
Sattler, Christian (2015) On the complexities of
polymorphic stream equation systems, isomorphism of
finitary inductive types, and higher homotopies in
univalent universes. PhD thesis, University of
Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28111/1/thesis-final.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

ON THE COMPLEXITIES OF

POLYMORPHIC STREAM EQUATION SYSTEMS,

ISOMORPHISM OF FINITARY INDUCTIVE TYPES,

AND HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

CHRISTIAN SATTLER, Dipl.–Math.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

December 2014

ii

Abstract

This thesis is composed of three separate parts.
The first part deals with definability and productivity issues of equational systems defining

polymorphic stream functions. The main result consists of showing such systems composed of
only unary stream functions complete with respect to specifying computable unary polymorphic
stream functions.

The second part deals with syntactic and semantic notions of isomorphism of finitary induc-
tive types and associated decidability issues. We show isomorphism of so-called guarded types
decidable in the set and syntactic model, verifying that the answers coincide.

The third part deals with homotopy levels of hierarchical univalent universes in homotopy
type theory, showing that the n-th universe of n-types has truncation level strictly n+ 1.

iii

iv

Acknowledgements

Foremost, I thank my supervisor Venanzio Capretta for his extensive support throughout my
study. Without his continued determination and advice of wisdom, this thesis would not have
existed in the present form.

The other members of the Functional Programming Laboratory have also provided ample
opportunity for collaborations over these past years, including fruitful discussions with Florent
Balestrieri, Paolo Capriotti, Ambrus Kaposi, Nuo Li, and particularly Nicolai Kraus. I thank
Thorsten Altenkirch for regularly presenting interesting open research problems.

Of special significance outside of matters of research was the support always readily given
by Nicolai Kraus.

Finally, I want to acknowledge my examiners, who have agreed, without knowing what lied
ahead of them, to read through the version of the thesis submitted for the viva. Many of their
helpful suggestions have been incorporated.

v

vi

Contents

0 Thesis Overview 1

0.1 Chapter One . 1
0.1.1 Introduction . 1
0.1.2 Contributions . 1
0.1.3 Declaration of Authorship . 2

0.2 Chapter Two . 2
0.2.1 Contribution . 3
0.2.2 Declaration of Authorship . 3

0.3 Chapter Three . 4
0.3.1 Introduction . 4
0.3.2 Contributions . 4
0.3.3 Declaration of Authorship . 4

1 Polymorphic Stream Equation Systems: Productivity and Definability 5

1.1 Introduction . 5
1.2 Syntax and Semantics . 6

1.2.1 Streams and Indexing Functions . 6
1.2.2 Stream Equation Systems . 8
1.2.3 Examples . 10

1.3 Definability . 12
1.4 Unary Definability . 14

1.4.1 Collatz Functions and If-Programs . 14
1.4.2 Iteration-Programs and Their Encoding 17
1.4.3 Proof of the Main Result . 21

1.5 Unary Singleton Systems . 21
1.6 Further Work . 28
1.7 Related Work . 29

2 Isomorphism of Finitary Inductive Types 31

2.1 Introduction . 31
2.2 Preliminaries . 33

2.2.1 The Setting . 33
2.2.2 The µ-calculus . 35

2.3 Decomposition into Guarded and Unguarded Parts 39
2.3.1 Guarded and Shielded Functors . 39
2.3.2 The Biased Derivative . 41
2.3.3 The Biased Derivative: Applications . 48

2.4 The Set Model . 55
2.4.1 Containers . 55
2.4.2 Interlude: Classification of Integrals of Certain Quotient Containers . . . 57
2.4.3 Containers Fiberwise . 60
2.4.4 Power Series of Guarded Functors . 62

vii

viii CONTENTS

2.4.5 Combining It? . 68
2.5 Tools for Working in the Initial Model . 70

2.5.1 Regular Functors are Traversable . 70
2.5.2 Practical Internal Language . 82
2.5.3 Internal Induction-Like Principles . 85
2.5.4 Internal Generalized Equality Predicates 87
2.5.5 Internal Polynomials . 95
2.5.6 Internal Power Series . 96
2.5.7 Derived Concepts . 97
2.5.8 Interlude: Classification of Regular Constants 97

2.6 The Initial Model . 105
2.6.1 Listings . 108
2.6.2 Polynomial Listings . 116
2.6.3 Verifying Algebraicity of Polynomial Listings 118

2.7 Related Work . 119

3 Higher Homotopies in Univalent Universes 121

3.1 Introduction . 121
3.2 Type Theory . 122

3.2.1 Context Rules . 122
3.2.2 Definitional Equality . 122
3.2.3 Type Universes . 123
3.2.4 Dependent Functions . 123
3.2.5 Dependent Pairs . 123
3.2.6 Coproducts . 124
3.2.7 Unit Type . 124
3.2.8 Empty Type . 124
3.2.9 Identity Types . 125

3.3 Preliminaries . 125
3.3.1 Types as ω-groupoids . 125
3.3.2 Truncation Levels . 126
3.3.3 Equivalences . 126
3.3.4 Univalence . 127
3.3.5 Structural Equality via Univalence . 127
3.3.6 Computing Transportation . 128

3.4 Some Useful Type Isomorphisms . 129
3.5 Universe U0 is not a set . 130
3.6 Pointed types . 130
3.7 Universe U1 is not a 1-type . 132
3.8 Universe Un is not an n-type . 134

3.8.1 A failed approach . 134
3.8.2 The Remedy . 134

3.9 Further Work . 135
3.10 Related Work . 136

Bibliography 140

List of Figures

1.1 The body of Q from Lemma 1.6 . 20

2.1 General purpose operations . 83
2.2 Boolean operations . 83
2.3 Natural number operations . 83
2.4 Basic list operations . 84
2.5 Miscellaneous list operations . 84
2.6 Internal (generalized) equality predicates . 84
2.7 List operations related to equality (possibly requiring it) 85
2.8 An artist’s depiction of the compositional structure of eH ◦G. 91
2.9 Definition of the algebra morphism over G(X, ·) with carrier F (Y)→MF (X×Y). 91

ix

x LIST OF FIGURES

Chapter 0

Thesis Overview

This thesis is an outgrowth of my research during the three years of my study at the Functional
Programming Laboratory of the University of Nottingham. From the beginning, the focus
was not on a single project, but rather several projects of smaller size over a continuous time
frame that seemed of interest at the time. This explains the decision of parting this thesis in
three separate chapters, a collection of those projects I worked on that most definitely form
a constituting whole one may call a thesis. Each chapter will contain a separate introduction
relevant to the issues at hand. We thus will only give a brief overview here; proper references
will be provided in the appropriate chapters.

0.1 Chapter One

0.1.1 Introduction

The first chapter deals with equational systems defining polymorphic stream functions. This
research was originally started by Florent Balestrieri, who independently from previous work
discovered a proof that productivity of such stream functions is undecidable based on a reducion
to the generalized Collatz problem. Bending this construction, it turned out to be possible for
any computable polymorphic stream function (with respect to an appropriate notion of com-
putability) to be defined by such a stream equation system. This computational complexity
of stream equation systems depended crucially on the availability of so-called zipping (inter-
leaving) and projecting stream functions, concepts crucially depending on the fact that stream
functions were allowed to have multiple parameters.

A natural question of interest was thus how definability and complexity of problems such
as productivity change if we restrict our stream equation systems to purely unary functions.
Using a fundamentally different encoding of Collatz iteration functions in terms of unary stream
functions and an indirect translation of counter machines returning their result encoded in the
total runtime until termination, we were able yet again to encode arbitrary recursive functions
as so-called indexing functions of stream functions in unary systems, showing Π0

2-completeness
of productivity as a corollary. Yet another restriction to unary singleton systems finally yielded
some positive results, showing that such stream functions must essentially have the semantics
structure of Collatz iteration functions.

0.1.2 Contributions

Key contributions are as follows:

• We show that any computable unary polymorphic stream function can be defined in terms
of a mutually corecursive polymorphic stream function equation system. This establishes a
natural semantic notion of completeness for the above specification language and gives yet

1

2 CHAPTER 0. THESIS OVERVIEW

another proof of Π0
2-completeness (and thus undecidability) of the problem of determining

productivity for such systems. This result is similar in spirit to previous work.

• We develop a novel method for encoding arbitrary computable unary polymorphic stream
functions in terms of unary non-mutually corecursive polymorphic stream function equa-
tion systems. This enhances completeness and complexity theoretic results from the
previous bullet point to an even more restricted setting.

• We show that unary singleton polymorphic stream function equation systems, i.e. those
systems consisting of a single unary stream function definition, are limited in semantic
expressibility so as to allow the semantic structure of the function to be determined in
finite time.

0.1.3 Declaration of Authorship

The study of polymorphic stream function equation systems in the context of our work was
originally undertaken by Florent Balestrieri, who introduced the notion of indexing function and
found a proof of Π0

2-completeness of productivity of stream function equation systems based on
a reduction to the generalized Collatz problem [40], independent from the work of Endrullis et
al. [16]. Subsequently, the present author noticed that Balestrieri’s argument could be extended
to give rise to the first bullet point above. The results of the second and third bullet points are
due to the present author.

The results from the first two bullet points have previously been published as an article
jointly with Florent Balestrieri at RTA 2012 [52].

0.2 Chapter Two

The second chapter deals with decidability of isomorphism of finitary inductive types. This
problem was originally proposed by Thorsten Altenkirch in the set model. The similarly between
recursive type equations using only finitary products and coproducts and mutual systems of
polynomial equations in algebraic geometry suggested that an algebraic approach was in order.
This turned out be workable for a certain subset of finitary inductive types we call guarded,
a notion related to the behaviour of parametric type arguments. In that case, comparison of
minimal polynomials for power series algebraic over a field of fractions of polynomials provides
a finitary means of achieving the desired decidability. Using an elegant toolkit called the µ-
calculus to facilitate decompositions into guarded and so-called indefinite parts, we hoped to
treat each part separately. While separate decidability of isomorphism between guarded types
and between indefinite types indeed turned out to be achievable, a flaw in our original argument
stopped us from then combining these arguments. We are therefore forced to leave the general
question open.

Another aspect is whether an isomorphism, if existing, can be realized as terms in the term
model with constructors and eliminators for initial algebras. The proof that both halfs of an
isomorphism form inverses should then ideally be performed in the equational theory of terms
with respect to the universal properties of the involved type formers, including initial algebras.
To avoid having to work with terms explicitely as much as possible, we have striven to work
on the type layer. While this turned out to be feasible for the decomposition into guarded
and indefinite parts, later aspects of the original set model argument unfortunately needed to
be developed explicitely using term manipulation. To keep this as abstract as possible, we
introduced a generalized traversal operation on regular functors that to our knowledge the
literature only provided under much stronger assumptions on the ambient category. Working
with internal propositional logic, equality predicates, induction-like principles, and algebraic
structures, the argument for the guarded part from the set model may then be replicated
internally.

0.2. CHAPTER TWO 3

0.2.1 Contribution

Stand-alone portions of this chapter deal with the following:

• We negatively answer a question by Altenkirch about second integrability of monomial
quotient containers. This work overlaps with an independent corresponding result for
combinatorial species.

• We establish traversability of regular functors in any bicartesian-closed category. Previous
work either relied on properties of regular functors specific to set-like models or was
restricted to traversals with respect to monads as opposed to applicative functors.

The key points of the main development are as follows:

• We present the notion of biased derivative, a generalization of the notion of derivative of a
regular functor, and develop a methodology for applying this concept to obtain type-level
syntactic decompositions.

• We define syntactic criteria for subclasses of regular functors called guarded and indefinite,
with these concepts later turning out to separately enjoy more algebraic properties than
the class of regular functors as a whole. With the defect of making use of only parts of
the biased derivative methodology, we establish additive decomposition of regular functors
into guarded and indefinite parts, with the indefinite part enjoying uniqueness.

• The set model: we show isomorphism of guarded types decidable using the language of
containers [1] and the notion of algebraic power series. Isomorphism of indefinite types
turns out to reduce to known problems in the theory of grammars using Parikh’s theo-
rem [46]. We discuss the problems encountered in combining these separate decidability
properties via the above decomposition.

• The initial model: making use of the above work on traversability, we develop a framework
for internalizing the reasoning about power series, specifically defining internal equality
predicates, internal versions of structural induction over a restricted notion of internal
propositions, the notion of sound and complete listing, and methods for data injection
and extraction. This shows isomorphism of guarded types decidable in the syntactic model
and establishes completeness of the set model with respect to this problem.

0.2.2 Declaration of Authorship

This chapter is original work by the present author, albeit stimulated by long and fruitful dis-
cussions with Nicolai Kraus. The decomposition of regular functors into guarded and indefinite
parts was made precise in collaborative discussion with Nicolai Kraus, but for integration with
the µ-calculus, we have restructured this aspect in a different fashion. It was Nicolai Kraus who
noticed that there could not be a canonical decomposition into guarded and indefinite parts —
there will always be a level of arbitrary choice for the guarded part. This observation meant we
had to look for fresh arguments concerning mixed types, intermediately arriving at a certain
flawed argument. Relately, work by the present author on the indefinite case turned out to be
superseded by Parikh’s theorem. We have thus chosen to omit its inclusion. However, it might
still have its use in a future internal approach to indefinite types.

The stand-alone subsections on anti-derivatives of quotient containers and derivation of
traversabilty for regular functors are original work of the present author.

Plans are underway for submission of a finalized development as a journal article jointly
with Nicolai Kraus.

4 CHAPTER 0. THESIS OVERVIEW

0.3 Chapter Three

0.3.1 Introduction

The third chapter deals with the emerging subject of homotopy type theory. This exciting
research area promises to strengthen interdisciplinary links between computer science type
theorists and everyday mathematical research.

A formerly open problem proposed at the Special Year on Univalent Foundations in Prince-
ton asked: can we give a lower bound to the truncation level of univalent universes in a hier-
archical order? Using an inductive argument involving higher loops in appropriately truncated
higher universes, we were able to settle this question. The collaboration with Nicolai Kraus
this chapter is reporting from has resulted in a journal article currently under consideration for
publication in TOCL. All of our arguments are formalized in the experimental proof assistant
Agda.

Originally, the plan was for this chapter to include more content, particularly about the
(ω, 1)-categorical interpretation of types. Based on this, using a potential theory of homotopy
coherent diagrams to implement the Whitehead product from homotopy theory and utilize cer-
tain decade old results about the action of the Whitehead product on identity maps on spheres,
one could explain why one of our original approaches, also presented in the chapter, failed to
generalize to higher dimensions. Unfortunately, time constraints forces not yet sufficiently de-
veloped part to be omitted, although it certainly deserves further research. It is closely related
to the suject of directed type theory, which amongst else is looking for a relation between the
univalence axiom and parametricity.

0.3.2 Contributions

• We briefly develop a framework for naturally dealing with pointed types and the interac-
tion between pointed type formers, in particular the loop space operator.

• We solve a left-over open problem concerning the homotopy level of higher universes in a
univalent hierarchy, computing the truncation level of the n-th universe of n-types strictly
as n+ 1.

0.3.3 Declaration of Authorship

This chapter is an excerpt of joint work with Nicolai Kraus [36]. The suggestion of using
the type of loops in a universe for solving the initial case is due to the present author. The
critical suggestion of restricting the loops to lie in universes of truncated types is entirely due to
Nicolai Kraus. This idea is what makes the proof go through in the higher cases, as presented
by Nicolai Kraus at the Special Year on Univalent Foundations 2013. The accompanying Agda
development, initially started by Nicolai Kraus, was completed and restructured in terms of
the first bullet point by the present author. It makes use of parts of the community’s Agda
homotopy type theory library. 1

1See http://github.com/HoTT/HoTT-Agda/.

http://github.com/HoTT/HoTT-Agda/

Chapter 1

Polymorphic Stream Equation

Systems: Productivity and

Definability

1.1 Introduction

Streams over some set D are the basic example of a polymorphic coinductive data type, hav-
ing been forced to serve as case study for almost every technique dealing with infinite data
structures. Although being well-explored coalgebraic objects [10, 12, 51], they have recently
re-emerged in the specific setting of term rewriting [15, 59]. They are usually introduced as
the coinductive data type StrD generated by the constructor · :: · : D × StrD → StrD (cons),
appending an element to the front of a stream, and come with destructors head : StrD → D
and tail : StrD → StrD, selecting and removing the front element, respectively. Algebraically,
they can be characterized as an infinite term model parameterized by the value type D modulo
observational equivalence on D.

Since this work is concerned with computability and partiality, we choose to work in a
semantics of partial streams, adding a bottom element ⊥ to the underlying data type. Techni-
cally, such streams are just functions of type N → D⊥. 1 Note that with this terminology, if
an element of a stream equals ⊥, further elements can still be proper inhabitants of D. Also,
when speaking of computable (stream) functions, we always mean partial computable (stream)
functions.

One of the simplest classes of functions on streams are the polymorphic stream functions,
being parametric in the data type D. This prohibits any kind of pattern matching or case
distinction on the underlying data type, effectively restricting them to discarding, duplicating,
and reordering of the input stream elements. This defines an indexing function which in the
unary case has type N → N⊥, associating with each output stream index the corresponding
input stream index to copy from, or⊥ if the output element is⊥. We can consider a polymorphic
stream function f computable if this indexing function, denoted f , is computable. What we
call indexing function is a container morphism for streams in the terminology of Abott et al. [1].

We consider recursive stream equation systems for specifying polymorphic stream functions
involving only stream constructors and destructors. As a representative example, consider the
system

const(s) = head(s) :: const(s),

zip2(s, t) = head(s) :: zip2(t, tail(s)),

hanoi(s) = zip2(hanoi(tail(s)), const(s)).

1We follow the usual convention that N = {0, 1, . . .}.

5

6 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

Through evaluation, which will be elaborated upon in the examples subsection, we find that

hanoi(s) = ⊥ :: s(0) :: s(1) :: s(0) :: s(2) :: s(0) :: s(1) :: s(0) :: s(3) ::

The corresponding indexing function is

hanoi(k) = max{v such that 2v divides k}
where max{N} := ⊥. To explain the naming, if D is instantiated with the set of disks of
an infinite Tower of Hanoi and s ∈ StrD is a list of the disks sorted by increasing size, then
tail(hanoi(s)) is a walkthrough for coinductively solving the puzzle, the k-th stream element
being the disk to be moved in the k-th step, with the smallest disk always moving in the same
direction [26].

The key point to stress is that polymorphism is a severe restriction. Constructing examples
less trivial than the above seems out of reach: the reader is invited to try to encode the
Fibonacci sequence as the indexing function of an equation in a polymorphic system. Still, we
retain undecidability of productivity even in the unary setting as corollary of Theorem 1.2.

As a first taste, Proposition 1.1 states that our limited systems are nevertheless still sufficient
to define every computable polymorphic stream function. Although the construction requires
some imagination, the simulation of counter machines is quite direct and mainly intended to give
the reader some intuition for the long road towards the proof of our key result, Theorem 1.2,
which improves upon this by restricting systems to unary stream functions without mutual
recursion. This is the main contribution of our work, which seems surprising giving the crippled
expressiveness of the syntax.

We go on to show in Theorem 1.4 that recursive unary singleton systems are crippled enough
to allow for an effective description of their semantic behaviour to be deduced in finite time.

See Simonsen [53] for a good survey of complexity analysis on stream rewriting, including
the kind generalized by our developments. We hope that our Turing-complete unary recursive
systems, in their simplicity, may be used as a computational model in further reduction proofs
(e.g., of complexity results) not only in rewriting theory. We conclude by remarking that all
our proofs are constructive, i.e. algorithmically implementable.

1.2 Syntax and Semantics

1.2.1 Streams and Indexing Functions

In our terminology, a domain is a directed-complete partial order, i.e. a partially ordered set
such that every directed subset has a least upper bound. Maps or morphisms (or even functions)
between domains D and E are given by Scott continuous functions from one to the other, i.e.
functions on the underlying sets that preserve directed subsets and their least upper bounds.
Recall that domains with this notion of morphisms form a complete and cocomplete category
with exponentials, in particular we have the internal language of bicartesian-closed categories
available to us when speaking about sum, product, and arrow types of domains. We say that
such a domain D has bottom if it has a least element, which then will be denoted ⊥ ∈ D.
The subcategory of domains with bottom and strict morphisms preserving the least element
is no longer cartesian-closed, but the associated forgetful functor has a left adjoint mapping a
domain D to a new domain D⊥ with a synthetic bottom element added. Given a map f : A→ B
between a domain A and a domain with bottom B, this adjunction justifies the convention of
implicitly extending f to A⊥ by setting f(⊥) := ⊥ when needed. Finally, we note that we often
view sets as flat domain without further notice.

Given a domain D, the domain of streams over D is defined as StrD := N→ D. The notion
of partial streams over D is an abbreviation for streams over D⊥. A partial stream s : StrD⊥

is
total if it lifts through the embedding D → D⊥, i.e. if s(k) 6= ⊥ for every k : N. 2 The stream

2 A more precise choice of words might be structure-total for the elements of such a stream, i.e. the actual
data, might come with its own notion of totality, which remains unaffected. Since we are only interested in data
purely polymorphically (i.e., not at all), we choose the shorter alternative.

1.2. SYNTAX AND SEMANTICS 7

former Str acts as a continuous (i.e. limit preserving) functor on domains, with its action on
a morphism g : D → E given by Str(g) : StrD → StrE with Str(g)(s) = g ◦ s. A polymorphic
stream function f of arity set 3 A is a natural transformation from StrA to Str(·)⊥ , i.e. a family
of maps

fD : StrAD → StrD⊥

taking an A-indexed family of streams over D and returning a partial stream over D with the
family being parametric in the domain D. Explicitly, the latter condition means that for all
domain morphisms g : D → E, we have

Str(g⊥) ◦ fD = fE ◦ StrA(g)

over the type StrAD → StrE⊥
. Here, we capture possible partiality of the stream function by

having E⊥ in the output type. We synthesize a fresh bottom rather than requiring the domain
to come with a presupplied least element in order to facilitate separate notions of partiality
induced by non-termination of stream functions as opposed to partial input data. We call a
polymorphic stream function f total if it lifts through the natural embedding Str → Str(·)⊥ ,
i.e. if it only has total streams as values.

Note that we have chosen to disallow individual domain elements (as opposed to streams
of them) as arguments of stream functions in order to later arrive at a single-sorted syntactic
theory (for ease of specification and handling of grammar), This is not restrictive in any effective
way: finitely many domain arguments can be encoded as a prefix of an extra dummy stream
argument.

Even though a polymorphic stream function is an operation on streams, its parametricity
property enables us to express it as a single stream on a particular domain, pairs of indexes
and positions. To see this, consider a stream function of arity A and abbreviate IA := A× N.
Abstractly and after uncurrying, we may view a polymorphic stream functions of arity A as
a natural transformation from the functor internally represented by IA to the functor Str(·)⊥ .
By an internal version of the Yoneda Lemma, it follows that such natural transformations are
isomorphic to Str(IA)⊥ .

In detail, the direction from left to right is simply given by instantiating the domain to IA
and applying the identity map. For a polymorphic stream function f of arity A, this amounts
to defining f := fIA(j 7→ (i, j))i∈A : Str(IA)⊥ which we call the indexing function of f as it tells
us for any given output position which input position it is derived from.

For the direction from right to left, consider f : Str(IA)⊥ . Given a domain D and an

argument of streams g : IA → D, we return the application of Str(g⊥) to f . Clearly, with
D := IA and g := idIA , we get back the the original value f .

For the other order of composition, consider the following diagram illustrating an instance
of naturality of f ′:

IA → IA
f ′
IA //

s 7→g ◦ s

��

Str(IA)⊥

Str(g⊥)

��

idIA
� //

_

��

f
_

��
IA → D

f ′
D // StrD⊥

g � // f ′
D(g) Str(g⊥)(g)

Starting with an arbitrary polymorphic stream function f of arity A and its uncurry-adjusted
version f ′, we may compute f as shown in the top row. Given a domain D and an argument of
streams g : IA → D, naturality of f ′ ensures that applying Str(g⊥) to f reproduces the original
value of f ′ at argument g.

Under the above representation of polymorphic stream functions as indexing functions, it
is clear that a polymorphic stream function is total if and only if its corresponding indexing

3 Here, A is usually chosen to be [n] := {0, . . . , n− 1} for some n ∈ N, in which case we identify X[n] and
Xn = X× . . .×X in the obvious way. However, the treatment is a bit less redundant if generalized to arbitrary
A.

8 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

function is total as a partial stream. This correspondence also allows us to transfer in a rather
canonical manner the notion of computability to polymorphic stream functions from their in-
dexing functions. 4

In the remainder of the chapter, we will identify [1]×N with N, both to increase readability
of the presentation and later on because of the specific focus on unary stream functions.

It is worth noting that indexing functions represent an inversion of the usual notions of
input and output for stream functions. This contravariance is reflected in the fact that

f ◦ g = g ◦ f

for polymorphic fD, gD : StrD → StrD, a fact heavily utilized in the rest of this chapter.

Basic examples of polymorphic stream functions are the tail operation

tailD : StrD → StrD,

tailD(s) = i 7→ s(i+ 1)

with indexing function tail(k) = k + 1 and the combined head-cons operation

(head(·) :: ·)D : StrD × StrD → StrD,

head(s) :: t = i 7→
{
s(0) if i = 0,

t(i− 1) else

with indexing function

(head(·) :: ·)(k) =
{
(0, 0) if k = 0,

(1, k − 1) else.

The reason for stating head and cons as a combined operation — in contrast to the introduc-
tion — is our desire to avoid an extra sort for individual domain elements in our syntactic
treatment (see below). We are justified in merging these because head and cons are the only
primitive stream operation to produce and consume individual domain elements, respectively.
Note though that it is possible in principle to extend the framework of indexing functions to
polymorphic stream functions that additionally also take a finite number of domain elements
as arguments by slightly changing the definition of IA to an arbitrary coproduct of copies of N
and [1].

1.2.2 Stream Equation Systems

Let us specify a simple scheme for stating recursive systems of syntactic equations giving rise
to polymorphic stream functions. Fix an environment consisting of an equation index set E
and, for each e : E, a set Ae designating the intended arity of the stream function defined by
equation e. Stream terms StrTermA of arity A are inductive generated as follows:

a ∈ A

param(a) ∈ StrTermA

e ∈ E σi ∈ StrTermA for i ∈ Ae

call(e, ~σ) ∈ StrTermA

σ ∈ StrTermA

tail(σ) ∈ StrTermA

σ, σ′ ∈ StrTermA

headcons(σ, σ′) ∈ StrTermA

A (stream equation) system then consists of, for each e : E, a stream term of arity Ae.

4Computability of elements of Str(IA)⊥
boils down to the standard notion of computability on N → N⊥ via

some computable bijection A× N ≃ N.

1.2. SYNTAX AND SEMANTICS 9

In practice, we will rarely be that formal and write down such systems as simple lists of
equations of the form fe(~s) = σ where σ might be generated by the following grammar:

σ ::= si stream parameter with i ∈ A,
| tail(σ) stream stripped of its first element,
| head(σ) :: σ′ first element of a stream prepended to stream (head-cons),
| fe(~σ) recursive call with e ∈ E and arguments σi for i ∈ Ae.

The actual names chosen for individual syntactic stream functions or parameters is, of course,
irrelevant. In each specific context, we will choose appropriate names so as to maximize read-
ability. We further explicitly state that there are no further restrictions such as guardedness on
the form of the stream terms σ since we specifically deal with ill-defined equations using our
(domain theoretic) partiality semantics. A system is called unary if all of its defined stream
functions are unary, i.e. |Ae| = 1 for all e ∈ E.

By a standard application of the Kleene fixed-point theorem [21], a stream equation system
gives, for each fixed domain D, rise to stream functions of corresponding number and arities,
the least fixpoint of the given system of equations when the tail and head-cons operations are
interpreted according to the previous section. It is clear that the resulting stream functions
are indeed polymorphic: the syntactic specification did not make any mention of properties of
the underlying domain, so the fixpoint construction will remain parametric. Because we will
consider different variants of operational semantics derived from this, we will go through this
process in detail. An equation in the system is called productive if the polymorphic stream
function it defines is total. In what follows, we will usually use the same symbols to denote
syntactic occurrences and their semantic counterparts: their meaning will always be clear from
the context.

We can also view such a system as an executable specification, giving rise to a notion of
operational semantics allowing us to explicitly construct the least fixpoint alluded to above.
For this, we formalize the computation of stream elements using a functional relation · → · on
pairs σ ! k of stream terms σ and indices k ∈ N by setting

tail(σ) ! k → σ ! k + 1,

head(σ) :: σ′ ! k →
{
σ ! 0 if k = 0,

σ′ ! k − 1 else,

fe((σi)i∈Ae
) ! k → ρ[σi/si]i∈Ae

! k

where fe(~s) = ρ is an equation in the system. This is effectively equivalent to introducing a
rewriting system on constructs of the form head(tailk(σ)) based on the rules

head(head(σ) :: σ′)→ head(σ),

tail(head(σ) :: σ′)→ σ′

and call-inlining with a deterministic outermost rewriting strategy. For a given domain D, we
can now compute fe,D via

fe,D(~t)(k) =

{
tw(i) if fe(~s) ! k →∗ sw ! i,

⊥ else

for e ∈ E, verifying that this is indeed the smallest solution to the given specification and fulfills
the parametricity property. From this, we can express the corresponding indexing function as

fe(k) =

{
(w, r) if fe(~s) ! k →∗ si ! r,

⊥ else.

Retrospectively, this consolidates our definition of productivity with its usual connotation,
namely that each finite prefix of a stream (or the result of a stream function called with produc-
tive arguments) be constructible through finite evaluation. On a side note, this description of

10 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

indexing functions makes explicit the obvious fact that the defined stream functions are always
computable.

