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CHAPTER I 

INTRODUCTION 

A proliferation of network users has led to the introduction of metropolitan area net­

works. (MAN s). MAN s interconnect larger numbers of users and span longer distances 

than conventional local area networks (LANs). A recent generation of MANs is based 

on linear structures (bidirectional loops and buses). As in the case of LANs, these 

networks trade their throughputs for simple access strategies. The performance of 

linear structure networks degrades with increasing numbers of users. 

As alternatives to linear structure networks, two-dimensional toroidal networks 

with deflection routing have been proposed for MANs. A toroidal (or torus) network 

is a grid network with boundary connections (Figure 1.1). The boundary connections 

eliminate edge effects and decrease inter-nodal distances. The symmetry (transitivity) 

and the global consistency (sense of direction) of toroidal networks support simple 

and locally implementable routing schemes. Toroidal networks provide multiple paths 

between a source and a destination and increase their throughputs with the number 

of nodes by decreasing the fraction of the network capacity needed to communicate 

between nodes. The reliability of networks is also increased [7, 53, 74]. 

Deflection routing, which supports communications in toroidal networks, elim-

1 
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Figure 1.1: A toroidal network. 

inates buffering resources. As a consequence, the networks do not suffer internal con­

gestion. Packets can be accepted as long as there is room in the networks. This makes 

the behavior of the networks similar to that of LANs. The elimination of buffering re­

sources also enables nodes to follow the linkspeed as close as possible. The deflection 

networks naturally provide high-speed adaptive datagram services [4, 7, 14]. 

Note that toroidal topologies and deflection routing are also applicable to 

(processor) interconnection networks for parallel processing computers [48, 74, 83]. 

1.1 Motivations 

Toroidal deflection networks have potential as high-speed metropolitan area commu­

nication infrastructures. The performance of toroidal networks scales better than 

that of bus and loop networks. The elimination of buffers simplifies and accelerates 

the network operations. It is also important for the design and implementation of 

all-optical networks, which will be the basis for future communication systems. 

Although the structures of deflection networks are simple, because of the in­

herent unpredictability of routes taken by packets, the performance analysis of deflec­

tion networks is difficult. The dynamic behavior of the networks may be best studied 
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through (discrete event) simulation [45, 78]. The quantitative results obtained by 

simulation can be used in assessing the feasibility of routing algorithms. 

It seems unlikely that the topologies of realistic networks are perfectly symmet­

ric. Hence, routing algorithms should be able to overcome topological irregularities. 

Naturally, deflection routing is capable of handling certain topological irregularities, 

yet the issue needs to be addressed. 

One problem unique to deflection networks is livelock ( the indefinite circulation 

of packets without reaching destinations), the counterpart of deadlock in store-forward 

networks. Livelock needs to be eliminated from deflection networks in order to ensure 

the eventual delivery of every injected packet. 

As in the case of many proposed parallel and distributed systems, formal 

specifications for deflection networks have not appeared in the literature. For most 

systems, the existence of the interactions of the concurrent components of the systems 

and their environments is making the development of rigorous specifications ( and the 

development of the systems themselves) a difficult task. 

Formal methods are mathematical techniques for specifying and verifying com­

plex systems. The use of formal methods eliminates inconsistencies, ambiguities, and 

incompletenesses that may remain undetected with informal specifications (24]. 

It is desirable that a specification language, besides being rigorous, should be 

compact and easy to learn for those who are new to formal specification (both the 

designers and the readers of the specifications). The logic of UNITY (Unbounded 

Nondeterministic Iterative Transformations) [17, 61, 62, 79), which has been designed 

for the specification and verification of concurrent systems, can be used as such a 
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language. 

1.2 Objectives 

The objectives of this research are: 

1. to investigate the feasibility of using toroidal deflection networks as metropolitan 

area communication infrastructures and 

2. to provide a logical framework for reasoning about routing and control functions 

of deflection networks. 

The research encompasses the analysis of throughput and delay characteristics, the 

development of routing and livelock prevention schemes, and the modeling and spec­

ification of deflection networks. 

1.3 Organization of this Dissertation 

The materials presented in this dissertation cover many key issues of deflection net­

works. The dissertation is organized as follows. In Chapter II, routing in wide area 

networks, local and metropolitan area networks, topologies of deflection networks, 

and formal specification methods are reviewed. Deflection routing is introduced. The 

characteristics of deflection networks are described. The materials of Chapter II pro­

vide background knowledge for the following chapters. The performance of deflection· 

networks is studied in Chapter III. The bulk of the results in Chapter III are from 

(68], except the examination of deflection routing on irregular networks in Section 3.3 

and random routing in Section 3.4. Section 3.3 demonstrates that a simple routing 

scheme can function on irregular networks, which may be incrementally constructed. 
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The examination of the random routing in Section 3.4 gives an interesting insight into 

the topological characteristics of networks. A livelock prevention mechanism, which 

is based on [69], is presented in Chapter IV. In Chapter V, a formal specification 

for deflection networks is developed. The UNITY computational model and logic are 

introduced. The operators of [61, 62], which are derived from the original work of 

UNITY (17], are re-defined by using the notion of the strongest invariant [BO]. A 

network is modeled as a closed system with unbounded 1/0 queues. UNITY logic 

is used to formulate the properties of the network. The developed specification is 

mapped to a UNITY program ( a network simulator in pseudocode). The basic idea 

of Chapter V is from (70]. Chapter VI evaluates and concludes this dissertation. A 

discussion of future research problems is also given in the final chapter. 



CHAPTER II 

LITERATURE REVIEW AND BACKGROUND 

In this chapter, we review routing in general wide area networks, local and metropoli­

tan area networks, deflection networks, and formal specification methods. This chap­

ter provides background knowledge for the following chapters. 

2.1 Routing in Wide Area Networks 

Routing methods can be classified as centralized or distributed; static or adaptive; 

and link-state approach or distance-vector approach (The link-state approach repli­

cates the entire network topology information at each node, whereas the distance­

vector approach, at each node, stores only the distances to other nodes) (63, 71]. 

Computing the shortest (delay) paths in a distributed adaptive manner typically re­

quires periodical routing information (e.g., the congestion of links/queues) exchange 

among nodes. In this section, we briefly review the routing methods used in the 

ARPANET [9, 30, 58, 81, 87], which was formed by the Advanced Research Project 

Agency (ARPA) of the U.S. government and has now grown into the worldwide In­

ternet. 

The first ARPANET routing algorithm was implemented in 1969. It is a dis­

tributed adaptive algorithm based on shortest path routing. Each packet is forwarded 

6 
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to its destination along the path that minimizes the estimated delay ( transit delay). 

The delay (cost) of a link is measured based on the number of packets waiting for 

transmission in the queue of the link. Each node exchanges its routing informa­

tion (i.e., the estimated delays from the node to all destinations) with neighboring 

nodes periodically as short as every 2/3 seconds. The Bellman-Ford algorithm [8, 33] 

(distance-vector approach) is used to update the routing information (i.e., calculate 

the shortest delay paths). Because of the rapid routing information (link costs) up-. 

dates, the algorithm had faced problems with message re-assembly (i.e., the packets 

of a message arrived at the destination from different paths out of the transmitted 

sequence) and looping. The rapid link cost changes (updates) caused routing path 

changes and the routing path changes again caused the link cost changes. To stabi­

lize this situation, a large constant was added to each link cost. This, unfortunately, 

made the algorithm less sensitive to the congestion of links. 

A decade later, the second algorithm, which is known as Shortest Path First 

(SPF), was implemented and replaced the first one. In the second algorithm, the 

update interval was changed to 10 seconds. Each link cost is calculated as the average 

packet delay (including processing, queueing, transmission, and propagation delays) 

on the link since the previous update (i.e., during the past 10 seconds). Each node 

broadcasts the costs of its outgoing links (by flooding) at least every 60 seconds. Based 

on the broadcasted link costs, each node individually calculates the shortest paths 

using Dijkstra's algorithm [31] (link-state approach). The algorithm improved the 

stability although later an increase in traffic load lowered the stability and necessitated 

a revision of the method for calculating link costs. In the 1987 implementation, the 
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· range of link cost and the rate at which the cost can change were drastically reduced. 

As a result, the dynamic behavior of the algorithm improved substantially. The 

successor of the algorithm, which was named Open SPF (OSPF), was standardized 

by the Internet Engineering Task Force (IETF) in 1990. The standard are now 

supported by many router vendors. 

2.2 Local and Metropolitan Area Networks 

Generally, local and metropolitan area networks (LANs and MANs) have very simple 

topologies and do not require algorithmically sophisticated routing methods used in 

wide area networks. The Ethernet and the token ring are two popular local area 

networks [84]. The Ethernet is a bus network. The token ring is a single loop 

network. In both networks, only one node is allowed to transmit data at a time. The 

performance of the networks degrades linearly with the number of nodes. The Fiber 

Distributed Data Interface (FDDI) Network [77] and the Distributed Queue Dual Bus 

(DQDB) Network [64] use bidirectional loops and buses and have been proposed for 

metropolitan area networks. These networks simply double the throughput of earlier 

networks and can survive a single link failure. 

2.3 Deflection Networks 

In this section, we examine the characteristics, topologies, possible failure recovery 

mechanisms, and expandability of deflection networks. 
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Figure 2.1: A two-connected network. 

2.3.1 Characteristics 

Deflection routing, which is similar to hot-potato routing [6], is a distributed adaptive 

routing method that can be applied to the networks in which the in-degree and the 

out-degree ( the number of incoming links and the number of outgoing links) of each 

node are equal. An example of such a network is shown in Figure 2.1. The network is 

two-connected (i.e., every node has two incoming links and two outgoing links). Note 

that deflection networks are not necessarily regular. Different nodes in a network 

may have different connectivities. The networks operate in a slotted mode with fixed 

length packets. The switching and transmission processes take place on a time slotted 

basis. Generally, all links are one slot in length (i.e., every packet travels one link 

per slot). (Links may be multiple slots long in some networks.) A packet (from 

an input source) enters a network if an empty slot is available. When two or more 

simultaneously arriving packets contend for the same output link, a local contention 

resolution rule is used to select the packet that gets the use of the link. The packets 

that lost a contention are deflected (misrouted). Because the in-degree and the out­

degree of a node are equal, it is always possible to assign each one of simultaneously 
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arriving packets to a distinct output link. 

For each time slot, a node of a deflection network 

1. extracts a packet addressed to the node, 

2. injects a source packet if the node obtains an empty slot (i.e., a slot has been 

received empty or a packet has been extracted), and 

3. selects a switching configuration. 

The switching and transmission of packets follow the above steps. 

The buffering resources required by the standard store-forward method are 

eliminated in deflection networks. Hence, there is no internal congestion. The behav­

ior of the networks is stable. Packets are accepted as long as nodes recognize empty 

slots. Deflection routing is naturally adaptive to hot spots that may arise under 

certain fixed routing schemes. No routing information exchanges among the nodes 

are required. It is also noted that deadlock due to buffer overflow will not occur in 

deflection networks. 

One problem uniquely associated with deflection networks is livelock ( the in­

definite circulation of packets without reaching destinations). Although livelock may 

be rare in practice, as deadlock needs to be prevented for store-forward networks, 

livelock needs to be prevented for deflection networks. This issue will be addressed 

in a later chapter. 

2.3.2 Topologies 

The topology of a deflection network plays an important role in developing routing al­

gorithms that require no routing tables and accelerate nodal processing. In reviewing 
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Figure 2.2: A Manhattan Street Network. 

the previous works, we classify deflection networks by topology. 

The most widely studied deflection network is the Manhattan Street Network 

(MSN) (52, 53] (Figure 2.2). The MSN is a toroidal network. Its topology resembles 

the one-way streets and avenues in Manhattan. The alternation of row and column 

link directions keeps inter-nodal distances small, but also restricts the number of rows 

and columns to even. The network has two incoming links and two outgoing links 

at each node and hence has the same degree of connectivity (the same number of 

transmitters and receivers) as the bidirectional loop network. 

Deflection routing strategies for the MSN have been studied extensively in the 

literature [35, 54, 75]. The relative superiority (higher throughput and reliability) of 

the MSN over linear topology networks (the FDDI Network and the DQDB Network) 

are reported in [15, 42, 57]. In [19], buffered deflection routing in the MSN is studied; 

it is reported that the use of a few buffers ( to hold some transit packets) provides 

a significant improvement in performance. (Note that no buffers, except some delay 



Figure 2.3: A Highway Transfer Network. 

lines, may be available in optical networks.) 

12 

The two-connected toroidal topology shown in Figure 2.3 has been used for the 

Highway Transfer Network [44], the Manhattan Fiber Distributed Data Interface (M­

FDDI) Network [38], the Token Grid Network [89], and the Multimesh Network [90]. 

(The Highway Transfer is a fast packet forwarding technique. The M-FDDI Network· 

extends the FDDI Network. The Token Grid Network uses a hierarchical token pass­

ing protocol. The Multimesh Network is a generalization of the Token Grid Network.) 

As in [7], which briefly introduces [44], we call a network with the topology a High­

way Transfer Network (HTN). Previously, in the literature, the HTN has not been 

studied as a deflection network, perhaps, because of its large deflection penalty (the 

least upper bound on the number of "extra" hops that a packet has to make after a 

deflection), which grows with the network size. However, the network also has a high 

density of so-called don't care nodes (from which packets can be transmitted through 

any outgoing link without being deflected) and hence the number of deflections can 
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Output 

Input 

Figure 2.4: A Shuffle Exchange Network. 

be kept small. The network is defined for any numbers of rows and columns. The 

structural requirement is relaxed. The HTN supports a considerably simpler routing 

scheme than the MSN. A high performance/cost ratio can be expected. The HTN 

may be used as an inexpensive alternative to the MSN. The performance of the HTN 

is investigated in a later chapter. 

Networks based on the perfect shuffle interconnection have also been studied 

as deflection networks; The Shuffle-Exchange Network [41, 53] (Figure 2.4) has a 

smaller diameter (log2 N, where N is the number of nodes in the network) than the 

MSN. However, the Shuffle-Exchange Network has a greater deflection penalty than 

the MSN and is not defined for an arbitrary number of nodes (the number of nodes 

must be a power of two). Alternate paths are much longer than the shortest paths. 

