12 research outputs found

    Shapely monads and analytic functors

    Full text link
    In this paper, we give precise mathematical form to the idea of a structure whose data and axioms are faithfully represented by a graphical calculus; some prominent examples are operads, polycategories, properads, and PROPs. Building on the established presentation of such structures as algebras for monads on presheaf categories, we describe a characteristic property of the associated monads---the shapeliness of the title---which says that "any two operations of the same shape agree". An important part of this work is the study of analytic functors between presheaf categories, which are a common generalisation of Joyal's analytic endofunctors on sets and of the parametric right adjoint functors on presheaf categories introduced by Diers and studied by Carboni--Johnstone, Leinster and Weber. Our shapely monads will be found among the analytic endofunctors, and may be characterised as the submonads of a universal analytic monad with "exactly one operation of each shape". In fact, shapeliness also gives a way to define the data and axioms of a structure directly from its graphical calculus, by generating a free shapely monad on the basic operations of the calculus. In this paper we do this for some of the examples listed above; in future work, we intend to do so for graphical calculi such as Milner's bigraphs, Lafont's interaction nets, or Girard's multiplicative proof nets, thereby obtaining canonical notions of denotational model

    Polynomial functors and polynomial monads

    Full text link
    We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.Comment: 41 pages, latex, 2 ps figures generated at runtime by the texdraw package (does not compile with pdflatex). v2: removed assumptions on sums, added short discussion of generalisation, and more details on tensorial strength

    Polynomial functors and polynomial monads

    Get PDF
    We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored

    Stabilized profunctors and stable species of structures

    Full text link
    We introduce a bicategorical model of linear logic which is a novel variation of the bicategory of groupoids, profunctors, and natural transformations. Our model is obtained by endowing groupoids with additional structure, called a kit, to stabilize the profunctors by controlling the freeness of the groupoid action on profunctor elements. The theory of generalized species of structures, based on profunctors, is refined to a new theory of \emph{stable species} of structures between groupoids with Boolean kits. Generalized species are in correspondence with analytic functors between presheaf categories; in our refined model, stable species are shown to be in correspondence with restrictions of analytic functors, which we characterize as being stable, to full subcategories of stabilized presheaves. Our motivating example is the class of finitary polynomial functors between categories of indexed sets, also known as normal functors, that arises from kits enforcing free actions. We show that the bicategory of groupoids with Boolean kits, stable species, and natural transformations is cartesian closed. This makes essential use of the logical structure of Boolean kits and explains the well-known failure of cartesian closure for the bicategory of finitary polynomial functors between categories of set-indexed families and cartesian natural transformations. The paper additionally develops the model of classical linear logic underlying the cartesian closed structure and clarifies the connection to stable domain theory.Comment: FSCD 2022 special issue of Logical Methods in Computer Science, minor changes (incorporated reviewers comments

    Combinatorial Species and Labelled Structures

    Get PDF
    The theory of combinatorial species was developed in the 1980s as part of the mathematical subfield of enumerative combinatorics, unifying and putting on a firmer theoretical basis a collection of techniques centered around generating functions. The theory of algebraic data types was developed, around the same time, in functional programming languages such as Hope and Miranda, and is still used today in languages such as Haskell, the ML family, and Scala. Despite their disparate origins, the two theories have striking similarities. In particular, both constitute algebraic frameworks in which to construct structures of interest. Though the similarity has not gone unnoticed, a link between combinatorial species and algebraic data types has never been systematically explored. This dissertation lays the theoretical groundwork for a precise—and, hopefully, useful—bridge bewteen the two theories. One of the key contributions is to port the theory of species from a classical, untyped set theory to a constructive type theory. This porting process is nontrivial, and involves fundamental issues related to equality and finiteness; the recently developed homotopy type theory is put to good use formalizing these issues in a satisfactory way. In conjunction with this port, species as general functor categories are considered, systematically analyzing the categorical properties necessary to define each standard species operation. Another key contribution is to clarify the role of species as labelled shapes, not containing any data, and to use the theory of analytic functors to model labelled data structures, which have both labelled shapes and data associated to the labels. Finally, some novel species variants are considered, which may prove to be of use in explicitly modelling the memory layout used to store labelled data structures

    Stabilized profunctors and stable species of structures

    Get PDF
    We introduce a bicategorical model of linear logic which is a novel variation of the bicategory of groupoids, profunctors, and natural transformations. Our model is obtained by endowing groupoids with additional structure, called a kit, to stabilize the profunctors by controlling the freeness of the groupoid action on profunctor elements. The theory of generalized species of structures, based on profunctors, is refined to a new theory of \emph{stable species} of structures between groupoids with Boolean kits. Generalized species are in correspondence with analytic functors between presheaf categories; in our refined model, stable species are shown to be in correspondence with restrictions of analytic functors, which we characterize as being stable, to full subcategories of stabilized presheaves. Our motivating example is the class of finitary polynomial functors between categories of indexed sets, also known as normal functors, that arises from kits enforcing free actions. We show that the bicategory of groupoids with Boolean kits, stable species, and natural transformations is cartesian closed. This makes essential use of the logical structure of Boolean kits and explains the well-known failure of cartesian closure for the bicategory of finitary polynomial functors between categories of set-indexed families and cartesian natural transformations. The paper additionally develops the model of classical linear logic underlying the cartesian closed structure and clarifies the connection to stable domain theory

    On the complexities of polymorphic stream equation systems, isomorphism of finitary inductive types, and higher homotopies in univalent universes

    Get PDF
    This thesis is composed of three separate parts. The first part deals with definability and productivity issues of equational systems defining polymorphic stream functions. The main result consists of showing such systems composed of only unary stream functions complete with respect to specifying computable unary polymorphic stream functions. The second part deals with syntactic and semantic notions of isomorphism of finitary inductive types and associated decidability issues. We show isomorphism of so-called guarded types decidable in the set and syntactic model, verifying that the answers coincide. The third part deals with homotopy levels of hierarchical univalent universes in homotopy type theory, showing that the n-th universe of n-types has truncation level strictly n+1

    A categorical framework for congruence of applicative bisimilarity in higher-order languages

    Get PDF
    Applicative bisimilarity is a coinductive characterisation of observational equivalence in call-by-name lambda-calculus, introduced by Abramsky (1990). Howe (1996) gave a direct proof that it is a congruence, and generalised the result to all languages complying with a suitable format. We propose a categorical framework for specifying operational semantics, in which we prove that (an abstract analogue of) applicative bisimilarity is automatically a congruence. Example instances include standard applicative bisimilarity in call-by-name, call-by-value, and call-by-name non-deterministic λ\lambda-calculus, and more generally all languages complying with a variant of Howe's format

    On the complexities of polymorphic stream equation systems, isomorphism of finitary inductive types, and higher homotopies in univalent universes

    Get PDF
    This thesis is composed of three separate parts. The first part deals with definability and productivity issues of equational systems defining polymorphic stream functions. The main result consists of showing such systems composed of only unary stream functions complete with respect to specifying computable unary polymorphic stream functions. The second part deals with syntactic and semantic notions of isomorphism of finitary inductive types and associated decidability issues. We show isomorphism of so-called guarded types decidable in the set and syntactic model, verifying that the answers coincide. The third part deals with homotopy levels of hierarchical univalent universes in homotopy type theory, showing that the n-th universe of n-types has truncation level strictly n+1
    corecore