1.2.3 Examples

Using this syntax, we can specify the interleaving function zipn for n > 0 as

zipn(s0, . . . , sn−1) = head(s0) :: zipn(s1, . . . , sn−1, tail(s0)).

It is productive with indexing function zipn(k) = (k mod n, ⌊k/n⌋). Let us prove this statement
in detail by induction. In the base case, we have

zipn(s0, . . . , sn−1) ! 0→ head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! 0

→ s0 ! 0

proving zipn(0) = (0, 0) = (0 mod n, ⌊0/n⌋). In the induction step, we have

zipn(s0, . . . , sn−1) ! k + 1 → head(s0) :: zipn(s1, . . . , sn−1, tail(s0)) ! k + 1

→ zipn(s1, . . . , sn−1, tail(s0)) ! k

→∗

{
tail(s0) ! ⌊k/n⌋ if k ≡ −1 mod n,

s(k mod n)+1 ! ⌊k/n⌋ else

→∗s(k+1) mod n ! ⌊(k + 1)/n⌋ ,

proving zipn(k) = (k mod n, ⌊k/n⌋) implies zipn(k + 1) = ((k + 1) mod n, ⌊(k + 1)/n⌋).
As a kind of inverse to interleaving, the projection function projn is defined as

projn(s) = head(s) :: projn(tail
n(s)).

It is easily shown to be productive with indexing function projn(k) = nk. For convenience, we
also define shifted projections projn,i(s) := projn(tail

i(s)) for i < n with projn,i(k) = nk + i.
Note that, for all domains D, we have

projn,i,D(zipn,D(s0, . . . , sn−1)) = si

for s0, . . . , sn−1 ∈ StrD as well as

s = zipn,D
(
(projn,i,D(s))i∈[n]

)

for s : StrD.
We also have the constant function

const(s) = head(s) :: const(s),

repeating the first stream element of its argument, with const(k) = 0.
We are now ready to return to the example from the introduction. Recall that

hanoi(s) = zip2(hanoi(tail(s)), const(s)).

We will prove that
hanoi(2v(2m+ 1)) = v

by induction on v. In the base case, we have

hanoi(s) ! 2k + 1 → zip2(hanoi(tail(s)), const(s)) ! 2k + 1

→∗ const(s) ! k

→∗s ! 0,

1.2. SYNTAX AND SEMANTICS 11

proving hanoi(2k + 1) = 0. In the induction step, we have

hanoi(s) ! 2v+1(2m+ 1) → zip2(hanoi(tail(s)), const(s)) ! 2
v+1(2m+ 1)

→∗ hanoi(tail(s)) ! 2v(2m+ 1)

→∗ tail(s) ! v

→ s ! v + 1,

proving hanoi(2v(2m + 1)) = v implies hanoi(2v+1(2m + 1)) = v + 1. Now, the interesting
artifact is the first stream position,

hanoi(s) ! 0 → zip2(hanoi(tail(s)), const(s)) ! 0

→+ hanoi(tail(s)) ! 0,

leading to an infinite loop

hanoi(s) ! 0→+ hanoi(tail(s)) ! 0→+ hanoi(tail2(s)) ! 0→+ . . . ,

showing that hanoi(0) = ⊥.

After having established some intuition for computing indexing functions, let us prove a
lemma which will be of much use further on.

Lemma 1.1. Given h ≥ 1 and a stream equation of the form

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s))

with an arbitrary unary stream function v, then f(k) = v⌊k/h⌋(ak mod h) for k ∈ N.

Proof. Since this is our first technical result about indexing functions, we will be explicit in
every detail. The proof is by induction on k ∈ N. For k < h, we have

f(s) ! k → head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k

→k tailak(s) ! 0

→aks ! ak,

yielding

f(k) = ak = v0(ak) = v⌊k/h⌋(ak mod h).

For k ≥ h, we have

f(s) ! k → head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k

→h f(v(s)) ! k − h.

By induction hypothesis, it follows that

f(k) = (f ◦ v)(k − h)

= v(f(k − h))

= v(v⌊(k−h)/h⌋(a(k−h) mod h))

= v(v⌊k/h⌋−1(ak mod h))

= v⌊k/h⌋(ak mod h),

where we exploited contravariance of the indexing operation in the second step.

12 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

1.3 Definability

Our first result consists of the insight that the above stream equations of simple form, in-
corporating only the stream constructor and destructors and recursion, already allow for the
definition of every computable polymorphic stream function. In the following, we will only
consider single argument functions since we can easily fuse multiple arguments into a single
one using instances of zip and proj. The argument can be seen as a generalization of the idea
expressed in the proof of Theorem 4.4 in Endrullis et al. [17] that recognizing productivity of a
form of system similar to ours (with a unit stream data type instead of abstract polymorphism)
is of complexity Π0

2. Since our key contribution concerns the even more general result of unary
definability, the main purpose of the following exposition is to serve as a contrast to the next
section.

Recall that for a single argument stream function, the indexing function has type N →
N⊥. We will give our proof in the form of a reduction, transforming a counter machine [44]
representing an arbitrary computable function φ : N → N⊥ into a corresponding system with
an equation having φ as indexing function.

Definition 1.1. A counter machine is given by a tuple (L, I) where L is the length of the
program and I is a list I0, . . . , IL−1 of instructions inc(r) with r ∈ N, denoting increment of
register r, and jzdec(r, l) with r ∈ N and l ∈ [L+1], denoting a jump to instruction l if register
r is zero and a decrement of r otherwise.

The semantics of such a machine is as follows: the state (P,R) ∈ S := [L + 1] × N(N)

consists of the value P of its instruction pointer and the values R of its registers, where N(N)

denotes the set of functions N→ N with finite support, i.e. with only finitely many values non-
zero. Such a tuple is called terminal if P = L, denoting the machine has exited with output
R(1). For R ∈ N(N) and r, v ∈ N, the result of replacing the r-th entry of R with v will be
denoted R[r ← v]. Representing execution, we define a functional next relation → over S on
non-terminal elements by

(P,R)→

(P + 1, R[r ← R(r) + 1]) if IP = inc(r),

(P + 1, R[r ← R(r)− 1]) if IP = jzdec(r, l), R(r) 6= 0,

(l, R) if IP = jzdec(r, l), R(r) = 0.

The result function result(L,I) : S → N⊥ is defined as

result(L,I)(t) =

{
R(1) for t→∗ (L,R) terminal,
⊥ else.

The initial state for a given input i ∈ N is given by

init(i) := (0, (i, 0, . . .)).

With this machinery, we can now define the associated computable function of the counter
machine as

φ(L,I) = result(L,I) ◦ init : N→ N⊥.

Proposition 1.1. Given a counter machine (L, I), there is a stream equation system defining
a unary stream function with indexing function φ(L,I).

Definition 1.2. Let p0 < p1 < . . . be an ordered listing of all the primes. We encode a register

state R ∈ N(N) as a single non-zero natural number using R̂ :=
∏

r∈N,R(r) 6=0 p
R(r)
r .

Proof of Proposition 1.1. Our goal is to mutually define unary stream functions f0, . . . , fL−1

such that for a sequence of machine states (P,R)→ (P ′, R′), we have fP (s) ! R̂→+ fP ′(s) ! R̂′,
effectively simulating the execution of the counter machine. It follows that whenever the counter

1.3. DEFINABILITY 13

machine terminates with (P,R) →∗ (L,R′) terminal, then fP (R̂) = fL(R̂′), and fP (R̂) = ⊥
otherwise. Defining fL to extract the value of register 1, i.e. the exponent of p1 = 3, from the
encoding we set

fL(s) = zip3(fL(tail(s)), const(s), const(s)).

A straightforward induction on R(1) shows that

fL(R̂) = R(1) = result(L,I)(L,R) 6= ⊥

for R ∈ N(N). Together, this means

fP (R̂) = result(L,I)(P,R)

for any state (P,R) ∈ S.
For each instruction IP with P ∈ {0, . . . , L−1}, we mutually define a corresponding stream

function fP reproducing the action of IP on the register encoding. If IP = inc(r), let

fP (s) = projpr
(fP+1(s))

and note that

fP (s) ! R̂ →+fP+1(s) ! prR̂

= fP+1(s) ! ̂R[r ← R(r) + 1]

for R ∈ N(N), simulating an increment. If IP = jzdec(r, l), let

fP (s) = zippr

({
fP+1(s) if i = 0,

projpr,i(fl(s)) else

)

i∈[pr]

.

Given R ∈ N(N) with R(r) 6= 0, we know R̂ is divisible by pr and hence

fP (s) ! R̂ →+fP+1(s) ! R̂/pr

= fP+1(s) ! ̂R[r ← R(r)− 1],

simulating a decrement. For R(r) = 0, we have

fP (s) ! R̂ →+fl(s) ! pr

⌊
R̂/pr

⌋
+ (R̂ mod pr)

= fl(s) ! R̂,

simulating a jump. Here, we exploited properties of the indexing functions of proj and zip noted
earlier.

Finally, we need a stream function to produce the initial register encoding. This will be
accomplished by

u(s) = head(tail(s)) :: u(projp0
(s)).

By Lemma 1.1, we have

u(i) = projp0

i
(1) = pi0 = ̂(i, 0, . . .).

Defining q(s) = u(f0(s)), we have

q(i) = f0(̂(i, 0, . . .)) = result(L,I)(init(i))

for i ∈ N, and thus q = φ(L,I). The equations for the stream functions f0, . . . , fL, u, q, const
plus finitely many instances of zip and proj hence represent a stream equation system with the
denotation of q having φ(L,I) as indexing function.

Note that Minsky [44] shows that counter machines with only two registers are enough to
achieve Turing-completeness. However, when representing computable functions, this requires
an extra level of encoding of input values and decoding of output values, which can also be
achieved by defining suitable stream functions.

14 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

1.4 Unary Definability

The defining feature of the previous construction was its reliance on interleaving for implement-
ing conditional execution, effectively dispatching different cases, identified by their residues of
the register encoding modulo a prime, to arbitrarily different handlers. Noting that zipp with p
prime were the only non-unary stream functions in the construction, we are left to reflect on the
computational consequences of only allowing unary stream functions to be defined. Note that
allowing interleaving is synonymous to allowing non-unary stream functions since we can use
interleaving to merge any number of stream arguments into a single one. In order to prove an
even more general definability result in the unary setting, entirely different techniques need to be
developed, separating conditional execution and unbounded looping into orthogonal concepts.

Let us give an explicit definition of unary systems. Fix an equation index set E. Unary
stream terms UStrTerm are inductive generated as follows:

param ∈ UStrTerm

e ∈ E σ ∈ UStrTerm

call(e, σ) ∈ UStrTerm

σ ∈ UStrTerm

tail(σ) ∈ UStrTerm

σ, σ′ ∈ UStrTerm

headcons(σ, σ′) ∈ UStrTerm

A unary (stream equation) system then consists of a family (δe)e∈E of unary stream term.
Again, in practice we will be more informal and write unary systems in the form fe(s) = σ

where σ might be generated by the following grammar:

σ ::= s stream parameter,
| tail(σ) stream stripped of its first element,
| head(σ) :: σ′ first element of a stream prepended to stream (head-cons),
| fe(σ) recursive stream function call with e ∈ E.

1.4.1 Collatz Functions and If-Programs

Definition 1.3. A function g : N → N is called a Collatz function if there is n > 0 such
that g is affine on each equivalence class modulo n, i.e. there are coefficients ai, bi ∈ N for
i = 0, . . . , n− 1 such that g(nq + i) = aiq + bi for q ∈ N. In this case, n is called a modulus of
g.

The naming stems from the famous conjecture first proposed by Collatz in 1937, asking
whether the function

collatz : N→ N,

n 7→
{
n/2 for n even,

3n+ 1 for n odd

will map each positive integer to 1 after finitely many applications. Despite its deceivingly
simple form, it has been resisting all attempts of resolution [41]. In recent years, the equivalent
of this conjecture for the above generalized notion of Collatz functions, i.e. deciding whether
iterations of a given generalized Collatz function eventually map each natural number input to
e.g. zero, has been proved (algorithmically) undecidable [40].

Lemma 1.2. Given a Collatz function g, we can construct a non-mutually recursive unary
system defining a stream function v such that v = g.

Before going into the details of the proof, note that, although it is clear from the work cited
above on reducing computation to generalized Collatz problems that the above encoding of

1.4. UNARY DEFINABILITY 15

Collatz functions already enables an embedding of full computational power into unary stream
equations, what is not at all obvious is whether we can actually define every computable unary
stream function through a purely unary system.

Proof. Let modulus n > 0 and coefficients ai, bi ∈ N be as in the above definition. Define a
stream function

add(s) = head(tailna0+0(s)) :: . . . :: head(tailnan−1+(n−1)(s)) :: add(tailn(s)).

Lemma 1.1 shows that

add(k) =

⌊
k

n

⌋
· n+ (nak mod n + (k mod n)) = k + nak mod n

for k ∈ N. The role of this function is to act as a crude replacement conditional for the
unavailable zip, adding different constants depending on the equivalence class of the stream
index modulo n.

Next, define a stream function

u(s) = head(tailnb0+0(s)) :: . . . :: head(tailnbn−1+(n−1)(s)) :: u(add(s)).

Using Lemma 1.1, we derive

u(nq + i) = add
q
(nbi + i) = (nbi + i) + q · nai = ng(k) + i

for q ∈ N. This function is an approximation to g, the only difference being that the output
indices come pre-multiplied by n.

We fix this by defining a stream function

div(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
n times

:: div(tail(s)).

A trivial application of Lemma 1.1 verifies that div(k) = ⌊k/n⌋ for k ∈ N. Finally defining

v(s) = u(div(s))

yields the Collatz function semantics we want in that v = div ◦u = g.

For instance, the original Collatz function would be encoded as collatz = v as follows:

add(s) = head(tail2(s)) :: head(tail13(s)) :: add(tail2(s)),

u(s) = head(s) :: head(tail9(s)) :: u(add(s)),

div(s) = head(s) :: head(s) :: div(tail(s)),

v(s) = u(div(s)).

For further illustration, let us evaluate stream position 3 of v(s):

v(s) ! 3→∗ u(div(s)) ! 3

→∗ u(add(div(s))) ! 1

→∗ add(div(s)) ! 9

→∗ add(tail2(div(s))) ! 7

→∗ . . .

→∗ add(tail8(div(s))) ! 1

→∗ div(s) ! 21

→∗ div(tail(s)) ! 19

16 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

→∗ . . .

→∗ div(tail10(s)) ! 1

→∗ s ! 10.

This is consistent with collatz(3) = 3 · 3 + 1 = 10.
The role of Collatz functions in our setting is to serve as an intermediate between indexing

functions and the known world of computability. To make the latter link clearer, we will show
how Collatz functions relate semantically to different register machine models under the prime
factorization register encoding introduced in the previous section.

Definition 1.4. The inductive set of if-programs is generated by concatenation A0 . . .An−1,
increments inc(r), decrements dec(r), and conditional clauses ifz(r,A,B), where n ∈ N, r ∈ N
designates a register, and A0, . . . ,An−1,A,B are if-programs.

Although it is quite clear intuitively what the semantic effects of running an if-program
A on some register state R ∈ N(N) are, we will formally introduce an associated semantics
function χA : N(N) → N(N) defined structurally as follows:

χA0...An−1 = χAn−1 ◦ . . . ◦χA0 ,

χinc(r)(R) = R[r ← R(r) + 1],

χdec(r)(R) = R[r ← max(R(r)− 1, 0)],

χifz(r,A,B)(R) =

{
χA(R) if R(r) = 0,

χB(R) else.

Note that a decrement on a zero-valued register is ignored.
We will reuse the prime factorization register encoding

·̂ : N(N) → N \ {0},
R̂ =

∏

r∈N,R(r) 6=0

pR(r)
r

from the previous section. Translated to this setting, the semantics function of an if-program A

takes the form χ̂A := ·̂ ◦χA ◦ ·̂ −1. Although this is an endofunction on the positive integers,
to make the following treatment more uniform, we will extend it to the natural numbers by
setting χ̂A(0) := 0.

Lemma 1.3. Given an if-program A, its semantics χ̂A : N → N on the register encoding is a
Collatz function.

Proof. By induction on the structure of A, noting that:

• The concatenation of finitely many Collatz functions of moduli m0, . . . ,mn−1 is a Collatz
function of modulus m0 · . . . ·mn−1.

• Given a register state R ∈ N(N), an increment of register r corresponds to multiplication
of R̂ with pr, a Collatz function of modulus 1.

• Decrement of register r corresponds to division of R̂ by pr if the former is divisible by pr,
and no change otherwise. This is a Collatz function of modulus pr.

• Let χ̂A and χ̂B be Collatz functions of moduli mA and mB, respectively. A conditional
clause ifz(r,A,B) corresponds first to case distinction depending on whether R̂ is divisible
by pr and subsequent application of either χ̂A or χ̂B. This is a Collatz function of modulus
the least common multiple of pr,mA,mB.

1.4. UNARY DEFINABILITY 17

1.4.2 Iteration-Programs and Their Encoding

Unsurprisingly, the expressive power of if-programs by themselves is quite limited. To achieve
computational completeness, we need an unbounded looping construct. The following definition
intends to provide a minimal such model, enabling us to concentrate on the essential details of
the conversion from Turing-complete programs to stream equation systems.

Definition 1.5. An iteration-program P is a tuple (BodyP, inputP, outputP, loopP) consist-
ing of an if-program BodyP called the body of P and designated and mutually distinct input,
output and loop registers inputP, outputP, loopP ∈ N.

The semantics of such a program is a computable function φP : N → N⊥ defined as fol-
lows: given an input i ∈ N, the register state R0 ∈ N(N) is initialized with R0(inputP) := i,
R0(loopP) := 1, and R0(r) := 0 for r 6= inputP, loopP. We iteratively execute the body
of P, yielding Rn+1 := χBodyP

(Rn) for n ∈ N. For given input i, if there is n such that
Rn(loopP) = 0, then P is called terminating with iteration count countP (i) := n and out-
put φP(i) := Rn(outputP) for the smallest such n. Otherwise, we set countP(i) := ⊥ and
φP(i) := ⊥.

Intuitively, an iteration-program is just a while-program [48] with a single top-level loop,
a well-studied concept in theoretical computer science bearing resemblance to the normal form
theorem for µ-recursive functions [34, 54] except that we do not even allow primitive recursion
inside the loop.

Theorem 1.1. Given a computable function φ : N → N⊥, there is an iteration-program P

with semantics φP = φ.

Proof. This is a folklore theorem [23], see Böhm and Jacopini [9] and Perkowska [48] for more
details.

The reason behind our choice for this computationally complete machine model is that
we already have the machinery to simulate a single execution of the body of such a machine
via Collatz functions as indexing functions of stream equations using our prime factorization
exponential encoding on the register state.

We will now investigate how to translate a top-level unbounded looping construct into the
recursive stream equation setting. For this, we require a further technical result about stream
equations of a certain shape:

Lemma 1.4. Consider a stream equation system containing equations for stream functions
f, u, v. Assume the equation for f has the form

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: tailh(u(f(v(s))))

where h ≥ 1.
Fix k ∈ N and choose c(k) ∈ N minimal such that d(k) := uc(k)(k) ∈ [h]⊥. If such a c(k)

exists and d(k) 6= ⊥, then f(k) = vc(k)(ad(k)), otherwise f(k) = ⊥.

Proof. The proof is by induction on c(k) if existent. At the base, c(k) = 0 is equivalent to
k < h. In this case,

f(s) ! k →k+1 tailak(s) ! 0

→ak s ! ak,

i.e. f(k) = ak = vc(k)(ad(k)).
Now assume k ≥ h. Note that

f(s) ! k →h+1 tailh(u(f(v(s)))) ! k − h

→h u(f(v(s))) ! k.

18 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

If u(k) = ⊥, then c(k) = 1, d(k) = ⊥, and f(k) = ⊥. In the remainder, we will assume
u(k) 6= ⊥. Then,

f(s) ! k →+ f(v(s)) ! u(k),

and f(k) = v(f(u(k))).
If c(k) is defined, then c(k) = c(u(k)) + 1 and we can apply the induction hypothesis: if

d(k) = d(u(k)) 6= ⊥, then

v(f(u(k))) = v(vc(u(k))ad(k)) = vc(k)(ad(k)),

otherwise v(f(u(k))) = v(⊥) = ⊥.
If c(k) is undefined, then so is c(u(k)), and with a second induction we can construct an

infinite sequence

f(s) ! k →+ f(v(s)) ! u(k)→+ f(v2(s)) ! u2(k)→+ . . .

showing non-termination and f(k) = ⊥.

The inquiring reader will notice that this lemma can be seen as a generalization of Lemma 1.1
with u defined in a particular way, namely

u(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
h times

:: s.

Using Lemmata 1.2 and 1.3, we can translate the encoded iteration step function χ̂BodyP
:

N → N of an iteration-program P to an indexing function of a stream equation for some
u. We would like to use this stream function u as it appears in Lemma 1.4 in a way such
that the minimal choice of c(k) corresponds to the iteration count of P. Unfortunately, the
equivalent of the stopping condition in the lemma, that the index be smaller than some constant
h, corresponds to R̂ < h for the register state R ∈ N(N), a statement which does not have a
natural meaning in terms of the registers of R individually, forestalling us from expressing
the condition ploopP | R̂ corresponding to the termination condition R(loopP) = 0. A second
problem comes from our desire to somehow extract the value of R(outputP) after termination.

But since at this point of time R̂ is limited to a finite set of values, there is no direct way of
realizing this.

What we can do is extract the iteration count for particularly nicely behaving programs.

Lemma 1.5. Given an iteration-program Q such that whenever Q terminates, all its registers

are zero-valued, i.e. χ
countQ(i)
BodyQ

= (0, 0, . . .) for terminating input i ∈ N, there is a non-mutually

recursive unary system defining a stream function w such that w = countQ.

Proof. In anticipation of applying Lemma 1.4, we extend this system with a new equation

q(s) = head(s) :: head(s) :: tail2(v(q(tail(s))).

Given an input i ∈ N and corresponding initial register state R ∈ N(N), the termination condi-
tion in Lemma 1.4 can equivalently be expressed as follows:

vc(R̂)(R̂) < 2 ⇐⇒ χ̂
c(R̂)
BodyQ

(R̂) = 1

⇐⇒ χ
c(R̂)
BodyQ

(R) = (0, 0, . . .).

Now, by our assumption on the behaviour of Q, the first point in time all registers are zero
equals the first point in time the loop register attains zero. But by our definition of the iteration
count, this just means that c(R̂) = countQ(i), and Lemma 1.4 shows that

q(R̂) = tail
c(R̂)

(0) = c(R̂) = countQ(i).

1.4. UNARY DEFINABILITY 19

All that remains is to produce the initial register state R(i) with only R(i)(inputQ) = i and
R(i)(loopQ) = 1 non-zero. For this, we define

r(s) = head(tailploopQ (s)) :: r(projpinputQ
(s))

and utilize Lemma 1.1 to prove that

r(i) = projpinputQ

i
(ploopQ) = piinputQ · ploopQ = R̂(i).

Defining w(s) = r(q(s)), we verify that

w(i) = q(r(i)) = q(R̂(i)) = countQ(R(i)).

Unfortunately, the set of possible iteration count functions constitutes only a small part of
the set of all computable functions. Intuitively, this is because even very small values can be the
result of prohibitively expensive operations. However, this range can still be seen as containing
Turing-complete fragments under certain encodings. This is what we exploit in the next step by
shifting the role of the output register to the iteration count under a particular such encoding.
The trick is to have each possible output value correspond to infinitely many iteration counts in
a controlled way such that after having computed the result, by being self-aware of the current
iteration count, we can consciously terminate the loop at one of these infinitely many counts,
no matter how long the computation took.

Lemma 1.6. Given an iteration-program P, there is an iteration-program Q such that for
every input i natural, Q terminates if and only if P terminates, and furthermore if P terminates
with output o ∈ N, then Q terminates after exactly (3m+ 1) · 3o+1 iterations with all registers
zero-valued where m ∈ N depends on i.

Proof. Let r0, . . . , rk−1 ∈ N denote all the registers occurring in BodyP except for outputP
and loopP (but including inputP). We choose loopQ as a fresh natural number distinct from all
previously mentioned registers. Both programs will have the same input register, i.e. inputQ :=
inputP. The output register of Q is irrelevant since we aim to have all registers reset at
termination.

The body of Q is listed in Figure 1.1. Note that the body of P is textually inserted at
line 14. Register names main-phase, run-time, mod-three, swap-phase, copy also designate fresh
natural numbers. To enhance readability, we used some lyrical freedom with the syntax: for
example, if R(outputP) 6= 0 then A else B end if translates to ifz(outputP,B,A). Since the
program is somewhat complex, we will describe its function in great detail.

Execution of Q, i.e. iterated execution of BodyQ until decrement of loopQ, is split into two
main phases, as signalled by the flag register main-phase. The first phase, when main-phase has
value 0 (lines 2–22), is dedicated to simulating the original program P while keeping track of
the total iteration count in a dedicated register run-time. At the end of this phase, after P

has exited with result o ∈ N in register outputP, we want the total iteration count to equal
3m+1 for some arbitrary m ∈ N. The second phase, when main-phase has value 1 (lines 23–44)
is dedicated to tripling the total iteration count o times, plus an additional tripling to reset
run-time, so that the total iteration count becomes (3m+ 1) · 3o+1.

In detail, the first phase (lines 2–22) contains three separate components:

• Lines 3–4 are executed only at the beginning of the first iteration and initialize the loop
register of P (note that the input register of P does not need to be initialized as inputP =
inputQ) and mod-three (see below).

• Lines 6-12 keep track not only of the current iteration count by incrementing run-time

once per iteration, but also of how many iterations modulo 3 we are afar from meeting
the (3m+ 1)-condition in a dedicated register mod-three.

20 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

1. if R(main-phase) = 0 then

2. if R(run-time) = 0 then

3. inc(loopP)
4. inc(mod-three)
5. end if

6. inc(run-time)
7. if R(mod-three) = 0 then

8. inc(mod-three)
9. inc(mod-three)

10. inc(mod-three)
11. end if

12. dec(mod-three)
13. if R(loopP) 6= 0 then

14. BodyP

15. else if R(r0) 6= 0 then

16. dec(r0)
17. [...]
18. else if R(rn−1) 6= 0 then

19. dec(rn−1)
20. else if R(mod-three) = 0 then

21. inc(main-phase)
22. end if

23. else if R(swap-phase) = 0 then

24. dec(run-time)
25. inc(copy)
26. if R(run-time) = 0 then

27. inc(swap-phase)
28. end if

29. else

30. dec(copy)
31. if R(outputP) 6= 0 then

32. inc(run-time)
33. inc(run-time)
34. inc(run-time)
35. if R(copy) = 0 then

36. dec(swap-phase)
37. dec(outputP)
38. end if

39. else if R(copy) = 0 then

40. dec(swap-phase)
41. dec(main-phase)
42. dec(loopQ)
43. end if

44. end if

Figure 1.1: The body of Q from Lemma 1.6

• Lines 13–22 execute the body of P once per iteration until termination is signalled by
loopP being set to zero (lines 13–14). In subsequent iterations, the registers used in P are
incrementally reset (lines 15–19). Finally, we wait up to two iterations for the iteration
count (including the current iteration) to have the proper remainder modulo 3 (line 20),
and proceed to the second phase (lines 21).

After the final iteration of this phase, the iteration count is 3m + 1 for some m ∈ N and the
only possibly non-zero registers are main-phase and swap-phase of value 1 and outputP of value
o. We duly note that if P does not terminate, then neither does Q.

In similar detail, the second phase (lines 23–44) contains two alternately executed subphases
(lines 24–28 and 30–43) responsible for shifting the iteration count back and forth between the
registers run-time and copy. The current subphase is indicated by the flag register swap-phase:

• The first subphase in lines 24–28 started with register values [swap-phase : 1, run-time : x ≥
1, copy : 0] will end, after x iterations, with values [swap-phase : 0, run-time : 0, copy : x].

• The second subphase in lines 30–43 started with register values [swap-phase : 0, run-time :
0, copy : x ≥ 1] will end, after x iterations, depending on the value of register outputP,

– if non-zero, with [swap-phase : 1, run-time : 3x, copy : 0] and outputP decremented,

– if zero, with all registers zero and loopQ decremented to zero in the last iteration.

Taken together, we deduce that starting (the first subphase) with [swap-phase : 1, run-time :
x ≥ 1, copy : 0] and outputP non-zero, after 2x iterations, the effective changes will be tripling
of run-time and decrement of outputP. In particular, if x and hence run-time denoted the
iteration count before these iterations, run-time will again denote the iteration count after these
iterations. After following this reasoning o times, the iteration count and value of run-time

will be (3m + 1) · 3o while outputP attains zero. One last instance of each phase, costing
2 · (3m+1) ·3o iterations, yield a total iteration count of (3m+1) ·3o+1 with all registers having
been cleared.

1.5. UNARY SINGLETON SYSTEMS 21

1.4.3 Proof of the Main Result

Theorem 1.2. A unary polymorphic stream function is definable by a non-mutually recursive
unary system if and only if its indexing function is computable.

Proof. We need only consider the reverse implication. Let a computable function φ : N → N⊥

be represented as an iteration-program P, i.e. φ = φP , and let Q be the modified iteration-
program as defined in Lemma 1.6. By Lemma 1.5, there is a non-mutually recursive unary
system defining a stream function w such that w(i) = countQ(i) = (3m + 1) · 3φP(i)+1 for all
i ∈ N and some m ∈ N depending on i. As stated at the beginning, the latter expression is
taken to mean ⊥ if φP(i) = ⊥.

Our strategy for extracting the final output value φP(i) from this expression is by iterating
a second program, adding a tail for each time the stream index is divisible by 3. In particular,
from Lemma 1.2, it is clear how to give a non-mutually recursive unary system defining u such
that

u(k) =

{
k/3 if 3 | k,
0 else

since this is a Collatz function. But note that we can alternatively directly define

u(s) =head(s) :: head(s) :: head(s) ::

head(tail(s)) :: head(s) :: head(s) :: tail3(u(head(s) :: tail2(s)))

using only a single equation. For either choice, we define

v(s) = head(s) :: tail(u(v(tail(s)))).