Very few nodes have alternate paths that have the same distance to the destinations. 

The physical layout of the network does not make sense geographically. The network 

can be used only in a small area. The Shuffle-Exchange Network does not have the 

characteristics of the MSN that cause deflection routing to perform well. Without 

buffers (to hold some transit packets), the throughput of the Shuffle-Exchange Net­

work is lower than that of the MSN [55]. The network is highly structured and hence 

expansion (node addition) is difficult (requires re-wiring of links and re-addressing of 
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nodes). 

Bidirectional extensions of the MSN have also been studied in the literature (1, 

2, 3, 4, 11, 12, 13, 14, 91). The use of bidirectional links doubles the maximum 

attainable throughput of the MSN. However, the complexity of routing decisions is 

not just twice of that in the MSN. For networks with unidirectional links, there are 

only 22 = 4 possible preferred packet moves at a node, 2 of which require contention 

resolutions. For bidirectional extensions, the number of possible packet moves a~ 

a node increases to 34 = 81 [11). Node construction becomes increasingly difficult. 

Deflection routing may be difficult to implement for the networks with a high degree of 

connectivity. A large number of possible switching configurations in high connectivity 

networks makes cost efficient, high performance implementations challenging. The 

distance measures of the MSN and the bidirectional extensions are fairly close, yet 

only half the number of transmitters and receivers of the bidirectional extensions is 

required in the MSN (23). One advantage of the bidirectional extensions is that the 

in-degree and the out-degree of each node are always the same even after link failures. 

No protocol (that involves multiple nodes) to recover from a link failure is required. 

Toroidal networks can be naturally extended into higher dimensions. (A three­

dimensional network is shown in Figure 2.5.) A notable multidimensional extension 

is the Multidimensional Manhattan Street Network (MMSN) (20, 22) (Figure 2.6). 

Although the MMSN spans multidimensionally, it remains two-connected. Unfortu­

nately, routing and node addition in the MMSN become more difficult than those in 

the MSN. As in the case of general multidimensional extensions, the reduction of the 

diameter from the MSN to the MMSN is not as great as that from the loop network 



Figure 2.5: A 3D-torus network. 

Figure 2.6: A Multidimensional (3D) Manhattan Street Network. 

to the MSN (i.e., from one to two dimensions). 

2.3.3. Node. and Link Failures ..... 

15 

Node failures considered here are those that caused by local power outage, which is 

the most common cause of node failures. In physical implementations, it is assumed 

that a non-switching relay is used to bypass a failed node. The relay is open when 

there is power and closes (so that packets will pass straight through the node) when 

power is lost [54]. (Packets that would have made a turn at the failed node are 

regarded as deflected packets.) 
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~---~ 

~: +r 
Figure 2.7: A link failure in the MSN. 

Nodes in a typical deflection network (slotted network) transmit data contin-

uously to reduce timing acquisition problems [57]. Continuous data transmission also 

enables the detection oflink failures (and also node failures) by downstream nodes. A 

node recognizes an incoming link failed when no data are coming from the link. Then, 

the node may stop transmitting data from one of its outgoing links [54]. This proce-

dure is illustrated in Figure 2.7 for the MSN. The equality of the in- and out-degrees 

of nodes will be preserved and hence once the procedure has completed, no packets 

will be lost. The deflection mechanism bypasses failed links as it tries alternate paths. 

Note that a link is merely a cable and only physical destructions, which are. 

less likely than node failures caused by power outage, can cause link failures. 

In practical networks, packets that cannot reach their destinations due to 

node or link failures must be removed from the networks. Packets that have spent 

a certain amount of time in the networks without reaching their destinations should 

be removed. This also removes packets that are livelocked. Acknowledgments are 

required to recover the lost packets [56]. 
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Figure 2.8: Fractional addresses. 

000 001 010 011 100 101 110 111 

(a) 

0 001 010 01 10 101 110 1 

(b) 

0 0010 010 0110 10 1010 110 1110 
o--o--~ •• -- -... •0--0-•-0-0- ..... •••••0--0- - -0--0- --- - ----0--0-•-0--0 

0001 001 0101 01 (C) 1001 101 1101 1 

Figure 2.9: The reduced-binary addressing scheme. 

2.3.4 Network Expansion and Node Addressing 

Node addressing is an issue that needs to be addressed for network expansion. Gener-

ally, routing algorithms in structured networks assume that the nodes in the networks 

are properly addressed. 

For the MSN, the fractional addressing scheme (54] and the reduced-binary 

addressing scheme (47] have been proposed. Both schemes allow new nodes to be 

inserted into the network without changing the addresses of the existing nodes. The 

schemes support gradual and modular growth of the MSN. 

Figure 2.8 shows fractional addresses in the MSN. The first two rows ( or 

- -

columns) are labeled O and 1. Rows are added in pairs and are labeled as two fractions, 

1/3 of the way between two other rows. New rows that are added between 1 and 0 

are considered to be between 1 and 2. 

The reduced-binary addressing scheme in the MSN is illustrated in Figure 2.9. 

Axis (a) is a binary number axis. Axis (b) shows reduced-binary addresses. Each 

number in (b) is obtained from the corresponding number in (a) by eliminating the 
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bit in the least significant position if it is equal to the previous bit. Axis (c) shows 

the axis after 8 nodes are added to axis (b). The shorter address string needs to 

be extended to the same length as the longer address string by repeating its last bit 

before any operations are performed on the address strings. The axis is piecewise­

continuous. New nodes can be inserted only in continuous segments (solidliens). No 

node can be inserted in non-continuous segments (dashed liens). The reduce-binary 

addressing scheme is designed for high-speed hardware implementation. 

Naturally, both the fractional addressing scheme and the reduced-binary ad­

dressing scheme can be applied to the HTN and the bidirectional extensions of the 

MSN. 

In the MSN, new node additions may degrade the performance of the routing 

algorithm. (The address transformation algorithm [54] may displace the destinations 

from the center of the network. As a result, packets may follow longer paths to the 

destinations.) A care should be taken for new node additions (e.g., new nodes should 

be evenly distributed over the grid). 

For most networks, if fractional addresses are used, the determination of the 

shortest paths becomes difficult (simple arithmetic operations on node addresses will 

no longer give correct distances between nodes). Further more, if irregularities are 

introduced in the network topology (as a result of network expansion), the given rout­

ing scheme may no longer work on the network. Apparently, network irregularities, 

make routing a difficult task [65, 66, 67]. 
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2.4 Specification Methods 

The logic of UNITY (Unbounded Nondeterministic Iterative Transformations) [17, 

61, 62, 79] has been chosen as the language for the specification of deflection net­

works in this research. It is closely related to temporal logic [43], which defines 

temporal relationships of predicates over infinite sequences of states. In the UNITY 

model, a program is viewed as a mathematical object and not in terms of its possible 

executions. The elimination of operational reasoning makes UNITY logic a formal 

method. UNITY enables us-to develop descriptive, non-operational specifications for 

programs. 

The computational model of UNITY separates the concept of termination, 

which is central in traditional transformational programs, from the problem solving 

process. The UNITY model captures parallel and distributed programs that are 

ongoing (reactive) and nonterminating. 

UNITY logic is surprisingly simple and compact. Its design decisions avoided 

introducing notational artifacts. 

In his forward to Chandy and Misra's work of UNITY [17], Hoare states that 

a complete theory of programming includes methods for 

• specifying programs, 

• reasoning about specifications, 

• developing correct programs, and 

• transforming programs for executions on available machines. 



20 

Dijkstra's work [32) provides the methods for sequential programming. Chandy and 

Misra's UNITY does the same for parallel and distributed programming. 

The UNITY methodology has been applied to a variety of design and specifi­

cation problems [26, 27, 28, 39, 40, 72, 85, 86). Its versatility has been demonstrated. 

The UNITY logic operators are formally defined in a later chapter. In the 

rest of this section, other notable specification methods for parallel and distributed 

systems are cited. Hoare's CSP ( Communicating Sequential Processes) [37), which 

is a pr.ocess-based formalism, has been studied widely. Milner initiated the alge­

braic approach through his CCS (Calculus of Communicating Systems) [60). Besides 

UNITY, several temporal logic based methods [46, 50, 51) have been proposed in 

recent years. The studies of temporal logic in computer programming can be traced 

back to the works of Burstall [16) and Pnueli [73) in the late 1970's. (Historical re­

marks on the development of temporal logic itself can be found in [43).) Automata 

have also been used for describing the.behavior of concurrent systems [49). Methods 

based on Petri Net, which is an extension of automata, have also been studied [59). 

ISO (International Organization for Standardization) has developed a standardized 

language LOTOS (Language for Temporal Ordering Specifications) for concurrent, · 

distributed, and nondeterministic systems. The specification of dynamic behaviors 

in LOTOS is predominantly based on CCS, while the treatment of concurrency and 

parallelism has been strongly influenced by CSP [88). 



CHAPTER III 

PERFORMANCE EVALUATION 

In this chapter, the performance of deflection routing in two-connected toroidal de-

flection networks: the Manhattan Street Network (MSN) and the Highway Transfer 

Network (HTN) is investigated. Both the MSN and the HTN have two incoming links 

and two outgoing links at each node and hence have the same degree of connectivity 

( the same number of transmitters and receivers) as the bidirectional loop network. 

Several contention resolution methods are examined. A routing algorithm for the 

HTN is proposed. 

This chapter is organized as follows. In Section 3.1, the topological measures 

of the MSN, the HTN, and also the bidirectional loop network are examined and the 

maximum attainable throughputs of these networks are estimated. Section 3.2 gives 

the descriptions of the routing schemes for the MSN and the HTN. The dynamic 

behavior of the schemes has been studied by simulation. The results are reported. 

Routing in irregular networks and random routing are examined in Section 3.3 and 

Section 3.4. Section 3.5 summarizes this chapter. 
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Table 3.1: Diameter and Average Inter-nodal Distance 
Network 

MSN (n x n) 
HTN (n x n) 

BLN (N) 

Diameter 
approx. n 
2(n -1) 

N/2 

Average Distance 
approx. n/2 
n2/(n+l) 

approx. N/4 

3.1 Topological Measures 
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Topological measures can be used to estimate the performance of networks. In this 

section, the topological measures of the MSN, the HTN, and the bidirectional loop 

network are summarized and the maximum attainable throughputs of the networks 

are estimated. The definition of the don't care node is also given in this section. 

3.1.1 Distance Measures 

The inter-nodal distance between two nodes is the shortest path length ( the smallest 

number of hops) between the nodes. The diameter, which is the maximum inter-nodal 

distance between any two nodes, and the average inter-nodal distance are directly 

related to packet delays in communication networks ( though delays are not solely 

determined by distances). Table 3.1 shows the diameters and the average inter-nodal 

distances of the MSN, the HTN, and the bidirectional loop network (BLN). Note that 

the values for the MSN are approximate and are due to [21, 76]. 

The deflection penalty of a network is (the least upper bound on) the number 

of "extra" hops that a packet has to make after a deflection. For n x n HTNs, the 

deflection penalty is n, whereas it is 4 (which is constant) for MSNs of all sizes. 
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3.1.2 Attainable Throughput 

The throughput of a network is the average number -Of packets accepted into the 

network per slot ( one unit of time). The maximum attainable throughput of a network 

can be estimated based on its topological properties. If all links are one slot in length 

(i.e., every packet travels one link for each time slot), the average inter-nodal distance 

gives the average amount of time a packet must spend in the network before it reaches 

its destination. In other words, the average inter-nodal distance gives the average cost · 

per packet transmission in terms of time or the number of links. Given the following 

assumptions: 

• the network is symmetric, 

• all links are one slot 1n length, 

• all packets are routed along the shortest paths to their destinations, 

• an infinite amount of buffer space is available at each node so that no packets 

are deflected or lost, 

• the traffic is uniform (i.e., for each packet, any node is equally likely as a des-

tination), and 

• the packet arrival rate is the same at every node, 

the maximum attainable throughput T can be expressed as 

L 
T= h' (3.1) 

where L is the total number of links in the network and h is the average inter-nodal 

distance (7]. 
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Table 3.2: Maximum Attainable Throughput 
MSN (n x n) HTN (n x n) BLN 

4n 2n 8 

The maximum attainable throughputs ( approximate values) of the MSN, the 

HTN, and the bidirectional loop network (BLN) are shown in Table 3.2. The values 

for the MSN and the HTN increase with the network size, whereas the value for the 

bidirectional loop network is constant. 

From formula 3.1, the nodal throughput, which is the throughput per node, can 

also be estimated (T/N, where N is the number of nodes in the network). Naturally, 

a network cannot be operated at the packet arrival rate to a node exceeding the 

maximum attainable nodal throughput. 

3.1.3 Don't Care Node 

The number of deflections that packets get should be as small as possible so that 

the packets travel shorter distances and arrive at their destinations in the order of 

their transmissions. A node is a don't care node for a packet if all outgoing links of 

the node lie on the shortest paths to the packet's destination node. A packet cannot 

be deflected at its don't care nodes (the larger the number of don't care nodes, the 

smaller the number of deflected packets). The density (fraction) of don't care nodes 

for a packet is approximately 1/2 in MSNs (35] and it is (n - 1)2 /n2 inn x n HTNs. 

3.2 Routing 

This section gives routing schemes for the MSN and the HTN. The scheme for the 

MSN is based on [54]. The schemes with several contention resolution (CR) methods 



25 

Figure 3.1: Relative addresses in an MSN. 

were tested by simulation. The results are reported. It is assumed that the links 

of a network are locally labeled at each node with a globally consistent orientation 

and the nodes are sequentially numbered (addressed) according to the orientation 

(i.e., the nodes are integer row-column addressed). An outgoing link of a node is a 

preferred link of a packet at the node if the link lies on a shortest path to the packet's 

destination node. The schemes try to route packets along their preferred links. 

