologies. IEEE Network,
7(2):48-54, 1993.

[43] F. Kroger. Temporal Logic of Programs. Springer-Verlag, Berlin, 1987.

[44] T. Kubo and K. Yoguchi. Highway transfer: A new packet forwarding technique
for real-time applications. In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM '90 }, pages 403-408, San Francisco, California,
June 3-7, 1990.

[45] J. Kurose and H. Mouftah. Simulation of communication networks. In T. Rober­
tazzi, Computer Networks and Systems: Queueing Theory and Performance
Evaluation, pages 223-231. Springer-Verlag, New York, second edition, 1994.

[46] L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

[47] W. Lee and L. Kung. Binary addressing and routing schemes in the Manhattan
street network. IEEE/ACM Transactions on Networking, 3(1):26-30, 1995.

[48] B. Lester. The Art of Parallel Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

[49] N. Lynch and M. Tuttle. An introduction to input/output automata. CW!
Quarterly, 2(3):219-246, 1989.

[50] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys­
tems: Specification. Springer-Verlag, New York, 1992.

[51] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[52] N. Maxemchuk. The Manhattan street network. In Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM '85}, pages 255-261, New
Orleans, Louisiana, December 2-5, 1985.

[53] N. Maxemchuk. Regular mesh topologies in local and metropolitan area net­
works. AT&T Technical Journal, 64(7):1659-1685, 1985.

99

[54] N. Maxemchuk. Routing in the Manhattan street network. IEEE Transactions
on Communications, COM-35(5):503-512, 1987.

[55] N. Maxemchuk. Comparison of deflection and store-and-forward techniques in
the Manhattan street and shuffle-exchange networks. In Proceedings of the IEEE
Conference on Computer Communications (INFOCOM '89), pages 800-809, Ot­
tawa, Ontario, Canada, April 23-27, 1989.

[56] N. Maxemchuk. Problems arising from deflection routing: Live-lock, lockout,
congestion and message reassembly. In G. Pujolle, editor, High-Capacity Local
and Metropolitan Area Networks: Architecture and Performance Issues, pages
209-233. Springer-Verlag, Berlin, 1991.

[57] N. Maxemchuk and R. Krishnan. A comparison of linear and mesh topologies
- DQDB and the Manhattan street network. IEEE Journal on Selected Areas
in Communications, 11(8):1278-1289, 1993.

[58] J. McQuillan, G. Falk, and I. Richer. A review of the development and perfor­
mance of the ARPANET routing algorithm. IEEE Transactions on Communi­
cations, COM-26(12):1802-1811, 1978.

[59] G. Michelis, L. Pomella, E. Battiston, F. Cindio, and C. Simone. Formal meth­
ods: A Petri nets based approach. In A. Zomaya, editor, Parallel and Distributed
Computing Handbook, pages 59-88. McGraw-Hill, New York, 1996.

[60] A. Milner. A Calculus of Communicating Systems (Lecture Notes in Computer
Science 92). Springer-Verlag, Berlin, 1980.

[61] J. Misra. A logic for concurrent programming: Progress. Journal of Computer
and Software Engineering, 3(2):273-300, 1995.

[62] J. Misra. A logic for concurrent programming: Safety. Journal of Computer and
Software Engineering, 3(2):239-272, 1995.

[63] R. Nair. Analysis of Routing Algorithms for Large Networks. PhD thesis, Uni­
versity of Maryland, Baltimore County, 1993.

[64] R. Newman, Z. Budrikis, and J. Hullett. The QPSX MAN. IEEE Communica­
tions Magazine, 26(4):20-28, 1988.

[65] N. Nezu and H. Lu. An asynchronous addre~s updating scheme for expanding
torus networks. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA '96), pages 407-
415, Sunnyvale, California, August 9-11, 1996.

[66] N. Nezu and H. Lu. Incremental design and routing schemes for torus networks.
In Proceedings of the International Conference on Parallel and Distributed Pro­
cessing Techniques and Applications (PDPTA '97), pages 1302-1307, Las Vegas,
Nevada, June 30-July 3, 1997.

100

(67] N. Nezu and H. Lu. Incremental construction of torus networks. In Proceedings
of the ACM Symposium on Applied Computing (SAC '98), pages 80-84, Atlanta,
Georgia, February 27-March 1, 1998.

[68] N. Nezu and H. Lu. Performance of toroidal deflection networks. In Proceedings of
the Second IASTED International Conference European Parallel and Distributed
Systems (Euro-PDS '98), pages 103-110, Vienna, Austria, July 1-3, 1998.

[69] N. Nezu and H. Lu. Livelock prevention in deflection networks. In Proceedings
of the ACM Symposium on Applied Computing (SAC '99), pages 96-97, San
Antonio, Texas, February 28-March 2, 1999.