A second application of Lemma 1.4 shows that v((3m + 1) · 3i+1) = i + 1 for i,m ∈ N. This
function is of almost as critical importance as w as it repeats each natural number output
infinitely many times in a controlled way and reverses the iteration count result encoding of
program Q.

We now have all the parts necessary for concluding our venture. Defining

f(s) = w(v(head(s) :: s)),

we see that

f(i) = max(v(w(i))− 1, 0)

= max(v((3m+ 1) · 3φP(i)+1)− 1, 0)

= max((φP(i) + 1)− 1, 0)

= φP(i)

with our usual convention regarding ⊥, proving f = φP.

1.5 Unary Singleton Systems

In an effort to restrict the shape of our systems even further so that we finally arrive at some
positive results, let us now consider unary systems consisting of a single equation, i.e. systems
f(s) = σ where σ is a unary stream term in s with calls only to f . As it turns out, given a
unary system of size one, we can completely determine the structure of its indexing function in
finite time. The proof of this amazing fact is somewhat involved, requiring a certain apparatus.
We start with the first important step:

Theorem 1.3. Given a single unary stream function equation u, with no references to other
stream functions, we can decide if u(k) = ⊥ for k ∈ N, i.e. we can compute u(k) ∈ N ∪ {⊥} in
finite time.

22 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

Proof. We can assume the definition of u has the form

u(s) = ρ[s] = head(α0[s]) :: . . . :: head(αh−1[s]) :: tail
t(u(β[s]))

where ρ[s], α0[s], . . . , αh−1[s], β[s] are stream terms in s with calls only to u.
Define p := h− t. First, we deal with the case p ≤ 0, in which u is non-productive at indices

k ≥ h:
u(s) ! k →+ u(β[s]) ! k − p→+ u(β[β[s]]) ! k − 2p→+ . . .

For indices k < h, we iteratively check if any computation u(s) ! k goes through without other
references to u(. . .) ! k′ for any yet unresolved k′ ∈ N, i.e. not u(s) ! k →+ u(. . .)k′. Since there
are only finitely many indices smaller than h, this coinductive process eventually terminates,
leaving us with those indices k < h at which u is unproductive, having explicitly constructed
loops for these.

In the following, we assume p > 0. We define a partial order � on N, setting a � b
if t ≤ a ≤ b and a ≡ b mod p. The intuition is that, given a ≺ b, we have a reduction
u(s) ! b →+ u(. . .) ! a, i.e. u(a) = ⊥ implies u(b) = ⊥. We note this order has finite width, the
maximum size of a set of mutually incomparable elements being h. We extend the order to the
set P(N) of subsets of N by setting A � B if for all b ∈ B there is a ∈ A such that a � b, noting
that transitivity is preserved. We set A ≺ B if A � B but not B � A. Since (N,�) has finite
width, we can derive well-foundedness of (P(N),≺) using a well-known result from the theory
of well-quasi-orderings [39]. 5

We now give a terminating algorithm for calculating u(k) for arbitrary k ∈ N, enabling us to
decide productivity at a given index. For elegance, we state the algorithm in functional form,
taking as arguments a stream term with calls only to u, an index to compute at, and a history
parameter H ∈ P(N) with H finite, keeping track of the indices k for which we are currently
trying to compute u(. . .) ! k. In the following, the symbol ⊥ is treated as just another symbol,
without its usual connotation.

r(λs.σ[s], ′⊥′, H) =′ ⊥′

r(λs.s, n,H) = n,

r(λs. tail(σ[s]), n,H) = r(λs.σ[s], n+ 1, H),

r(λs. head(σ[s]) :: σ′[s], 0, H) = r(λs.σ[s], 0, H),

r(λs. head(σ[s]) :: σ′[s], n+ 1, H) = r(λs.σ′[s], n,H),

r(λs.u(σ[s]), n,H) = if H � {n} then ′⊥′ else

let m = r(λs.ρ[s], n,H ∪ {n})
in r(λs.σ[s],m,H).

Correctness The algorithm only deviates from the canonical operational semantics in the
branch H � {n} of the last equation, where we have m ∈ H such that m � n. But this means
computing u(s) !m depends on computing u(. . .) ! n, which, by construction of H, equals or in
turn depends on computing u(. . .) !m, i.e. formally u(s) !m→+ u(. . .)n→∗ u(. . .) !m, meaning
the computation will loop. Thus, the result ⊥ is justified.

Termination Since H 6� {n} implies H ∪{n} ≺ H, recursive calls either involve a smaller
history parameter H ′ ∈ P(N) or the same history parameter with a structurally smaller stream
term argument. Since the corresponding lexicographical ordering is well-founded, termination
is guaranteed.

5 Sketch of a direct proof: for an infinite chain A0 ≻ A1 ≻ . . ., there must be elements an ∈ An for n ≥ 1 such
that am � an implies m ≤ n. By well-foundedness of ≺, there is i0 ∈ N such that ai0 is minimal in {an | n ∈ N}.
We inductively construct indices ij ∈ N with j ∈ N such that aij+1 is minimal in {an | n > ij}. By construction
of (an)n∈N and choice of ij , the elements aij are mutually incomparable for j ∈ N, contradicting finite width of
(N,�).

1.5. UNARY SINGLETON SYSTEMS 23

It was pointed out by the Internal Examiner that the argument above may be generalized
from the unary singleton system context to an equation for a unary stream function u in any
system subject to the following conditions:

• the indexing functions of all other stream functions in the system are already known to
have decidable partiality,

• the outermost call the stream term defining u is to u itself.

We encourage the reader to in particular engage in proofreading the following theorem.

Theorem 1.4. Given a unary system of size one, i.e. an equation for a single unary stream
function u with no calls to other stream functions, we can completely determine the structure
of u. Aside from finitely many initial values, the indexing function of u essentially is a Collatz
function except for non-productive equivalence classes.

Concretely, there are p > 0 and l ≥ 0 such that for each equivalence class of i modulo p
with 0 ≤ i < p, either we can determine coefficients ai, bi ∈ Q such that u(k) = aik + bi, or
u(k) = ⊥, both for all k ≡ i mod p with k ≥ l.

Proof. We are given a single unary stream function equation, with no references to other stream
functions. We can assume the definition has the form

u0 (s) = head(v0,0 (s)) :: . . . :: head(v0,f−1 (s)) :: tailb0 (u0(u1(s)))

u1 (s) = head(v1,0 (s)) :: . . . :: head(v1,f−1 (s)) :: tailb1 (u0(u2(s)))
. . .

ue−1(s) = head(ve−1,0(s)) :: . . . :: head(ve−1,f−1(s)) :: tail
be−1(u0(ue(s)))

ue (s) = head(ve,0 (s)) :: . . . :: head(ve,f−1 (s)) :: tailbe (s)

where vi,j are arbitrary stream functions with only the head of vi,j(s) being of interest. We
note that we used Theorem 1.3 to make equal the lengths of the initial head-cons parts of ui.

In order to analyze the computational behaviour of u0, we need a formalism to explicitly
represent the running computation. Given a functional relation H ⊆ N × N called history
of already computed argument-value pairs of u0 and argument k ∈ N, computation of u0 at

argument k has representation a series of pairs Rk := (x
(t)
k , y

(t)
k)t=0,...,q−1 ⊆ H with q ≤ e such

that x
(t)
k = y

(t−1)
k + (bt − f) for t < q with y

(−1)
k := k, and y

(q−1)
k < f or q = e. In the former

case, the resulting value is v = vq,yq−1
k

(0) 6= ⊥, else it is v = y
(e−1)
k + (be − f), yielding a new

argument-value-pair of (k, v). If such a series of pairs does not exist in H, computation at
argument k has unresolved dependencies in H. If it does exist, it is unique and independent of
H. We have u0(k) = ⊥ exactly if the empty history cannot be grown to include k in a finite
series of such representation computation steps.

If f ≤ b0, computation of u0(i) depends on computation of u0(i+(b0−f)) for i ≥ f , creating
an infinite loop and hence non-productivity at all indices not smaller than f . Thus, we will
assume period := f − b0 > 0 in all of the following. Similarly, if be ≤ f , a proof by induction
shows that u0(i) is either ⊥ or bounded by c := max(vi,j(0)) where j < f with vi,j(0) 6= ⊥.
Because u0(i) is a function of u0(i − f) for i ≥ f , this means u0 eventually becomes periodic
with the end of the first period bounded by f + periodc. Thus, we will assume f < be in all of
the following.

Our algorithm is highly recursive, depending on hierarchically ordered parameters a ∈ A,
b ∈ Ba, c ∈ Ca,b. Each of the parameters a, b, c is composed of certain verified data, termed
knowledge. Furthermore, each parameter comes with an associated set of assumptions on the
structure of u0 for larger values. These assumptions may or may not be valid, but the key is
that they only have to hold for the finite part of u0 the algorithm ends up checking. If we notice
a violation of the assumptions for a, b, or c during procession of u0, parameter sets A,Ba, Ca,b

come with instructions on how to deal with them by constructing new parameters (a′, b0, c0),
(a, b′, c0), or (a, b, c′) on which the algorithm can be restarted. Here, we have a′ < a, b < b′, or

24 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

c < c′, respectively, where each parameter sets comes with an associated well-ordering. Well-
foundedness of the lexicographical ordering on (a : A) × (b : Ba) × Ca,b means this restart
happens only a finite number of times, guaranteeing termination in the end.

Parameter set A The first parameter takes care of which argument equivalence classes
modulo period eventually become non-productive or repeating under u and which equivalence
classes share the same value sequences.

Knowledge For a ∈ A,

• a set Nonprod(a) ⊆ Z/(p) of non-productive equivalence classes eventually becoming non-
productive under u0,

• a set Repeat(a) ⊆ Z/(p) of repeating equivalence classes eventually becoming periodic
under u0,

• for each repeating class C, elements k1 < k2 of C such that u0(k1) = u0(k2),

• an equivalence relation ∼(a) on Z/(p) \ Repeat,

• for all classes C ∼(a) C ′, an offset offset
(a)
C,C′ ∈ C ′ − C,

• a bound bound(a) ∈ N such that u0(k) = ⊥ for all k ∈ C ∈ Nonprod(a) with k ≥ bound(a),

all repeating equivalence classes complete there first period before bound(a), and for non-
repeating classes C ∼(a) C ′ and k ∈ C with k ≥ bound(a) we have u0(k) = u0(k +

offset
(a)
C,C′).

Assumptions

• For all k ≥ bound(a) with k 6∈ Nonprod(a), we have u0(k) 6= ⊥.

• For all k, k′ ≥ f with u0(k) = u0(k
′) and at least one of [k], [k′] non-repeating, we have

[k] ∼(a) [k′] and k′ = k + offset[k],[k′].

Ordering For a, a′ ∈ A, we set a < a′ if Nonprod(a)) Nonprod(a
′), or equality holds

and Repeat(a)) Repeat(a
′), or equality holds and ∼(a))∼(a′). Given a ∈ A, there are only 2p

possibilities each for Nonprod(a) and Repeat(a) and 2p·p possibilities for ∼(a), so it is clear that
(A,<) is well-founded.

Dealing with Violation

• Given k ≥ bound(a) with k 6∈ Nonprod(a) but u0(k) = ⊥, we can define a′ ∈ A with

a′ < a fulfilling the knowledge part of a′ by defining Nonprod(a
′) := Nonprod(a) ∪{k}

since u0(k +m · period) = ⊥ by induction on m ∈ N.

• Given u0(k) = u0(k
′) with k, k′ ≥ f and at least one of [k], [k′] non-repeating, but not

[k] ∼(a) [k′] and k′ = k+ offset[k],[k′], it is clear we can define a′ ∈ A with a′ < a fulfilling

the knowledge part of a′. If none of [k], [k′] are repeating in a and [k] 6∼(a) [k′], this
is achieved by merging the classes of [k] and [k′] in ∼(a′). Otherwise, it is achieved by

widening the set of repeating classes Repeat(a
′).

1.5. UNARY SINGLETON SYSTEMS 25

Start The starting parameter a0 has non-productivity set Nonprod(a0), repetition set
Repeat(a0), and equality relation ∼(a′) empty. All defined offsets are zero, and bound(a0) = f .

Lemma 1.7. Given a ∈ A and finite S ⊆ {f, f + 1, . . .} such that no s ∈ S is non-productive
or repeating for a, if |u0(S)| period < |S|, the assumption part of a ∈ A is violated.

Proof. A trivial application of the pigeonhole principle.

Lemma 1.8. Given a ∈ A, the set {u0(k) | k ∈ N, [k] ∈ Repeat(a)} is finite and we can list all
its elements in finite time.

Proof. The computability part utilizes the fact that we can restrict the set definition to k <
bound(a).

Parameter set Ba, given a ∈ A We call k ∈ N referencing repeat if it is productive and

non-repeating for a and in Rk = (x
(t)
k , y

(t)
k)t=0,...,q−1 there is t such that x

(t)
k is repeating for

a. The second parameter intends to establish a bound such that we will not have to deal with
indices referencing repeat.

Knowledge For b ∈ Ba,

• an index bound(b) ≥ bound(a) and a lower bound g(b) for the number of repeat referencing
indices k with bound(a) ≤ k < bound(b),

• the constraint g(b) ≤ em period where m is the size of the set in Lemma 1.8.

Assumption For b ∈ Ba, no k ≥ bound(b) is referencing repeat.

Ordering For b, b′ ∈ Ba, we set b < b′ if g(b) > g(b
′). Since g(b) is finitely bounded for

fixed a ∈ A and b ∈ Ba, this is trivially a well-ordering.

Dealing with Violation Given k ≥ bound(b) referencing repeat, we can define b′ ∈ Ab

with b′ < b by setting bound(b
′) := k + 1 and g(b

′) := g(b) + 1. If this is a violation of the size
constraint, we have found em period+1 repeat referencing k ≥ f . By the pigeonhole principle,

there must be 0 ≤ t < t and m period+1 representations Rk = (x
(t)
k , y

(t)
k)t with x

(t)
k defined

and [x
(t)
k] repeating for a. By Lemma 1.8 and Lemma 1.7, this constitutes a violation of a ∈ A.

Start The starting parameter b0 ∈ Ba has bound(b0) := bound(a) and g(b0) := 0.

Parameter set Ca,b, given a ∈ A and b ∈ Ba The third parameter set intends to establish
an even higher bound of indices not even referencing values below the bound of the previous
parameter.

Knowledge For c ∈ Ca,b,

• finite sets
W

(c)
0 , . . . ,W

(c)
e−1,W

(c)
e ⊆ {bound(b), bound(b) +1, . . .}

with W
(c)
e = ∅ such that for t = 0, . . . , e − 1 and w ∈ W

(c)
t , we have [w] productive

and non-repeating for a and either u0(w) < bound(b) +f or u0(w) ≥ bound(b) +f and

u0(w) + (bt+1 − f) ∈W
(c)
t+1,

• size constraints |W (c)
t | ≤ period(|W (c)

t+1|+ bound(b) +f),

• an abbreviation bound(c) := max(bound(b),max(W
(c)
0) + 1).

26 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

Assumption For c ∈ Ca,b, for all k ≥ bound(c) productive and non-repeating for a, we

have Rk = (x
(t)
k , y

(t)
k)t=0,...,e−1 with x

(t)
k ≥ bound(b) and u0(k) = y

(e−1)
k + (be − f) ≥ bound(b).

Ordering For c, c′ ∈ Ca,b, let t = 0, . . . , e−1 be maximal such that W
(c)
t 6= W

(c′)
t . We set

c′ < c if such a t exists and W
(c)
t) W

(c′)
t . The proof that (Ca,b, <) is a well-ordering goes as

follows. Assume there is an infinite chain c0 > c1 > For n ∈ N, choose vn ∈ {0, . . . , e− 1}
maximal such that W

(cn+1)
vn 6= W

(cn)
vn , i.e. W

(cn+1)
vn ⊇ W

(cn)
vn . Let z ∈ {0, . . . , e− 1} be maximal

such that vn = z for infinitely many n ∈ N. Choose m ∈ N such that vn ≤ z for n ≥ m. It

follows that W
(cn)
z grows arbitrarily large for n ≥ m while W

(cn)
z+1 stays constant, a contradiction

to the size constraint.

Dealing with Violation Given a violation, i.e. k ≥ bound(c) productive and non-

repeating for a with Rk = (x
(t)
k , y

(t)
k)t=0,...,q−1 and q ≤ e, we have x

(s)
k < bound(b) for some

s > 0, or q = e and y
(e−1)
k + (be − f) < bound(b). We define c′ ∈ Ca,b by adding x

(t)
k to W

(c)
t ,

in the former case for t < s and in the latter case for t < e. It is easy to see that c′ < c and c′

is well-defined, except if some size constraint is violated. In this case, we can apply Lemma 1.7
to find a violation of a ∈ A.

Start The starting parameter cs ∈ Ca,b has W
(cs)
t = ∅ for all t.

Core of the Algorithm, given a ∈ A, b ∈ Ba, and c ∈ Ca,b For the remainder of the proof,
we will implicitly assume that the assumptions from a, b, c are validated. The reader is invited
to check that in each setting, a false assertion depending on erroneous assumptions from either
a, b, or c yields constructive evidence for a violation of a, b, c, respectively, enabling a restart.

For each non-repeating k ≥ bound(b), let k̂ denote the set of non-repeating k′ ≥ bound(b)

such that [k] ∼(a) [k′] and k′ = k + offset
(a)
[k],[k′]. We call k̂ an argument class. As far as our

assumptions from a go, these are the only sets of arguments not smaller than bound(b) which
u0 maps to the same value we know of. Let K := {k̂ | k ≥ bound(b)} and L := {S ∈ K | S ≥
bound(c)} ⊆ K.

We use Theorem 1.3 to build an initial finite history

H0 = {(k, u0(k)) | u0(k) 6= ⊥, and k < f or k̂ 6∈ L},

extending it stepwise while traversing the argument classes in L, using Rn ∈ N to denote the
current class.

Given Hn for some n ∈ N, we choose i = 0, . . . , p− 1 minimal such that for x ∈ [n+ i] with
x ≥ f , x 6∈ Hn minimal, x is productive and non-repeating, and computation at argument x
has no unresolved dependencies in Hn. If no such i exists, u0 is non-productive after a certain
index. Else, set Rn := x̂, let y = u0(Rn), and set Hn+1 = Hn ∪ {(x′, y) | x′ ∈ Rn}. We note
that this way of extending the history is fair in the sense that every productive argument index
will eventually be covered.

Given an argument class S ∈ L, we know k ∈ S has representation Rk = (x
(t)
k , y

(t)
k)t=0,...,e−1

with x
(t)
k ≥ bound(b). Also, with T := S − period ∈ K, we have x

(t)
k ∈ T and thus y

(k)
0 = y

(k′)
0

for k, k′ ∈ S, meaning (x
(t)
k , y

(t)
k) = (x

(t)
k′ , y

(t)
k′) for t ≥ 1. Hence, we can uniquely associate with

S a sequence of argument classes U
(0)
S , U

(1)
S , . . . , U

(e−1)
S ∈ K called representation of S such

that x
(k)
t ∈ U

(k)
S or k ∈ S and all t.

Lemma 1.9. For t = 0, . . . , e− 1, the function ft : L→ K, S 7→ U
(t)
S is injective.

Proof. For S, S′ ∈ K and S, S′ ≥ bound(c) with S 6= S′ and U
(t)
S = U

(t)
S′ , we have y

(t)
k = y

(t)
k′

and hence u0(k) = u0(k
′) for k ∈ S, k′ ∈ S′, contradicting assumptions of a.

1.5. UNARY SINGLETON SYSTEMS 27

At each point n ∈ N in the traversal, the yet to be consumed argument classes are given by

Unusedn := {(t, S) | t = 0, . . . , e− 1, S ∈ K,S ⊆ Hn, S 6= ft(Rm) for m < n}.

Lemma 1.10. There is a constant z ∈ N such that |Unusedn | = z for all n ∈ N.

Proof. By induction. For n = 0, we know z := |Unused0 | = |K \ L| ∈ N. For general n, we
have

|Unusedn+1 | = |Unusedn \{(t, ft(Rn)) | t = 0, . . . , e− 1}
∪ {(t, Rn) | t = 0, . . . , e− 1}|

= z − e+ e = z

by by the previous lemma and induction hypothesis.

Given a, b ∈ N with a ≤ b, we associate a linear system La,b of equations with the traversal
interval from a to b. Let V := Unuseda ∪ {Rn | a ≤ n < b}. For each argument class S ∈ V and
k ∈ S, we create variables Xk and Yk. For each argument class S = Ra, . . . , Rb−1 and k ∈ S,

we create equations Y
x
(t)
k

− f + bt+1 = X
x
(t+1)
k

for t = −1, . . . , e − 1, setting x
(e)
k := u0(k) for

convenience.
We know this system is solvable by setting Xi = i and Yi = u0(i) for all variables Xi, Yi.

Our key interest is the dimension da,b of the affine solution subspace.

Lemma 1.11. For a ≤ b ≤ c, we have da,b ≥ da,c and da,b ≤ 2 period ·z.

Proof. The first proposition follows inductively from the fact that even though La,b+1 contains
additional variables, these variables appear in equations with the other side of the equation
containing a variable from La,b, hence the additional variables being determined by a solution
to La,b, i.e. da,b ≥ da,b+1. The second proposition follows from da,b ≤ da,a ≤ 2 period ·z by
Lemma 1.10.

Definition 1.6. For a ≤ b < a′ ≤ b′ with a ≡ a′ mod period and b− a = b′ − a′, two systems
La,b and La′,b′ are called copies (of each other) if Ra+i = Ra′+i + qi · period for some qi ∈ N
and all i < b − a and there is a variable-renaming isomorphism between La,b and La′,b′ such
that for i < b− a, Xk and Yk are renamed to Xk+qi and Yk+qi , respectively, for i < b− a and
k ∈ Ra+i.

For copies La,b and La′,b′ , we necessarily have da,b = da′,b′ .

Lemma 1.12. For La,b and La′,b′ copies with da,b = da,a′ , we can determine the structure of
u.

Proof. Since adding the equations for Rn with b ≤ n < a′ does not decrease the solution space
of La,b, they are valid in general for any solution of La,b and hence, appropriately renamed, also
for any solution of La′,b′ . But this means that the history becomes periodic after Ha′ . Setting
p := min(Ra′)−min(Ra) and noting period | p, after finitely many values u0 is non-productive

on all classes belonging to Nonprod(a) and those classes the history does not make any progress
on between Ha and Ha′ . On all other classes modulo p, we deduce u0 is linear.

Lemma 1.13. Given l ≥ 1, there is c ∈ N such that given a sequence a0 ≤ b0 < . . . < ac−1 ≤
bc−1 with ai+1 − ai ≤ l for i = 0, . . . , c− 2, there are 0 ≤ r < s < c such that Lar,br and Las,bs

are copies.

Proof. A consequence of the pigeonhole principle.

Definition 1.7. The sequence property for dimension d ∈ N is the following proposition: there
is l ≥ 1 such that for all c ∈ N we can determine the structure of u or construct a sequence
a0 ≤ b0 < . . . < ac−1 ≤ bc−1 with ai+1 − ai ≤ l for i = 0, . . . , c − 2 and dai,bi ≤ d for
i = 0, . . . , c− 1.

28 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

Lemma 1.14. The sequence property for dimension d ∈ N implies the sequence property for
dimension d− 1.

Proof. This follows from Lemmata 1.12 and 1.13.

By Lemma 1.11, the sequence property is fulfilled for dimension 2 period ·z. Since the
sequence property for dimension −1 is equivalent to determining the structure of u, we can do
the latter.

1.6 Further Work

In the section on further work in our article [52], we claimed that is was possible to encode
any recursive function as an indexing function occurring in a singleton system of four, and that
productivity of unary systems was undecidable even for systems of size two. These claims were
based on a complex encoding of a sufficiently large subset of Collatz-like functions as singleton
unary equations. Unfortunately, the arithmetic involved turned out to be flawed, so we have to
repudiate these claims.

Using the existing technical tools, we can at least show the following:

Proposition 1.2. Given a unary system of size three defining a stream function f , it is unde-
cidable whether f is productive. More specifically, the problem is Π0

2-complete.

Proof. By simple evaluation, the problem is seen to be in Π0
2. Given a Collatz function g, we

will construct a unary system of size three defining a stream function f such that f is productive
iff g is reducing. By [40], we then deduce Π0

2-hardness of productivity of f .

After having defined add as in the proof of Lemma 1.2, define

u(s) = head(taile0(s)) :: . . . :: head(tailen·n−1(s)) :: u(add(s))

with en·i+r = n · g(i) + i for i, r = 0, . . . , n− 1. By induction, we have

u(n · k + r) = n · g(i) + i+
k − i

n
· (n · ai) = n · g(k) + i

for r = 0, . . . , n− 1 and i < n such that k ≡ i mod n. Now we can define

f(s) = head(s) :: head(s)︸ ︷︷ ︸
n times

:: tailn(u(f(s))).

We note that

f(s) ! n · k + r →+

{
s ! 0 if k = 0,
n · g(k) + r′ else

with some r′ ∈ {0, . . . , n−1}, meaning f(n ·k+r) = 0 if g is reducing at k, and f(n ·k+r) = ⊥
else.

Since productivity of unary singleton systems is decidable by Theorem 1.4, this leaves open
the status of productivity for unary systems of size two.

Similarly, we suspect that our technical tools are capable of proving Theorem 1.2 while
defining only five stream functions (instead of four as claimed originally). The minimum system
size for unary definability thus still remains an open problem.

1.7. RELATED WORK 29

1.7 Related Work

Streams and corecursive functions on them are of course a well-studied model of coinductive
behaviour, particularly in the setting of term rewriting [15, 59]. Note that what we call in-
dexing function of a polymorphic stream function is a container morphism for streams in the
terminology of Abott et al. [1].

Most proofs of undecidability and complexity results for stream equations, like the ones of
Roşu [50] and Simonsen [53], use straightforward encodings of Turing machines: representing
the infinite band of symbols as two streams, one each for the left and right side of the band
relative to the head, with canonical rewrite rules examining the current symbol. This pattern
matching dispatching mechanism is unavailable in our setting. Still, we have been able to
recover all of these results even in the unary setting as direct corollaries of Theorem 1.2.

Endrullis et al. [14, 16, 17] strive to decompose rewriting into a stream layer and a data
layer in such a way as to encapsulate just so much complexity into the data layer that the
productivity of streams becomes decidable while still retaining usefulness of computation. Our
work can be seen as a another extreme, eradicating the data layer and showing that polymorphic
unary stream functions attain computational completeness. For example, our results imply that
the lazy stream formats of Endrullis et al. [17] can actually be restricted to (general) unary
stream functions with productivity still retaining Π0

2-completeness (in the non-unary case, a
hint of Proposition 1.1 can be found in their encoding of fractran-programs). We note that
their notions of lazy stream specifications and data-oblivious analysis shares some points with
our polymorphism restriction: choosing the unit type for the data type leaves no possibility
of analyzing the input. We also note that the flat stream specifications, for which the authors
develop an algorithm for semi-deciding productivity, present an exception: we allow general
nested calls.

We stress that our encoding in Lemma 1.2 of generalized Collatz functions as indexing
functions of unary polymorphic stream functions is fundamentally different from the encoding
of Collatz functions or Fractran program iterations used by Endrullis et al. [17], the essential
difference being the unavailability of zip in the unary setting. The dispatch mechanism of
interleaving, enabling differing treatment of stream positions based on the residue of their
indices, makes the implementation of Collatz-like constructs rather straightforward. Since we
are lacking even such basic conditional control flow mechanisms, we have to resort to indirect
constructions.

Note that the Collatz function χ̂A in Lemma 1.3 is special in that it is linear on each
of its equivalence classes in the strict sense, i.e. with vanishing ordinate, corresponding to
single multiplication with a fraction. Even though we do not make use of this fact in our
developments, it shows the connection between if-programs and the iteration steps of the
fractran-programs of Conway [11], which are of equivalent expressive power. In fact, we could
have used fractran-programs for the construction leading up to Theorem 1.2, but would then
have lost the conceptual clarity of if-program iteration syntax. In contrast to the proof [40] of
undecidability of the generalized Collatz problem making use of fractran-programs [17], we
view it as an unnecessary detour.

30 CHAPTER 1. POLYMORPHIC STREAM EQUATION SYSTEMS

Chapter 2

Isomorphism of Finitary Inductive

Types

2.1 Introduction

Given any two finitary inductive types, possibly parametric, a natural question to ask is whether
and in what sense they are isomorphic. An intuitive example is provided by binary trees with
two type parameters, one specifying the data at leafs and the other the data at nodes: 1

data Tree (A B : Set) : Set where
leaf : A → Tree A B
node : B → Tree A B → Tree A B → Tree A B

An alternative but isomorphic presentation of such trees is as spine trees, unravelling the data
structure through its left-most branch:

data Spine (A B : Set) : Set where
nil : Spine A B
cons : B → SpineTreeA B → Spine A B → Spine A B

data SpineTree (A B : Set) : Set where
spine : A → Spine A B → SpineTree A B

Note that this constitutes a mutual specification. We may equivalently transform into the
following nested presentation:

data List (X : Set) : Set where
nil : List X
cons : X → List X → List X

data ListTree (A B : Set) : Set where
spine : A → List (B × ListTree A B) → ListTree A B

For brevity, when speaking about finitary inductive types, we will henceforth always mean
parametric and possibly nested finitary inductive types. Note that it is folklore how to convert
mutual finitary inductive types into nested ones.

1 Because of already available typesetting infrastructure, we will use Agda syntax for presenting examples.
This merely syntactic convention does not entail restricting ourselves to a particular object theory.