3.2.1 Routing Scheme for MSN 

Routing in the MSN involves address transformation. For each packet, the relative 

address of the current node, at which the packet is in transit, is calculated with respect 

to the destination node, which is considered to be in the center of the network and has 

the address (0, 0). Figure 3.1 shows relative addresses in an MSN. The destination 

node is located at the lower left corner in the upper right quadrant with its outgoing 

links directed toward increasing numbered nodes. 
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Figure 3.2: Routing (link selection) rules for the MSN. 

Outgoing links for packets are selected based on the relative address of the 

current node. The rules are given in Figure 3.2. A node with relative address (r, c) 

is in Q1 if r ~ 0 and c ~ O; Q2 if r > 0 and c < O; c2 if r = 0 and c < O; Q3 

if r < 0 and c < O; Q4 if r < 0 and c > O; r4 if r < 0 and c = 0. Solid arrows 

indicate preferred links and dashed arrows indicate alternate links. For example, if 

the relative address of the current node is in Qi, a link directed to the left and a link 

directed down are preferred links. An alternate link in Q2 (Q4 ) may be selected for a 

packet if the current node does not have a preferred link. Note that the direction of 

a link in Figure 3.1 may not be the same as the direction of the link before address 

transformation. The detailed algorithm, from which the simulator program is built, 

is given in Figures 3.9 and 3.10. In Figure 3.9, a packet is currently at (rs, cs) and 

its destination is (rd, cd)- The variable Nr (Ne) is the number of rows (columns) in 

the network. The vertical (horizontal) link is a preferred link if O E S (if 1 E S). In 

Figure 3.10, the variable S0 (S1), which is calculated by the algorithm in Figure 3.9, 
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indicates the preferred links of the packet arrived from the vertical (horizontal) link. 

For an empty slot, So (or S1) is assumed to be 0. The variable config indicates one 

of the configurations in Figure 3.14. The variable random is a random variable that 

is either O or 1. Contentions are resolved in a random manner in the algorithm. 

3.2.2 Routing Scheme for HTN 

Routing in the HTN is extremely easier than in the MSN. The routing scheme does 

not require calculation of relative addresses and quadrants or examination of link 

directions. 

For typical source (current) and destination nodes in an HTN, both two out­

going links of the source (current) node lie on the shortest paths to the destination 

node. A packet does not have any preference in moving directions until it reaches 

one of its care nodes ( critical nodes), which are on the same row or column as the 

destination node. Hence, a packet can be routed in a random manner until it reaches 

a care node. Upon reaching a care node, the packet must go straight to its desti­

nation. Otherwise, the packet gets a large deflection penalty. Figure 3.3 illustrates 

this routing scheme. The pseudocode for the scheme is given in Figures 3.11 and 

3.12. In Figure 3.11, a packet is currently at (rs, cs) and its destination is (rd, cd)­

The vertical (horizontal) link is the (only) preferred link if S = 0 (if S = 1). In 

Figure 3.12, the variable 80 (S1), which is calculated by the algorithm in Figure 3.11, 

indicates the preferred link of the packet arrived from the vertical (horizontal) link. 

For an empty slot, So (or S1) is assumed to be 2. The variable config indicates one 

of the configurations in Figure 3.14. The variable random is a random variable that 
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Source 

Go Straight 
.................... ······················: ······! 

·······;:J:o, ................................ ; ...... i 
Destination 

Figure 3.3: A path from a source to a destination in the HTN. 

is either O or 1. Contentions are resolved in a random manner in the code. In the 

HTN, the distinctions of links are important only at care nodes that are on the same 

rows or columns as destination nodes. This fact has produced the simple switching 

algorithm. The routing scheme is expected to inherit the properties of random rout-

ing [54] (i.e., it is easy to implement and is tolerant of network irregularities). Note 

that this routing scheme does not depend on the sequential ordering of the nodes. 

The scheme only assumes that the nodes on the same row (column) have the same 

row (column) address. 

Because a packet may be deflected only while it is moving straight to its desti-

nation, shortening the distance of the final straight move will reduce the probability 

of deflection. The switching algorithm developed based on this idea is shown in 

Figure 3.13, which replaces the last else-block of the algorithm in Figure 3.12. In Fig-

ure 3.13, two packets are currently at their common don't care node (rs, cs). Nodes 

(r0 , c0) and (r1 , c1) are the destinations of the packets arrived from the vertical link 

and the horizontal link, respectively. The variable Nr (Ne) is the number of rows 

(columns) in the network. The variable config indicates one of the configurations in 
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B 

A 

Figure 3.4: Switching in the HTN DA algorithm. 

Figure 3.14. The variable random is a random variable that is either O or 1. For the 

sake of brevity, the case that only one packet is in transit is omitted in Figure 3.13. 

This algorithm is referred to as the Deflection Avoidance {DA) algorithm. At each 

· node, the algorithm tries to forward a packet to the node in the direction that does 

not shorten the {shortest) distance to a care node. It routes the packets along their 

don't care nodes as long as possible so that deflections are avoided. Note that there 

may be a conflict between two packets coming into a node. Examples of switching 

is shown in Figure 3.4. {Nodes X and Y are the destinations of packets A and B, 

respectively.) 

As an alternative, one may consider using simple zig-zag routing, which for­

wards packets in alternating directions at every hop ( as long as possible). Such a 

scheme has been tested. The results show no significant performance improvement 

over the scheme with random packet moves. 



Table 3.3: Throughput and Delay of Bidirectional Loop 
Size 

64 
100 
144 
196 
256 

3.2.3 Simulation Results 

Nodal Throughput 
.115 
.075 
.053 
.040 
.031 

Average Delay 
16.503 
25.536 
36.526 
49.482 
64.501 

30 

The performance of the routing schemes was studied through simulation. At a low 

link utilization (under a light traffic load), fewer deflections are expected and so are 

shorter delays. We are interested in the performance of the networks at a high link 

utilization ( under a heavy traffic load). The networks were operated at the link 

utilization of 100%, which may not be achieved in store-forward networks without 

creating congestion. A packet with a random destination (uniform traffic) was injected 

for every empty slot obtained by nodes. All links were assumed to be one slot in 

length. Delays were measured in slots (hops). (Note that the duration of a (time) 

slot may differ in different types of networks.) Although the use of a small amount of 

buffer (queue) space for each link (to hold a few packets) could reduce the number of 

deflections, no such space was used. At the level of current technology, buffering may 

be difficult in optical networks without electro-optic and optic-electro conversions, 

which prevent high speed nodal processing [7]. 

Table 3.3 shows the nodal throughput and the average delay of the bidirectional 

loop network. The results are close to the maximum attainable values of the network. 

The nodal throughput decreases linearly as the number of nodes increases. A packet 

generated for an empty slot was injected only if the packet would be forwarded along 

the shortest path to its destination. Otherwise, the generated packet was discarded. 
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Table 3.4: Nodal Throughput and Average Delay 
Random CR Hop Counter CR Deflection Counter CR 

Size Nodal Average Nodal Average Nodal Average 
nxn Throughput Delay Throughput Delay Throughput Delay 

Manhattan Street Network 
8x8 (64) .201 9.941 .217 9.208 .205 9.739 

10 X 10 (100) .164 12.227 .179 11.149 .169 11.812 
12 X 12 {144) .140 14.250 .154 12.971 .146 13.734 
14 X 14 {196) .123 16.290 .136 14.678 .129 15.550 
16 X 16 {256) .111 18.057 .123 16.281 .116 17.248 
20 X 20 {400) .. 093 21.597 .103 19.383 .098 20.471 
24 X 24 (576) .080 24.877 .090 22.316 .085 23.502 
28 X 28 (784) .071 28.087 .080 25.140 .076 26.472 
32 X 32 (1024) .064 31.142 .072 27.896 .068 29.299 

Highway Transfer Network 
8x8 {64) .199 10.053 .202 9.888 .198 10.094 

10 X 10 {100) .154 12.941 .157 12.709 .154 12.974 
12 X 12 {144) .126 15.826 .129 15.551 .126 15.893 
14 X 14 (196). .107 18.747 .109 18.390 .106 18.853 
16 X 16 {256) .092 21.618 .094 21.210 .092 21.787 
20 X 20 (400) .073 27.492 .074 26.892 .072 27.699 
24 X 24 (576) .060 33.255 .061 32.598 .060 33.590 
28 X 28 {784) .051 39.101 .052 38.230 .051 39.517 
32 X 32 (1024) .044 44.968 .046 43.906 .044 45.431 

Hence, the network was operated at a link utilization slightly lower than 100%. In 

the bidirectional loop network, the delays remain the same under lower traffic loads 

since no deflections can occur in the network. 

Several contention resolution (CR) methods have been proposed for the MSN 

in the literature. In this study, random CR, hop counter CR, and deflection counter 

CR have been tested for both the MSN and the HTN in various sizes. (The perfor-

mance of 8 x 8 MSNs with those CR methods has been reported in [75]. As can be 

seen from Table 3.4 and Figures 3.5-3.6, for the network size 8 x 8, there is not much 

difference in performance between the MSN and the HTN.) Hop counter CR and de-

flection counter CR deflect the packets with lower counter values, which are increased 

by 1 for each hop or deflection. Tie-breaking is done by using randomization. The 

nodal throughputs and the average delays of the networks with those CR methods 
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are shown in Table 3.4 and are also plotted in Figures 3.5 and 3.6. (Unfortunately, 

the nodal throughputs of both networks decrease with increasing numbers of nodes 

under uniform traffic; however, their (total) throughputs increase as shown in Fig-

ure 3.7. Note that all networks tested in the simulation have even numbers of rows 

and columns since the MSN is defined only for even numbers of rows and columns.) 

Tables 3.5-3.10 show the probability density of the number of deflections experienced 

by packets. The maximum delays observed are also shown in the tables. 
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Although it is better to keep the networks in square shapes, they tend to 

perform well even if they are non-square. Table 3.11 shows the nodal throughputs 

and the average delays of some non-square networks (Hop Counter CR). The results 

are close to those of square 256 and 400 node networks though the difference becomes 

larger for networks with a smaller row/column ratio. 

Note that if links operate at lGb/s, the nodal throughput of 0.1 corresponds 

to the data rate of lOOMb/s to a node. 

Although the maximum attainable throughput of the MSN is approximately 

twice as much as that of the HTN, the difference in the actual throughput is much 

smaller for the range of network size in Table 3.4. 

Counter based CR methods reduce the maximum delays observed under ran-

<lorn CR. For both networks, hop counter CR performs better than other CR methods 

though the differences are small in the HTN. The effect of the CR methods in the 

HTN can be seen in Tables 3.6, 3.8, and 3.10. 

It is interesting to see that deflection counter CR in the MSN keeps the max-
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imum number of deflections experienced by packets smaller than hop counter CR 

(Tables 3. 7 and 3.9) though the performance of hop counter CR is better (higher 

throughput and lower delay) than that of deflection counter CR. Deflection counter 

CR deflects packets regardless of the distances they have traveled. In the MSN, a 

packet has to pass through a care node at every other hop while moving inside a 

quadrant. Hence, the packets destined for distant nodes have higher chances of get­

ting deflected. In the networks with hop counter CR, the packets destined for distant 

nodes tend to be deflected fewer times than the packets destined for closer nodes. As 

a result, the average delay is reduced. 

As can be seen from Tables 3.6, 3.8, and 3.10, the probability density of the 

number of deflections experienced by packets in the HTN is much the same for the 

range of network size in the tables, whereas it varies in the MSN for the same range 

of network size. (The majority of the packets in the HTN reach their destinations 

without getting deflected.) 

Figure 3.8 shows the relative throughputs (the actual throughput divided by 

the maximum attainable throughput) of the MSN and the HTN (with hop counter 

CR). The value indicates the efficiency of the routing scheme ( the higher the relative 

throughput, the more efficient the routing scheme). The relative throughput of the 

MSN increases with the network size. On the other hand, the relative throughput of 

the HTN decreases as the number of nodes increases although it is higher than that 

of the MSN for the range of network size in Figure 3.8. 

Table 3.12 shows the nodal throughput and the average delay of the DA algo­

rithm with hop counter CR. The throughput and the delay are also plotted in Fig-
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ures 3.5 and 3.6. (The (total) throughput is plotted in Figure 3.7.) The deflections 

density is shown in Table 3.13. Although the scheme also increases the complexity of 

routing, the improvement in performance is remarkable. The number of packets that 

were delivered without any deflection increases with the network size. In a 256 x 256 

network, more than 98% of packets were delivered to their destinations without a 

deflection. As can be seen from Figure 3.8, the DA algorithm (gradually) increases 

the relative throughput of the HTN with the number of nodes. 

It is noticed that formula 3.1 with h as the average delay approximates the 

. ··actual throughputs of.both-the MSN.and the HTN. 

The values reported in Tables 3.3, 3.4, and 3.12 (except the last three rows of 

Table 3.12) are the averages of measurements from 5 independent simulation runs. 

In each run, a network was simulated for 5000 slots and the first 500 slots of data 

were discarded. Each value lies within the 95% confidence interval of width less than 

3% of the value. (For most results, the width of the 95% confidence interval is less 

than 1% of the value.) Each value in Tables 3.5-:3.10, 3.13 and the last three rows 



{ address transformation } 
r := (r8 + Nr + Nr/2 - (cd mod 2) - rd) mod Nr; 
c :=(cs+ Ne+ Ne/2 - (rd mod 2) - Cd) mod Ne; 
if rd mod 2 = 0 then c := c - Ne/2 
else c := Ne/2 - 1 - c; 
if Cd mod 2 = 0 then r := r - Nr /2 
else r := Nr/2 - 1 - r; 

{ link selection } 
S:=0; 
if (r = 0) and (c < 0) then S := {1} 
else if (r < 0) and (c = 0) then S := {O} 
else if (r ~ 0) and (c ~ 0) then begin 

if r mod 2 :f. 0 then S := {1}; 
if cmod 2 :f. 0 then S := SU {O} 

end 
else if (r > 0) and (c < 0) then begin 

if c mod 2 :f. 0 then S := {O} 
else if r mod 2 = 0 then S := {1} 

end 
else if (r < 0) and (c < 0) then begin 

if r mod 2 = 0 then S := {1}; 
if c mod 2 = 0 then S := SU {O} 

end 
else if (r < 0) and (c > 0) then begin 

if r mod 2 :f. 0 then S := {1} 
else if c mod 2 = 0 then S := {O} 

end 

Figure 3.9: A routing (link selection) algorithm for the MSN. 
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of Table 3.12 is based on a 10 000 slot simulation run with the first 500 slots of data 

discarded. 