[70] N. Nezu and H. Lu. Modeling deflection networks: Design. and specification.
In Proceedings of the ACM Symposium on Applied Computing (SAC '99), pages
66-73, San Antonio, Texas, February 28-March 2, 1999.

[71] R. Eerlman. Routing protocols. In D. Lynch and M. Rose, editors, Internet Sys­
tem Handbook, pages 157-181. Addison-Wesley, Reading, Massachusetts, 1993.

[72] A. Pizzarello. An industrial experience in the use of UNITY. In J. Banatre
and D. Metayer, editors, Research Directions in High-level Parallel Programming
Languages: Mont Saint-Michel, France, June 17-19, 1991: Proceedings (Lecture
Notes in Computer Science, 574), pages 39-49. Springer-Verlag, Berlin, 1992.

[73] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Annual Symposium Foundations of Computer Science, pages 46-57, Providence,
Rhode Island, October 31-November 2, 1977.

[74] T. Robertazzi. Toroidal networks. IEEE Communications Magazine, 26(6):45-
50, 1988.

[75] T. Robertazzi and A. Lazar. Deflection strategies for the Manhattan street
network. In Conference Record of the IEEE International Conference on Com­
munications (ICC '91), pages 1652-1658, Denver, Colorado, June 23-26, 1991.

[76] C. Rose. Mean internodal distance in regular and random multihop networks.
IEEE Transactions on Communications, 40(8):1310-1318, 1992.

[77] F. Ross. FDDI - A tutorial. IEEE Communications Magazine, 24(5):10-17,
1986.

[78] P. Roth, M. Ilyas, and H. Mouftah. Simulation: A powerful tool for prototyping
telecommunications networks. Simulation, 58(2):78-82, 1992.

[79] B. Sanders. Eliminating the substitution axiom from UNITY logic. Formal
Aspects of Computing, 3(2):189-205, 1991.

[80] B. Sanders. On the UNITY design decisions. In J. Banatre and D. Metayer, ed­
itors, Research Directions in High-level Parallel Programming Languages: Mont
Saint-Michel, France, June 17-19, 1991: Proceedings (Lecture Notes in Com­
puter Science, 574), pages 50-63. Springer-Verlag, Berlin, 1992.

101

[81] M. Schwartz and T. Stern. Routing techniques used in computer communication
networks. IEEE Transactions on Communications, COM-28(4):539-552, 1980.

[82] A. Shaikh, S. Lu, and K. Shin. Localized multicasting routing. In Proceedings
of the IEEE Global Telecommunications Conference {GLOBECOM '95), pages
1352-1356, Singapore, November 14-16, 1995.

[83] D. Smitley. Performance of networks using deflection routing. Technical Re­
port SRC-TR-92-082, Supercomputing Research Center, Institute for Defense
Analyses, 1992.

[84] W. Stallings. Local and Metropolitan Area Networks. Macmillan, New York,
fourth edition, 1993.

[85] M. Staskaukas. Formal derivation of concurrent programs: An example from
industry. IEEE Transactions on Software Engineering, 19(5):503-528, 1993.

[86] M. Staskauskas. The formal specification and design of a distributed electronic
funds-transfer system. IEEE Transactions on Computers, 37(12):1515-1528,
1988.

[87] A. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs, New Jer­
sey, third edition, 1996.

[88] A. Tocher. LOTOS and the formal specification of communication standards:
An example. In P. Scharbach, editor, Formal Methods: Theory and Practice,
pages 5-51. CRC Press, Boca Raton, Florida, 1989.

[89] T. Todd. The token grid network. IEEE/ACM Transactions on Networking,
2(3):279-287, 1994.

[90] T. Todd and E. Hahne. Multiaccess mesh (multimesh) networks. IEEE/ACM
Transactions on Networking, 5(2):181-189, 1997.

[91] J. Wong and Y. Kang. Distributed and fail-safe routing algorithms in toroidal­
based metropolitan area networks. Computer Networks and ISDN Systems,
18(5):379-391, 1990.

Thesis:

Major Field:

Biographical:

rv
VITA

Nobuyuki Nezu

Candidate for the Degree of

Doctor of Philosophy

DEFLECTION NETWORKS: PERFORMANCE EVALUATION,
LIVELOCK PREVENTION, AND FORMAL SPECIFICATION

Computer Science

Education: Graduated from Gakushuin University, Tokyo, Japan with a Bach­
elor of Science degree in Mathematics in March 1991; received a Master
of Science degree in Computer Science from Oklahoma City University,
Oklahoma City, Oklahoma in May 1993. Completed the requirements for
the Doctor of Philosophy degree in Computer Science at Oklahoma State
University in July 1999.

Professional Experience: Graduate Teaching Assistant; Computer Science De­
partment, Oklahoma State University, January 1994 to December 1998.

Professional Memberships: Association for Computing Machinery, Sigma Xi.