31

32 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

It is quite easy to write functions going back and forth between the different representations
and show by induction that corresponding pairs of functions form inverses. This holds true in
any number of settings, whether we are working in dependent type theory with a universe as
our syntax misleadingly suggests, in complete partial orders like those employed by most papers
reasoning about denotational semantics of Haskell programs, or in standard set theory.

At this point, we should clarify what exactly we mean by isomorphic. Certainly, the func-
tions realizing the isomorphism should be independent of the specific model of finitary inductive
types. But just as important, the proof that the functions constitute inverses should also be
agnostic of the model. This last point will be the major source of contention in our develop-
ment, for in the syntactic models like the term model we are not allowed to reason by semantic
induction. Relatedly, colimits do not in general exist in such models, and hence finitary induc-
tive types can not in general be constructed as the ω-colimit of a certain chain. We must look
for ways to encode inductive arguments as universal properties of inductive types, in particular
uniqueness of eliminators.

Our notion of model for finitary inductive types will be bicartesian-closed categories closed
under formation of initial algebras for regular functors. Regular functors are, in essence, a
synonym for nested parametric finitary inductive types. We consider the name a slight misnomer
as it suggests a similarity with regular languages. In contrast, regular functors are closer
to a proof-relevant version of context-free grammars with commuting terminal symbols. As
observed by Altenkirch [4], isomorphism of parametric finitary inductive types in the set model
corresponds to equivalence of such grammars.

This work makes progress on several open questions posed by Altenkirch [4]. It is shown
that isomorphism of finitary inductive types in the set model is decidable for certain so-called
guarded types, resulting in an algorithm computing a natural bijection if the answer is positive.
In the bulk of the work, it is further shown that isomorphism of guarded finitary inductive types
is decidable in the initial model, i.e. the syntactic category, and that the answer coincides with
the one given for the set model. This makes the set model complete with respect to type iso-
morphism of guarded types. Again, since all our proofs are constructive, answering the question
in the initial model automatically computes a pair of λ-terms witnessing an isomorphism (and
the chain of term conversions proving they form inverses) for any pair of isomorphic guarded
types.

We show how to decompose a finitary inductive type into so-called guarded and indefinite
parts. Semantically, when viewing finitary inductive types as power series in their type vari-
ables, a guarded type has only finite coefficients while an indefinite type has only zero and
infinite coefficients. Thus, we expect guarded types to live in a ring-like algebraic structure
enjoying additive cancellability. However, the decomposition is purely syntactic. Decidability
of indefinite regular types turns out to reduce to certain well-known facts in the theory of
commutative grammars. We discuss the problems we encountered in trying to combine the
arguments for the guarded and indefinite parts, with difficulties arising from only the indefinite
part of the decomposition being uniquely determined. However, it can be argued that deciding
isomorphism is of prime interest mostly for guarded types.

The outline for this chapter is as follows:

• First, we will briefly recall the notions of bicartesian-closed categories and initial algebras.
We will review several useful tools from the literature, most prominently the µ-calculus [5]
and derived results such as the abstraction theorem showing stability of parametric initial
algebras under type variable substitution.

• We will then develop our tools for dealing with regular functors, in particular what we
call the biased derivative. With this, we will establish a decomposition of regular functors
into guarded and indefinite parts. This decomposition is only partly well-behaved in that
the guarded part is semantically characterizable only modulo selective masking by the
indefinite part. Up until this point, our development is agnostic of the specific model.

• Using the framework of containers [1], we will then solve the problem for guarded types in

2.2. PRELIMINARIES 33

the specific model of sets and functions. This step will make apparent the connection to
commutative algebra, in particular algebraicity of power series. We remark on the decid-
ability of isomorphism for indefinite types, and discuss problems enountered in combining
arguments for both parts.

• As an interlude to the introduction of containers, we will analyse anti-derivates of certain
quotient containers, negatively answering a question by Altenkirch about integrability
of quotient containers. However, this work turns out to overlap with a corresponding
previous result for combinatorial species.

• Next, we will review a series of technical tools needed for the term setting. This includes
original work on traversable functors [20, 30], showing regular functors traversable in
any model. We review the syntactic calculus useful for speaking about constructions
internal to an arbitrary model and derive tools such as an internal approximation to
structural induction over internal Boolean logic, a generalized internal equality predicate,
internal injection and extraction of data and their connection to the concept of shapely
functors [31].

• As an interlude, to become familiar with the tools reviewed and introduced in the pre-
ceding section, we will prove the following classification result: any regular constant is
isomorphic in any model to either the internal natural numbers or a finite sum of unit
types.

• Via the concept of sound and complete listings, we derive a description of guarded regular
types in terms of internal power series. Stopping short of explicitely re-developing the
basics of commutative algebra, we sketch how to use the internal framework of operations
on polynomials and power series to handle the internal minimal polynomials for power
series associated to guarded regular types.

Certain subsections allow to be read in a stand-alone fashion, most notably the interlude
on anti-derivatives of quotient containers and the (we believe original) structural derivation of
traversabilty for regular functors. These subsections were planned as parts of separate chapters,
but are included here for completeness of presentation.

2.2 Preliminaries

2.2.1 The Setting

Bicartesian-closed categories A bicartesian-closed category C is a cartesian-closed cate-
gory that in addition has finite coproducts. The existence of exponentials as right adjoints to
binary products with a fixed factor makes products distribute over coproducts. The bicartesian
structure of C is succinctly summarized by the adjoint triple

∑

N

⊣ ∆ ⊣
∏

N

for any finite set N where ∆ : C → CN is the diagonal functor and
∑

N ,
∏

N : CN → C denote
the N -ary coproduct and product, respectively. Closedness of C means that the product · ×B
has a right adjoint for any object B : C:

· ×B ⊣ (·)B .

Here, note that AB denotes the internal hom-object for A,B : C. It is covariantly functorial in
A and contravariantly functorial in B.

34 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Initial algebras Given an endofunctor F : C → C on a category C, the category AlgC(F)
of algebras over F has as objects pairs (A, f) where A : C and f : F (A) → A. A morphism
between (A, f) and (B, g) is given by h : A → B such that h ◦ f = g ◦F (h). An initial object
in AlgC(F) is called initial algebra and usually denoted µCF = (µCF, initF) if existing (note
the overloaded use of notation for the carrier of the initial algebra). It is common to write
µX.F [X] for µ(λX.F [X]). Given an algebra (A, f) over F there is a unique algebra morphism
elimF

A : µCF → A from the initial algebra to (A, f). The operator µC as denoting the carrier can
be given the structure of a functor from the full subcategory of endofunctors on C having initial
algebras to C. As usual, subscripts and superscripts will be omitted if the extra information
they provide is redundant.

Parametric initial algebras Given categories C,D, let F : D × C → C be a functor such
that F (X, ·) has an initial algebra for any object X : D. There are two obvious ways of
defining the parametric initial algebra with carrier G : D → C of F . Pointwise, we might say
G(X) = µY. F (X,Y) for on object X : D and observe that this coherently extends to a functor.
In fact, the individual initial algebra maps

initF (X,·) : F (X,G(X))→ G(X)

form a natural transformation from F (G) to G where F : CD → CD is defined by F (H) =
F ◦ 〈id, H〉. On the other hand, we might directly define G = µCDF . It is the statement of
the abstraction theorem [5] that both definitions are equivalent, and that in fact the uniform
initial algebra µCDF exists whenever the initial algebras exist pointwise. From now on, we will
say that a functor F : D × C → C has a parametric initial algebra whenever this condition is
fulfilled. One particular implication is that parametric initial algebras are stable under change
of context, i.e. substituting their type variables. That is, given K : D′ → D the parametric
initial algebra of F ◦ 〈K, id〉 is obtained by precomposing the parametric initial algebra of F
with K. The whole story has a nice retelling in the form of the opfibration corresponding to
AlgC : (CC)op → Cat via the Grothendieck construction, which seems to be folklore knowledge.

Regular functors Before we can say what constitutes a model for finitary inductive types,
let us first recall the notion of regular functors [20, 45].

Definition 2.1. The (syntactic codes for) regular functors of arity N are an inductive family
defined over finite parameter index sets N , given by (constructors for)

• variable selectors πN
n for n : N ,

• the terminal functor 1 and products G×H of regular functors G,H of arity N ,

• the initial functor 0 and coproducts G+H of regular functors G,H of arity N ,

• the parametric initial algebra µY.G(·, Y) of regular functors G of arity N + 1 (up to
isomorphism).

Note that despite its name, the notion of regular functors is agnostic to any choice of
category, being purely a definition of codes. However, we will be rather lax with the distinction
between inductively defined syntactic codes for functors and their interpretation, calling a
functor CN → C regular if it is equivalent to the interpretation in the model C of an element
of arity N of the above inductive type of codes for regular functors. 2 Similarly, we will leave
isomorphisms of parameter index sets such as decompositions M = N +1 as needed in the final
clause implicit wherever reasonably possible, also making implicit use of isomorphisms such as
CN+1 = CN × C when writing down equations for functors applied to parameters.

2The same convention will apply for further such definitions of syntactic codes with implicitly defined inter-
pretations as functors.

2.2. PRELIMINARIES 35

Models A model now is a bicartesian-closed category C in which the above codes for
regular functors can be interpreted, i.e. that inductively has all regular functors. For variable
selection functors as well as finite products and coproducts of regular functors this is immediate
from the bicartesian structure of C. For parametric initial algebras, whenever we are given (an
interpretation of) a regular functor G : CN+1 → C, then µY.G(X,Y) must exist for every X : C,
with µG : CN → C being the interpretation of the code for the parametric initial algebra of G.

With the above conventions in place, we may observe that regular functors are closed under
composition in any model. Note that this uses preservation of parametric initial algebras under
type variable substitution. This closure is reflected by a composition operation on the level of
codes.

2.2.2 The µ-calculus

The rules of the µ-calculus, including the diagonal, squaring, and rolling rules as well as the
powerful µ-fusion rule as presented below, yield a way of manipulating least fixed-point equa-
tions purely on the type level. Not having to go down to the term level to state and prove
isomorphisms provides for an elegant high-level presentation based on type-level rewriting. The
calculus itself is rather flexible, with many possible choices for proceeding in any given situation.

The basics A comprehensive reference for the following five lemmata and the various orders
in which they can be proved may be found in [5]. For the purpose of this subsection, let us
work over arbitrary categories, not necessarily bicartesian-closed ones.

Lemma 2.1 (Fusion). Let categories C and D be connected via an adjunction L ⊣ R with
functors L : C → D and R : D → C. Consider endofunctors F and G on C and D, respectively.
If the diagram

C L //

F
��

D
G
��

C L // D
commutes up to an equivalence α : L ◦F ≃ G ◦L of functors, then the adjunction L ⊣ R lifts
to an adjunction L′ ⊣ R′ between Alg(F) and Alg(G) given by

L′(X, f) = (LX,α ◦L(f)),
R′(Y, g) =

(
LY, α−1 ◦R(g)

)
.

In particular, preservation of initial objects by left adjoints implies preservation L(µF) = µG
of initial algebras.

An independent account of this under-appreciated tool, generalized to the 2-categorical
framework of inserters and with a more conceptual proof, can be found in [25].

Lemma 2.2 (Diagonal rule). Fix a category C and a functor F : C × C → C. Then,

µZ. F (Z,Z) = µX. µY. F (X,Y)

where the initial algebras on one side of the equation exist whenever the ones one the other side
do. The witnessing isomorphism is natural in the functor F .

Lemma 2.3 (Binary mutual recursion). Fix categories C and D and functors 〈U, V 〉 : C ×D →
C ×D. Then,

µ 〈U, V 〉 = (µX.U(X, µY. V (X,Y)),

µY. V (µX.U(X,Y),Y))

whenever the initial algebras on the right-hand side exist. The witnessing isomorphism is natural
in the functors U and V .

36 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Lemma 2.4 (Rolling rule). Fix categories C and D and functors F : C → D and G : D → C.
The functor from Alg(G ◦F) to Alg(F ◦G) induced by application of F creates initial objects.
In other words, if either one of µ(F ◦G) and µ(G ◦F) exists, then so does the other, and

F (µ(G ◦F)) = µ(F ◦G).

Lemma 2.5 (Squaring rule). Fix a category C and an endofunctor F : C → C. The canonical
functor from Alg(F) to Alg(F ◦F) reflects initial objects. In other words, if µ(F ◦F) exists,
then so does µF , fulfilling

µF = µ(F ◦F)

and initF ◦F = initF ◦F (initF) via this isomorphism.

The squaring rule has an obvious generalization to arbitrary powers, though we shall not
need it here.

Easy consequences The simplest interesting parametric inductive type is the list functor

List : C → C,
List(X) = µY. 1 +X × Y.

As an instructing example for the power of fusion, let us demonstrate the following elementary
lemma:

Lemma 2.6. We have an isomorphism

µY.A+X × Y = A× List(X)

natural in A,X : C.

Proof. Commutativity of the diagram

C A×· //

Y 7→1+X×Y

��

C
Y 7→A+X×Y

��
C A×· // C

is a triviality. However, applying fusion in this seemingly trivial context allows us to derive
A× (µY. 1 +X × Y) = µY.A+X × Y . For this, we only have to note that multiplication with
A is left adjoint to exponentiation with A.

The rules of the µ-calculus have mostly canonical parametric generalizations, in case of
Lemma 2.2 and Lemma 2.3 a consequence of naturality of the postulated isomorphisms in the
given functors. For the case of fusion, let us explicitly develop the parametric version.

Lemma 2.7 (Parametric Fusion). Fix categories Γ and ∆ to serve as contexts and a functor
E : Γ→ ∆ to serve as context morphism. Let categories C and D be given that are connected via
an adjunction L ⊣ R with functors L : C → D and R : D → C. Consider functors F : Γ×C → C
and G : ∆×D → D to serve as relative endofunctors on C and D with respect to the contexts
Γ and ∆, respectively. Assume that F and G have parametric initial algebras. Commutativity
of the diagram

Γ× C E×L //

F

��

∆×D
G

��
C L // D

2.2. PRELIMINARIES 37

implies commutativity of the diagram

Γ
E //

µY. F (·,Y)

��

∆

µY.G(·,Y)

��
C D // D

Proof. Let us rewrite the given diagram in higher-order style indexed over Γ:

CΓ LΓ
//

F
��

DΓ

G ◦〈E,id〉
��

CΓ LΓ
// DΓ

Certainly, the adjunction L ⊣ R lifts to an adjunction LΓ ⊣ RΓ. We thus may apply Lemma 2.1
in this diagram and derive

LΓ(µF) = µ
(
G ◦ 〈E, id〉

)
.

Recalling that

µ
(
G ◦ 〈E, id〉

)
= µG ◦E,

we arrive at commutativity of the desired diagram.

The mutual recursion theorem has a general n-ary statement following by iterated applica-
tion of the binary case Lemma 2.3. It is, however, less convenient to state explicitly:

Corollary 2.1 (Mutual recursion). Fix a finite parameter index set N and categories Cn for
n : N . Consider functors U = 〈Un〉n:N :

∏
N C →

∏
N C. Then, we have an isomorphism

µU = α∅ where

αI =
〈
αI
n

〉
n:N

:
∏

i:I

Ci →
∏

n:N

Cn,

αI
n(X) =

{
Xn if n ∈ I,

µXn. Un

(
αI⊔{n} (Xi)i:I⊔{n}

)
else

is defined recursively over the partial order of subsets I of N , assuming that all initial algebras
in this definition exist. The witnessing isomorphism is natural in the functor U .

Again, naturality of the mutual recursion isomorphism in the given functors in particular
means that we may use it in contextual situations where we deal with parameterized endofunc-
tors.

A general strategy for applying the basic rules of the µ-calculus seems to consist of first
applying the diagonal rule any number of times to isolate different occurrences of fixed-point
variables, then applying the squaring, rolling, or mutual recursion rules to manipulate the
different occurrences separately. At the end, the diagonal rule is used in reverse to merge the
artificially created nested fixed points back together. An instructive example is provided by the
following exercise:

Corollary 2.2 (Partial squaring). Fix a category C and a functor F : C × C → C. We have an
isomorphism

µZ. F (Z,Z) = µZ. F (Z,F (Z,Z))

if either initial algebra exists, natural in the functor F .

38 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Proof. Let us calculate

µZ. F (Z,Z) = µX. µY. F (X,Y)

= µX. µY. F (X,F (X,Y))

= µZ. F (Z,F (Z,Z)),

where we have applied Lemma 2.2, Lemma 2.5, and finally Lemma 2.2 in reverse.

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 39

2.3 Decomposition into Guarded and Unguarded Parts

2.3.1 Guarded and Shielded Functors

Fix a finite set I for the following two mutual definitions of subtypes of the regular functors.
Our goal is to establish a syntactic criterion for finitary inductive types that have power series
in variables from I with only finite coefficients. 3 The motivation is to make guarded types
behave well with respect to additive inverses, later enabling powerful algebraic machinery. 4

For the initial algebra case, we require as a mutual definition the helper concept of shielded
functors that in addition to being guarded are (i.e have power series) divisible by variables from
a given subset of I.

To unlock the full algebraic prowess of power series, we would need the coefficients of C(F)
to live in some well behaved ring-like algebraic object like the integers. This is precisely the
motivation for the definition of guarded functors.

Definition 2.2. The (syntactic codes) for functors of arity N guarded over I are an inductive
family defined over finite parameter index sets N ⊇ I, given by (constructors for)

• variable selectors πN
n for n : N ,

• the terminal functor 1 and products G×H of functors G,H of arity N guarded over I,

• the initial functor 0 and coproducts G+H of functors G,H of arity N guarded over I,

• the parametric initial algebras µY.G(·, Y) of a functor G of arity N + 1 (up to isomor-
phism) shielded over I ⊆ N →֒ N + 1.

Definition 2.3. Fix finite parameter index sets J,N such that J ⊆ I ⊆ N . Given a functor
Gj of arity N guarded over I for every i : J , then the finite coproduct

〈
πN
j

〉
j:J
• 〈Gj〉j:J =

∑

j:J

πN
j ×Gj

of arity N is called J-shielded over I. 5 If J = I, we simply say it is shielded over I.

The parameter I in the above definitions is also known as the (guardedness) variable cover.
Calling a functor of arity N (globally) guarded or shielded is shorthand for saying it is guarded
or shielded over N , respectively.

Being shielded is stronger property than that of being guarded. Guardedness is a hereditary
property of wellformedness concerning all appearances of the µ-operator inside a regular functor,
while shieldedness adds a global shape requirement on top. Algebraically, a functor of arity
N is shielded over I ⊆ N if it lies in the semiring ideal of guarded functors generated by the
variable selectors for I. With this intuition, it is easy to see that such functor are closed under
finite coproducts and multiplication with functors of arity N guarded over I.

Clearly, the notions of guardedness and shieldedness of functors are monotonous over the
variable cover: given I1 ⊆ I2 ⊆ N , any functor of arity N guarded or shielded over I1 will also
be guarded or shielded over I2, respectively.

As a basic example, the list functor is a guarded functor, but not in the form List(X) =
µY. 1 +X × Y . Applying the rolling rule, we derive the alternative presentation

List(X) = 1 + (µZ.X × (Z + 1)) .

Here, the functor G : C2 → C defined by G(X,Z) = X × (Z + 1) is shielded over X. As can be
seen here, we allow ourselves the use of basic syntactic sugar for talking about parameter indices.
In this instance, being shielded over X is synonymous with being shielded over {0} ⊆ [2].

3Here, finite coefficients means coefficients that are polynomials — instead of power series — with finite
coefficients in the remaining type variables.

4 This is quite direct in the case of the set model. Finding replacements emulating this reasoning in the
initial model will be the primary concern of the later parts.

5The bullet operation denotes the scalar product.

40 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Compositionality We warn that, in contrast to regular functors, guarded functors are
not closed under composition. This can already be seen in the case of List ◦List : C → C, as
will later be proved rigorously.

However, if we also consider shieldedness, we get the desired compositionality. If G : CN → C
is guarded over J ⊆ N and we have Fn : CM → C guarded over I ⊆M for n : N such that Fj is
in addition shielded over I for j : J , then G ◦ 〈Fn〉n:N : CM → C will be guarded over I as well.
If in addition G was T -shielded with T ⊆ J to begin with and Ft was shielded over S ⊆ I for
t : T , then G ◦ 〈Fn〉n:N will be S-shielded as well. This compositionality can be made precise
by defining a composition operation on the level of codes and showing that it corresponds to
functor composition semantically.

It goes without saying that for any element n of a finite set N , the variable selector πN
n :

CN → C is {n}-shielded.
Given a function G : CN+1 → C shielded over I ⊆ N , note that F : CN → C defined by

F (X) = µY.G(X,Y) is not just guarded over I, but also shielded over I itself. This can be
seen by unfolding F = G ◦ 〈id, F 〉 and the above remarks on compositionality.

Weakening the requirements The definition of guardedness we gave is in fact stricter
than necessary. Before we can elaborate on that, let us see how guardedness interacts with
mutual initial algebras.

Lemma 2.8. Fix finite sets I ⊆ M and N and a functor K : CM+N → CN such that the
component functors Kn : CM+N → C are shielded over I ⊔ ∅ ⊆ M + N for n : N . Then the
component functors of L = µY.K(·, Y) : CM → CN are shielded over I.

Proof. Let us first deal with the case N = [2]. Exploiting symmetry to focus on the first
component functor L1 = π1 ◦L : CM → C, we may write

L1(X) = µY1.K1(X, (Y1, µY2.K2(X,Y1, Y2)))

by Lemma 2.3. Traversing the syntactical structure of the right-hand side, shieldedness of the
invocation Ki(X,Y1, Y2) for i < 2 in the variables X|I and previous remarks on the composition-
ality of guardedness validates this expression as a well-formed functor guarded and furthermore
shielded over I.

The general case of a finite parameter index set N is proved by iterated application of the
binary case, analogous to how the general finitary mutual recursion theorem follows from its
binary version.

The following lemma explains why the definition of shieldedness involved two separate pa-
rameter subsets. In essence, it claims that the requirement of G being shielded over I in the
last clause of the definition of guardedness can be weakened to a variable cover that includes
the variable introduced by the µ-operator.

Lemma 2.9. Given finite sets I ⊆ N and a functor G : CN+1 → C that is I-shielded over
I ⊔ {•}, then F : CN → C defined by F (X) = µY.G(X,Y) is shielded over I.

Proof. Traversing the syntax tree of G as a guarded functor top-down, we can find a collection
of functors Ha : CN+1+1 → C shielded over I ⊔ {•} ⊔ ∅ for a : A such that

G(X,Y) = KX [µZa. Ha(X,Y, Za)]a:A

where K denotes a sequence of constructor applications for the inductive type of guarded
functors that do not involve parametric initial algebras with holes indexed by A. Let us regard
K as a polynomial functor of signature CN × CA → C that is I-shielded over ∅.

Fix X : CN for the current paragraph. Consider the functor UX : C1+A × C1+A → C1+A

defined by

UX

((
Y (1), Z(1)

)
,
(
Y (2), Z(2)

))
=
(
KX

(
Z(1)

)
,
(
Ha

(
X,Y (2), Z(1)

a

))
a:A

)
.

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 41

Noting that

(UX ◦∆)(Y, Z) = (KX(Z), (Ha (X,Y, Za))a:A) ,

we identify F (X) as the first component of µS.U(S, S) by mutual recursion Corollary 2.1 in
arity 1 +A. Note that

µS.UX(S, S) = µS.UX(S,UX(S, S))

= µ(Y, Z).
(
KX(Z), (Ha(X,KX(Z), Z))a:A

)

= µ(Y, Z).
(
KX(Z),WX(Z)

)

by Corollary 2.2, where we introduced the abbreviation WX : CA → CA given by

WX(Z) = (Ha(X,KX(Z), Za))a:A .

Applying binary recursion Lemma 2.3 in reverse, we derive F (X) = KX(µWX).

Note that all constructions of the previous paragraph were natural in X. Recall that
Ha(X,Y, Za) is shielded over the formal parameters X|I and Y , and that KX is shielded
over I. By compositionality of shieldedness, it follows that the component functors of W are
shielded over I as well. Lemma 2.8 then implies that the components of λX. µWX : CN → CA
are shielded over I. Since the constructor sequence K did not involve any parametric initial
algebra steps, the same holds true for F .

2.3.2 The Biased Derivative

The tools developed in this section will serve as a kind of Swiss army knife to us. While the
technical details of the lemmata here may make reading them not particularly pleasant, the
result presented in the form of corollaries later means the trouble is well worth it.

Definition 2.4. Fix a regular functor F : CM+N → C. 6 The biased derivative F : CM+3N →
C3 of F with respect to its last N parameters, also written as

F =
〈
FL, FM , FR

〉

with FL, FM , FR : CM+3N → C, is defined inductively as follows.

• If F (X,Y) = Xm with m : M , then FL(X,Y) = FR(X,Y) = Xm and FM = 0.

• If F (X,Y) = Yn with n : N , then F (X,Y) = Yn.

• Taking the biased derivative distributes over finite sums. In detail:

– If F = 0, then F = 0.

– If F = G+H for regular functors G,H : CM+N → C, then F = G+H.

• In the case of finite products, the left and right parts distribute. The middle part selects
one factor, akin to the action of the derivative operator on products, and annotates all
factors according to their relative position.

– If F = 1, then FL = FR = 1 and FM = 0.

6 Here, the first factor of the domain of F is treated as an opaque outer context. An alternative to try to
improve the elegance of the presentation would be to entirely disregard the outer context and instead parame-
terize the definition of regular functors over some opaque base set of constants. In a situation where one would
like to take e.g. the biased derivative of F : EM × EN → E with respect to its last N parameters, one may set

C = EE
M

and treat the projections πM
m : EM → E with m : M as the base set for regularity over C.

42 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

– If F = G×H with regular functors G,H : CM+N → C, then

FL = GL ×HL,

FM = GM ×HR +GL ×HM ,

FR = GR ×HR.

Note that, in the general case of F = G0× . . .×Gk−1 for regular functors G0, . . . , Gk−1 :
CM+N → C, the middle part may be written as

FM =
∑

i<k

GL
0 × . . .×GL

i−1 ×GM
i ×GR

i+1 × . . .×GR
k−1.

• If F (X,Y) = µZ.G(X,Y, Z) with a regular functor G : CM+N+1 → C, then

F (X,Y) = µZ.G(X,Y, Z).

Here, the biased derivative of G is understood to be taken with respect to its last N + 1
parameters.

It will always be clear from the surrounding context with respect to which variables we will
be taking the biased derivative, most often in the form of an explicit splitting of the parameter
index set into a binary coproduct. We will thus omit this intuitively accessible information.

Lemma 2.10. The biased derivative is invariant under variable renamings.
In detail, consider a morphism u : M1 → M2 and an isomorphism v : N1 → N2 between

finite parameters index sets. We have induced variable renamings

Cu+ v : CM2+ N2 → CM1+ N1 ,

Cu+3v : CM2+3N2 → CM1+3N1 .

Let F : CM1+N1 → C be a regular functor. Then,

F ◦ Cu+v = F ◦ Cu+3v.

Proof. A boring proof by structural induction on F , noting that the definition of the biased
derivative F follows the general form of a definition invariant under variable namings.

As is already evident from its definition, the interesting details of the biased derivative F of
a regular functor F : CM+N → C are contained in the middle action FM . The following lemma
makes this precise.

Lemma 2.11. Let a regular functor F : CM+N → C be given. We have

FL
(
X,
〈
Y L, Y M , Y R

〉)
= F

(
X,Y L

)
,

FR
(
X,
〈
Y L, Y M , Y R

〉)
= F

(
X,Y R

)

natural in X : CM and Y L, Y M , Y R : CN . In other words, we have commutativity of the
following diagrams:

CM ×
(
C3
)N id×(π3

1)
N

//

F

��

CM × CN

F

��
C3 π3

1 // C

CM ×
(
C3
)N id×(π3

3)
N

//

F

��

CM × CN

F

��
C3 π3

3 // C

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 43

Proof. By symmetry, it is sufficient to focus only on the left diagram. We induct on the structure
of F , noting that all cases except for the one concerning parametric initial algebra formation
are boring.

In the base cases where F is a variable selector, commutativity is direct from the defini-
tion of F . Note that if F selects from its left domain factor, the outer context M , then the
corresponding diagram for π3

2 instead of π3
1 would not commute.

If F is a finite coproduct or product of regular functors, then FL = π3
1 ◦F will by definition

be the finite coproduct or product of their biased derivatives, respectively. Since π3
1 preserves

finite products and coproducts, commutativity of the diagram for F follows from that for its
constituents.

Finally, the crucial case of F being a parametric initial algebra is taken care of by Lemma 2.7
since π3

1 is left adjoint to the functor 〈id, 1, 1〉 : C → C3.

Given a parametric initial algebra

F : CM+N → C,
F (X,Y) = µZ.G(X,Y, Z)

over a regular functor G : CM+N+1 → C, then the preceding lemma enables us to simplify the
mutually inductive definition of F as an initial algebra over C3. For two of its components, FL

and FR, this is direct from the statement of the lemma. Now, Corollary 2.1 lets us write

FM
(
X,
〈
Y L, Y M , Y R

〉)
= µZM . GM

(
X,
〈
Y L, Y M , Y R

〉
,
(
F
(
X,Y L

)
, ZM , F

(
X,Y R

)))

= µZM . GM
(
X,
〈(
Y L, F

(
X,Y L

))
,
(
Y M , ZM

)
,
(
Y R, F

(
X,Y R

))〉)

(2.1)
natural in X : Cm and Y L, Y M , Y R : Cn. If we structurally build up F like this, then an
important consequence is that FM itself is a regular functor, albeit of asymptotically quadratic
size (but of linear height).

The following two lemmata are the key results of this section. All primary use cases will
in some form be instances of these results (together with later notes how the biased derivative
interacts with guardedness and shieldedness).