3.3 Routing in Irregular Topologies 

As noted earlier, deflection routing also works in irregular topologies, which 

may be incrementally constructed. This section presents simulation results for deflec-

tion routing in irregular HTNs shown in Figure 3.16. (Arrows indicating the directions 

of links are omitted in the figure.) 

The networks were created in a random manner. Each of networks 1 and 2 was 



if ((So= {0,1}) and (S1 = {1})) or 
((So= {O}) and (S1 = {O, 1})) or 
((So= {O}) and (S1 = {1})) or 
((So= {O}) and (S1 = 0)) or 
((So= 0) and (S1 = {1})) then 
cmifig := 0 

else 
if ((So= {0,1}) and (S1 = {O})) or 

((So= {1}) and (S1 = {O, 1})) or 
((So= {1}) and (S1 = {O})) or 
((So= {1}) and (S1 = 0)) or 
((So= 0) and (S1 = {O})) then 
cmifig := 1 

else 
cmifig := randam 

Figure 3.10: An algorithm to select a switching configuration in the MSN. 

if Cs = Cd then S := 0 
else if rs = rd then S := 1 
else S := 2 

Figure 3.11: A routing (link selection) algorithm for the HTN. 
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created by deleting randomly-chosen 144 nodes from a 20 x 20 network. For each of 

networks 3 and 4, 320 nodes were deleted from a 24 x 24 network. All the networks 

have 256 nodes. (The topologies follow the definition of the quasi-torus given in [18], 

except that the irregular HTNs use unidirectional links.) Networks 1 and 2 (3 and 4) 

are denser (sparser) than_networks _3 and 4 (1 and 2). 

The performance of two algorithms (with hop counter CR) under random traf-

fie is shown in Table 3.14. The basic algorithm is the one that involves random packet 

moves presented earlier. The second algorithm, which is referred to as the lookahead 

algorithm in Table 3.14, is shown in Figure 3.15. In Figure 3.15, a packet is currently 

at (rs,cs) and its destination is (rd,cd)· The vertical and horizontal outgoing links of 

(rs, cs) are connected to (rn, cs) and (rs, en), respectively. The vertical (horizontal) 



if ((So = 0) and (81 = 1)) or 
((So= 0) and (81 = 2)) or 
((So = 2) and (81 = 1)) then 
config := 0 

else 
if ((So = 1) and (81 = 0)) or 

((So = 1) and (81 = 2)) or 
((So= 2) and (81 = 0)) then 
config := 1 

else 
con/ ig := random 

Figure 3.12: An algorithm to select a switching configuration in the HTN. 
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link is a preferred link if O E S (if 1 E S). The switching algorithm for the lookahead 

algorithm is the same for the MSN. The algorithm requires each node to know their 

downstream nodes. 

As expected, the basic algorithm did not perform well in sparse networks 

(networks 3 and 4). The lookahead algorithm performed well in all the networks. 

The results are comparable to those of non-irregular 16 x 16 networks (256-node 

networks). 

Each value in Table 3.14 is based on a 10 000 slot simulation run with the first 

500 slots of data discarded. 

Note that the basic algorithm and the lookahead algorithm work in the same 

manner in non-irregular networks. 

The DA algorithm (with or without the lookahead algorithm) may not work 

well in irregular networks. In certain cases, the DA algorithm may cause packets to 

loop. Consider the network in Figure 3.17. Suppose there is a packet at node (1, 1) 

destined for node {2, 2). At node {1, 1), if the lookahead algorithm is used, neither 

outgoing link will be considered as a· preferred link of the packet. {Since both the 



Xo := (Co - Cs+ Ne) mod Ne; 
Yo:= {ro - rs+ Nr) mod Nr; 
X1 := (c1 - Cs + Ne) mod Ne; 
Yl := (r1 - rs+ Nr) mod Nr; 
if ((xo < Yo) and (x1 > Y1)) or 

((xo > Yo) and (x1 > Y1) and (yo> Y1)) or 
((xo < Yo) and (x1 < Y1) and (xo < x1)) or 
((xo < Yo) and {x1 = Y1)) or 
((xo = Yo) and (x1 > Y1)) then 
config := 0. 

else 
if ((xo > Yo) and (x1 < Y1)) or 

((xo > Yo) and (x1 > Y1) and (yo < Y1)) or 
((xo < Yo) and (x1 < Y1) and (xo > x1)) or 
((xo > Yo) and (x1 = Y1)) or 
((xo = Yo) and (x1 < Y1)) then 
canfig := 1 

else 
canfig := random 

Figure 3.13: The deflection avoidance algorithm for the HTN. 

Figure 3.14: Switching configurations. 
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links are non-preferred links of the packet, the DA algorithm will not be used at 

node (1, 1).) The packet may be forwarded to either node ((1, 3) or (3, 1)). If the 

lookahead algorithm is not used at node (1, 1), both outgoing links will be considered 

as preferred links of the packet. The DA algorithm will find that neither of the links 

is better (for the packet) than the other (i.e., the packet can be forwarded to either 

node). (The DA algorithm uses the distances given by the node addresses.) In either 

case, if the packet is forwarded to node (1, 3), the DA algorithm will route the packet 

to node (1, 0) and then back to (1, 1). Analogously, if the packet is forwarded to node 

(3, 1), the DA algorithm will route the packet to node (0, 1) and then back to (1, 1). 



s := 0; 
if (cs< en) and not ((cs~ cd) and (cd < en)) then 

S := SU {1} 
else if (cs > en) and (en ~ cd) and (cd < Cs) then 

S:=SU{l}; 
if (rs < rn) and not ((rs ~ rd) and (rd < rn)) then 

S := SU {O} 
else if (rs > rn) and (rn ~ rd) and (rd< rs) then 

S := SU{O} 

Figure 3.15: A routing algorithm for irregular HTNs. 
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Note that if the DA algorithm is not used, the packet at node (3, 1) may be forwarded 

to node (3, 2) and the loop is avoided; probabilistically, the packet has a chance to 

reach its destination. 

As noted in [54), the routing scheme for the MSN presented earlier may not 

work in irregular MSNs. For the MSN, incremental construction of the network is 

not straightforward and is one of the major disadvantages of the MSN. 

3.4 Random Routing 

Random routing is not a practical routing method. However, random routing is 

tolerant of network irregularities and easy to implement. It may be used when certain 

node or link failures are causing packets to loop (i.e., the primary, non-random routing . 

scheme is not functioning). 

Random routing was tested on both the MSN and the HTN. The results are 

shown in Table 3.15. Each value in Table 3.15 is based on a 50 000 simulation run 

with the first 500 slots of data discarded. Interestingly, random routing performed 

better in the HTN than in the MSN even though the MSN connects nodes closer 

than the HTN. In the MSN, a packet can travel (stay) only in a certain local area of 

the network, whereas in the HTN, a packet cannot stay only in a certain local area. 
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Packets explore the network faster in the HTN than in the MSN. This fact resulted 

a better performance in the HTN although the performance is no better than that 

of linear topology networks. The performance of the MSN and the HTN tends to 

degrade sublinearly with the network size. 

3.5 Summary 

A study of two-connected toroidal deflection networks has been presented. The 

throughputs and delays of the Manhattan Street Network (MSN) and the Highway 

Transfer Network (HTN) are examined. Both networks increase their throughputs 

with the number of nodes. Numerical results carried out by simulation are reported. 

The results show that the HTN, despite its large deflection penalty, can achieve ap­

proximately 80% of the MSN's throughput for networks with a few hundred nodes. 

The results also show that an effective use of don't care nodes can increase the HTN's 

throughput to 90% of the MSN's. As the network size increases, the scheme decreases 

the number of deflections. In a 256 x 256 HTN, over 98% of packets were delivered 

without any deflection. This fact is notable considering the network was operated 

at the link utilization of 100%. The MSN increases the relative throughput with the 

number of nodes, whereas the HTN with a simple routing scheme does not ( although 

the relative throughput of the HTN is higher than that of the MSN for the network 

sizes examined in the simulation). For the HTN, a switching algorithm that signif­

icantly reduces the number of deflections and increases the relative throughput has 

been proposed and demonstrated. 

Routing in irregular topologies has also been studied. A simple routing scheme 

for irregular HTNs has been proposed and tested. The results are comparable to those 
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for non-irregular networks. 

Random routing, which is tolerant of network irregularities, has also been 

examined. For pure random routing, the HTN provides a better performance than 

the MSN. 

Although deflection routing may waste the transmission capacity, the stable 

network behavior provided by deflection routing is very attractive for MANs.· Note 

that in order to avoid congestion, the general store-forward networks cannot be op­

erated at a high link utilization. 
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Table 3.5: Deflections Density in MSN (Random CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .43 .27 .14 
1 .22 .20 .14 
2 .13 .15 .13 
3 .079 .10 .11 
4 .047 .078 .098 
5 .029 .055 .080 
6 .018 .039 .063 
7 .011 .027 .049 
8 .0067 .019 .038 
9 .0040 .013 .029 
10 .0025 .0096 .022 
11 .0015 .0067 .016 

---~------ 12 - .. 00086 - ··.0050 .012 
13 .00056 .0033 .OQ93 
14 :00033 .0024 .0073 
15 .00027 .0017 .0051 
16 .00010 .0012 .0039 
17 .000049 .00088 .0030 
18 .000065 .00055 .0022 
19 .000024 .00041 .0016 
20 .000024 .00032 .0013 
21 .0000081 .00021 .00095 
22 .o .00010 .00066 
23 .o .000081 .00049 
24 .0000081 .000074 .00038 
25 .o .000074 .00027 
26 .0 .000048 .00021 
27 .o .0000074 .00016 
28 .0 .000022 .00013 
29 .0 .000014 .000099 
30 .0000081 .0000074 .000062 
31 .0 .000011 .000043 
32 .0 .000011 .000038 
33 .0 .0000074 .000030 
34 .o .0 .000015 
35 .0 .o .000014 
36 .0 .0 .0000095 
37 .0 .0000037 .0000095 
38 .o .o .0000031 
39 .o .0 .0000063 
40 .o .o .0000047 
41 .o .o .0000015 
42 .0 .o .0000015 
43 .o .o .0 
44 .0 .0 .o 
45 .0 .0 .0 
46 .0 .0 .o 
47 .o .0 .o 
48 .0 .o .0000015 
49 .o .0 .o 

Max Delay 108 153 176 
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Table 3.6: Deflections Density in HTN (Random CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .74 .73 .72 
1 .17 .17 .17 
2 .053 .061 .065 
3 .016 .020 .022 
4 .0050 .0072 .0081 
5 .0016 .0025 .0030 
6 .00046 .00094 .0011 
7 .00014 .00031 .00037 
8 .000057 .000053 .00016 
9 .0000082 .000022 .000039 

10 .000016 .000022 .000032 
11 .o .0 .0 
12 .0 .0 .0 
13 .o .0 .0000023 
14 .0 .0 .0000023 
15 .0 .0 .0 

Max Delay 84 185 461 

Table 3.7: Deflections Density in MSN {Hop CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .28 .15 .084 
1 .30 .20 .12 
2 .25 .23 .16 
3 .11 .20 .17 
4 .027 .12 .16 
5 .0033 .053 .12 
6 .00022 .016 .082 
7 .0000075 .0032 .044 
8 .0 .00041 .020 
9 .o .000050 .0075 

10 .0 .0000067 .0022 
11 .o .0 .00059 
12 .0 .o .00012 
13 .o .0 .000017 
14 .0 .0 .0000042 
15 .o .0 .0 

Max Delay 24 37 60 

Table 3.8: Deflections Density in HTN {Hop CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .69 .67 .66 
1 .25 .26 .26 
2 .041 .056 .064 
3 .0014 .0027 .0034 
4 .0 .000026 .000033 
5 .o .o .o 

Max Delay 34 74 152 



Network 
Size 

14 X 18 (252) 
16 X 24 (384) 
12 X 20 (240) 
12 X 32 (384) 

Table 3.9: Deflections Density in MSN (Deflec. CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .23 .096 .036 
1 .29 .14 .057 
2 .31 .25 .11 
3 .13 .29 .20 
4 .016 .16 .28 
5 .00045 .032 .22 
6 .0 .0021 .070 
7 .o .000088 .0071 
8 .0 .0 .00022 
9 .0 .0 .0000075 

10 .0 .0 .0 
Max Delay 29 43 63 

Table 3.10: Deflections Density in HTN (Deflec. CR) 
# Deflections 8x8 16 X 16 32 X 32 

0 .67 .64 .62 
1 .28 .29 .30 
2 .040 .056 .066 
3 .0011 .0021 .0029 
4 .o .0000089 .000028 
5 .0 .o .0 

Max Delay 38 81 177 

Table 3.11: Performance of Non-square Networks 
MSN HTN 

Row:Col Nodal Average Nodal 
Ratio Throughput Delay Throughput 

1: 1.29 .122 16.433 .094 
1: 1.50 .101 19.802 .073 
1: 1.67 .119 16.741 .092 
1: 2.67 .087 23.054 .061 

Table 3.12: Throughput and Delay of HTN (DA) 
Size 
8x8 

10 X 10 
12 X 12 
14 X 14 
16 X 16 
20 X 20 
24 X 24 
28 X 28 
32 X 32 
64 X 64 

128 X 128 
256 X 256 

Nodal Throughput 
.224 
.178 
.148 
.127 
.111 
.090 
.076 · 
.065 
.057 
.030 
.015 
.008 

Average Delay 
8.942 

11.246 
13.534 
15.741 
17.942 
22.243 
26.461 
30.690 
34.784 
67.324 

131.565 
259.370 

45 

Average 
Delay 
21.368 
27.344 
21.840 
32.717 
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Table 3.13: Deflections Density in HTN (DA) 
# Deflections 8x8 16 X 16 . 32 X 32 64 X 64 128 X 128 256 X 256 

0 .78 .83 .88 .93 .96 .98 
1 .19 .15 .010 .060 .031 .016 
2 .017 .012 .0071 .0034 .0015 .00067 
3 .00036 .00019 .000075 .000015 .0000033 .00000083 
4 .o .0000036 .0 .0 .0 .0 
5 .0 .o .0 .0 .0 .0 

Max Delay 32 70 129 233 475 910 

Table 3.14: Nodal Throughput and Average Delay of Irregular HTN 
Basic Lookahead 

Network Nodal Throughput Average Delay Nodal Throughput Average Delay 
1 
2 
3 
4 

.081 24.661 .099 20.120 

.081 24.653 .099 20.120 

.071 28.326 .095 21.005 

.071 28.307 .097 20. 725 

Table 3.15: Nodal Throughput and Average Delay of Random Routing 

Network Size 
10 X 10 (100) 
20 X 20 (400) 
30 X 30 (900) 

MSN HTN 
Nodal Throughput Average Delay Nodal Throughput 

.01780 112.321 .02199 

.00375 531.513 .00507 

.00152 1292.508 .00219 

Average Delay 
90.974 

393.185 
902.429 



Network#l 

Network#2 

Network#3 

Network#4 

Figure 3.16: Irregular networks. 
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Figure 3.17: An irregular network. 



