21,383 research outputs found

    Sharing Experiences to Learn User Characteristics in Dynamic Environments with Sparse Data

    Get PDF
    This paper investigates the problem of estimating the value of probabilistic parameters needed for decision making in environments in which an agent, operating within a multi-agent system, has no a priori information about the structure of the distribution of parameter values. The agent must be able to produce estimations even when it may have made only a small number of direct observations, and thus it must be able to operate with sparse data. The paper describes a mechanism that enables the agent to significantly improve its estimation by augmenting its direct observations with those obtained by other agents with which it is coordinating. To avoid undesirable bias in relatively heterogeneous environments while effectively using relevant data to improve its estimations, the mechanism weighs the contributions of other agents' observations based on a real-time estimation of the level of similarity between each of these agents and itself. The "coordination autonomy" module of a coordination-manager system provided an empirical setting for evaluation. Simulation-based evaluations demonstrated that the proposed mechanism outperforms estimations based exclusively on an agent's own observations as well as estimations based on an unweighted aggregate of all other agents' observations.Engineering and Applied Science

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Project knowledge into project practice: generational issues in the knowledge management process

    Full text link
    This paper considers Learning and Knowledge Transfer within the project domain. Knowledge can be a tenuous and elusive concept, and is challenging to transfer within organizations and projects. This challenge is compounded when we consider generational differences in the project and the workplace. This paper looks at learning, and the transfer of that generated knowledge. A number of tools and frameworks have been considered, together with accumulated extant literature. These issues have been deliberated through the lens of different generational types, focusing on the issues and differences in knowledge engagement and absorption between Baby Boomers, Generation X, and Generation Y/Millennials. Generation Z/Centennials have also been included where appropriate. This is a significant issue in modern project and organizational structures. Some recommendations are offered to assist in effective knowledge transfer across generational types.Accepted manuscrip

    The Role of the Mangement Sciences in Research on Personalization

    Get PDF
    We present a review of research studies that deal with personalization. We synthesize current knowledge about these areas, and identify issues that we envision will be of interest to researchers working in the management sciences. We take an interdisciplinary approach that spans the areas of economics, marketing, information technology, and operations. We present an overarching framework for personalization that allows us to identify key players in the personalization process, as well as, the key stages of personalization. The framework enables us to examine the strategic role of personalization in the interactions between a firm and other key players in the firm's value system. We review extant literature in the strategic behavior of firms, and discuss opportunities for analytical and empirical research in this regard. Next, we examine how a firm can learn a customer's preferences, which is one of the key components of the personalization process. We use a utility-based approach to formalize such preference functions, and to understand how these preference functions could be learnt based on a customer's interactions with a firm. We identify well-established techniques in management sciences that can be gainfully employed in future research on personalization.CRM, Persoanlization, Marketing, e-commerce,

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future
    corecore