Lemma 2.12. Let a regular functor F : CM+N → C be given. We have

FL
(
X,
〈
Y L, Y M , Y L + Y M

〉)
+ FM

(
X,
〈
Y L, Y M , Y L + Y M

〉)
= F

(
X,Y L + Y M

)

natural in X : Cm and Y L, Y M , Y R : Cn. In other words, we have commutativity of the diagram

CM ×
(
C2
)N id×(·+·)N //

id×uM

��

CM × CN

F

��

CM ×
(
C3
)N

F

��
C3

v

��
C2 ·+· // C

where u : C2 → C3 and v : C3 → C2 denote the operations

u(L,M) = (L,M,L+M),

v(L,M,R) = (L,M).

44 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Proof. We induct on the structure of F .
In the base cases where F is a variable selector, commutativity is rather direct from the

definition of F and the fact that applications of u and v do not interfere with the first two
components of each triplet.

If F is a finite coproduct of regular functors, then F will be the finite coproduct of their
biased derivatives. As sums distribute over sums, all of u, v, and ·+ · preserve finite coproducts.
Commutativity of the diagram for F thus follows from that for its constituents.

For the case of finite products, introduce variables X : CM and Y L, Y M , Y R : CN . Let
us abbreviate α =

(
X,
〈
Y L, Y M , Y L + Y M

〉)
and β =

(
X,Y L + Y M

)
. With this notational

convenience, the goal is to show that FL(α) + FM (α) = F (β), natural in the variables X and
Y L, Y M , Y R.

If F = 1, then
FL(α) + FM (α) = 1 + 0 = 1 = F (β)

by definition of F .
The most interesting case, if F = G×H with regular functors G,H : CM+N → C, then

FL(α) + FM (α) = GL(α)×HL(α) +
(
GM (α)×HR(α) +GL(α)×HM (α)

)

(by Lemma 2.11 to derive HR(α) = H(β))

= GL(α)×
(
HL(α) +HM (α)

)
+GM (α)×H(β)

(by induction hypothesis for H)

= GL(α)×H(β) +GM (α)×H(β)

=
(
GL(α)×GM (α)

)
×H(β)

(by induction hypothesis for G)

= G(β)×H(β)

= F (β).

Again, the crucial case of F being a parametric initial algebra is taken care of by Lemma 2.7
since ·+ · is left adjoint to the diagonal functor ∆ = 〈id, id〉 : C → C2.

Lemma 2.13. Let a regular functor F : CM+N → C be given. Then FM is linear in the middle
parts of its argument triplets. In formulae, this expresses as

FM =
(
·|inr ◦(1,·)

)
•
〈
FM
(n)

〉
n:N

where for n : N we abbreviated FM
(n) : CM+2N → C given by

FM
(n)(X,

〈
Y L, Y R

〉
) = FM

(
X,
〈
Y L, EN

n , Y R
〉)

where EN
n : CN denotes the category-level unit vector defined by

EN
i,j =

{
1 if i = j,

0 else

for i, j : N .
In perhaps more readable pointed style, the same equation reads as

FM
(
X,
〈
Y L, Y M , Y R

〉)
= Y M •

〈
FM

(
X,
〈
Y L, EN

n , Y R
〉)〉

n:N

=
∑

n:N

Y M
j × FM

(
X,
〈
Y L, EN

n , Y R
〉)

natural in X : CM and Y L, Y M , Y R : CN .

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 45

Proof. Again, we induct on the structure of F .
In case F is a variable selector for an argument from its left domain factor, the outer context

M , the left-hand side and the second argument of the scalar product on the right-hand side of
the equation for F will vanish.

In case F (X,Y) = Yn for X : CM and Y : CN with n : N , we have

Y M •
〈
FM

(
X,
〈
Y L, EN

n , Y R
〉)〉

n:N
= Y M • EN

n

= Y M
n

= FM
(
X,
〈
Y L, Y M , Y R

〉)

natural in X : CM and Y L, Y M , Y R : CN .
If F is a finite coproduct of regular functors, the equation for F will be the result of summing

the individual equations for the constituting summands of F as the scalar product is linear in
its second component.

If F = 1, then — similar to the first case — the left-hand side and the second argument of
the scalar product on the right-hand side of the equation for F will vanish.

Let us now examine the more interesting case of F = G ×H with regular functors G,H :
CM+N → C. Abbreviating α =

(
X,
〈
Y L, Y M , Y R

〉)
and βn =

(
X,
〈
Y L, EN

n , Y R
〉)

for n : N , we
have

Y M •
〈
FM (αn)

〉
n:N

= Y M •
〈
GM (αn)×HRαn +GL(αn)×HM (αn)

〉
n:N

(by Lemma 2.11 to derive HR(αn) = H
(
X,Y R

)
and GL(αn) = G

(
X,Y L

)
and thereby remove

their dependency on n : N)

= Y M •
〈
GM (αn)×H

(
X,Y R

)
+G

(
X,Y L

)
×HM (αn)

〉
n:N

(by linearity of the scalar product in its second argument)

=
(
Y M •

〈
GM (αn)

〉
n:N

)
×H

(
X,Y R

)
+G

(
X,RL

)
×
(
Y M •

〈
HM (αn)

〉
n:N

)

(by induction hypothesis)

= GM (β)×H
(
X,Y R

)
+G

(
X,Y L

)
×HM (β)

(by Lemma 2.11 in reverse)

= GM (β)×HR(β) +GL(β)×HM (β)

= FM (β)

natural in X : CM and Y L, Y M , Y R : CN .
Finally, let us consider the case where F is a parametric initial algebra of a regular functor

G : CM+N+1 → C, i.e. F (X,Y) = µZ.G(X,Y, Z) with X : CM and Y : CN . Let us introduce
variables X : CM and Y L, Y M , Y R : CN . Abbreviating

α =
(
X,
(〈(

Y L, F
(
X,Y L

))
,
(
Y R, F

(
X,Y R

))〉))

and starting with observation (2.1), note that

FM
(
X,
〈
Y L, Y M , Y R

〉)
= µZM . GM

(
X,
(〈(

Y L, F
(
X,Y L

))
,
(
Y M , ZM

)
,
(
Y R, F

(
X,Y R

))〉))

(by induction hypothesis)

= µZM . Y M •
〈
GM

(inl(n))(α)
〉
n:N

+ ZM ×GM
(inr(•))(α)

46 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

(by Lemma 2.6)

=
(
Y M •

〈
GM

(inl(n))(α)
〉)
× List

(
GM

(inr(•))(α)
)
n:N

(by linearity of the scalar product in its second component)

= Y M •
〈
GM

(inl(n))(α)× List
(
GM

(inr(•))(α)
)〉

n:N
.

This has already brought FM
(
X,
〈
Y L, Y M , Y R

〉)
into a form linear in Y M . By evaluation, we

find that
FM
(n)

(
X,
〈
Y L, Y R

〉)
= GM

(inl(n))(α)× List
(
GM

(inr(•))(α)
)

for n : N , thus validating the target equation.

Combining the previous two lemmata, we forge the blade of our Swiss army knife:

Corollary 2.3. Let a regular functor F : CM+N → C be given. Then,

F
(
X,Y L + Y M

)
= F

(
X,Y L

)
+
∑

n:N

Y M
j × FM

(n)

(
X,
〈
Y L, Y L + Y M

〉)

Proof. One half is given by Lemma 2.12 to establish the basic additive splitting. The other half
is given by refining the right summand according to Lemma 2.13. Note that we made use of
Lemma 2.11 in rewriting the left summand.

Here is a specific instantiation used quite often later on:

Corollary 2.4. Let a regular functor F : CM+1 → C be given. Then,

F (X,Y) = F (X, 0) + Y × FM
(•) (X, 〈0, Y 〉)

natural in X : CM and Y : C.

Proof. In Corollary 2.3, choose N = 1 as well as Y L = Y and Y M = 0.

Note that FM
(•) (X, 〈Y, Y 〉) yields the usual notion of derivative of a regular functor. This

explains our choice of name of biased derivative: the plain derivative results from choosing
symmetric (unbiased) arguments for FM

(•).
Let us close this subsection by analyzing how forming the coefficients of the right summand

in Corollary 2.3 interacts with guardedness and shieldedness.

Lemma 2.14. Consider a regular functor F : CM+N → C and fix I ⊆M and J ⊆ N .

• If F is guarded over I ⊔ J , then FM
(n) is guarded over I ⊔ 2J ⊆M + 2N for n : N .

• If F is shielded over I ⊔ J , then FM
(n) is shielded over I ⊔ 2J ⊆M + 2N for all n : N \ J .

Proof. We prove both claims simultaneously by induction on guardedness and shieldedness as
a mutual family.

Guardedness In case F is either a variable selector or the terminal object functor 1, then
FM
(n) will be a regular functor with no occurrence of initial algebra formation, making it trivially

guarded over I ⊔ 2J .
As all involved constructions distribute over finite coproducts, the case of finite coproducts

is not particularly interesting. For completeness, if F is a finite coproduct of functors Gk :
CM+N → C guarded over I ⊔ J for k : K, then FM

(n) will be the finite coproduct of (Gk)
M
(n) for

k : K. The latter summands are guarded over I ⊔ 2J by induction hypothesis, thus verifying
the same assertion for FM

(n).

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 47

In case F = G × H with functors G,H : CM+N → C guarded over I ⊔ J , recall with
Lemma 2.11 that

FM
(n)

(
X,
〈
Y L, Y R

〉)
= GM

(n)

(
X,
〈
Y L, Y R

〉)
×H(X,Y R) +G(X,Y L) +HM

(n)

(
X,
〈
Y L, Y R

〉)

natural X : CM and Y L, Y R : CN . By induction hypothesis and compositionality of guarded-
ness, all factors in the above expression of FM

(n) as a sum of products of functors CM+2N → C
are guarded over I ⊔ 2J , showing the same for FM

(n).

Finally, consider the case that F is the parametric initial algebra of G : CM+(N+1) → C
shielded over I ⊔ (J ⊔ ∅). Recall from the proof of the Lemma 2.13 that

FM
(n) =

(
GM

(inl(n)) ×
(
List ◦ GM

(inr(•))

))
◦K

where K : CM+2N → CM+2(N+1) is defined by

K
(
X,
〈
Y L, Y R

〉)
=
(
X,
(〈(

Y L, F
(
X,Y L

))
,
(
Y R, F

(
X,Y R

))〉))
.

Utilizing both claims of the induction hypothesis, we see that GM
(inl(n)) is guarded and

GM
(inr(•)) is shielded over I ⊔ 2(J ⊔ ∅), respectively. Here, the latter consequence crucially de-

pended on inr(•) 6∈ J⊔∅. Since List is a guarded endofunctor, postcomposing with it transforms
shieldedness into guardedness. We hence see that

GM
(inl(n)) ×

(
List ◦ GM

(inr(•))

)

is guarded over I ⊔ 2(J ⊔ ∅).
Note that the component functors of K inherit guardedness over I ⊔ 2J from guardedness

of F over I ⊔ J . Since those component functors of K that are indexed by I ⊔ 2(J ⊔ ∅) are
trivially shielded over I ⊔ 2J , it finally follows that FM

(n) is guarded over I ⊔ 2J .

Shieldedness Let F : CM+N → C be a functor shielded over I ⊔ J ⊆M +N . This means
we have a decomposition

F (X,Y) = X|I • 〈Ui(X,Y)〉i:I + Y |J • 〈Vj(X,Y)〉j:J

where X : CM and Y : CN with functors Ui, Vj : CM+N guarded over I ⊔ J for i : I and j : J ,
respectively.

Unfolding the definition of F over products of sums, we have

FM (β) = X|I •
〈
UM
i (β)

〉
i:I

+ Y L
∣∣
J
•
〈
V M
j (β)

〉
j:J

+ Y M
∣∣
J
•
〈
V R
j (β)

〉
j:J

where β =
(
X,
〈
Y L, Y M , Y R

〉)
: CM+3N .

In the context of n : N \ J , first note that EN
n

∣∣
J
= 0. This explains the last summand

having vanished in the equation

FM
(n)(α) = X|I •

〈
(Ui)

M
(n)(α)

〉
i:I

+ Y L
∣∣
J
•
〈
(Vj)

M
(n)(α)

〉
j:J

natural in α =
(
X,
〈
Y L, Y R

〉)
: CM+2N . Since (Ui)

M
(n) and (Vj)

M
(n) are all guarded over I ⊔2J ⊆

M + 2N for i : I and j : J , respectively, we see that FM
(n) is shielded over I ⊔ 2J . 7

7 Specifically, FM
(n)

is (I ⊔ {0} × J)-shielded over I ⊔ 2J . We shall not need this level of detail here.

48 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

2.3.3 The Biased Derivative: Applications

Lemma 2.15. Let regular functors F : CN+1 → C and C : CN → C be given. We have

µY. F (X,Y) + C(X) = (µY. F (X,Y)) + C(X)× U(X)

natural in X : CN . Here, U : CN → C abbreviates the regular functor given by

U(X) = List
(
FM
(•) (X, (µY. F (X,Y), µY. F (X,Y) + C(X)))

)
.

Proof. Consider the functor H : CN+1 → C defined by H(X,T) = µY. F (X,Y) + T . Instanti-
ating Corollary 2.4 with F = H and Y = C(X), we read off

H(X,C(X)) = H(X, 0) + C(X)×HM
(•)(X, (0, C(X)))

natural in X : CN , which is precisely the equation we were looking for.
For the shape of U , note that by observation (2.1) together with Lemma 2.10, we have

HM
(•)(X, (0, C(X))) = HM (X, (0, 1, C(X)))

= µY M . FM
(
X, (H(X, 0), Y M , H(X,C(X)))

)
+ 1

(by linearity of FM as per Lemma 2.13)

= µY M . Y M × FM (X, (H(X, 0), 1, H(X,C(X)))) + 1

= List
(
FM (X, (H(X, 0), 1, H(X,C(X))))

)

= List
(
FM
(•) (X, (H(X, 0), H(X,C(X))))

)

Surprisingly, the above result can be generalized to the case when C also depends on Y with
the variable conventions of the above equation. This is perhaps striking as the previous proof
crucially depended on C(X) being constant so that it could be abstracted over as a parameter
of H outside of the binding context of µ over Y .

Lemma 2.16. Let regular functors F,G : CN+1 → C be given. Introduce a regular functors
R : CN → C abbreviating R(X) = µY. F (X,Y) + G(X,Y). We have R = (µY. F (·, Y)) +
(G ◦ 〈id, R〉)× U , i.e.

µY. F (X,Y) +G(X,Y) = (µY. F (X,Y)) +G(X,R(X))× U(X)

natural in X : CN . Here, U : CN → C is the regular functor given by

U(X) = List
(
FM
(•) (X, (µY. F (X,Y), µY. F (X,Y) +G(X,Y)))

)
.

Proof. Convince yourself of the following chain of equations natural in X : CN :

R(X) = µY. F (X,Y) +G(X,Y)

(by the diagonal rule)

= µY1. µY2. F (X,Y2) +G(X,Y1)

(unfolding the outer initial algebra once)

= µY2. F (X,Y2) +G(X,µY1. µY2. F (X,Y2) +G(X,Y1))

(by the diagonal rule in reverse)

= µY2. F (X,Y2) +G(X,µY. F (X,Y) +G(X,Y))

= µY. F (X,Y) +G(X,R(X)).

With this, the desired equation is directly given by Lemma 2.15 for C = G ◦ 〈id, R〉.

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 49

Lemma 2.17. Let a regular functor F : Cn → C be given where n : N. There exist regular
functors Ui : C[n]\[i] → C for i < n such that

F (X0, . . . , Xn−1) = F (0) +
∑

i<n

Xi × Ui(Xi, . . . , Xn−1)

natural in X0, . . . , Xn−1 : C. If F is furthermore guarded over I ⊆ [n], then Ui will be guarded
over I \ [i] for i < n.

Proof. By induction on n, with the base n = 0 being trivial.
In the induction step, apply Corollary 2.4 with the derivative of F being taken with respect

to its first variable, i.e. mapping its parameter index set under the isomorphism [n] = 1+[n−1]
witnessed in the reverse direction by 〈0, 1 + ·〉. With the latter isomorphism being treated
implicitly, we read off

F (X0, X1, . . . , Xn−1) = F (0, X1, . . . , Xn−1) +X0 × FM
(•) ((X1, . . . , Xn−1), 〈0, X0〉) .

Using the induction hypothesis on the regular functor of arity n− 1 mapping (X1, . . . , Xn) to
F (0, X1, . . . , Xn), we derive a decomposition

F (0, X1, . . . , Xn−1) = F (0) +
∑

1≤i<n

Xi × Ui(Xi, . . . , Xn−1)

with regular functors Ui : Cn−i → C for 1 ≤ i < n. Substituting the right-hand side expression
for F (0, X1, . . . , Xn−1) into the previous equation while defining the regular functor U0 : Cn → C
as

U0(X0, . . . , Xn−1) = FM
(•) ((X1, . . . , Xn−1), 〈0, X0〉) ,

we establish the desired decomposition

F (X0, . . . , Xn−1) = F (0) +
∑

i<n

Xi × Ui(Xi, . . . , Xn−1).

Now assume F is guarded over I ⊆ [n]. Guardedness of U0 in I follows from Lemma 2.14.
By compositionality of guardedness, we see that F (0, X1, . . . , Xn−1) is guarded over I \ [1].
Guardedness of Ui in I \ [i] for i ≥ 1 then follows by induction.

Given a finite parameter index set M , a functor CM → C is called polynomial if it is built
out of variable selectors as well as finite products and coproducts. Given finite parameter index
sets M and N , a functor K : CM → CN is called generalized polynomial if all its component
functors are polynomial. Polynomial functors and generalized polynomial functors are closed
under composition.

Lemma 2.18. Let F : CM → C be a regular functor. Then there exists a finite parameter index
set N and a generalized polynomial functors K : CM+N → CN such that

F (X) = πN
k (µY.K(X,Y))

natural in X : CM for some k : N .

Proof. For technical reasons, we will instead first prove a weaker but more efficient claim by
induction on the structure of regular functors.

A weaker invariant For any regular functor F : CM → C there exists a generalized
polynomial functors K : CM+N → CN and a polynomial functor R : CM+N → C such that

F (X) = R (X,µY.K(X,Y)) .

50 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

The induction If F (X) = Xm for some m : M or F = 0 or F = 1, then we choose N = ∅
and R = F .

Given regular functors F1, F2 : CM → C, assume that we already have generalized polynomial
functors K1 : CM+N1 → CN1 and K2 : CM+N2 → CN2 as well as polynomial functors R1 :
CM+N1 → C and R2 : CM+N2 → C such that

F1(X) = R1 (X,µZ1.K1(X,Z1)) ,

F2(X) = R2 (X,µZ2.K2(X,Z2)) .

Define a combined generalized polynomial functor K : CM+N1+N2 → CN1+N2 by setting

Kinl(n1)(X,Z1, Z2) = K1(X,Z1),

Kinr(n2)(X,Z1, Z2) = K2(X,Z2)

for n1 : N1 and n2 : N2, respectively. Given an arbitrary binary polynomial functor Q : C2 → C,
define R : CX+N1+N2 → C by R(X,Z1, Z2) = Q(R1(X,Z1), R2(X,Z2)). By the binary mutual
recursion theorem, it follows that

R (X,µ(Z1, Z2).K(X,Z1, Z2)) = R (µZ1.K1(X,Z1), µZ2.K2(X,Z2))

= Q(R1(X,µZ1.K1(X,Z1)), R2(X,µZ2.K1(X,Z2)))

= Q(F1(X), F2(X)).

Now the claim for F1 + F2 and F1 × F2 follows by choosing Q accordingly.
Finally, let F be the parametric initial algebra of a regular functor G : CM+1 → C. Assume

that we have a generalized polynomial functor L : CM+1+O → CO as well as a polynomial
functor S : CM+1+O → C such that

G(X,Y) = S (X,Y, µZ.L(X,Y, Z)) .

Let us define an extended generalized polynomial functor K : CM+1+O → C1+O by setting
Kinl(•)(X,Y, Z) = S(X,Y, Z) and Kinr(o)(X,Y, Z) = Lo(X,Y, Z) for o : O. By the mutual
recursion theorem, we have

πinl(•) (µ(Y, Z).K(X,Y, Z)) = µY. S (X,Y, µZ.L(X,Y, Z))

= µY.G(X,Y)

= F (X).

Choosing the variable selection polynomial functor R : CM+1+O → C given by R(X,Y, Z) = Y ,
we thus have verified the claim for F .

Deriving the stronger claim Note that the case of F being a parametric initial algebra
returned a result selection functor R of variable selector shape as desired in the stronger claim
of the lemma. Given an arbitrary regular functor F : CM → C, we may thus simply apply the
above algorithm to the degenerate parametric initial algebra mapping X : CM to µY. F (X),
which of course still equals F .

Let us now prove the main theorem of this section, establishing the decomposition of any
regular functor into a guarded and an indefinite part. We apologize to the reader in advance,
for during write-up, we noticed a mistake in our original proof, which we were not able to fix in
the brief time available. The original proof was based on the tools developed above and in the
preceding subsection, aiming for a more local nested approach. In contrast, the replacement
proof uses a global mutual approach, explicitly requiring the component functors of the mutual
specification to be polynomial. It is thus less modular with respect to future possible extensions
of the language of functors under consideration. Our hope is that the original mistake is fixable,
so that a future presentation may be more streamlined.

Note however, some of the results derived above, in particular Lemma 2.16, are still used.

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 51

Theorem 2.1 (Decomposition theorem). For any regular functor F : CM → C, there are
regular functors UF , V F : CM → C with UF guarded such that

F (X) = UF (X) +N× V F (X)

natural in X : CM , or F = UF +N× V F for short.

Proof. By Lemma 2.18, there is a generalized polynomial functor K : CM+N → CN with
F (X) = R(X,µY. (K(X,Y))) for some polynomial functor R : CN+M → C. Our goal will be to
find a suitable decomposition for K and then reflect it back through R.

Given a finite parameter index set A, let Id : CM+A → CM denote the local identity functor
Id(X,Y) = Y in contexts of type CM , and given S : CM+A → CB and T : CM+B → CC , let

T ◦S : CM+A → CC ,
(T ◦S)(X,Y) = T (X,S(X,Y))

denote the local composition of S and T in contexts of type CM . Given S : CM+A → CA,
introduce abbreviations Sn = S ◦ . . . ◦S for n : N and µS : CM → CA given by (µS)(X) =
µY. S(X,Y). These definitions can be made elegant formally by working in the Kleisli category
over the reader monad over CM .

Stability of initial coefficients For any generalized polynomial S : CM+A → CB , let
C(S) denote the set of those a : A such that the N-coefficient of the monomial of degree zero in
Sa is non-zero, i.e. Sa(0) ≥ 1. Fixing a generalized polynomial T : CM+B → CC , observe that
C(T ◦S) is a monotone function of C(S) for generalized polynomial S : CM+A → CB . Since
C (Id) = ∅ ⊆ C(K), we in particular have an ascending chain

∅ = C
(
K0
)
⊆ C

(
K1
)
⊆ . . .

that stabilizes after attaining its first equality. But C (Kn) ⊆ N , so there must be a minimal
k ≥ 1 with k ≤ |N | with such that C

(
Kk
)
= C

(
Kk+1

)
, and hence also C

(
Kk
)
= C

(
K2k

)
.

Since µY.K(X,Y) = µY.Kk(X,Y) natural in X : CM by the n-powered version of the squaring
rule Lemma 2.5, 8, we may thus substitute Kk for K and without loss of generality assume
that C (K ◦K) = C(K).

Removal of initial coefficients Decompose K(X,Y) = S+T (X,Y) with S : CN and T :
CM+N → CN where S denotes the monomials of K having degree zero. Writing Q : CM+N → N
for Q(X,Y) = S + Y , the rolling rule Lemma 2.4 tell us that

F = R ◦µK
= R ◦µ(Q ◦T)
= (R ◦Q) ◦µ(T ◦Q)

where we have identified CN with C0+N .
From K ◦K = K, we derive S ◦K ◦K = S ◦K. Recall functionality of C(U ◦V) in C(V)

for fixed U . Since C(T) = ∅ = C(Id), precomposition with T does not change the value of C
for any given argument. We continue deriving S ◦K ◦T = S ◦T , i.e.

(S ◦T)2 = S ◦T.

Substituting S ◦T for K and R ◦Q for R, we may thus without loss of generality assume that
C(K) = ∅, i.e. K(0, 0) = 0.

8Alternatively, we may enlarge k to the nearest power of 2 and avoid the need for generalizing the squaring
rule.

52 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Delooping For any generalized polynomial S : CM+A → CB , let US : CA → CB denote
the linear part of S(0, ·) and V S : CM+A → CB the remainder, i.e.

S(X,Y) = US(X) + V S(X,Y).

Given generalized polynomials S : CM+A → CB and T : CM+B → CC , note that

(T ◦S)(X,Y) = UT (S(X,Y)) + V T (X,S(X,Y))

= UT (US(X)) + UT (V T (X,Y)) + V T (X,S(X,Y)),

i.e. UT ◦S = UT ◦US and V T ◦S = UT ◦V T + V T ◦S, implying that the operator U preserves
composition. Given generalized polynomial S : CM+A → CB , let further U ′(S) ⊆ A×B denote
the relation relating a : A and b : B if US

a has non-zero coefficient in front of the monomial πB
b .

Again, note that U ′ translates composition of functors into composition of relations.
Since U ′(K) ⊆ N × N is an endorelation with finite domain, there must be k : N such

that U ′(K)k is transitive. 9. By substituting Kk for K, assume without loss of generality that
U ′(K) is transitive.

Let J consist of those n : N such that (n, n) ∈ U ′(K). For ease of reasoning, identify
N = I + J with finite parameter index set I. Fixing X : CM and Y : CI , we may thus write

K2(X, (Y, Z)) = Z +Q(X, (Y, Z))

for generalized polynomial Q : CM+(I+J). Abbreviating TX,Y = µZ.K2(X, (Y, Z)), we have

TX,Y = µZ.Z +Q(X, (Y, Z))

= (µZ.Z) +Q(X, (Y, TX,Y))× ListJ
(
(IdCJ)

M
(•) (. . .)

)

= 0 +Q(X, (Y, TX,Y))× ListJ(1)

= (N)j:J ×Q(X, (Y, TX,Y))

by the higher dimensional analogue of the theory of biased derivatives of regular functors and
in particular Lemma 2.16, and a trivial application of mutual recursion Corollary 2.1 to derive
ListJ(1) = (N)j:J .

By an application of binary mutual recursion Lemma 2.3, we then see that

µ(Y, Z). 〈K1,K2〉 (X, (Y, Z)) =
(
µY.K1(X, (Y, TX,Y)), TX,µY.K1(X,(Y,TX,Y))

)

We may rewrite the first component as follows:

µY.K1(X, (Y, TX,Y)) = µY.K1(X, (Y, 0)) + TX,Y •
{

componentwise regular matrix
of dimension J × I

}

= µY.K1(X, (Y, 0)) + (N)i:I × . . .

= (µY.K1(X, (Y, 0))) + (N)i:I ×

Here, the first step uses the higher dimensional analogue of Corollary 2.4, and the last step
uses the higher dimensional analogue of Lemma 2.15. The omitted matrix and I-dimensional
vectors have as entries regular functors applied to arguments X and Y .

In total, we have derived a decomposition

µK = (µY.K1(X, (Y, 0)), 0) + (N)n:I+J × S

for some generalized regular functor S : CM+(I+J) → CI+J . Since R is polynomial, it is easy to
see that this translates into

F (X) = R
(
X,µK

)
= R(X, (µY.K1(X, (Y, 0)), 0)) +N× . . .

9Note that this is distinct from the transitive closure of U ′(K)

2.3. DECOMPOSITION INTO GUARDED AND UNGUARDED PARTS 53

where the omitted term is again regular. It remains is to solve the original problem for the
generalized polynomial functor K ′ : CM+I → CI given by K ′(X,Y) to K1(X, (Y, 0)) and the
result collecting functor R′ : CM×I → C given by R′(X,Y) = R(X, (Y, 0)).

Recall that (i, i) 6∈ U ′(K) for i : I by construction of I. Since U ′(K) is transitive, this
implies U ′(K ′) = U ′(K) ∩ (I × I) = ∅. Substituting I for N , and K ′ for K, and R′ for R, we
may hence without loss of generality assume that U(K) = 0.

The guarded part Recapitulating, all monomials with non-zero coefficient in the compo-
nent functors of K that have the form (X,Y) 7→ Y α must have degree |α| ≥ 2. This assumption
enables us to write

Kn(X,Y) =
∑

i:M

Xi × Pn,i(X,Y) +
∑

j1,j2:N

Yj1 × Yj2 ×Qn,j1,j2(X,Y)

with generalized polynomials P : CM+N → CN×M and Q : CM+N → CN×N×N . Note that this
is not a unique decomposition, but requires some particular, though arbitrary choice.

Consider the following generalized polynomial:

H : CM+(N+M×N) → CN+N×M ,

Hinl(n)(X, (Y, Z)) = Kn

(
X,
∑

i:M

Xi × (Pn,i(X,Y) + Zn,i)

)
,

Hinr(n,i)(X, (Y, Z)) =
∑

j1,j2:N

(Pj1,i(X,Y) + Zj1,i)

×
(∑

i′:M

Xi′ × (Pj2,i′(X,Y) + Zj2,i′)

)
×Qn,j1,j2(X,Y).

Since Kn(0, 0) = 0, note that Kn is shielded for all n : N . By composition of shieldedness, we
therefore see that Hinl(n)(X, (Y, Z)) is shielded over X. Even more direct, by distributivity, we
see that Hinl(n,i)(X, (Y, Z)) is shielded over X for all n : N and i : I. By Lemma 2.8, it follows
that each component functor of µH is guarded over its first argument.