CHAPTER IV 

LIVELOCK PREVENTION 

One problem uniquely associated with deflection networks is that packets may cir­

culate indefinitely without reaching their destinations. This condition is known as 

livelock. 

It has been shown that the use of randomization in contention resolutions 

provides a probabilistic guarantee that livelock is avoided [15, 56). This chapter 

presents a method that provides a deterministic guarantee that livelock is avoided 

(i.e., every packet that is injected into a network is 100% guaranteed to reach its 

destination). 

One (e.g., [10)) may argue that the use of hop counter values or time stamps 

(in packet headers) as priorities in contentions will prevent livelock since any packet 

will eventually have the largest counter value or be the oldest packet (i.e., the highest 

priority packet) that cannot be deflected by any other packet. 

It may be rare, but is conceptually possible to have multiple oldest packets 

(packets with the same largest counter value) that are endlessly contending against 

each other and are not reaching their destinations. The proposed method eliminates 

such conditions. Thus, the eventual delivery of every injected packet is ensured. 

49 
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We assume two-connected networks in which all links are one slot in length, 

but do not assume specific topologies (i.e., the method is topology independent). In 

order for the method to work in higher degree (node connectivity) networks, link 

assignments (switching) must be carefully done. We discuss this problem in a later 

section. It is assumed that a packet injected into a network will reach its destination 

(but not necessarily along a shortest path) if there are no contentions (deflections). 

4.1 Method 

The method uses two counters in the packet header. One is the hop counter and 

the other is the deflection counter. The hop counter is used as in previously studied 

contention resolution methods (e.g., [68]). The counter value is increased by 1 for each 

hop and the packet with a larger counter value has a higher priority in a contention. 

The use of the deflection counter differs from that in previous studies. (In previous 

studies, the deflection counter (if used) was used alone without the hop counter.) 

The deflection counter value of a packet is increased only when the packet loses a 

contention against another packet with the same hop and deflection counter values. 

Tie-breaking is done by using randomization. The loss of a contention against a 

packet with a larger hop counter value does not increase the deflection counter value. 

The value of the deflection counter is used in a contention between the packets with 

the same hop counter value (the packet with a larger deflection counter value will get 

the link). Initially (when a packet is injected into the network), both the hop counter 

value and the deflection counter value are 0. 

The deflection counter values create classes among the packets with the same 

hop counter value. Let S be the set of packets with the same largest hop counter 
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value in a network at a certain time (measured in slots). The packets in S can be 

deflected only by other packets in S. The packets in S (as long as in the network) 

always have the hop counter value larger than the hop counter value of any other 

packet (not in S) at any time. Unless the packets in S continually contend against 

each other, they will reach their destinations. The packets with the same deflection 

counter value form a class in S. Contentions among the packets in S (if no packets 

in S have reached their destinations) will eventually divide S into n classes of size 1, 

where n is the number of packets in S. The n classes include one packet with the 

counter value n-1, one packet with the counter value n-2, ... , one packet with the 

counter value 1, and one packet with the counter value 0. The same two packets in 

S may contend against each other several times and also some (or even all) packets 

in S may reach their destinations before S is partitioned into n classes mentioned 

above. The establishment of the classes of size 1 is the establishment of a total order 

of the packets. There will be no more continual contentions among the packets when 

the size of every existing (non-empty) class becomes 1. The priorities of the packets 

will be based on the total order and hence no two packets will have the same priority. 

Each of the packets will reach its destination in a finite number of hops. 

Clearly, a packet cannot involve in more than one contention at the same time. 

The proposed method is conceptually equivalent to the following sequential procedure. 

Imagine that S is a "bag" containing n packets (with the same hop counter value) 

and the deflection counter values of all packets are 0. 

1. Draw a pair of packets (randomly) from S. 

2. If both two packets have the same deflection counter value, select one of the 
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Figure 4.1: Process of partitioning a set of five packets into five classes of size 1. 

packets (randomly) and increase .the counter value of the packet by 1. 

3. Put the packets back in S. 

4. Go to Step 1. 

Figure 4.1 illustrates the procedure. It shows the process of partitioning a set of five 

packets into five classes of size 1. A number in a box indicates the number of packets in 

a class. The number at the bottom of a box indicates the number of packets with the 

deflection counter value 0, the second number from the bottom indicates the number 

of packets with the deflection counter value 1, and so on. The existence of numbers at . 

higher positions in a box indicates the existence of higher priority packets. An arrow 

indicates an occurrence of .a contention between two packets in the same class. The 

procedure operates sequentially although in a real network, several contentions may 

occur at the same time. Multiple steps in the figure may be one slot in the network 

(e.g., the first two steps (two contentions) in the figure may happen in a single slot 

in the network). 

Note that drawing in the procedure is not necessarily at random although in 
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such a case, the procedure may not create n classes of size 1. However, the packets that 

have not increased their deflection counter values for a certain number of iterations 

should be considered to be delivered to their destinations in the network and may be 

ignored in the procedure. A packet with the largest hop counter value will reach its 

destination within a finite number of hops (no more than the diameter given by the 

routing scheme) if it will not be deflected by other packets. 

Let Si (~ S) denote the set (class) of packets with the deflection counter value 

i and #si denote the number of packets in Si. 

Clearly, if #so = k for some k > 0, then #so ~ k after an iteration of the 

procedure. Each time two packets are drawn from s0 , one of the packets increases 

its deflection counter value by 1 and hence #so decreases. Since drawing of packets 

is done at random, a pair of packets belonging to s0 will eventually be drawn as 

the execution of the procedure continues. Therefore, #so will continue to decrease 

and will eventually be 1. The only packet left in s0 may be drawn as the execution 

of procedure continues; however, the deflection counter of the packet will not be 

increased since the other packet (drawn with the packet in s0) must be drawn from 

some other class and hence #so will remain 1. 

If #si = 1 and #si+l = k for some k > 0, then #si+1 · ~ k after an iteration 

of the procedure. In order for an iteration of the procedure to increase #si+i, two 

packets must be drawn from Si and hence #si must be at least 2. If #si = 1, then 

an iteration will not increase #si+I · The iteration may decrease #si+l by drawing a 

pair of packets from Si+1 if #si+1 ~ 2. If #si will remain 1 for a substantial number 

of iterations, then #si+1 will decrease and will eventually become 1. 
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Inductively applying the arguments above, we can show that for any i, #si 

will eventually become 1. 

Note that increasing the deflection counter value by 1 every time a packet is 

deflected as in a conventional method will not create the classes mentioned above; 

the packets in S may continually contend against each other and indefinitely increase 

their deflection counter values. 

4.2 Simplified Method 

It is p-ossible to-assign -a node id and a link id to each packet. Generally, a packet 

stores its source node id in its header. Likewise, the id of the link from which the 

packet is injected into the network can also be stored in the header. (Each outgoing 

link at a node should have its own unique number that locally identifies the link at 

the node.) Since only one packet can be injected into the network through a link at a 

time, the combination of a node id and a link id uniquely identifies packets among the 

packets injected into the network at the same time (i.e., the packets with the same 

time stamp or equivalently the same hop counter value). A total order (the priorities) 

of the packets can be defined based on the the combination of the id numbers. 

-·This method is··static (i.e., the priorities of packets that are injected into 

the network at the same time will not change while they are in the network). In 

contentions, the packets from certain nodes will always be discriminated against. 

However, the costs of implementation and nodal operation can be reduced and livelock 

is still prevented. 
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4.3 Link Assignments for Higher Degree Networks 

In the earlier discussion, we assumed that the networks are two-connected. In order for 

the proposed methods to work in higher degree networks, link assignments (switching) 

must be carefully done. In this section, we discuss this problem. 

Although in higher degree networks, preferences may be given to certain non­

shortest path links for optimized switching (some non-shortest path link may be more 

preferable to another non-shortest path link), in this discussion, no preferences will 

be given to non-shortest path links (no preference of one over another). 

Packets are assigned to (possibly their preferred) links one by one according 

to their priorities, which are based on the hop and deflection counter values of the 

method given in an earlier section. Hence, no preferred links may be available for 

lower priority packets (i.e., lower priority packets may be deflected). (Tie-breaking 

(priorities of packets and preferences of links) is done by using randomization.) 

First, the highest priority packet will be assigned to its preferred link. If 

there are several packets with the same highest priority, one of them will be selected 

randomly. Likewise, if the (selected) highest priority packet has several preferred 

links, one of them will be selected randomly. Then the second highest priority packet 

( or one of the remaining highest priority packets) will be assigned to its preferred 

link. If no preferred link is available, one of the unassigned links (non-shortest path 

links for the packet) will be selected randomly for the packet. The remaining packets 

will be assigned to the remaining links in the same manner. 

In higher degree networks, a routing algorithm (in order to increase the per­

formance) may select a switching configuration that minimizes the total remaining 
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distance (number of hops) of packets [4, 14]. In general, there is no guarantee that 

livelock is avoided by such a method. 

4.4 Summary 

Livelock is a problem unique to deflection networks. We have studied a method that 

prevents livelock in this chapter. The method will dynamically establish a total order 

of the packets that have been in the network longest. The packets have priorities based 

on the established total order. As a result, no two packets have the same priority. This 

stops continuaJcontentions a.inong the packets. The method guarantees that livelock 

is avoided. We have also studied a simplified method for low cost implementations 

and link assignments for higher degree networks. 

Aside: The argument in the paper [10], which is discussed in the beginning of 

this chapter, indeed motivated this study. However, the importance of the problem 

was not realized until the development of the specification for the networks, which is 

presented in the following chapter, was half done. The experiences gained from the 

earlier simulation studies were giving the author an impression that the problem is 

less important. It was found that the problem must be solved for completeness of the 

specification-and the solution was produced. It will be noticed that the conceptual 

algorithm used to show the correctness of the proposed method is influenced by 

the computational model of UNITY, which is used for developing the specification 

presented in the following chapter. End of aside. 



CHAPTER V 

FORMAL SPECIFICATION 

We model a deflection network as a closed system and develop a specification for the 

network using the logic of UNITY (Unbounded Nondeterministic Iterative Transfor-

mations) '(17, 61, 62, 79]. 

In [26, 27], formal specifications for a static {fixed routes) wormhole message 

router for a multiprocessor interconnection network ( a grid of N x M switches, where 

N is the number of input lines and M is the number of output lines) are studied. 

The router is modeled as a closed system in [26]. Whereas, [27] attempts to model it 

as an open system. Our closed-system assumption in modeling deflection networks is 

influenced by [26]. 

The goals of this chapter are to develop a formal specification for deflection 

networks and to identify methodological elements that provide a common foundation 

for the design and specification of data networks. · 

This chapter is organized as follows. Section 5.1 gives an overview of the 

UNITY computational model and logic; we re-define the operators of [61, 62], which 

are derived from [17], using the notion of the strongest invariant [79]. A formal specifi-

cation for deflection networks is developed in Section 5.2. The developed specification 
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is mapped to a UNITY program (a network simulator in pseudocode) in Section 5.3. 

Section 5.4 summarizes this chapter. 

5.1 Overview of UNITY 

This section gives an overview of the UNITY computational model and logic. 

5.1.1 UNITY Computational Model 

The UNITY computational model (program model) is built upon a traditional im­

perative foundation and a state-transition system. 

A UNITY program consists of a declaration/initialization of variables and a 

set of atomic, terminating, deterministic, guarded, multiple-assignment statements. 

A UNITY program has no control statements. In each step of execution, a statement 

is selected nondeterministically and executed. (Executing a statement whose guard 

is false does not change the values of the variables.) Nondeterministic selection is 

constrained by the fairness rule; every statement is selected infinitely often. 

The execution of an assignment statement corresponds to the transition from 

one state to the next. An execution sequence will be either infinite or end in a state in 

which no statement leading to another state exists (i.e., a fixed point of the program 

is reached). 

Fairness is an important hypothesis in the study of parallel programs. It guar­

antees that the computations exhibit all behaviors manifested by the execution of 

programs. In a multiprocess program, different processes (represented by the state­

ments in a UNITY program) will be individually allowed to proceed [5, 34, 50, 61]. 
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5.1.2 UNITY Logic 

The verification of a sequential program involves placing predicates at specific points; 

the predicates hold when the control reaches the points. This is not the case for a 

UNITY program since UNITY does not have the notion of program control. The 

properties that must be satisfied are associated with the entire program. 