By the rolling rule Lemma 2.4, note that H is related to the generalized polynomial

H ′ : CM+(N+N×M) → CN+N×M ,

H ′
inl(n)(X, (Y, Z)) = Kn

(
X,
∑

i:M

Xi × Zn,i

)
,

H ′
inr(n,i)(X, (Y, Z)) = Pn,i(X,Y) +

∑

j1,j2:N

Zj1,i ×
(∑

i′:M

Xi′ × Zj2,i′

)
×Qn,j1,j2(X,Y)

via the functor

G : CM+(N+M×N) → CN+M×N ,

G(X, (Y, Z)) = (X, (Y, P (X,Y) + Z)),

i.e. µ(H ′) = G ◦µ(H), and thus in particular µ(H ′)1 = µ(H).
Next, consider the functor

T : CM+(N+N) → CN+N ,

Tinl(n)(X, (Y, Z)) = Kn(X,Zn),

Tinr(n)(X, (Y, Z)) =
∑

i:M

Xi × Pn,i(X,Y) +
∑

j1,j2:N

Zj1 × Zj2 ×Qn,j1,j2(X,Y).

54 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Fix X : CM and introduce the functor

L : CM → C,
L(Z) =

∑

i:M

Xi × Zi

right adjoint to U : C → CM defined by U(Z) =
(
ZXi

)
i:M

. Elementary algebra verifies
commutativity of the following fusion diagram:

CN+N×M CN×LN

//

H′(X,·)
��

CN+N

T (X,·)
��

CN+N×M CN×LN

// CN+N

With the functor CN × LN being left adjoint to CN × UN , we apply fusion Lemma 2.1 and
derive

µ(T) =
(
CN × LN

)
◦µ(H ′),

and thus in particular µ(T)1 = µ(H ′)1.
Using partial squaring Corollary 2.2, we finally calculate

µ(Y, Z). T (X, (Y, Z)) = µ(Y, Z). T (X, (T (X, (Y, Z)), Z))

= µ(Y, Z). T (X, (K(X,Z), Z))

= µ(Y, Z). (K(X,Z),K(X,Z)).

By mutual recursion Lemma 2.3, we thus have µ(T)2 = µK and µ(T)1 = K(X,µ(T)2) = µK.
Putting the above chain of transformations together, the reader is invited to realize that

µK = µH1. Since each component functor of µH was guarded over its first argument, the same
holds true for µK. It follows that F = R ◦µK is a guarded functor.

2.4. THE SET MODEL 55

2.4 The Set Model

2.4.1 Containers

An N -ary container S ⊳ P on the category Set of sets consists of a shape S : Set and a family
P : S → SetN of positions over S [1]. It induces a container extension functor JS ⊳ P K :
SetN → Set by associating to families of sets X : SetN the sum over S of products of powers of
Xn for n : N with exponents given by P :

JS ⊳ P K (X) =
∑

s:S

∏
XP (s)

=
∑

s:S

∏

n:N

XP (s)n
n

The category ContN of N -ary containers has as morphisms between containers S1 ⊳ P1 and
S2 ⊳ P2 pairs (f, u) where f : S1 → T2 is a function between the shapes and u is a family over
s : S1 of contravariant functions us : P2(f(s))→ P1(s) between the positions, with identity and
composition defined in the obvious way. Recalling that the shape projection functor (S⊳P) 7→ S
is a fibration, a morphism (f, u) is cartesian (always implicitly with respect to this fibration)
if u is a family of isomorphisms. Extension of n-ary containers is a fully faithful functor
J·K : ContN → (SetN → Set). Let us recall some basic closure properties of containers.

Colimits Container extension creates colimits. Given a diagram I → ContN of containers
written (Si ⊳ Pi)i:I , note that the family P :

∏
i:I Si → Set forms a cocone over the diagram

S : I → Set. Its colimit is given by

colimi:I(Si ⊳ Pi) = colimS ⊳ [P].

Coproducts The previous paragraph includes the special case of coproducts. Given a (dis-
crete) family (Si ⊳ Pi)i:I of N -ary containers, its coproduct is given

∑

i:I

(Si ⊳ Pi) =
∑

i:I

Si ⊳ [Pi]i:I .

Products Container extension creates products. Given a (discrete) family (Si ⊳ Pi)i:I of
N -ary containers, its product is given by

∏

i:I

(Si ⊳ Pi) =
∏

i:I

Si ⊳ λs.
∑

i:I

Pi(si).

Variable selection The variable selection functors πN
n : SetN → Set with n : N are repre-

sentable by N -ary containers. In detail, we have that J1⊳ λ_. enK = πN
n where en : SetN is

defined by

ei,j =

{
1 if j = i,

0 else.

We will silently reuse the identifier πN
n for 1⊳ λ_. en.

Composition Given an n-ary container S⊳P and a family of K-ary containers (Tn⊳Qn)n:N ,
the composition

JS ⊳ P K ◦ 〈JTn ⊳QnK〉n:N
is represented by the container

(S ⊳ P) ◦ 〈Tn ⊳Qn〉n:N = JS ⊳ P K (T)⊳
∑

n:N

∑

p:(Ps)n

Qn(tn,p).

56 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Note that this can be seen as the application to arguments (Tn ⊳Qn)n:I of a generalization of
the extension functor from target Set to target ContK . Composition is functorial in both S⊳P
and the family (Tn ⊳Qn)n:I . The functorial action preserves cartesian morphisms.

Parametric initial algebras Container extension creates parametric initial algebras. In
contrast to the previous properties, this is specific to our current setting Set. Let us further
elaborate the details.

Fix an (N+1)-ary container S⊳P with positions written as P = 〈P1, P2〉 with P1 : S → SetN

and P2 : S → Set. Given any N -ary container T ⊳Q, note the equivalence

JS ⊳ P K JT ⊳QK = JS ⊳ P K ◦
〈〈
πN
n

〉
n:N

, JT ⊳QK
〉

=
q
(S ⊳ P) ◦

〈〈
πN
n

〉
n:N

, T ⊳Q
〉y

= JES⊳P (T ⊳Q)K ,

with an endofunctor ES⊳P : ContN → ContN defined by

ES⊳P (T ⊳Q) = (S ⊳ P) ◦
〈〈
πN
n

〉
n:N

, T ⊳Q
〉

=
∑

s:S

TP2(s)

︸ ︷︷ ︸
U(T)

⊳λ(s, t). P1(s) +
∑

j:P2(s)

Q(tj)

︸ ︷︷ ︸
V (T,Q)

where we have introduced additional notation U : Set→ Set and

V :
∏

T :Set

∏

Q:T→SetN

U(T)→ SetN .

Abstractly speaking, we have just verified that the following diagram of functors commutes:

ContN
ES⊳P //

J·K
��

ContN

J·K
��

SetN → Set
JS⊳P K // SetN → Set

(2.2)

Hence, container extension lifts to a fully faithful functor embedding algebras over ES⊳P into
algebras over JS ⊳ P K. In particular, container extension reflects initial algebras.

Recall that, in the specific categorical setting Set, the initial algebra of the strictly positive
functor S ⊳ P can be constructed using a transfinite chain

0
! // S ⊳ P (0)

S⊳P (!) // S ⊳ P
2
(0)

S⊳P
2
(!) // . . .

by taking colimits at limit ordinal steps. 10 By using commutativity of (2.2) at successor ordinal
steps and colimit reflectivity of the extension functor at limit ordinal steps, it follows that the
above chain is (equivalent to) the image under container extension of the corresponding chain
over ES⊳P :

0
! // ES⊳P (0)

ES⊳P (!) // E2
S⊳P (0)

E2
S⊳P (!)

//

By full faithfulness of container extension, this chain stabilized at the same ordinal as the first
one. It follows that the extension functor reflects initial algebra formation as well. Purely in
the category ContN , and in fact a basic instance of the semantics of induction-recursion, it can
be further computed that

µES⊳P = µU ⊳ foldU (VSetN id) ,

where we have silently ignored the size issue SetN : Set in favour of elegant treatment. 11

10This process stabilizes at the first regular ordinal larger than S.
11This is easily remediable by introducing V in a universe polymorphic fashion.

2.4. THE SET MODEL 57

2.4.2 Interlude: Classification of Integrals of Certain Quotient Con-

tainers

Recall the notion of the derivative [2] of a container. For regular functors, this notion is a
special case of our notion of biased derivative as was explained in the previous section. A
natural question to ask is whether every container has an anti-derivative.

Gylterud [22] examined more closely the quotient containers of [3], themselves based on
the work by Joyal [32] on combinatorial species. Recall that quotient containers generalize
shapes from sets (in the sense of homotopy type theory) to groupoids, with the position family
generalized to a functor from the shape groupoid to the category of sets. They have use in
modelling unordered datatypes [3].

Gylterud showed that every analytic container — restricting the position functor to the
target category of finite sets — has an anti-derivative. Concretely, an anti-derivative of the
container 1⊳λ• . [n] representing the functor X 7→ Xn is given by the cyclic quotient container
Z/(n+1)⊳Cn+1 where the functor Cn+1 : Z/(n+1)→ [n+1] denotes the cyclic action of the
single-object groupoid Z/(n+1) on [n+1]. Observe here that quotient containers with groups
for shapes are essentially the same as actions from group theory.

A natural question to ask is whether the cyclic quotient container itself has an anti-derivative
in quotient containers. As we will see, the answer is negative. The core of the problems boils
down to the following purely group theoretic exercise:

Theorem 2.2. The transitive actions S on a finite set X of cardinality n > 1 such that, for
each x : X, the action of Sx on S \ {x} is isomorphic to the cyclic action of Z/(n − 1) on
itself are, up to isomorphism, given by the actions of the group Affine(K) of bijective affine
transformations on a finite field K. 12

Proof. First of all, let K be a finite field. We have

Affine(K) = {z 7→ a · z + b | a, b ∈ K, a 6= 0} .

It is clear that Affine(K) acts transitively on K since, for any x, y ∈ K, the map z 7→ z+(y−x)
is bijective, affine, and maps x to y. By transitivity, Affine(K)x is isomorphic to Affine(K)0 for
any x ∈ F . Since

Affine(K)0 = {z 7→ a · z | a ∈ X, a 6= 0} ,
the isomorphism condition on Affine(K)x is now equivalent to the well-known fact that K∗ :=
(K \ {0} , ·) is isomorphic to Z/(|K| − 1).

The rest of the proof is concerned with the much more involved reverse direction. Given a
transitive subgroup S of the group of permutations on a set X of cardinality n, assume Sx is
cyclic and acting transitively on X \ {x}, i.e. isomorphic to Z/(n− 1), for x ∈ X.

Transitivity of S implies that there is s ∈ S sending x ∈ X to arbitrarily chosen y ∈ X.
Since S is a group, the number cx,y of such elements of S does not depend on y. In particular,
we have cx,y = cx = |Sx| = n − 1, and hence |S| = ∑

x∈X cx = n(n − 1). Furthermore, since
Sx is acting freely on X \ {x}, every element s ∈ S with s 6= id has at most one fixpoint. By
cardinality, it follows that there are exactly n− 1 fixpoint-free elements F of S.

Lemma 2.19. If s ∈ S commutes with an element f ∈ F , then s = id or s ∈ F .

Proof. Assume that s ∈ Sx for some x ∈ X. It follows that s(f(x)) = (sf)(x) = (fs)(x) = f(x).
Since x 6= f(x), we deduce s has at least two fixpoints, showing s = id.

Let f ∈ F be a fixpoint-free permutation of order ord(f) > 1. If f had two cycles of
different lengths m,n > 1, then sm 6= id would have m fixpoints. Hence, s is the product of

n
ord(f) disjoint cycles of length ord(f).

12 An action S on a set X is called transitive if all x, y ∈ X have s ∈ S such that s(x) = y. It is called free

if all x, y ∈ X have at most one such s. For x ∈ X, the stabilizer Sx is the subgroup of those s ∈ Sx such that
s(x) = x.

58 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Now, let x ∈ X and consider the action of Sx on F by conjugation. Lemma 2.19 shows that
this action is free. Since |Sx| = |F |, it is also transitive, meaning all f, g ∈ F are conjugated,
i.e. there is a unique s ∈ Sx such that fs = g. This implies ord(f) = ord(g), i.e. all elements of
F have the same order p > 1. Recall that f ∈ F consists of n

p disjoint cycles of length p. If p

had a non-trivial factor q, then fq would be a fixpoint-free permutation of order p
q 6= p, yielding

a contradiction. Hence, p is prime. Note that, by freeness and transitivity of the applicative
action of Sx on X \ {x} and the conjugative action of Sx on F , there exists a unique fx→y ∈ F
such that fx→y(x) = y for any different x, y ∈ X.

For f ∈ F , let 〈f〉 be the subgroup of S generated by f . By the above, 〈f〉 is isomorphic
to Z/(p). Since it has p − 1 generators and |F | = n − 1, we deduce |D| = n−1

p−1 where D =

{〈f〉 | f ∈ F}. For different x, y ∈ X, we denote Xx→y the orbit of x under the applicative
action of 〈fx→y〉.

Given x ∈ X, let Tx ⊆ Sx be the subgroup of those t that act invariantly by conjugation
on 〈f〉 for some f ∈ F . Since conjugatively, Sx acts transitively on F and is abelian, this is
equivalent to t being invariant on 〈f〉 for all f ∈ F . Since 〈f〉 has p − 1 generators and the
conjugative action of Sx is free and transitive, we have |Tx| = p − 1. Since Tx ⊆ Sx is cyclic,
it must hence be isomorphic to Z/(p− 1), or equivalently (Z/(p))∗, the multiplicative group of
the field Z/(p).

Lemma 2.20. Fix x ∈ X and s ∈ Sx with s 6= id. Consider f : F and let Y be a cycle of f .
Then s is invariant on Y precisely if s ∈ Tx.

In other words, the subgroup of S of elements invariant on Y is the disjoint union of 〈f〉
and T ′

x := Tx \ {id} for x ∈ Y .

Proof. Assume that s ∈ Tx. Since Y is an orbit of 〈f〉, we know s(Y) is an orbit of 〈f〉s = 〈f〉.
Since x ∈ Y and s(x) = x, note that Y and t(Y) have a common element. Being cycles of 〈f〉,
they must hence be equal.

Conversely, recall that s consists of n−1
ord(s) cycles of length ord(s) together with the trivial

cycle {x}. Note that s is invariant on Y precisely if Y decomposes into a disjoint union of cycles
of s. Since p and n− 1 are coprime, we know that ord(s) ≥ 2 is not a divisor of |Y | = p. Thus,
we have x ∈ Y and ord(u) | p− 1, i.e. z ∈ Tz.

Lemma 2.21. The set M := F ∪ {id} is closed under inversion and multiplication, i.e. M is
a subgroup of S.

Proof. First of all, observe that M is closed under taking powers.
In the case p = 2, observe that F consists only of involutions. Let f, g ∈ F . If gf has

a fixpoint x ∈ X, then y := f(x) 6= x fulfills x = g(y). Involuting, we get x = f(y) and
y = g(x), so g(f(y)) = y, i.e. y is another fixpoint of gf , proving that gf = id. Otherwise, gf
is fixpoint-free, i.e. gf ∈ F .

The remainder of the proof of this lemma is devoted to the case p > 2.
Given x ∈ X and u ∈ Tx, recall that conjugation with u induces an outer automorphism

on H ∈ D. Since H is isomorphic to Z/(p), this action must correspond to exponentiation
with some qx(u) ∈ (Z/(p))∗, i.e. mapping f ∈ H to fqx(u), where well-definedness follows from
fp = id. Given any other g ∈ F , there exists s ∈ Sx such that gs−1 ∈ H as Sx acts transitively
on F . Commutativity of u, s ∈ Sx then implies gu = gus

= ((gs−1)u)s = ((gs−1)qx(u))s = gqx(u),
justifying the independence of qx(u) from the choice of H and proving that qx : Tx → (Z/(p))∗

is a group homomorphism.
Let x, y ∈ X be given. For u ∈ Tx and v ∈ Ty, we have vu−1 ∈M if and only if qx(u) = qy(v).

For the first direction, observe that qx(u) = qy(v) implies the conjugative action of vu−1 on F
is trivial and apply Lemma 2.19. For the other direction, assume vu−1 ∈ F and observe that
vu−1 has trivial conjugative action on

〈
vu−1

〉
, i.e. qx(u)qy(v

−1) = 1, i.e. qx(u) = qy(y).
Now, let f, g ∈ F be given. Choose y ∈ X and an element v of T ′

y. Note that this makes
use of the assumption p > 2. Observe that u := fv is invariant on Xy→f(y). By Lemma 2.20
and since fv 6∈ 〈y → f(y)〉 (since the right-hand side is generated by f and hence a subset

2.4. THE SET MODEL 59

of M), we must have u ∈ T ′
x for some x ∈ Xy→f(y). Similarly, define w := gv 6∈ 〈y → g(y)〉

and z ∈ Xy→g(y) such that w ∈ T ′
z. By transitivity, if qx(u) = qy(v) and qz(w) = qy(v),

then qx(u) = qz(w). Under the equivalence from two paragraphs above, this translates into
uv−1 ∈ M and wv−1 ∈ M implying wu−1 ∈ M . Since uv−1 = f ∈ M and wv−1 = g ∈ M , we
thus have gf−1 = wu−1 ∈M .

Since all elements of M have order 1 or p, we know M is a p-group. In particular, there is
a center element f ∈ Z(M) with f 6= id, i.e. f ∈ F . Choose any x ∈ X. Since the conjugative
action of Sx is transitive on F , this implies F ⊆ Z(M), i.e. M is abelian. Now, fix arbitrary but
different elements 0, 1 ∈ X. Given x, y ∈M , define x+ y := (fg)(0) = f(y) = g(x) with unique
f, g ∈ M such that x = f(0) and y = g(0). Since M is an abelian group, so is (X,+). Given
x, y ∈ M , define x · y := 0 if x = 0 or y = 0, and x · y = (uv)(1) = u(y) = v(x) with unique
u, v ∈ S0 such that x = u(1) and y = v(1). Since S0 is an abelian group, so is (X \ {0} , ·).
Finally, given x, y, z ∈ X with x 6= 0, choose u ∈ S0 such that x = u(1) and f ∈ M such that
y = f(0). We derive x · y + x · z = u(1) · f(0) + u(1) · z = u(f(0)) + u(z) = fu(0) + u(z) =
fu(u(z)) = u(f(z)) = u(f(0) + z) = u(1) · (f(0) + z) = x · (y + z), proving distributivity and
showing that (X,+, ·) is a field.

Let x ∈ X and u ∈ Sx be given. These is a unique f ∈ M such that x = f(0). We have
uf−1 ∈ S0, hence uf−1 acts on X by multiplication with y := uf−1(1) 6= 0. For any z ∈ X, we
now have u(z) = f(uf−1(f−1(z))) = y · (z − x) + x = y · z + (x− y · x), proving that u acts on
X as an affine transformation. Similarly, given f ∈M , we have f(z) = z+ f(0) for any z ∈ X,
again an affine transformation. Conversely, given any affine transformation z 7→ x · z + y with
x 6= 0, choose u ∈ S0 such that u(1) = x and f ∈ M such that f(0) = y. For any z ∈ X, we
have (fu)(z) = f(u(z)) = f(x · z) = x · z+ y. Because u(z) = z for all z ∈ X implies u = id for
u ∈ S, this proves the action S on X is isomorphic to the action of the group of bijective affine
transformations on a finite field.

Since finite fields exist only for cardinalities pk with p prime and k > 0, with a unique
instance Fpk for each combination of p and k, we easily deduce the following corollary.

Corollary 2.5. Given n > 0, the cyclic quotient container Z/(n) ⊳ λ • . [n], i.e. the additive
action of Z/(n) on itself, has an anti-derivative only for n = pk − 1 with p prime and k > 0.
This anti-derivative is unique up to isomorphism and consists of the action of Affine(Fpk) on
Fpk .

Proof. Given a quotient container S ⊳ P , recall that its derivative S′
⊳ P ′ can be constructed

by letting S′ =
∫ s:S

P (s) and P ′(s, p) = P (s) − {p}. Assume that S′
⊳ P ′ is isomorphic to

Z/(n)⊳ λ • . [n]. Without changing the derivative of S ⊳P , we may remove those objects s : S
such that P (s) is empty.

Since
∫ s:S

P (s) was isomorphic to a group, it follows that all objects of S must be isomorphic.
Switching to its skeleton, we may hence assume it is a group, i.e. a groupoid with a single object
s : S. Furthermore, for any two positions p, q : P (s), there must be an isomorphism f : s → s
such that P (f)(p) = q. The group action P is thus transitive.

Let us further fix p : P (s). We have seen that the derivative of S ⊳ P is isomorphic to
G⊳ λ • . P (s)− {p} where G consists of those isomorphisms f : s→ s such that f(p) = p. By
assumption, this action is isomorphic to the cyclic action of length n.

The prerequisites of Theorem 2.2 are thus fulfilled, yielding the expected conclusion.

Late during the writing-up phase, we stumbled upon work by Rajan [49] that consists of
a complete classification of all higher anti-derivatives, i.e. not just the first two levels, of the
combinatorial species corresponding to the functor mapping X to Xn. We suspect that the
differences between combinatorial species and (possibly symmetric) quotient containers are
inconsequential enough for these arguments to transfer to our case.

60 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

2.4.3 Containers Fiberwise

Using the closure properties established above, it is easily seen that every regular functor is
represented by a container. What is more, the family of positions will always be valued in finite
sets. In this setting, the fibred presentation of containers becomes practical.

An N -ary power series C : PowSeriesN is a family C : NN → Set of coefficients. Such a
power series C may be interpreted as an N -ary container

∑
k:NN C(k) ⊳ λ(k, c).[k] where we

abbreviate [k] = {0, . . . , k − 1} : Set for the embedding N→ Set. 13 Reversely, given a finitary
container S ⊳ P , i.e. where P : S → FinSetN , we may refactor

JS ⊳ P K (X) =
∑

s:S

∏
XPs

=
∑

k:NN

∑

s:S,
|Ps|=k

∏
Xk

=
∑

k:NN

{s : S | |Ps| = k} ×
∏

Xk

to derive a power series representation of S ⊳ P with coefficients C : NN → Set given by the
fibers of S over P :

C(k) = {s : S | |Ps| = k} .

This equivalence, with in fact is just a discrete version of the Grothendieck construction, enables
us to identity N -ary finitary containers with N -ary power series. The corresponding categorical
structure of power series has morphisms between C1, C2 : PowSeriesN given by

PowSeriesN (C1, C2) =
∏

k:NN

C1(k)→
∑

h:NN

C2(h)× ([h]→ [k]).

Cartesian morphisms between C1 and C2 correspond to families

∏

k:NN

C1(k)→ C2(k)× ([h] ≃ [h]).

We call such a cartesian morphism order-preserving if the bijection component above is always
the identity. 14 Under this change of representation, the container extension corresponds to
the power series extension functor J·K : PowSeriesN → (SetN → Set) defined by

JCK (X) =
∑

k:NN

C(k)×
∏

Xk,

justifying the naming.
Let us rephrase the already developed properties for containers as restricted to finitary

containers in terms of power series.

Colimits of order-preserving diagrams Given a diagram D : I → PowSeriesN of power
series such that for a morphism f : i→ j in I, the morphism D(f) : Di → Dj is cartesian and
order-preserving, note that f simply corresponds to a family fk : Di(k) → Dj(k) for k : NN .
The colimit over D is thus computed coefficientwise: given k : NN , we have

(colimD)(k) = colimi:I Di(k).

13In other words, we identify N with a skeleton of FinSet.
14Note that, in certain contexts, this may depend on the precise way finite sets are identified with natural

numbers, albeit we will only use it in the coherent way where the same chosen identification isomorphism appears
on both sides of the bijection [h] ≃ [h], making the notion invariant under its choice.

2.4. THE SET MODEL 61

Coproducts The previous paragraph includes the special case of coproducts. Given a family
of power series Ci : PowSeriesN with i : I, its coproduct is computed coefficientwise: given
k : NN , we have (∑

i:I

Ci

)
(k) =

∑

i:I

Ci(k).

Finite products Given power series C1, . . . , Cm, we have

∏

j<m

Cj

 (k) =

∑

kj :N
N

for j<m,∑
j kj=k

∏

j<m

Cj(kj).

where k : NN . Note that this construction stops working for infinite products.

Variable selection The variable selection functor πN
n : SetN → Set with n : N is represented

by the N -ary power series C where, for k : NN , we have

C(k) =

{
1 if [k] = ei

0 else.

Again, we will reuse the identifier πN
n for C.

Composition Given an N -ary power series C with N finite and M -ary power series Dn for
n : N , let us represent the composition

JCK ◦ 〈JDnK〉n:N
as a power series. Now that we already have the above ingredients of sums and finite products
of power series, we may simply state it is represented by

C ◦ 〈Dn〉n:N =
∑

k:NN

C(k)×
∏

n:N

Dkn
n .

This recasts composition in terms of a version of the extension functor generalized from target
Set to target M -ary containers. Composition is functorial in both C and the family D. The
functorial action preserves cartesian and order-preserving morphisms.

Parametric initial algebras Fix an (N + 1)-ary power series C with N finite. Let EC

denote the endofunctor on PowSeriesN that acts by postcomposition

EC(D) = C ◦
〈〈
πN
n

〉
n:N

, D
〉
.

Again, we have the following commutative diagram:

PowSeriesN
EC //

J·K
��

PowSeriesN

J·K
��

SetN → Set
JCK // SetN → Set

and the parametric initial algebra of C with respect to its last argument is computed via the
chain

0
! // EC(0)

EC(!) // E2
C(0)

E2
C(!) // · · · .

62 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Since JCK is an ω-cocontinuous functor (being composed only of variable selection, products,
and sums, all of which are left adjoints), the colimit of this ω-chain will already be the initial
algebra of EC . Furthermore, since ! : 0 → EC0 is order-preserving and the functorial action
of EC preserves order-preserving morphisms, note that the colimit will be over a diagram of
order-preserving morphisms. This implies that we may compute the initial algebra of EC

coefficientwise: given k : NN , we have

(µEC)(k) = colimi:ω(E
i
C0)(k).

2.4.4 Power Series of Guarded Functors

By the above properties, it follows that regular functors are represented not only by containers,
but more definitely by power series. For a regular functor F of arity N , let C(F) : NN → Set
denote the power series associated to its interpretation over Set. From now on, we will use
the more familiar algebraic notation, denoting C(F) : Set

q
XN

y
instead. Furthermore, let the

categorical structure on Set
q
XN

y
be given by only the order-preserving cartesian-morphisms.

Note that the variables X are purely synthetic, a notational convenience for speaking about
the variable selector power series.

To unlock the full algebraic prowess of power series, we would need the coefficients of C(F)
to live in some well behaved ring-like algebraic object like the integers. This is precisely the
motivation for the definition of guarded functors.

But first, let us introduce some notation. Given α : NN , we have a degree function

degα : Set
q
XN

y
→ {−∞} ∪ N ∪ {∞} ,

degα(C) = sup
{
α • k | k : NN , C(k) 6= ∅

}
.

Let degI = degθI where θI : N → N is the characteristic function of I ⊆ N . Further, let
degn = deg{n} for n : N . With these conventions, the total degree function is defined as
deg = degN . Note that degree functions are multiplicative, and that

degα(C +D) = max
(
degα(C), degα(D)

)
.

Note further that the degree functions are linear in the parameter α.
Of course, we also have the standard degree functions on algebraic structures R[XN] or

R
q
XN

y
with a ring R. We will use the same notation for this case. Note, however, that for

addition we only have the inequality

degα(P +Q) ≤ max
(
degα(P), degα(Q)

)

since leading coefficients might annihilate each other.
Given α : NN , we have a truncation functor

| · |<·
α : N→ Set

q
XN

y
→ Set

q
XN

y<·

α
,

|C|<k
t =

{
C(K) if α • k < t,

0 else.

Here, note that Set
q
XN

y<k

α
denotes the full subcategory of those power series C : Set

q
XN

y

such that degα(C) < k. We use similar conventions for variants of the truncation functor as we
did for the degree function. This truncation functor preserves colimits of diagrams with order-
preserving cartesian morphisms since they are computed coefficientwise, and thus in particular
arbitrary coproducts.

Consider a ring R, a collection of elements X : RI , and d : N. Let us introduce the
abbreviations

Xd = {Xα}|α|=d =

{∏

i:I

Xαi

i

}

α:N,|α|=d

2.4. THE SET MODEL 63

for ease of executing modulo calculations. With respect to this convention, modulo X is to be
understood as standing for modulo (Xi)i:I .

Recall that the rings Z[XI] and Q[XI] form unique factorization domains for any (finite)
variable index set I.

Given a field extension K ⊆ L, an element x of L is called algebraic if there is an irreducible
monic polynomial P : K[X] such that P (x) = 0. With respect to the stated normalization
constraint of being monic and irreducible, the polynomial P is in fact unique. The set Lalg

of algebraic elements of L forms a subfield of L, yielding the series K ⊆ Lalg ⊆ L of field
extensions.

Given a field K and a finite set I, the field of fractions of K
q
XI

y
is known as the formal

Laurent series LK over K. Just like we had inclusions K ⊆ K[XI] ⊆ K
q
XI

y
, we have

inclusions K ⊆ K(XI) ⊆ LK . We will keep the inclusion K
q
XI

y
⊆ LK implicit, calling an

element of K
q
XI

y
algebraic if it is algebraic as an element of LK over the subfield K(XI).

Since K
q
XI

y
is a ring, the subset of algebraic elements of K

q
XI

y
also forms a ring K

q
XI

y
alg

.

The below development should be read under the tagline of the algebraic power series K
q
XI

y

being the Henselization of K[XI] localized at the origin, i.e. adjoining formal inverses of elements
non-zero modulo X.

Theorem 2.3. Consider a regular functor F : SetI+J → Set guarded over I →֒ I + J . There
is a power series q : N[Y J]

q
XI

y
⊆ Q(Y J)

q
XI

y
algebraic over Q(Y J , XI) such that the power

series representation of F is given by the image of q under the embedding j : N[Y J]
q
XI

y
→֒

Set[XI , Y J].
If in addition the functor F is shielded over I, then q = 0 mod (Xi)i:I .

Proof. By simultaneous induction on guardedness and shieldedness as a mutual family.

The guarded case If F = πI+J
inl(i) with i : I, we simply choose q = Xi, which is the unique

zero of the linear polynomial Q = Z −Xi ∈ Q(Y J , XI)[Z]. Note that deg(q) = 1.
Similarly, if F = πI+J

inr(j) with j : J , we choose q = Yi, which is the unique zero of the linear

polynomial Q = Z − Yi ∈ Q(Y J , XI)[Z]. Note that deg(q) = 0.
The cases of finite coproducts and products are rather straightforward. Consider algebraic

power series qt : N[Y
J]

q
XI

y
for t < k. First note that the embedding j forms a ring homomor-

phism. It thus suffices to verify that
∑

t<k qt and
∏

t<k qt are algebraic. But as was explained

previously, we know that N[Y J]
q
XI

y
alg

forms a ring.

Finally, consider the initial algebra case F (X) = µY.G(X,Y) with G : SetI+J+1 → Set
shielded over I →֒ I+J +1. By induction hypothesis, there is r : N[Y J , Z]

q
XI

y
algebraic over

Q(Y J , Z)(XI) representing G under the embedding N[Y J , Z]
q
XI

y
→֒ N[XI , Y J+1] sending Yj

to Yinl(j) for j : J and Z to Yinr(•). By shieldedness, we furthermore have r = 0 mod (Xi)i:I .
By multiplying with the least common multiple of denominators of occurring fraction, we may
construct an irreducible polynomial R : Z[Y J , Z][XI][W] which has r as a zero.

Let F be represented by a power series C : Set[XI , Y J]. Since F is the parametric initial
algebra of G, recall that C may be constructed as the colimit of the ω-chain

0
! // Er(0)

Er(!) // E2
r (0)

E2
r(!) // · · · (2.3)

of order-preserving cartesian morphisms where

Er(D) : Set
q
XI , Y J

y
→ Set

q
XI , Y J

y
,

Er(D) = r ◦
〈〈
πI+J
J , D

〉
, πI+J

I

〉
.

For fixed d : N, note that

|Er(D)|<d+1
I =

∣∣∣r ◦
〈〈

πI+J
J , |D|<d

I

〉
, πI+J

I

〉∣∣∣
<d+1

I

64 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

since degI(r) ≥ 1 by shieldedness assumption. We hence have a lift in the following strictly
commutative square of functors:

Set
q
XI , Y J

y<d

I

|Er|
<d
I //

Fd

))

Set
q
XI , Y J

y<d

I

Set
q
XI , Y J

y<d+1

I

|Er|
<d+1
I //

|·|<d
I

OO

Set
q
XI , Y J

y<d+1

I

|·|<d
I

OO

Note that the upper triangle commutes since the lower triangle and the outer square commute
and the vertical projections are full and essentially surjective.

What follows is just a standard application of any of a variety of fixpoint theorems for
contractive functions. With our lift, we may write

∣∣Ek+1
r (0)

∣∣<d+1

I
= |Er|<d+1

I

(∣∣Ek
r (0)

∣∣<d+1

I

)
= Fd

(∣∣Ek
r (0)

∣∣<d

I

)

and
∣∣Ek+1

r (!)
∣∣<d+1

I
= |Er|<d+1

I

(∣∣Ek
r (!)

∣∣<d+1

I

)
= Fd

(∣∣Ek
r (!)

∣∣<d

I

)

for k, d : N.

Since Set
q
XI , Y J

y
mod (Xα)|α|=0 is the terminal category, observe that

∣∣Ek
r (0)

∣∣<0

I
= 0

and
∣∣Ek

r (!)
∣∣<0

I
= id for all k : N. By induction on d : N, we see that

∣∣Ek+d
r (0)

∣∣<d

I
=
∣∣Ed

r (!)
∣∣<d

I
and∣∣Ek+d

r (!)
∣∣<d

I
= id for all k : N. For a given d : N, the chain (2.3) thus stabilizes after d iterations

modulo (Xα)|α|=d. Since colimits of order-preserving diagrams are computed coefficientwise,

we thus have C(k) = E
|k|+1
r (0)(k) for k : NI .

Note that Er preserves the property of being polynomial in Y J :

N[Y J]
q
XI

y r[Z=·] //

j

��

N[Y J]
q
XI

y

j

��
Set

q
XI , Y J

y Er // Set
q
XI , Y J

y

where r[Z = ·] : N[Y J]
q
XI

y
[Z]. Defining q : N[Y J]

q
XI

y
by setting

q(k) =
(
r[Z = ·]|k|+1(0)

)
(k)

for k : NI , we hence have j(q) = C by coefficientwise comparison.
Recalling Lambek’s Lemma, we have Er(C) = C via an order-preserving cartesian isomor-

phism. By faithfulness of the embedding j, it follows that r[Z = q] = q strictly since isomorphic
objects in N[Y J]

q
XI

y
are strictly equal.

Applying R to the value Z from its underlying coefficient ring, note that the result may be
regarded as a polynomial R(Z) : Z[Y J][XI][Z] in Z. If R(Z) = 0, then R = W − Z since R
was assumed irreducible. But then r = Z, violating r = 0 mod (Xi)i:I . So we have R(Z) 6= 0.

By a series of structural transformations, we see that

R(Z)(q) = R(Z)[Z = q]

= R[Z = q](q)

= R[Z = q](r[Z = q])

= R(r)[Z = q]

= 0[Z = q]

= 0,

2.4. THE SET MODEL 65

crucially exploiting that r[Z = q] = q. Therefore, we can be certain that q is algebraic.
However, the minimal polynomial of q should be effectively computable. 15 Factorize [35]

R(Z) = cQǫ0
0 . . . Q

ǫk−1

k−1 with Qt : Q(Y J)(XI)[Z] and ǫt ≥ 1 for t < k and c : Q(Y J) such that
the bases Qt are monic, irreducible, and pairwise distinct.

Consider distinct u, v < k. Since Q(Y J)(XI)[Z] is a Euclidean domain, there are Pu, Pv :
Q(Y J)(XI)[Z] such that PuQu + PvQv = 1. Multiplying with the denominators, we compute
polynomials U, V : Q(Y J)[XI][Z] and W : Q(Y J)[XI] such that UPu + V Pv = W and W 6= 0.
Let d = degX(W) + 1. We can compute (UPu)(q) and (V Pv)(q) modulo Xd. Note that this
computation depends only on the first d coefficients of q. Since W (q) 6= 0 mod Xd, one of
them must be non-zero.

For each pair u, v < k with u 6= v, we can determine w ∈ {u, v} such that Qw(q) 6= 0. By
straightforward combinatorial reasoning, this means we can find s < k such that Qt(q) 6= 0 for
t < k with t 6= s. Since R(q) = 0, we then must have Qs(q) = 0. We have thus computed the
minimal polynomial of q.

The shielded case Given algebraic power series qi : N[Y
J]

q
XI

y
for i : I, we of course

have
∑

i:I X
iqi = 0 mod (Xi)i:I .

Let QF : Q(XN)[Z] denote the minimal polynomial associated with a guarded functor F of
arity N as calculated by executing the algorithm detailed in the above lemma.

A silly example As a simple and somewhat silly example, let us decide whether

List(X × Y)(List(X) + List(Y)) = List(X × Y) + List(X)× List(Y)

natural in X,Y : Set. Let us abuse notation and use functor identifiers themselves to stand for
their associated power series in Z JX,Y K. Executing the construction detailed in the proof of
the previous lemma, we see for any P : N[X,Y] that (1− P)Z − 1 ∈ Z[X,Y][Z] is the minimal
polynomial for the power series List(P): the equation

List(P) =
1

1− P

is well-known from the theory of generating functions. This explains why this example is silly:
since all minimal polynomials are linear, the involved power series already live in the base
field Q(X,Y). Hence, the algebraic machinery developed above is not really being used. We
calculate

List(X × Y)(List(X) + List(Y))− List(X × Y)

=
1

(1−XY)(1−X)
+

1

(1−XY)(1− Y)
− 1

1−XY

=
1

1−XY
· (1− Y) + (1−X)− (1−X)(1− Y)

(1−X)(1− Y)

=
1

1−XY
· 1−XY

(1−X)(1− Y)

=
1

(1−X)(1− Y)

15 Finding a minimal polynomial for some zero of a given polynomial tends to be a computationally inefficient
process. What we can do very easily is bring it into a square-free and hence separable form.

For the purpose of comparing (the polynomials associated to) given finitiary inductive types so as to decide
isomorphism, it should not actually be necessary to start with minimal polynomials: just compute the greatest
common divisor D of the two given separable polynomials PD,QD using the Euclidean domain structure, follow
the below process to check whether both types are still zeroes of D, and then compare sufficiently many initial
coefficients so as to distinguish the roots of D using Lemma 2.22 and separability of D.

In other words, minimality assumptions may be replaced by separability assumptions, a computationally more
efficiently tractable concept in characteristic zero.

66 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

= List(X)× List(Y).

Arriving at a finitary description The advantage of calculating a minimal polynomial for
the power series representation associated to each guarded regular functor is that it yields a
finitary description of a formally infinite object. One may now ask whether we are already done,
with the minimal polynomial being a complete description. However, an irreducible polynomial
with a zero in a given extension over the base field has in general multiple and distinct zeroes
in that extension.

A conrete example, showing that multiple distinct zeroes may in fact all have non-negative
coefficients and thus live in N [X], is as follows. Consider the polynomial

Q =
∏

i,j∈{0,1}

Z −
(
1− (−1)i

√
1− 8X + (−1)j

√
1− 4X

2

)

=
(
Z2(Z2 − 1) + 6XZ2 +X2

)
[Z = Z − 1]

= Z4 − 4Z3 + (5 + 6X)Z2 − 2(1 + 6X)Z + 6X(X + 1)

which we conveniently stated in factorized form (which in fact is how it was constructed in the
first place). Let us develop two of its zeroes as power series in X using e.g. Henselization:

1−
√
1− 8X +

√
1− 4X

2
= 3X + 5X2 + 18X3 + 85X4 + 462X5 + . . . ,

1−
√
1− 8X −

√
1− 4X

2
= 1 +X + 3X2 + 14X3 + 75X4 + 434X5 + . . .

An standard argument about the coefficients in the Taylor series developments of
√
1− 4X and√

1− 8X makes rigorous the intuition that all coefficients in the above series are non-negative.
Since 1,

√
1− 4X, and

√
1− 8X are linearly independent over Q(X), we see by a degree argu-

ment that Q is in fact irreducible. This makes Q the minimal polynomial associated to the two
shown power series in X, lending palpable credence to the claim the minimal polynomial does
not uniquely determine a power series with non-negative coefficients.

For a power series q : Q
q
XI

y
with minimal16 polynomial Q : Q(XI)[Z] such that Q′(q) 6= 0

mod (X), the typical Henselization argument shows that q is determined as a zero of Q by
its first coefficient. Note that the polynomial from the example above still did not fulfill this
assumption. In general, we have to deal with degenerate cases where Q′(q) ∈ (Xd) for large
d : N. However, since Q(XI) has characteristic zero, we can be certain that Q′(q) 6= 0, i.e. there
must be a d : N such that Q′(q) = 0 mod (Xd), but Q′(q) 6= 0 mod (Xd+1). In this scenario,
we can apply the following lemma, justifying that supplying a certain prefix of coefficients of
computable length will always determine a power series from its minimal polynomial.

Lemma 2.22. Let K be a field and I a finite variable index set. Consider a monic polynomial
P : K[XI][Z] and fix d : N. For any starting value S : K[XI]/(Xd+1) such that P (S) = 0
mod (Xd+1) and P ′(S) = 0 mod (Xd), but P ′(S) 6= 0 mod (Xd+1), there is at most a single
power series q : K

q
XI

y
extending S, i.e. q = S mod (Xd), such that P (q) = 0. This power

series, if it exists, is effectively computable.

Proof. Analogous to the proof of Hensel’s Lemma [13]. We will calculate the coefficients of q
step by step.

For β : NI , let Aβ ⊆ K
q
XI

y
denote the ideal generated by X |β|+1 together with Xα for

|α| = |β| and α > β with respect to the lexicographical comparison with induced by an arbitrary
total order on I. With this, we may write

P ′(S) = XβU + V

16As per the previous footnote, minimality may be weakened to separability.

2.4. THE SET MODEL 67

with U : K[XI] and V ∈ Aβ such that U 6= 0 mod X and |β| = d.
Let n ≥ d + 1 be given and assume that we have already found a unique Qn : K

q
XI

y

with deg(Qn) < n such that Qn = S mod (Xd+1) and P (Qn) = 0 mod (Xn+d). Introduce
Qn+1 : K

q
XI

y
with degX(Qn+1) < n + 1 where Qn+1 = Qn +

∑
|α|=n X

αTα with Tα : K

for α : NI with |α| = n. Let us show that Qn+1 is determined uniquely under the constraint
P (Qn+1) = 0 mod (Xn+d+1), i.e. there is at most a single such choice for the family T . We
have

0 = P (Qn+1)

= P

Qn +

∑

|α|=n

XαTα

=
∑

i<d

P (i)(Qn)
∑

|αj |=n
for j<i

X
∑

j<i αj

∏

j<i

Tαj

= P (Qn) + P ′(Qn)
∑

|α|=n

XαTα mod (Xn+d+1)

since for i ≥ 2 we have

deg
(
X

∑
j<i αj

)
=
∑

j<i

αj = i · n ≥ d+ n+ 1

because of n ≥ d+ 1.
Note that

P ′(Qn) = P ′(S) = XβU + V mod Xd+1.

Fix γ : NI with |γ| = n. Since (Xn+d+1) ⊆ Aβ+γ , we have

0 = P (Qn) +XβU
∑

|α|=n,
α≤γ

XαTα + V
∑

|α|=n,
α<γ

XαTα

= P (Qn) +Xβ+γUTγ + P ′(Qn)
∑

|α|=n,
α<γ

XαTα mod Aβ+γ

where the comparisons are again with respect to the chosen lexicographical ordering. For a given
choice of Tα with α < γ, there is at most a single choice of Tγ fulfilling the above equation,
noting that U is invertible. By induction on the lexicographical ordering on γ : NI with |γ| = n,
we have thus constrainted the family T to at most a single choice.

Theorem 2.4. Given guarded regular functors F and G of arity N , we can decide whether
F = G in the set model.

Proof. A combination of Theorem 2.3 and Lemma 2.22 as detailed above, recalling that F = G
is equivalent in the set model to the coefficients of F and G in their respective power series
representation Set JNK being isomorphic.

The Unguarded Part17

Since (parametric) initial algebra formation over regular functors is computed by an ω-colimit.
The coefficients in the power series representation of a regular functor will always be either

17 Originally, we had a custom development to deal with the indefinite part, effectively rediscovering Parikh’s
theorem and parts of the theory of semilinear sets. During the writing-up phase, we discovered that most of
this had already been widely known. However, our development may still have some use in internalizing the
handling of the indefinite part in the term model. Since we have not yet fully worked out this part in sufficient
detail, we decided to omit it. With this, our custom development became redundant and we decided to omit it
entirely. This may serve as a lesson in more exhaustively researching background literature before thinking too
much about any problem.

68 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

finite or countably infinite. Since an indefinite regular functor is invariant under multiplication
with N, which equals N in the set model, all coefficients in the power series representation of
an indefinite regular functor will be either zero or isomorphic to N.

In the set model, we may thus identify an indefinite functor F of arity N with the subset
IF ⊆ NN of those indices k such that Ck 6= ∅ in the power series representation C : Set

q
XN

y
of

F . Via Lemma 2.18, we can then regard IF as the language defined by a context-free grammar
with commuting terminals. Parikh’s theorem [46] then allows us to write IF as a semilinear
set, i.e. a finite union of linear sets of the form

L(c, d) =

{
c+

∑

i<n

kidi | ki ∈ N for i < n

}

with c, di : N for i < n. By combinatorial topological reasoning [29], one may prove that every
semilinear set is in fact the finite union of pairwise disjoint fundamental linear sets. Here, a
linear set L(c, d) is called fundamental if the vector elements of d are linearly independent over
Q. Equality of semilinear sets is already known to be decidable [28] (the exact complexity being
ΠP

2 in the polynomial hierarchy).

2.4.5 Combining It?

Given a regular functors F : SetN → Set, let us use Theorem 2.1 to decompose F = UF+VF with
a guarded regular functors UF : SetN → Set and an indefinite regular functor VF : SetN → Set.
Switching to the power series representation of regular functors, recall that the coefficients of
UF are all finite, while the coefficients of VF are respectively either zero or countably infinite.
Thus, note that VF is uniquely determined: its non-zero coefficients occur precisely at the
indices where the corresponding coefficients of F are infinite.

We cannot say the same about UF . Returning to a previous example, note that

List(X)× List(Y) +N× List(X × Y)

= List(X × Y)(List(X) + List(Y)) +N× List(X × Y)

= List(X × Y)(X × List(X) + Y × List(Y)) +N× List(X × Y)

as power series over X and Y . Here, all three power series are already presented in guarded-
indefinite decomposed form. There does not seem to be a canonical criterion for deciding which
is the most fundamental decomposition.

We are thus faced with the problem of deciding equality of algebraic power series modulo an
indefinite part : given two algebraic power series A,B : N

q
XN

y
and an indefinite power series

represented as a semilinear set C ⊆ NN , do we have Ak = Bk for all k ∈ NN such that k 6∈ C?
Noting that the difference A−B will still be algebraic, we may rephrase this as follows:

Problem 2.1. Given an algebraic power series A : Z
q
XN

y
and an indefinite power series

represented as a semilinear set C ⊆ NN , do we have Ak = 0 for all k ∈ NN such that k 6∈ C?

We thus ask whether it is possible to decide if a given algebraic power series is entirely
consumed by a given indefinite power series.

Let us introduce some tools to deal with the periodicity induced by (semi-)linear sets.

Lemma 2.23. Consider an algebraic power series q : Q
[
XI , U

]
with I finite and choose n ≥ 1.

Let r : Q
[
XI , V

]
denote the power series comprising the coefficients of q sampled in direction

U at periodic intervals of lengths n, i.e. ra,b = qa,nb. Then r is algebraic.

Proof. Let K denote the result of adjoining a primitive n-th root of unity ζn to Q for all i : I.
Let Q : Q(XI , U)[Z] denote the minimal polynomial of q. We have

Q[U = ζknU](q(U = ζknU)) = Q(q)[U = ζknU]

= 0[U = ζknU]

= 0

2.4. THE SET MODEL 69

for k < n, making q(U = ζknU) algebraic over Q(ζn, X
I , U). By closure properties of algebraicity,

this makes

r =
1

n

∑

k<n

q[U = ζknU]

algebraic over Q(ζn, X
I , U). However, note that r is invariant under automorphisms of Q(ζn)

over Q sending ζn to ζkn for k < n coprime to n. The same must hold for its minimal polynomial.
Thus, we deduce r is in fact algebraic over Q(XI , U).

Corollary 2.6. Consider an algebraic power series q : Q
[
XI
]
with I finite and choose u, v : NI

with vi ≥ 1 for i : I. Let r : Q
[
Y I
]

denote the power series comprising the coefficients of q
sampled at periodic intervals of lengths vi starting at ui for i : I, i.e. rk = q(ui+kivi)i:I . Then r
is algebraic.

Proof. A combination of Lemma 2.23 and primitive algebraic operations.

With Corollary 2.6, it is possible to attack Problem 2.1 in case we can guarantee that the
indefinite power series is represented by a union of fundamental linear sets of full dimension
where negative integral coefficients are also allowed (subject to the resulting vector having
non-negative components), for then the coefficients of the indefinite power series would be
periodic in the direction of each formal variable by standard linear algebra. However, we do
not currently know how to attack the full problem, which remains open. A previous flawed
argument depended on the known falsehood that a diagonal of an algebraic power series is not
necessarily algebraic, a fact related to non-closure of algebraic power series under the Hadamard
product. For example, the power series in two variables

[(1− 4X)(1− 4Y)]
− 1

2 = (1− 4X)−
1
2 (1− 4Y)−

1
2

=

(∑

i

(
2i

i

)
Xi

)
∑

j

(
2j

j

)
Y j

=
∑

i,j

(
2i

i

)(
2j

j

)
XiY j

is clearly algebraic of degree 2, but its diagonal

∑

k

(
2k

k

)2

Zk

is not algebraic [57].

70 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

2.5 Tools for Working in the Initial Model

2.5.1 Regular Functors are Traversable

Before starting the introduction, let us briefly recall the notions of applicative and traversable
functors. Jaskelioff and Rypacek [30] gave rigorous categorical meaning to these notions, being
the first to require the correct laws in the definition of traverable functors. A more detailed
exposition can be found in the above reference.

For this subsection, fix a cartesian-closed category C, viewed as a monoidal category.

Applicative functors An applicative functor on C is a lax monoidal functor F : C → C that
in addition is pointed in a coherent way. Recall that a lax monoidal structure on F : C → C
consists of mediating natural maps νF : 1 → F1 and µF

X,Y : FX × FY → X × Y fulfilling
the usual unitarity and associativity axioms. The functor F being pointed requires a natural
transformation ηF : 1 → F , and coherence with the monoidal structure means νF = ηF1 and
µF
X,Y ◦(ηFX × ηFY) = ηFX×Y .

An applicative morphism between applicative functors F,G : C → C is a monoidal transfor-
mation u : F → G, i.e. a natural transformation respecting the lax monoidal structure on F
and G, that in addition respects the pointedness of F and G.

Applicative functors and morphisms form a strict monoidal category A where the monoidal
structure is given by functor composition.

Traversable functors A functor T : C → C is called traversable if it is endowed with a family
of traversals δTF : TF → FT natural in the applicative functor argument F : A . This family is
required to respect the monoidal structure of A , meaning it has to fulfill the unitarity law

T ◦ Id idT //

δTId

==Id ◦T

and the linearity law

T ◦G ◦F δTGF //

δTG ◦RF

''

(G ◦F) ◦T

G ◦T ◦RF

G ◦ δTF
77

for applicative functors F and G.

For a slick 2-categorical presentation, also found in [30], recall that a monoidal category C

can be viewed as a 2-category C with a single object. Objects and morphisms of the original
monoidal category correspond to 1-cells and 2-cells of the 2-category, with the monoidal struc-
ture in particular corresponding to identity and composition of 1-cells. Under this equivalence,
strict monoidal categories correspond to strict 2-categories with a single object.

Given any category C, the functor category C → C of endofunctors on C has a strict monoidal
structure given by functor composition. There is a canonical inclusion 2-functor from C → C to
Cat mapping the unique 0-cell to C and leaving everything else untouched. Noting that A is a
monoidal sub-category of C → C, let I : A → Cat denote this inclusion 2-functor. Traversable
functors are then just oplax natural transformations I → I.

Introduction The development in [30] is done for the special case where C is the category of
sets Set. As shown above, the basic definitions easily transfer to the general case, and so does
their proof that traversable functors are closed under products. Unfortunately, the rest of the

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 71

development is specific to Set: they go on to show that every finitary container is traversable.
In Set, containers are closed under parametric formation of initial algebras, so this implies
traversability of all regular functors over Set. This approach does not carry over to our setting,
where C might for example be a term model. However, preservation of traversability under
colimits and parametric formation of initial algebras still holds, and this insight will enable us
to conclude that regular functors over any bicartesian-closed category are traversable in any of
their parameters, and in fact with respect to simultaneous traversal of any subset of parameters,
as will be elaborated upon later.

Let us give some intuition on why previous attempts in the literature, notably [20], fail to
properly establish closure of traversabilty under formation of initial algebras. Suppose we are
given a functor S : C×C → C separately traversable in each argument. Assume further that the
parametric initial algebra of S in its second argument exists, and denote T (X) = µY.S(X,Y).
Let us naively try to construct a family of traversals δTF : TF → FT for F applicative. Fixing
X : C, the typing

δTF,X : µY.S(F (X), Y)→ F (µY.S(X,Y))

suggests defining δTF,X as a fold. We are left with defining an algebra

S(F (X), F (µ(Y).S(X,Y)))→ F (µY.S(X,Y)).

Expanding the µ-expression on the right in preparation of traversing on F , our goal is

S(F (X), F (µ(Y).S(X,Y)))→ F (S(X,µY.S(X,Y))).

This typing does indeed look awkwardly appropriate for a traversal, but in each variable at
once! We can try to traverse separately on each variable, e.g. giving us

S(F (X), F (µ(Y).S(X,Y))) // FS(X,F (µ(Y).S(X,Y))) // F 2S(X,µ(Y).S(X,Y)),

but since F is not a monad, there seems to be no way to get rid of the duplication of F . In
fact, this is precisely the reason why traversals (under the name of distributivity and monadic
maps) in [20] are constructed only for the case of monads F . However, non-composability
of monads and the requirement for the structure of the monad F to align with its structure
as a lax monoidal functor [20, Paragraph 5.1] make this treatment not only less general, but
unnecessarily convoluted, mixing together two orthogonal concerns.

Let us remark on an aspect that for some reason does not appear mentioned in the literature.
Of all the below constructions involved in showing that regular functors are traversable, only
closure under finite products makes use of the specific structure of the domain 2-category A

and the functor I. The remaining constructions all take place in a vastly more general setting
of arbitrary 2-categories and 2-functors. Furthermore, even the proof of closure under finite
products only ever uses the lax monoidal structure of applicative functors, not the pointedness.
Thus, Theorem 2.5 can immediately be made more abstract by defining traversability with re-
spect to any lax monoidal functor, not just applicative ones. Of course, this makes no difference
for a cartesian-closed category C such that every lax monoidal endofunctor has a strength, most
notably Set, for in that case, pointedness can be recovered from the unit of the lax monoidal
structure.

R-traversable functors The solution to the above dilemma is, of course, to generalize the
notion of traversability to functors of arbitrary arity. Given a cartesian-closed category D and
a cartesian functor R : C → D, a functor T0 : D → C is called R-traversable if it is the 0-
component of an oplax monoidal transformation T : R ◦ I → I. In the standard case where
D = Cn and R is the diagonal functor ∆n : C → Cn, we will simply say that T0 is n−traversable.
Explicitly, this amounts to a family of R-traversals δT0

F : T0 ◦RF → F ◦T0 natural in the

72 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

applicative functor argument F : A , subject to the laws of unitarity

T0 ◦R Id
idT0 //

δ
T0
Id

::Id ◦T0

and linearity

T0 ◦R(G ◦F)
δ
T0
GF //

δ
T0
G

◦RF

((

(G ◦F) ◦T0

G ◦T0 ◦RF

G ◦ δ
T0
F

77

for applicative functors F and G.

Lemma 2.24 (Closure under Composition). Fix a cartesian-closed category D and a natural
number n. For any i < n, the variable selection functor πn

i : Cn → C is n-traversable. For
any functor T : Cn → C and any sequence of argument functors S1, . . . , Sn : D → C, if T is
n-traversable and if S1, . . . , Sn are R-traversable with respect to a cartesian functor R : C → D,
then T ◦(S1 × . . .× Sn) is R-traversable.

Proof. This is simply due to the cartesian-closed structure of the category [I,Cat]lop with oplax
natural transformations as morphisms.

A side effect of our generalization is that closure of traversability under finite products
actually becomes more direct to prove.

Lemma 2.25 (Cartesian Closure). The terminal object functor 1 : 1→ C is 0-traversable. The
product functor · × · : C × C → C is 2-traversable.

Proof. This is an unfolding of A as a monoidal category of lax monoidal functors, making I into
a 2-monoid in the cartesian-closed 2-category [A ,Cat]lop that has oplax natural transformations
for morphisms. Nevertheless, let us check the details:

For the terminal object, the corresponding oplax natural transformation 1 → I is given as
follows:

• The 0-component is the terminal object functor 1.

• Given an applicative functor F , the 1-component corresponding to F is given by the unit
mediating map of the lax monoidal endofunctor F .

• The 2-cells for identity and composition hold by definition of identity and composition of
lax monoidal functors.

For binary products, the corresponding oplax natural transformation I × I → I is given as
follows:

• The 0-component is the product functor · × ·.

• Given an applicative functor F , the 1-component corresponding to F is given by the
product mediating map of the lax monoidal endofunctor F .

• The 2-cells for identity and composition hold by definition of identity and composition of
lax monoidal functors.

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 73

For our primary goal of endowing all regular functors with traversals, we are missing two
more lemmata: closure of traversability under finite coproducts and parametric formation of
initial algebras. It turns out that both assertions hold in a much more abstract context.

The below result may be summarized as stating that under suitable conditions, limits in
categories of lax natural transformations are computed pointwise. We suspect this result to be
known in the enriched category theory community and proved elegantly as well as shortly using
standard methods, but our knowledge of the literature is too slim to say for sure. We apologize
to the reader in advance.

Lemma 2.26. Fix a 2-category B and 2-functors F,G : B → Cat. Fix a shape category I. If
G is valued in categories closed under limits of shape I, then Lax(F,G) is closed under limits
of shape I as well. Furthermore, the object component on X : B of the limiting lax natural
transformation of a diagram D : I → Lax(F,G) is given by the limit of the objectwise diagram
DX : I → [FX,GX].