5.1.2.1 Notation A quantified expression is written in the form 

( Op x: R(x) : T(x)), 

where Op is an associative and commutative operator (e.g.,/\, V, +, etc.), xis a list of 

dummy variables whose scope is delimited by the angle brackets, R(x) is a predicate 

giving the ranges of dummy variables over which the quantification is to be done, and 

T(x) is the term of the quantification. (When T(x) is a predicate, we write V instead 

of I\ and :l instead of V. Note that R(x) may be omitted if the ranges (domains) of 

dummy variables are understood.) 

The Hoare triple [36] has the form 

{p}s{q}, 

where p and q are predicates and s is a program statement. Its meaning is that ifs 

is executed in a state where p holds, then q holds after the execution of s. 

An inference rule is written as 

p 

Q' 

where P and Q are lists of properties. Its meaning is that if P holds, then we may 

infer that Q holds as well. 
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A set consisting of all elements x that satisfy the property P is written in the 

form 

{x IP}. 

A finite set may be specified by enumerating its elements between curly brackets. 

The cardinality of a finite set A is denoted by #A. 

The operators·that we use are summarized below, ordered by increasing bind-

ing power. 

~,::::} 

initially, co, stable, constant, invariant, transient, i-+ 

/\,V 

-, 

=,#,<,~,>,~,E,(/. 
+,-,min,max 

"." {function application) 

The definitions of operators initially, co, stable, constant, invariant, 

transient, and i-+ are given later. All other operators have their usual meanings. 

5.1.2.2 UNITY Logic Operators We adopt the notion of the strongest in-

-·variant [79]--andre-define the operators-of [61, 62]. Note that although the operators 

of [61, 62) are derived from the original work of UNITY [17), they are developed 

for generic {discrete) action systems {which consist of a number of actions that may 

change the state of the system) and are not specific to UNITY. 

A predicate p is stronger than predicate q if p::::} q. The strongest invariant 

SI of a program is the strongest predicate X that satisfies the following condition: 

{initial condition::::} X) I\ (Vs: s E F: {X}s{X}), 
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where Fis the program (a set of program statements) and sis a program statement. 

The strongest invariant characterizes the set of states that are reachable during some 

execution of a program. 

• initially p means that p holds for the initial state of every execution sequence: 

initially p = initial condition => p. 

• p co q (p constrains q) means that if p holds for some reachable state, then q 

holds for the next state: 

p co q =(Vs: s E F: {SI /\p}s{q}). 

• stable p means that if P, holds for some reachable state, then p continues to 

hold for all succeeding states: 

stable p = p co p. 

(In the program model, once pis established, it is preserved by every statement.) 

• constant p means that p is true for all reachable states if p is initially true and 

false for all reachable states if it is initially false: 

constant p = (stable p) I\ (stable ,p). 

• invariant p means that p holds initially and ~ontinues to hold for all succeeding 

states: 

invariant p = (initially p) I\ (stable p) 

or simply 

invariant p = SI => p. 
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(In the program model, p is preserved by every statement.) 

• transient p means that if p holds for some reachable state, then ,p holds (p 

being falsified) for a later state: 

transient p = (:3s: s E F: {SI /\p}s{,p}). 

(In the program model, if p holds at a point, there is at least one statement 

" 
whose execution falsifies p and that statement is going to be selected for execu-

tion due to the fairness rule of the model.) 

• p i---+ q (p leads to q) means that if p holds for some reachable state, then q holds 

for a later state (within a finite number of execution steps). Formally p i---+ q 

holds if and only if it can be derived by a finite number of applications of the 

following three inference rules: 

1. (Basis) 

2. (Transitivity) 

p I\ ,q cop V q, transient p I\ ,q 
p 1--t q 

p i---+ q, q i---+ r 
pi---+ r 

3. (Disjunction) For any set S of predicates, 

(Vp : p E S : p i---+ q) 
(:3p : p E S : p) i---+ q. 

The operators co, stable, constant, and invariant are used to specify safety 

properties, which claim that undesirable state transitions will not occur during the 

execution of the program. The operators transient and i---+ (leads-to) are used for 

progress properties, which claim that the program performs useful work. 
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Note that UNITY has introduced only two basic operators co and transient; 

all other operators are defined in terms of those two operators. 

5.2 Specification 

We are interested in developing a specification that clarifies the structures of deflection 

networks and can aid the construction of physical networks. We develop a topology 

independent, packet-level specification for two-connected networks. The specification 

is based on a global observation. A network is modeled as a closed system. 

The development of the specification proceeds with the following principles: 

The specification for a system should be sufficiently strong to rule out any undesired 

behaviors. At the same time, the specification should be sufficiently weak to provide 

implementers with the freedom to satisfy the specification in the most convenient and 

efficient way. In other words, it should avoid overspecifying the elements that are not 

essential to producing the desired system [86]. 

5.2.1 Requirements 

Before we proceed to the development of the specification, we summarize the general 

requirements of packet communication networks below. 

• The values of packets must not be changed, except the values for routing control 

purposes. 

• Packets must not be lost. 

• Packets must eventually be delivered to their destinations. 
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5.2.2 Basic Model and Topology 

We start with the general graph model and make refinements to the model so that 

sufficient details of deflection routing can be specified. 

A network is a directed graph G = (V, E), where Vis a set of nodes (vertexes) 

and E is a set of directed links (edges). The set E is a binary relation on the set 

V. (Note that the general graph model does not allow multiple links connecting two 

nodes in the same direction. That is the case for most general data networks.) 

We identify each node in a network by a unique integer. Let n be the number 

of nodes in the network. Then the set V is defined as 

V = {v Iv EN, 1 ~ v ~ n}, 

where N denotes the set of natural numbers. Self-loops are excluded from E: 

(Vv : v E V : ( v, v) fj. E). 

A deflection network has the following topological properties: 

(\:/v,w: v,w EV: (v,w) EE+), 

where E+ denotes the transitive closure of E, and 

(Vv: v EV: #{w I (w,v) EE}= #{w I (v,w) EE}). 

The first property specifies that a deflection network is strongly connected. The 

second property states that each network node has equal in- and out-degrees, which 

are denoted as dv for each node v: 

dv = #{w I (w,v) EE} 
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or equivalently 

dv = #{w I (v,w) EE}. 

For the rest of this chapter, dv = 2. Note that the transitive closure R+ of a relation 

R can be constructed by the following rules: 

(a, b) ER 
(a,b) ER+' 

(a, b) ER, (b, c) ER 
(a, c) ER+ 

A path from node v to node w is a non-null sequence of links such that the first 

link in the sequence is directed away from v; the last link in the sequence is directed 

toward w; for every successive pair (a, b), (c, d) of links in the sequence, b = c. The 

length of a path is the number of links in the path. The distance from node v to node 

w is given by the function ~ (from E+ to N), such that 

~ ( ) = { the length of the minimum-length path from v tow if v =/=- w; 
. V, W Q if V = W. 

The topological properties are static. We assume that there are no topological 

changes during the execution of the system. The following statements are assumed: 

(Vv :: constant v EV), 

(Vv, w :: constant (v, w) EE). 

5.2.3 1/0 Queues and Network Medium 

In order to model the behavior of a deflection network, we must be able to distinguish 

the locations of packets in the network precisely according to the topology and the 

nodal structure of the network. We abstract the inputs and outputs as unbounded 
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queues of packets. Let S, D, and M be the set of locations in the input (source) 

queues, the set oflocations in the output (destination) queues, and the set of locations 

in the network medium. We define the sets as follows: 

Q _ {(t,v,i,k) I t,i,k EN, v EV, 1:::; t:::; 2, 1:::; i:::; dv, 1:::; k}, 

S = {(t,v,i,k) I (t,v,i,k) E Q, t = 1}, 

D = {(t, v, i, k) I (t, v, i, k) E Q, t = 2}, 

M - {(t, V, i) It, i EN, V E V, 1 :::; t:::; 3, 1 :::; i :::; dv}. 

The components v, i, and k are a node id, a link id, and a position number. The 

component t of an element in M indicates the location of a packet inside a node 

(Figure 5.1). The details appear later. 

The sets S and D have countably infinite elements. An order of elements in 

the sets may be given by Cantor numbering. The order of locations is important only 

in the same queue. The component k determines the order of locations in a queue. 

Instead of writing locations in the forms (t, v, i, k) or (t, v, i) in the specifica­

tion, we often use the following more intuitive notations of the forms: srcv ik denoting 

(1, v, i, k), dst\k denoting (2, v, i, k), invi denoting (1, v, i), swvi denoting (2, v, i), 

and outvi denoting (3, v, i). 

Figure 5.1 shows the locations in a node. (The node id is omitted in the 

figure.) We assign an input queue and an output queue to each link. This clarifies 

the nodal processing of deflection networks. 

The symbol I- is used to indicate the connection of nodes (which outgoing 

link of a node is connected to which incoming link of another node). The expression 
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in I SWJ - out I_ 
- - - - -

• Switching 

in2 _sw2 - Fabric out2 
- - - - -

'' 
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"""' 
N 
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N 
"""' 

N . . . . 

Figure 5.1: Locations in a node. 

outvi I- inw; is true ifoutput link i of node_ v is connected to input link j __ of node __ 

w. The operator has the same binding power as =, =I, and the like. The following 

statements hold: 

(Vv,w :: (v,w) EE# (3i,j :: out\ I- inw;)), 

(w · · ·I ·I • • tv I- · w tv I- · w · _ ·I · _ "') vv,w,i,J,i,J .. ou i m ;/\ou i' m ;•#i-i /\J-J. 

As mentioned earlier, topological properties are static. We assume the follow-

ing property: 

(Vv,w,i,j :: constant outvi I- inw;). 

5.2.4 Packet Representation 

A packet has seven components: the source node id, the destination node id, the 

queue (link) id, the packet (position) number, the hop counter value, the deflection 

counter value, and the data portion. (The third and fourth components above are 

not necessary in implementations. We augment the packets with those components 

in order to uniquely identify each packet in the model.) 
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Using the static components of packets (source node id, destination node id, 

queue (link) id, packet (position) number, and data portion), we define the set P* 

( the set of all logical packets) as follow: 

P* = {(s,r,i,k,z) I s,r EV, i,k EN, 1 ~ i ~ ds, 1 < k, z EA}, 

where A is the set of all strings (data that can be represented by computers). 

Let P be the set of all physical packets. The physical packets are the packets 

that actually exist in the system. The set P is a subset of P*. In the specification, a 

packet is represented by a variable ( a or /3). The components of a packet are accessed 

through the following access functions: source, destination, queue, number, and data. 

For the variable components of packets (hop counter and deflection counter), we use 

two functions (from P to N) hcount and dcount. Throughout the execution of the 

model, the set P is unchanged. 

Packet Existence 

(Va: a E P*: constant a E P) (5.1) 

Property 5.1 states that no packets will be created or destroyed in the model. Only 

packets that initially exist continue to exist. 

The location of a packet in the system is given by the function 8, which is 

defined as 

8: P-t SU MUD. 

We define a predicate empty as 

empty.x = (Va: a E P: 8.a =/- x). 
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The predicate empty.xis true if there is no packet at the location x and false otherwise. 

For the rest of this chapter, the domain of packets is P and may be omitted 

in an expression. 

Packet Location 

invariant (Va, f3 : a =I- f3 : 8.a =/- 8./3) (5.2) 

Property 5.2 means that no two packets have the same location (i.e., the function 8 

is a one-to-one function). (This implies that a packet cannot move to a location that 

is occupied by another packet.) 

Network Initialization 

initially (Va :: 8.a E S) (5.3) 

Property 5.3 means that initially all packets are in the input queues and there are no 

packets in the output queues and in the network medium. 

Packet Validity 

initially (Va, v, i, k :: 8.a = srcv ik ~ 

source.a= v I\ queue.a= i I\ number.a= k) 

initially (Va :: (:3v :: destination.a= v)) 

initially (Va :: (:3z :: data.a = z)) 

(Va, v, w, i, k, z :: stable source.a= v I\ 

destination.a= w I\ queue.a= i I\ 

number.a= k I\ data.a= z) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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Properties 5.4-5.7 state that each packet must have valid component values which 

must not be changed during the execution of the system. Note that properties 5.5-5.7 

simply follow property 5.1; they are merely repeated here. 

The position number of a packet is unique in its input queue. The number is 

assigned to each packet based on the initial location of the packet. The triple (s, i, k), 

where s, i, and k are a source node id, a queue (link) id, and a position number, 

uniquely identifies a packet in the model. This allows the existence of multiple packets 

that have the same source node id, the same destination node id, and the same data 

value in the model (i.e., in the set P). 

Note that the hop and deflection counters, which should be included in the 

packet header in implementations, are not included in packets in this model; they are 

given by functions from P to N ( hcount and dcount). 

5.2.5 Packet Moves 

The most fundamental property that must be implemented is 

(Va :: 8.a E SM 8.a E D). 

Every packet in input queues must eventually move into some output queue. More 

precisely, 

(Va, V :: destination.a= V M (:Ji, k :: e.a = dst\k) ). 

Every packet must eventually reach its destination. We define the detailed properties 

of packet moves below. 



Queue Move 

(Va, v, i, k: k > 1: 8.a = src\k co 8.a = srcvik V 8.a = srcvik - 1) 

(Va, v, i, k: k > 1 : 8.a = srcvik 1-t 8.a = srcvik - 1) 

(Va, v, i, k: k > 0: 8.a = dstvik co 8.a = dseik V 8.a = dstvik + 1) 

(Va, v, i, k: k > 0: 8.a = dst\k 1-t 8.a = dstvik + 1) 
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(5.8) 

(5.9) 

(5.10) 

(5.11) 

Properties 5.8-5.11 define the packet moves in input and output queues. Property 5.8 

states that a packet at the position k in an input queue will either stay at the same 

position or move to the position k - 1 and there are no other possible moves. Prop­

erty 5.9 guarantees that the packet will move to the position k- 1 in a finite number 

of execution steps. Properties 5.10 and 5.11 specify the analogous moves for packets 

in output queues. 

Generally, a pattern of system behavior is specified by a pair of properties ( a 

safety property and a progress property). 

Injection 

(8.a = sw\ I\ hcount.a = 0 I\ dcount.a = 0)) (5.12) 

(Va, v, i :: e.a = src\l 1-t e.a = SWvi) (5.13) 

Properties 5.12 and 5.13 specify that the packet at the head of an input queue must 

be injected into the network within a finite number of execution steps and there are 

no other moves. Property 5.13 must be implemented for property 5.9. Recall that no 
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two packets can be at the same location (property 5.2). Hence, the packet at the head 

of an input queue must be injected into the network so that the following packets in 

the queue can make their moves. (All packet moves must satisfy property 5.2.) 

Note that for any packet in an input queue, there are only finitely many packets 

ahead of it in the queue. The packet will be out of the input queue within a finite 

number of execution steps. 

The following properties define the packet moves in the network medium. 

Node-to-Node Hop 

('i/a, v, i, k, l :: 8.a = out vi I\ hcount.a = k I\ dcount.a = l co 

(8.a = outvi I\ hcount.a = k I\ dcount.a = l) V 

((3w,j :: outvi I- inwj I\ e.a = inwj} I\ hcount.a = k + l /\ dcount.a = l)} (5.14) 

(5.15) 

Property 5.14 specifies that the hop counter value increases by 1 every time a packet 

makes a hop, while the deflection counter value remains the same. 

Delivery 

('i/a, v, i :: e.a = invi I\ destination.a= v co e.a = invi Ve.a= dstvil} (5.16) 

('i/a, V, i :: 8.a = invi I\ destination.a= V 1--t 8.a = dst\l} (5.17) 



Transit 

_ _ Switching_ 

(Va, v, i, k, l :: 8.a = in\ A. destination.a =I= v 

A. hcount.a = k A. dcount.a = l co 

(8.a = invi A. hcount.a = k A. dcount.a = l) V 

(8.a = sw\ A. hcount.a = k A. dcount.a = l)) 

(Va, v, i :: e.a = in\ A. destination.a =I= Vt-+ e.a = SWvi) 

(Va, v, i, k, l :: 8.a = sw\ A. hcount.a = k A. dcount.a = l co 

(8.a = sw\ A. hcount.a = k A. dcount.a = l) V 
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(5.18) 

(5.19) 

((:3j :: 8.a = outv;) A. hcount.a = k A. (dcount.a = l V dcount.a = l + 1))) (5.20) 

(Va, v, i :: 8.a = sw\ t-t (:3j :: 8.a = out\)) (5.21) 

In an implementation, the routing algorithm at each node determines the value of 

j in properties 5.20 and 5.21. The deflection counter value may be increased by 

1 during switching. We will make refinements to property 5.21 later for a Specific 

implementation. 

Up to this point, we have specified only individual packet moves. Now, we 

must model and specify synchronized packet moves. First, we define an invariant for 

packet locations. Then the synchronized packet moves are specified in terms of the 

number of packets at a node. 

Relative Packet Location 

(Vt, v, i :: invariant -iempty.(t, v, i) => (Vs, j : s =I= t : empty.(s, v, j))) (5.22) 
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Property 5.22 specifies the relative locations of packets in a node. For example, if 

there is a packet at in\ for some i, no other packets can be at swvi and outvk for all 

j and k at the same time. 

Synchronized Packet Move 

(Vt,v,k: k > 0: #{i j ,empty.(t,v,i)} = k co 

#{i j ,empty.(t,v,i)} = kV#{i j ,empty.(t,v,i)} = 0) (5.23) 

Property 5.23 implies that the switching and transmission of packets need to be syn­

chronized. The number of in\'s (i ranging from 1 to dv) that have packets will remain 

the same or drop to zero. This implies that the packets at invi's must move at once. 

The same property holds for packets at swv i's and outv /s. Although the property 

is written in terms of the number of packets in a node, it globally synchronizes the 

node-to-node packet moves in the network. Packets coming into a node must be com­

ing at the same time. Since all those packets are coming from different nodes, the 

transmission of the packets at the nodes must be synchronized. 

The packet at src\1 (the head of an input queue of a node) can be injected 

into the network if there are no other packets in the node or it may be injected at 

the same time that the packet at invi is moved to dstvil (i.e., an incoming packet on 

link i is extracted). There are no other cases that the packet at the head of an input 

queue can be injected into the network. Transit packets have higher priorities than 

source packets. This means that if a node always receives transit packets, the node 

cannot inject its source packets. In other words, property 5.13 may not hold. Certain 

injection control mechanisms must be implemented to prevent this situation, which 
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is generally known as source lockout. We will deal with this problem later. 

The basic network hardwares such as cables, transmitters, and receivers should 

support the properties specified above for packet moves although the functions of the 

hardware components alone cannot guarantee all the properties. (It appears that the 

properties for the packet moves can be guaranteed solely by the network hardware 

components; however, many of the properties cannot be guaranteed by the functions 

of the hardware components alone.) In the following subsection, we specify a routing 

scheme for general two-connected networks. 

5.2.6 Selecting Switching Configurations 

The following properties specify shortest path routing if there is no contention. 

Shortest Path Routing 

((A.(w1 , destination.a) < A.(w2 , destination.a) I\ 

A.(w1 , destination./3) 2:: A.(w2 , destination./3)) V 

(A.(w1 , destination.a) ~ A.(w2 , destination.a) I\ 

A.(w1 , destination./3) > A.(w2 , destination./3))) 

I-+ e.a = outv1 I\ 8./3 = outv2) (5.24) 



((A.(w1, destination.a) > A.(w2 , destination.a) I\ 

A.(w1 , destination.{)) :5 A.(w2 , destination.{))) V 

(A.(w1 , destination.a) ~ A.(w2 , destination.a) I\ 

A.(w1 , destination.{)) < A.(w2 , destination.{)))) 

A.(w1, destination.a) < A.(w2 , destination.a) ~ 8.a = outv1) 

('va, v, W1, W2, i1, i2 :: 8.a = swv1 I\ empty.swv2 I\ 

OUtV 1 r inWl ii I\ OUtV 2 r inW2 i2 I\ 

A.(w1 , destination.a) > A.(w2 , destination.a) ~ 8.a = outv2) 

(\fa, V, W1, W2, i1, i2 :: empty.SWvI I\ 8.a = SWv2 I\ 

outv 1 r inw1 i1 I\ outv 2 r inw2 i2 I\ 

A.(w1, destination.a) < A.(w2 , destination.a) ~ 8.a = outv1} 

outv 1 r in wi i1 I\ outv 2 r inw2 i2 I\ 

A.(w1, destination.a) > A.(w2 , destination.a)~ 8.a = outv2} 
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(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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Properties 5.24 and 5.25 may be simplified for faster processing in implementations. 

Suppose a packet a destined for node b is at node a (a =/= b) and node a has 

two adjacent nodes c1 and c2 (c1 =/= c2) (i.e., (a, c1), (a, c2) E E). For a to reach b, it 

must pass through either c1 or c2. The shortest distance from c1 to bis .6..(c1, b) by 

definition. Analogously, the shortest distance from c2 to bis .6..(c2, b). Therefore, 

.6..(a.b) = 1 + (.6..(c1, b) min .6..(c2, b)). 

Hence, 

The routing scheme decreases the remaining distance to the destination. A packet 

injected into a network will eventually reach its destination if there is no contention. 

Note that the operator min is defined as 

a = b min c = ( a = b V a = c) I\ a :::; b I\ a :::; c. 

5.2. 7 Contention Resolution and Livelock Prevention 

We specify the livelock prevention method of Chapter IV. When two packets want to 

use the same output link, the packet with the larger hop counter value gets the link 

and the other packet is deflected. Similarly, when two packets with the same hop 

counter value want to use the same output link, the packet with the larger deflection 

counter value gets the link and the other packet is deflected. If both two packets have 

the same hop and deflection counter values, one of them should be selected randomly 

for the link and the deflection counter value of the other should be increased. 



Contention Resolution By Hop Counter 

.6..(w1, destination.a:) < .6..(w2, destination.a:) A 

.6..(w1, destination.(]) < .6..(w2 , destination.(}) A 

hcount.o: > hcount.(3 i---+ 8.a: = out\ A 8.(3 = outv2) 

.6..(w1, destination.a:) > .6..(w2 , destination.a:) A 

.6.. ( w1, destination. (3) > .6.. ( w2 , destination. (3) A 

hcount.o: > hcount.(3 i---+ 8.a: = outv 2 A 8.(3 = outv 1) 

.6.. ( w1, destination.a:) < .6.. ( w2 , destination.a:) A 

.6.. ( w1 , destination.(]) < ..6.. ( w2 , destination.(]) A 

hcount.o: < hcount.(3 i---+ 8.a: = outv2 A 8.(3 = outv1) 
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(5.30) 

(5.31) 

(5.32) 



.6..(w1, destination.a) > .6..(w2, destination.a) A 

.6..(w1, destination./3) > .6..(w2, destination./3) A 

hcount.a < hcount./3 1-t E>.a = outv1 A E>./3 = outv2) 

Contention Resolution By Deflection· Counter 

.6..(w1, destination.a) < .6..(w2, destination.a) A 

.6..(w1, destination./3) < .6..(w2, destination./3) A 

hcount.a = hcount./3 A dcount.a > dcount./3 

t-t E>.a = outv 1 A E>./3 = outv 2) 

(Va, /3, v1 '1p1, w2, i1, i2 :: E>.a-:- sw\ A E>./3 = swv 2 A · 

outv1 r- inw1 i 1 A outv2 r- inw\2 A 

.6..(w1, destination.a) > .6..(w2, d~stination.a) A 

.6..(w1, destination./3) > .6..(w2, destination./3) A 

hcount.a = hcount./3 A dcount.a > dcount./3 

t-t E>.a = outv 2 A E>./3 = outv 1) 
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(5.33) 

(5.34) 

(5.35) 



Ll.(w1, destination.a) < Ll.(w2, destination.a) I\ 

Ll.(w1, destination./3) < Ll.(w2, destination./3) I\ 

hcount.a = hcount.{3 I\ dcount.a < dcount.{3 

i-+ 8.a = outv2 I\ 8.(3 = outv 1) 

Ll.(w1, destination.a) > Ll.(w2, destination.a) I\ 

Ll.(w1, destination./3) > Ll.(w2, destination./3) I\ 

hcount.a = hcount.{3 I\ dcount.a < dcount.{3 

i-+ 8.a = outv1 I\ 8.(3 = outv2) 
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(5.36) 

(5.37) 
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Tie-breaking and Incrementing Deflection Counter 

~.(wi, destination.a) < ~.(w2, destination.a) I\ 

~.(w1, destination.{3) < ~.(w2, destination.{3) /\. 

hcount.a = hcount.{3 I\ dcount.a = k I\ dcount.{3 = k 

t-+ (8.a = outv1 I\ 8.(3 = outv2 I\ dcount.a = k I\ dcount.{3 = k + 1) 

V (8.a = outv2 I\ 8.(3 = outv1 I\ dcount.a = k + 1 I\ dcount.{3 = k)) (5.38) 

~.(wi, destination.a) > ~.(w2, destination.a) I\ 

.6..(w1, destination.{3) > ~.(w2, destination.{3) I\ 

hcount.a = hcount.{3 I\ dcount.a = kl\ dcount.{3 = k 

t-+ (8.a = outv2 I\ 8.(3 = outv1 I\ dcount.a = k I\ dcount.{3 = k + 1) 

V (8.a = outv1 I\ 8.(3 = outv2 I\ dcount.a = k + 1 I\ dcount.{3 = k)) (5.39) 

Given that the routing scheme is correct and livelock is prevented, we can say 

(Va:: 8.a E Mt-+ 8.a ED). 

If we can say 

(Va:: 8.a E St-+ 8.a EM), 

then we have the property (requirement) given earlier: 

(Va:: 8.a ES t-+ 8.a ED). 
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Recall that t-+ is transitive. In the next subsection, we deal with the property 

(Va:: 8.a E St-+ 8.a E M). 

5.2.8 Lockout Prevention 

As noted earlier, we must prevent potential source lockout and validate property 5.13. 

Recall that source lockout is a situation that a node is busy routing transit packets 

all the time and hence (source) packets cannot be injected into the network from the 

node. 

Knowing that in practice, source lockout is unlikely to occur in symmetric 

networks with uniform traffic patterns and interrelating the problem to livelock pre­

vention, we present the following solution for our model. We force each node to send 

a packet (dummy packet) to every node in the network once in a while (infinitely 

often). (When a node receives and extracts a packet addressed to the node, the node 

can inject one of its source packets into the network (i.e., the node is unlocked). In­

tuitively, lockout will be prevented if livelock is prevented (i.e., every injected packet 

reaches its destination in a finite number of hops).) In the model, every input queue 

contains infinitely many packets addressed to every node. This scheme may not create 

a probabilistically uniform traffic pattern; nevertheless, there will be traffic between 

every node pair. 

Packet Destination 

initially (Vv, w, i : v =/= w : (3a, k :: 8.a = src''ik A destination.a = w)) (5.40) 



83 

initially (Va, v, i, k : 8.a = src\k : 

(3/3, m: m > 0: 8./3 = srcvi(k + m) I\ destination./3 = destination.a)) (5.41) 

Property 5.40 specifies that each input queue of every node contains packets addressed 

to all other nodes. Property 5.41 states that in each input queue, there are infinitely 

many packets addressed to the same node. 

Consider tracing a packet injected into a network (perhaps the first packet 

injected into the network after the initialization) and its succeeding packets (i.e., 

the packets that will be injected into the network at the nodes receiving the traced 

packet). Given that the routing scheme is correct and livelock is prevented, a packet 

injected into a network will reach its destination node in a finite number of hops. The 

node receiving the packet will inject a packet into the network. Again, the packet 

will reach its destination node in a finite number of hops and the node receiving the 

packet will inject a packet into the network. Nodes that have not received any packet 

after a certain period of execution steps (if such nodes exist) may have been locked 

out. The existence of such nodes implies that the injection of packets has occurred 

only at a certain subset of the nodes in the network. If this situation will remain 

unchanged (i.e., only a subset of the nodes in the network will be injecting packets 

into the network), then because of properties 5.40 and 5.41, the nodes in the subset 

will eventually (have to) inject packets addressed to the nodes that may have been 

locked out. An input queue that continually injects packets will eventually inject a 

packet addressed to every node in the network. Hence, no node can be indefinitely 

locked out. 
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It is possible to implement other methods to prevent lockout. For example, 

a node that can inject packets may voluntarily stop injecting packets so that down­

stream nodes will have chances to inject their packets. Property 5.13 says that a node 

must eventually inject the packet at the head of an input queue into the network; 

however, the property does not say that a node must inject a packet whenever it can. 

Note that although indefinite source lockout can be avoided, temporary lockout 

may happen at a node. More sophisticated mechanisms may be required to provide 

fair access ( or demand based access) to the network when a uniform traffic pattern 

is not assumed. Lockout-free does not necessarily mean that fair network access is 

provided. 

It is not difficult to implement fair and guaranteed network access. For exam­

ple, every node could always have its own tokens (slots marked as tokens for the node) 

in the network; a token can be used only by its owner. Unfortunately, the through­

put under such an implementation will be limited. Only a fraction of the network 

capacity may be used for the actual communications. It is difficult to provide fair 

and guaranteed network access for all nodes while also achieving a high throughput 

level. Fortunately, recent practices of networking and distributed computing encour­

age balanced traffic loads (patterns), which will naturally provide fair network access 

for all nodes. 

5.3 Constructing A Simulator Program 

This section gives an outline of the derivation of a (pseudo) UNITY program ( a 

network simulator in the UNITY computational model) from the specification. Since 

the complete implementation will be lengthy and perhaps tedious, only important 
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issues for mapping the specification to a program are described. 

5.3.1 Data Types and Representations 

We use the data type "packet" as the basic data type in the program. (The data 

type "packet" is a record. We use the same notation as in the specification to access 

the fields of "packet" as we need in the program.) The data type of the locations 

is "packet". In the specification, we have modeled a network with its environments 

together as a closed system. In the program, we represents the 1/0 environments by 

the data type "sequence of packet". The symbol J_ is used to denote a null-packet. 

The program variables are declared as follows. 

declare 
in, out, sw: array[l..N, 1..2] of packet; 
src, dst: array[l..N, 1..2] of sequence of packet; 
net: array[l..N, 1..2] of 1..N; 
dist: array[l..N, 1..N] of 1..N; 

{ end of declare-section } 

The constant N is the number of nodes in the network. The array net is used to 

represent the node connections (topology), which is represented by the operator f- in 

the specification. If node vis connected to node w by link k, then net[v, k] = w. The 

array dist stores the shortest distances between nodes, implementing the function Ll 

in the specification. The distance from node v to node w is given by dist[v, w]. 

We use the following operations on sequences: 

head.s = head element of the sequence s, 

tail.s = tail sequence of the sequence s, 

( s; x) = sequence obtained by appending the element x at the end of the sequence s, 

nil.s = s is an empty sequence. 
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The basic notation used in this section follows the UNITY program notation 

in [17]. An assignment statement can be composed by several assignment components 

separated by the operator II- The operator ~ separates the assignment statements in 

a program. 

5.3.2 Initialization 

The initialization of the program is done as follows. 

initially 
{ Empty Network} 
(II i, j : 1 ~ i ~ N, 1 ~ j < 2 : in[i, j], out[i, j], sw[i, j] = ..L, ..L, ..L) II 
{ Define Topology } 
net[l, 1], ... , net[N, 2], dist[l, 1], ... , dist[N, N] = · · · 

{ end of initially-section } 

The network is initially empty as specified by property 5.3 (Network Initialization). 

The arrays net and dist should be initialized with aprropreate values for the network 

to be simulated. 

5.3.3 Assignment Statements 

The assignment statements that compose a UNITY program are shown below. 

assign 
{ Node-to-Node Hop } 
(II i1, i2, j : 1 < i1 ~ N, 1 ~ i2 ~ N, 1 < j ~ 2 : in[i2, j], out[ii, j] := out[ii, j], ..L 
if net[ii, j] = i2 A out[i1 , j] =I= ..LA (Vk : 1 ~ k ~ 2 : in[i2, k] = ..LA sw[i2, k] = ..L)) 

~· { Packet Moves Inside A Node } 
(II i,j: 1 ~ i ~ N, 1 ~ j ~ 2: 
sw[i,j], in[i,j] := in[i,j], ..L {Transit} 
if in[i,j] =I= ..LA destination.in[i,j] =I= i A 

(\/k : 1 ~ k ~ 2 : sw[i, k] = ..LA out[i, k] = ..L) II 
sw[i,j], src[i,j] := head.src[i,j], tail.src[i,j] {Injection} 
if ,nil.src[i, j] A in[i, j] = ..L A 

(Vk : 1 ~ k ~ 2 : sw[i, k] = ..L A out[i, k] = ..L) II 



dst[i, j], in[i, j] := ( dst[i, j]; in[i, j]), J_ { Delivery } 
if in[i,j] =/= J_ I\ destination.in[i,j] = i) 

{ Switching} 
(II i: 1 ~ i ~ N: out[i, 1], out[i, 2] := 
sw[i, 1], sw[i, 2] 
if ( dist[net[i, 1], destination.sw[i, 1]] < dist[ net[i, 2], destination.sw[i, 1]] I\ 

dist[net[i, 1], destination.sw[i, 2]] ~ dist[net[i, 2], destination.sw[i, 2]]) V 
· · · · · · · · · ""' { else } 

sw[i, 2], sw[i, 1] 
if ( dist[net[i, 1], destination.sw[i, 1]] > dist[net[i, 2], destination.sw[i, l]] I\ 

dist[net[i, 1], destination.sw[i, 2]] ~ dist[net[i, 2], destination.sw[i, 2]]) V 
......... ) 

{ end of assign-section } 
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For simplicity and clear presentation (but without loss of generality), the counter 

manipulations and the details of switching are omitted in the program. (Assignment 

operations should be done component by component if counter manipulations are 

implemented.) We assume that the input queues are non-empty. 

The first assignment is based on property 5.15 (Node-to-Node Hop). The 

second assignment is based on properties 5.19 (Transit), 5.13 (Injection), and 5.17 

(Delivery). The third assignment is based on properties 5.21 (Switching), 5.24 (Short-

est Path Routing), and 5.25 (Shortest Path Routing). 

The program satisfies property 5.1 (Packet Existence). No packets will be ere-

ated or destroied in the program. The number of packets will be unchnaged after the 

execution of any assignment statement in the program. Since every location in the 

specification is represented by a valiable in the program, property 5.2 (Packet Loca-

tion) is deary satisfied. We assume that the sequence src satisfies Properties 5.4-5.6 

(Packet Validity). The components of packets, except the counter values, will not be 

changed by the program. Hence, property 5.7 (Packet Validity) is satisfied. Prop-
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erties 5.8-5.11 (Queue Move) are implimented by sequences. Modeling synchronized 

packet moves is strightforward in the program. Propery 5.23 (Synchronized Packet 

Move) is implemented by using parallel assignments. 

The assignment statements can be executed concurently in the computational 

model; however, the execution of statements may be ordered (based on the packet 

moves in the network) and iterrated in a sequential implementation. 

5.4 Summary 

We have developed a formal specification for deflection networks in UNITY logic. The 

developed specification then was mapped to a UNITY program (a network simulator 

in pseudocode). 

The specification is descriptive and non-operational. A network is viewed as a 

mathematical object. The advantage of this approach is that error prone operational 

reasoning is eliminated in the specification. 

The 1/0 queues as well as the locations in the network medium were repre­

sented by sets of distinct locations rather than sequence variables, the use of which 

may seem to be more natural for communication networks. The set model allows us 

to use the standard mathematical tools in the specification. This approach may be 

applied to the specifications of routing schemes in other types of networks. 

The development of the specification forced us to realize the logical problems 

in the network. It appears that all individual properties can be guaranteed solely 

by the network hardware components; however, many of the properties cannot be 

guaranteed by the functions of the hardware components alone. The problems of 

livelock and lockout have been addressed by specification. 
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A network with its environment together was modeled as a closed system. This 

formulation avoids dealing with conditional properties, which add a certain degree of 

complexity to the development of specifications. An open system model imposes an 

. examination of the compositionality of the defined logic. 

The notion of the strongest invariant was adopted in defining the UNITY 

operators. The non-equivalence between the axiomatic and informal operational se­

mantics of the operators in [17] is eliminated. However, the properties specified are 

weaker than those specified in the original logic of [17] in the sense that the properties 

hold only for reachable states. 

In practice, the difference in formulation of the logic has little effect on the 

derivation of programs [80]'. A recent study of the compositionality of properties and 

a discussion of the differences in logic formulations can be found in [25]. 



CHAPTER VI 

CONCLUSION 

6.1 Contributions 

The materials presented in this dissertation have covered many issues of deflection 

networks. The main contributions of the dissertation include the developments of a 

high performance routing scheme for the HTN, topology independent methods that 

prevent livelock, and a formal specification for deflection networks. 

The throughput/delay characteristics of the MSN and the HTN with several 

contention resolution methods have been investigated by intensive simulations. It is 

demonstrated that the proposed routing scheme for the HTN increases the through­

put by effectively using don't care nodes. As the network size increases, the scheme 

decreases the number of deflections. The simulation result shows that in a 256 x 256 

HTN, over 98% of packets were delivered to their destinations without even a single 

deflection under a complete network saturation condition (i.e., 100% link utilization). 

The research also provides simulation case studies for routing in irregular networks 

and random routing in the MSN and the HTN. The results obtained in this research 

show that the deflection networks, yet simple in structure, are indeed more powerful 

than popular linear structure networks and suitable as metropolitan area communi-

90 
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cation infrastructures. 

Livelock prevention is one of key issues of deflection networks. It has been 

known that in many cases (but not all cases), the introduction of randomization and 

certain priority mechanisms in contention resolutions will avoid livelock. This study 

provides a stronger result. The proposed methods guarantee that livelock is detenriin­

istically avoided (i.e., every packet that is injected into a network is 100% guaranteed 

to reach its destination). Furthermore, the methods are topology independent and 

can be applied to networks with a high degree of connectivity. 

A formal specification (a high-level design specification) for two-connected de­

flection networks has been developed. A network was modeled as a closed system 

with unbounded I/0 queues. The development of the specification, specially the 

specification of progress properties, forced us to realize the logical problems in the 

network. The basic network hardwares such as cables, transmitters, and receivers 

should support the properties in the specification; however, the functions of the hard­

ware components alone cannot guarantee all the properties. The necessity of livelock 

and lockout prevention mechanisms has been addressed by specification. We specified 

the livelock prevention method proposed earlier and solved the problem of lockout in 

the model by interrelating the problem to livelock prevention. The developed speci­

fication is weak in the sense that it leaves implementers with the freedom to satisfy 

the specification in a convenient and efficient way. For example, for improved lockout 

prevention and fair network access, an implementation may have a mechanism to con­

trol the packet injection rate at each node. As more sophisticated schemes are found 

to be appropriate, they may be implemented without changing the specification. The 
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study demonstrates the effectiveness of the formal approach to the system design 

problems. It also shows that the use of a small set of temporal logic operators (in 

addition to the conventional mathematical tools) is sufficient to build a model for a 

concurrent communication system. We have dealt with rather fundamental functions 

of the networks in this study; however, the model and specification can be used as a 

framework for designing and specifying other more complex functions of the networks 

(e.g., broadcasting) As we have seen, simulators (and perhaps the actual systems) can 

be build based on the specification. The simulators that have been used to carry out 

the performance characteristics of deflection networks follow the specification, except 

that livelock and lockout prevention issues are not addressed in the simulators. In the 

specification, we have treated the system as rather a critical system whose functions 

must be correct all the time. In realistic communication systems, certain errors (e.g., 

the loss of packets that may be resulted from buffer overflow or perhaps in deflection 

networks, livelock or lockout prevention) are allowed to occur in general; however, 

such an assumption, which may allow us to drop dealing with the problem of livelock 

or lockout in our model, should not be made during the basic system design process. 

The study yielded better understanding of the formal approach to the system design 

and specification. The same approach can be applied to the design and· specification 

of other types of data networks. 

6.2 Future Research Problems and Discussion 

There are several problems that may be studied to improve deflection networks. The 

problems include bandwidth reservation, connection service, broadcasting, and mul­

ticasting. 
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Bandwidth reservation and connection service are closely related. Given that 

the packet delay is much smaller than the end-to-end delay required by connection 

service, the only resource to be managed is the rate of the network access granted to 

a node [14]. 

Note that connection service through virtual circuits can hardly be provided 

in deflection networks without buffering packets at intermediate nodes. The use of 

the buffering resources increases the complexity of the nodal structures and slows 

nodal operations down. Moreover, establishing virtual circuits requires (additional) 

complex resource management. 

Although deflection networks generally have regular topologies, which sup­

port simple routing schemes, broadcasting in the networks is not straight forward. 

Broadcasting methods that involve packet replications at branching nodes (such as 

flooding) are not suitable for deflection networks. Since the availability of links is 

a random event, the replications of packets may not be possible at branching nodes 

(immediately after the arrival of the packets). 

In [29], Hamiltonian broadcasting (linear broadcasting), which involves no 

packet replications, has been proposed for the bidirectional MSN (torus network). It 

may not be difficult to find a Hamiltonian path in a structured network; however, 

in general networks, the problem of finding a Hamiltonian path is an NP-complete 

problem. Hence, Hamiltonian-path-based broadcasting is not always possible. 

For the same reason for broadcasting being difficult, multicasting that involves 

packet replications is also difficult in deflection networks. Furthermore, the problem 

of constructing a minimum cost multicasting tree (the Steiner problem) is an NP-
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complete problem even for regular networks such as meshes [82]. Efficient multicasting 

seems to be inherently difficult in deflection networks. 

Note that both broadcasting and multicasting can be done by repeated uni­

casting at the source node, of course. 

All of the above problems come from the unpredictability of deflection routing. 

As for formal specification, developing a specification for a large concurrent 

system remains a difficult task. Research opportunities for providing large but non­

cumbersome case studies still exist. 
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