Proof. Fix a diagram D : I → Lax(F,G). Let us try to find an easier description of the category
of cones over D:

Cone(D) ≃
∫ t:Lax(F,G)

[I,Lax(F,G)](∆t,D)

≃
∫ t:Lax(F,G) ∫

A:I

Lax(F,G)(t,DA)

≃
∫ t:Lax(F,G) ∫

A:I

∫ l

X:B

[FX,GX](tX , D(A)X)

≃
∫ t:Lax(F,G) ∫ l

X:B

∫

A:I

[FX,GX](tX , DX(A))

≃
∫ l

X:B

∫ t:[GX,FX] ∫

A:I

[FX,GX](t,DX(A))

≃
∫ l

X:B

∫ t:[FX,GX]

[I, [FX,GX]](∆t,DX)

≃
∫ l

X:B

Cone(DX)

Here, the end annotated with a superscript l denotes a lax weighted limit replacing the weighted
limit in the definition of enriched ends, and ante-penultimate step uses a form of the axiom of
choice. Thus, a cone over D is a coherent family of cones over DX with X : B.

A candidate cone Let us try construct the limiting cone as an element of the last category
in the above chain of equivalences. For each X : B, we have to choose a cone over DX ,
and we simply choose the locally limiting cone, call it (LX , ωX) where LX : [FX,GX] and
ωX : [I, [FX,GX]](∆LX , DX), which exists by assumption. If we succeed in completing the
definition of this cone and showing that it is indeed globally limiting, then re-traversing the
above chain of equivalences verifies that the object components of our global limit are indeed
given by the local limits, i.e. that the limit is computed pointwise.

For coherence, for each f : X → Y in B, we also have to specify a morphism βf : Gf ◦LX →
LY ◦Ff in [FX,GY] such that the following diagram over [I, [FX,GX]] commutes:

(Gf ◦ ·) ◦∆LX

∆βf //

(Gf ◦ ·) ◦ωX

��

∆LY ◦(· ◦Ff)

ωY ◦(· ◦Ff)

��
(Gf ◦ ·) ◦DX Df

// DY ◦(· ◦Ff)

(2.4)

74 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

We warn that the composition operator is overloaded here. Recall that (· ◦Ff) : [FY,GY] →
[FX,GY] and (Gf ◦ ·) : [FX,GX]→ [FX,GY] denote the functorial pre- and postcomposition
operations. The morphism Df is defined pointwise for A : B as the 1-component of the lax
natural transformation D(A) on f . It is natural in A since D is a natural family of lax natural
transformations.

Note that the composite data consisting of the map βf and the above commuting square
can also be read as a morphism

βf : (Gf ◦LX , Df ◦((Gf ◦ ·) ◦ωX))→ (LY ◦Ff, ωY ◦(· ◦Ff))

in the category Cone(DY ◦(· ◦Ff)). The key insight now is that the limit of DY being com-
puted pointwise means it is preserved under functor precomposition. In particular, this means
(LY ◦Ff, ωY ◦(· ◦Ff)) will still be the limiting cone over DY ◦Ff , i.e. the terminal object in
Cone(DY ◦(· ◦Ff)). This uniquely determines the coherence data, completing the specification
of our candidate for the limiting cone of D.

Given X,Y : B, we also have to check that the assignment of f : X → Y to βf is natural in f
with respect to the domain category B(X,Y). For this, let a 2-cell q : f ⇒ g with f, g : B(X,Y)
be given. Consider the following diagram:

(Gf ◦ ·) ◦∆LX

∆βf //

(Gf ◦ ·) ◦ωX

��

(Gq ◦ ·) ◦∆LX

((

∆LY ◦(· ◦Ff)

ωY ◦(· ◦Ff)

��

∆LY ◦(· ◦Fq)

((
(Gg ◦ ·) ◦∆LX

∆βg //

(Gg ◦ ·) ◦ωX

��

∆LY ◦(· ◦Fg)

ωY ◦(· ◦Fg)

��

(Gf ◦ ·) ◦DX Df

//

(Gq ◦ ·) ◦DX ((

DY ◦(· ◦Ff)

DY ◦(· ◦Gq)

((
(Gg ◦ ·) ◦DX

Dg
// DY ◦(· ◦Fg)

The back and front squares commute by construction of the maps βf and βg. The left and
right squares commute by 2-functoriality of G and F , respectively, and compositionality. Com-
mutativity of the bottom square is just the 2-component of the family of lax natural trans-
formations D. Altogether, this makes βg ◦(Gq ◦LX) and (LY ◦Fq) ◦βf into morphisms in
Cone(DY ◦(· ◦Fg)) of type

(Gf ◦LX , (DY ◦(· ◦Gq)) ◦Df ◦((Gf ◦ ·) ◦ωX))→ (∆LY ◦Fg, ωY ◦(· ◦Fg)).

Once again, the latter cone is limiting, implying βg ◦(Gq ◦LX) = (LY ◦Fq) ◦βf , thus verifying
the above naturality.

On another level of coherence, we have to check closure properties of β under identity and
composition. All together, this will make (L, β) into a lax monoidal transformation F → G. In
fact, under the above chain of equivalences, this lax monoidal transformation corresponds to
the first component of the global cone we are constructing.

For the identity on X : B, note that in the diagram

(G idX ◦ ·) ◦∆LX

∆βidX //

(G idX ◦ ·) ◦ωX

��

id∆LX

66
∆LX ◦(· ◦F idX)

ωX ◦(· ◦F idX)

��
(G idX ◦ ·) ◦DX

DidX

//

id
DX

66
DY ◦(· ◦F idX)

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 75

both square faces commute. Commutativity of the lower two-sided face thus makes idLX
into

a candidate map making the original square commute. Uniqueness of maps βidX
with this

property implies βidX
= idLX

.
For the composition of f : X → Y and g : Y → Z in B, note that in the diagram

(G(g ◦ f) ◦ ·) ◦∆LX

∆βg ◦ f //

(G(g ◦ f) ◦ ·) ◦ωX

��

(Gg ◦ ·) ◦∆βf **

∆LZ ◦(· ◦F (g ◦ f))

ωZ ◦(· ◦F (g ◦ f))

��

(Gg ◦ ·) ◦∆LY ◦(· ◦Ff)

βg ◦(· ◦Ff)

44

(Gg ◦ ·) ◦ωY ◦(· ◦Ff)

��

(G(g ◦ f) ◦ ·) ◦DX Dg ◦ f

//

(Gg ◦ ·) ◦Df **

DZ ◦(· ◦F (g ◦ f))

(Gg ◦ ·) ◦DY ◦(· ◦Ff)

Dg ◦(· ◦Ff)

44

all three squares commute. Pasting together the two small squares and using commutativ-
ity of the lower triangle makes (βg ◦(· ◦Ff)) ◦((Gg ◦ ·) ◦βf) into a candidate map making
the original square commute. Uniqueness of maps βg ◦ f with this property implies βg ◦ f =
(βg ◦(· ◦Ff)) ◦((Gg ◦ ·) ◦βf).

Showing the candidate cone limiting Now fix any other cone over D, given as a
family of local cones (HX , ǫX) : Cone(DX) coherent via a coherent family of maps αf :
Gf ◦HX → HY ◦Ff for f : X → Y in B as seen above. A morphism from ((HX , ǫX)X:B, α)
to ((LX , ωX)X:B, β) consists first of a family of cone morphisms over DX from (HX , ǫX) to
(LX , ǫX) given by a map θX : HX → LX with the commuting condition

∆HX
∆θX //

ǫX ##

∆LX

ωX{{
DX

(2.5)

where X : B. Since (LX , ǫX) is locally a limiting cone, this data is fully constrained and given
by the unique morphism to the terminal object in Cone(DX).

Second, this family is subject to coherence: for f : X → Y in B, we need to have commu-
tativity of the following diagram over [FX,GY]:

Gf ◦HX

αf //

Gf ◦ θX

��

HY ◦Ff

θY ◦Ff

��
Gf ◦LX

βf // LY ◦Ff

(2.6)

This diagram is part of a larger picture of morphisms in Cone(DY ◦(· ◦Ff)):

(Gf ◦HX , Df ◦((Gf ◦ ·) ◦ ǫX))
αf //

Gf ◦ θX
��

(HY ◦Ff, ωY ◦(· ◦Ff))

θY ◦Ff

��
(Gf ◦LX , Df ◦((Gf ◦ ·) ◦ωX))

βf // (LY ◦Ff, ωY ◦(· ◦Ff))

(2.7)

Here, coherence (2.4) of αf and βf makes the horizontal lines into cone morphisms αf and βf

as explained above. For the left morphism, the cone morphism Gf ◦ θX is given by postfixing

76 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

the commuting triangle (2.5) for θX by (Gf ◦ ·) and then postcomposing with Df :

(Gf ◦ ·) ◦∆HX

(Gf ◦ ·) ◦∆θX //

(Gf ◦ ·) ◦ ǫX ((

(Gf ◦ ·) ◦∆LX

(Gf ◦ ·) ◦ωXvv
(Gf ◦ ·) ◦DX

Df

��
DY ◦(· ◦Ff)

For the right morphism, the cone morphism θY ◦Ff is simply given by prefixing the commuting
triangle (2.5) for θX by (· ◦Gf):

∆HX ◦(· ◦Ff)
∆θX ◦(· ◦Ff) //

ǫX ◦(· ◦Ff) ((

∆LX ◦(· ◦Ff)

ωX ◦(· ◦Ff)vv
DX ◦(· ◦Ff)

Now, note that the lower right object of the enlarged diagram (2.7) is the terminal object
in the category of cones over DY ◦(· ◦Ff) as already shown via functor precomposition limit
preservation of pointwise limits. This makes the diagram (2.7), and by extension the diagram
(2.6) commute automatically. We have thus verified that the global cone over D represented
by ((LX , ωX)X:B, β) is indeed limiting.

Corollary 2.7 (Dual of Lemma 2.26). If G is valued in categories closed under colimits of
shape I, then OpLax(F,G) is closed under colimits of shape I as well. Furthermore, the object
component on X : B of the colimiting oplax natural transformation of a diagram D : I →
Lax(F,G) is given by the colimit of the objectwise diagram DX : I → [FX,GX].

Returning to our original context, we derive:

Corollary 2.8. Fix a cartesian-closed category D and a cartesian functor R : C → D. The
initial object functor 0 : 1 → C is 0-traversable. The coproduct functor · + · : C × C → C is
2-traversable.

Proof. For the initial object functor, the statement is given by Corollary 2.7 with B = A ,
F = 1, G = I, and applied to the initial object diagram, i.e. the diagram of shape the empty
category.

Write · + · as the coproduct of π1 and π2 in the functor category [C × C, C]. Since π1 and
π2 are 2-traversable by Lemma 2.24, it remains to verify that traversability is closed under
coproducts in [C × C, C]. But this is the statement of Corollary 2.7 with B = A , F = I × I,
G = I, and applied to coproduct diagrams, i.e. diagrams of shape the discrete category on 2
objects.

The below result may be summarized as stating that under suitable conditions, terminal
coalgebras of endofunctors over categories of lax natural transformations are computed point-
wise. The structure of the proof we give here is quite similar to the one of the previous lemma,
and in fact this redundancy gives credit to the idea that they are both instances of a more
general theorem establishing pointwise computation of a wider range of universal constructions
characterized by terminality. Again, we suspect this result to be known in the enriched cate-
gory theory community and proved elegantly as well as shortly using standard methods. We
apologize to the reader in advance, for we have not yet been able to express the following proof
in greater abstraction.

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 77

Lemma 2.27. Let a 2-category B and 2-functors F,G : B → Cat be given. Fix a lax natural
transformation u : F ×G→ G and introduce the functor

u : Lax(F,G)→ Lax(F,G),

u(t) = u ◦(F × t) ◦∆F .

On a given object X : B, note that uX analogously induces a functor

uX : FX → GX,

uX(t) = uX ◦(FX × t) ◦∆FX .

Recall that for any X : B, if uX(C, ·) : GX → GX has a terminal coalgebra for any C : FX,
then so does uX and on an object C : FX it is given by the terminal coalgebra of uX(C, ·). If
this assumption is fulfilled for all X : B, then u has a terminal coalgebra as well, having the
terminal coalgebra of uX as 0-component for any object X : C.

Proof. For a morphism f : X → Y in B, define an endofunctor

hf : [FX,GY]→ [FX,GY],

hf (v) = uY ◦ 〈Ff, v〉
= uY ◦(Ff × v) ◦∆FX .

This is a generalization of the endofunctor uX on [FX,GX] since uX = hidX
for X : B.

Note that h behaves stably under precomposition: we have

hg(v) ◦Ff = hg ◦ f (v ◦Ff)

for v : [FY,GZ] with morphisms f : X → Y and g : Y → Z in B. In particular, given
f : X → Y in B, we have hidY

(v) ◦Ff = hf (v ◦Ff), i.e. hf (v ◦Ff) = uX(v) ◦Ff . Since
the terminal coalgebra over uX as a functor is calculated pointwise, it is stable under context
change, i.e. precomposition with Ff . That is, if v is (the object part of) the terminal coalgebra
over uX , then v ◦Ff will be (the object part of) the terminal coalgebra over hf .

For postcomposition, we only have a lax version of the above identity. For any v : [FX,GY],
we have

ug ◦ 〈Ff, g〉 : Gg ◦hf (v)→ hg ◦ f (Gg ◦ v).

with morphisms f : X → Y and g : Y → Z in B.

A candidate coalgebra Returning to the original scenario, a coalgebra over u consists
of a lax natural transformation t : F → G together with a modification n : t → u(t). On an
object X : B, this amounts to a functor tX : FX → GX and a map nX : tX → u(t)X , i.e. a
uX -coalgebra as u(t)X = uX(tX). For a morphism f : X → Y in B, we have to supply a 1-
component tf : Gf ◦ tX → tY ◦Ff and a proof that n respects the corresponding 1-components
tf and u(t)f , i.e. that the following diagram commutes:

Gf ◦ tX
Gf ◦nX //

tf

��

Gf ◦uX(tX)

u(t)f

��
tY ◦Ff

nY ◦Ff // uY (tY) ◦Ff

(2.8)

78 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Here, u(t)f is the top-down composition illustrated in the below drawing:

FX
∆FX// FX × FX

FX×tX// FX ×GX
uX //

uf

GX
Gf // GY

FX × FX
FX×tX//

FX×tf

FX ×GX
FX×Gf// FX ×GY

Ff×GY// FY ×GY
uY // GY

FX × FX
FX×Ff// FX × FY

FX×tY//

=

FX ×GY
Ff×GY// FY ×GY

FX
∆FX//

=

FX × FX
Ff×FX// FY × FX

FY×Ff// FY × FY
FY×tY // FY ×GY

FX
Ff // FY

∆FY // FY × FY
FY×tY // FY ×GY

uY // GY

Using our identities for h, we may thus recast the diagram (2.8) as follows:

Gf ◦ tX
tf //

Gf ◦nX

��

tY ◦Ff

nY ◦Ff

��
Gf ◦hidX

(tX)

uf ◦〈idFX ,tX〉

��

hidY
(tY) ◦Ff

hf (Gf ◦ tX)
hf (tf) // hf (tY ◦Ff)

(2.9)

This transforms the choice of tf together with the constraint (2.8) from the coalgebra

(Gf ◦ tX , (uf ◦ 〈idFX , tX〉) ◦(Gf ◦nX))

into the coalgebra

(tY ◦Ff, nY ◦Ff)

over the functor hf . Since (tY ◦Ff, nY ◦Ff) is the terminal coalgebra over hf as explained
after the construction of h, this makes this choice unique. Note that the derivation of the
constraint (2.8) was by equivalence transformations: any coalgebra morphism over u will satisfy
a corresponding constraint. This fact will become important when verifying global terminality.

Given X,Y : B, we also have to check that the assignment of f : X → Y to tf is natural in f
with respect to the domain category B(X,Y). For this, let a 2-cell q : f ⇒ g with f, g : B(X,Y)

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 79

be given. Consider the following diagram:

Gf ◦ tX
tf //

Gf ◦nX

��

Gq ◦ tX))

tY ◦Ff

nY ◦Ff

��

tY ◦Fq

))
Gg ◦ tX

tg //

Gg ◦nX

��

tY ◦Fg

nY ◦Fg

��

Gf ◦hidX
(tX)

uf ◦〈idFX ,tX〉

��

Gq ◦hidX
(tX)

))

hidY
(tY) ◦Ff

hidY
◦Fq

))
Gg ◦hidX

(tX)

ug ◦〈idFX ,tX〉

��

hidY
(tY) ◦Fg

hf (Gf ◦ tX)
hf (tf) //

hq(Gf ◦ tX)

��

hf (tY ◦Ff)

hq(tY ◦Ff)

��

hg(Gg ◦ tX)
hg(tg)

// hg(tY ◦Fg)

hg(Gf ◦ tX)
hg(tf) //

hg(Gq ◦ tX)
55

hg(tY ◦Ff)

hg(tY ◦Fq)

66

The back top face and and the front face commute by construction of tf and tg as coalgebra
morphisms (2.9). The left and right top faces commute by interchange. The right bottom and
left bottom pentagons commute by 2-functoriality of F and G, respectively.

Pasting together the back faces, note that tf forms a morphism between coalgebras over
hg. Pasting together the left and right faces, note that Gq ◦ tX and tY ◦Fq, respectively, form
morphisms between coalgebras over hg. Composing the pasting of the back faces with the
pasting of the right faces as well as the pasting of the left faces with the the front face, we get
coalgebra morphisms (tY ◦Fq) ◦ tf and tg ◦(Gq ◦ tX) from the coalgebra

(Gf ◦ tX , hq(Gf ◦ tX) ◦(uf ◦ 〈idFX , tX〉) ◦(Gf ◦nX))

to the coalgebra
(tY ◦Fg, nY ◦Fg)

over the functor hg. Recalling that the latter coalgebra is terminal, it follows that

(tY ◦Fq) ◦ tf = tg ◦(Gq ◦ tX),

thus verifying the 2-naturality of t.
On another level of coherence, we have to check closure properties of t under identity and

composition. All together, this will make t into a lax monoidal transformation F → G.
For the identity on X : B, consider the following diagram:

G idX ◦ tX
tidX //

G idX ◦nX

��

idtX

77tX ◦F idX

nX ◦F idX

��
G idX ◦uX(tX)

uidX
◦〈idFX ,tX〉

""

hidX
(tX) ◦F idX

hidX
(G idX ◦ tX)

hidX
(tidX)

//

hidX
(idtX

)
77

hidX
(tX ◦F idX)

80 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

The two-sided face with an equality assertion on the right side commutes by unitarity of u. The
almost-straight pentagon containing of the curved arrows only the one on the left commutes
by construction of tX (2.9). The curved square (identifying the equal objects) commutes as it
comprises only identities. Both tidX

and idtX thus form parallel coalgebra morphisms into the
terminal coalgebra over hidX

. We must hence have tidX
= idtX .

For the composition of f : X → Y and f : Y → Z in B, gaze at the diagram

G(g ◦ f) ◦ tX
tg ◦ f //

G(g ◦ f) ◦nX

��

Gg ◦ tf
**

tZ ◦F (g ◦ f)

nZ ◦F (g ◦ f)

��

Gg ◦ tY ◦Ff

tg ◦Ff

44

Gg ◦nY ◦Ff

��

G(g ◦ f) ◦hidX
(tX)

Gg ◦uf ◦〈idFX ,tX〉

��
ug ◦ f ◦〈idFX ,tX〉

��

hidZ
(tZ) ◦F (g ◦ f)

Gg ◦hidY
(tY) ◦Ff

(ug ◦〈idFY ,tY 〉) ◦Ff

��

Gg ◦hf (Gf ◦ tX)

ug ◦〈Ff,Gf ◦ tX〉

��

Gg ◦hf (tf)

''

hg(tZ ◦Fg) ◦Ff

Gg ◦hf (tY ◦Ff)

ug ◦〈Ff,tY ◦Ff〉

��

hg(Gg ◦ tY) ◦Ff

hg(tg) ◦Ff
77

hg ◦ f (G(g ◦ f) ◦ tX)
hg ◦ f (tg ◦ f) //

hf (Gg ◦ tf)
**

hg ◦ f (tZ ◦F (g ◦ f))

hg ◦ f (Gg ◦ tY ◦Ff)

hg(tg ◦Ff)

44

The back, front left top, and front right top hexagons commute by construction of tg ◦ f , tf ,
and tg, respectively (2.9). The front diamond as well as the front right bottom square are
simple identities. The front left bottom square commutes by interchange. Most importantly,
but somewhat obscured, the outer left bottom triangle commutes by linearity of u. Pasting the
front left faces makes Gg ◦ tf into a coalgebra morphism over hg ◦ f . Pasting the front right faces
makes tg ◦Ff into a coalgebra morphism over hg ◦ f . Finally, using the front diamond and the
outer left bottom triangle to compose these to coalgebra morphisms makes (tg ◦Ff) ◦(Gg ◦ tf)
into a coalgebra morphism from the coalgebra

(G(g ◦ f) ◦ tX , (ug ◦ f ◦ 〈idFX , tX〉) ◦(G(g ◦ f) ◦nX))

to the coalgebra

(tZ ◦F (g ◦ f), nZ ◦F (g ◦ f))

over the functor hg ◦ f . Both tg ◦ f and (tg ◦Ff) ◦(Gg ◦ tf) thus form parallel coalgebra mor-
phisms into the terminal coalgebra over hidX

. We must hence have tg ◦ f = (tg ◦Ff) ◦(Gg ◦ tf).

Showing the candidate coalgebra terminal Now fix any other coalgebra over u, com-
prising a lax natural transformation s : F → G and a modification m : s→ u(s). A morphism
from (s,m) to (t, n) in the category of coalgebras over u consists of a modification θ : s → t
such that u(θ) ◦m = n ◦ θ. This amounts to a coherent family of maps θX : sX → tX for X : B

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 81

such the following diagram over [FX,GX] commutes:

sX
θX //

mX

��

tX

nX

��
uX(sX)

uX(θX) // uX(tX)

(2.10)

Observing θX thus constitutes a coalgebra morphism from the coalgebra (sX ,mX) to the coal-
gebra (tX , nX) over uX . Since the latter coalgebra was chosen terminal, this makes the choice
of the map θX under the above constraint unique.

However, we also have to verify coherence of the family θ in order for it to constitute a
modification. Given f : X → Y in C, we need to verify commutativity of the following diagram
over [FX,GY]:

Gf ◦ sX
sf //

Gf ◦ θX

��

sY ◦Ff

θX ◦Ff

��
Gf ◦ tX

tf // tY ◦Ff

This diagram is part of a larger picture:

Gf ◦ sX
sf //

Gf ◦mX

��

Gf ◦ θX))

sY ◦Ff

mY ◦Ff

��

θX ◦Ff

))
Gf ◦ tX

tf //

Gf ◦nX

��

tY ◦Ff

nY ◦Ff

��

Gf ◦hidX
(sX)

uf ◦〈idFX ,sX〉

��

Gf ◦hidX
(θX)

))

hidY
(sY) ◦Ff

hidY
(θX) ◦Ff

))
Gf ◦hidX

(tX)

uf ◦〈idFX ,tX〉

��

hidY
(tY) ◦Ff

hf (Gf ◦ sX)
hf (tf) //

hf (Gf ◦ θX)))

hf (sY ◦Ff)

hf (θX ◦Ff)

))
hf (Gf ◦ tX)

hf (tf)
// hf (tY ◦Ff)

Here, back and front faces commute by property (2.8) as fulfilled by any coalgebra morphism
over u. The left top and right top squares commute by assumption (2.10). The left bottom
square commutes by interchange, while the right bottom square is a simple identity.

Pasting together the left and right faces, note that Gf ◦ θX and θX ◦Fq, respectively, form
morphisms between coalgebras over hf . Composing the back face with the pasting of the right
faces as well as the pasting of the left faces with the the front face, we get coalgebra morphisms
(θX ◦Ff) ◦ sf and tf ◦(Gf ◦ θX) from the coalgebra

(Gf ◦ tX , (uf ◦ 〈idFX , sX〉) ◦(Gf ◦mX))

to the coalgebra
(tY ◦Ff, nY ◦Ff)

over the functor hf . Recalling that the latter coalgebra is terminal, it follows that

(θX ◦Ff) ◦ sf = tf ◦(Gf ◦ θX).

We have thus verified that the global coalgebra (t, n) is indeed terminal.

82 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Corollary 2.9 (Dual of Lemma 2.27). Fix an oplax natural transformation u : F × G → G
and introduce the functor

u : Lax(F,G)→ Lax(F,G),

u(t) = u ◦(F × t) ◦∆F .

On a given object X : B, note that u analogously induces a functor

uX : FX → GX,

uX(t) = uX ◦(FX × t) ◦∆FX .

Recall that for any X : B, if uX(C, ·) : GX → GX has an initial algebra for any C : FX,
then so does uX and on an object C : FX it is given by the initial algebra of uX(C, ·). If this
assumption is fulfilled for all X : B, then u has an initial algebra as well, having the initial
algebra of uX as 0-component for any object X : C.

Returning to our original context, we derive:

Corollary 2.10. Fix a cartesian-closed category D and a cartesian functor R : C → D. Let a
functor S : D × C → C be given and consider its parametric initial algebra

T : D → C,
T (Y) = µX.S(X,Y),

assuming it exists. If S is R× I-traversable, then T is R-traversable.

Proof. Apply Corollary 2.9 with A = A , F = R ◦ I, G = I to the oplax natural transformation
(R ◦ I)× I → I that has S as 0-component.

Definition 2.5. The inductive type of (syntax for) regular functors on a bicartesian-closed
category C is given by (constructors for)

• variable selectors πn
i : Cn → C for i < n and n-ary functor composition given n ∈ N,

• the terminal object 1 : 1→ C and products · × · : C × C → C,

• the initial object 0 : 1→ C and coproducts ·+ · : C × C → C,

• parametric formation of initial algebras.

Theorem 2.5. Given a bicartesian-closed category C, all regular functors on C are traversable.

Proof. A combination of Lemma 2.24, Lemma 2.25, Corollary 2.8, and Corollary 2.10.

2.5.2 Practical Internal Language

So far, we have striven to work as much on the level of types as possible. For the remainder
of our task, we will have to get our hands dirty, manipulating terms internal to our model and
verifying equalities of such terms explicitly. As such, we are going to require a certain library
of basic functions. Since the functions we are going to present are rather well-known from
practical applications of the lambda calculus in form of functional programming languages, we
have opted to omit their definitions, listing only their type signatures. All free type variables
are assumed universally quantified, making the respective terms natural transformations.

We start with a series of general purpose operations listed in Figure 2.1. The functor variable
F is assumed to denote a regular endofunctor.

One of the most basic types is the Booleans B = 1 + 1. They feature prominently in
internalization arguments involving propositional logic. Of course, the internal predicates whose
truth value they denote can only ever be computable since they must be expressed in the term

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 83

initF : F (µF)→ µF

elimF
A : (F (A)→ A)→ (µF → A)

eval : (A→ B)×A→ B

curry : (A×B → C)→ (A→ B → C)

uncurry : (A→ B → C)→ (A×B → C)

const : B → (A→ B)

swap : A×B → B ×A

flip : (A→ B → C)→ (B → A→ C)

diag : A→ A×A

Figure 2.1: General purpose operations

tr, fl : B

not : B→ B

· and · : B×B→ B

· or · : B×B→ B

· implies · : B×B→ B

if · then · else · : BX ×AX ×AX → AX

Figure 2.2: Boolean operations

model. Basic operations on the Booleans are listed in Figure 2.2. Saving on notation, we are
going to use these operations (sans if · then · else ·) for any internal Boolean algebra, most
notably A→ B for any type A, not just the Booleans. As such, one would define them over a
type class in certain functional programming languages. The Booleans, and more generally any
internal Boolean algebra, forms a monoid in two canonical ways, one given by (B,tr,and) and
the other one given by (B, fl,or). When not giving any extra details, we will always mean the
first.

0, 1 : N

S : N→ N

recA : A× (A→ A)→ (N→ A)

(·+ ·), (· − ·) : N×N→ B

(· ≤ ·), (· < ·), (· ≥ ·), (· > ·) : N×N→ N

max,min : N×N→ N

(·) · (·) : N×N→ N

(·)· or (· ˆ ·) : (A→ A)×N→ (A→ A)

Figure 2.3: Natural number operations

Next, we have the internal natural numbers defined as N = µY. 1 + Y , with operations
listed in Figure 2.3. Note that the subtraction operation only gives sensible results for certain
arguments. Note that N forms an internal monoid in several ways, most notably (N, 0,+)

84 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

and (N, 0,max). This will feature prominently in traversals, for example in the definition of
degrees.

nil : List(X)

· :: · : X × List(X)→ List(X)

foldA : A× (X ×A→ A)→ (List(X)→ A)

· ⊕ · : List(X)× List(X)→ List(X)

singleton : X → List(X)

concat : List(List(X))→ List(X)

length : List(X)→ N

Figure 2.4: Basic list operations

Recalling the definition List(X) = µY. 1 + X × Y , lists are a generalization of natural
numbers. Basic operations can be found in Figure 2.4. Note that (List(X),nil,⊕) forms
a monoid for any X : C. Furthermore, lists form a monad with unit singleton and join
concat. Again, both structures will feature in traversals.

filter : (A→ B)× List(A)→ List(A)

all,any : List(B)→ B

sum : List(N)→ N

count : (A→ N)× List(A)→ N

repeat : N×A→ List(A)

Figure 2.5: Miscellaneous list operations

Less primitive list operations can be found in Figure 2.5. Recall that List is the primordial
traversable functor, so one may give rather brief definitions for many of these operations, e.g.
all = δListB and sum = δList(N,0,+). Note here that monoids may be seen as constant applicative
functors.

genequals : F (~A)× F (~B)→ 1 + F (~A× ~B)

· equals · : A×A→ B

Figure 2.6: Internal (generalized) equality predicates

The internal (generalized) equality predicates are shown in Figure 2.6. A future subsection
will elaborate more on these, where we will use traversals to provide for an elegant definition.

List functions related to the internal equality predicate are listed in Figure 2.7. Note that the
function at requires a morphism 1→ A to be available in its calling context, i.e. has a hidden
dummy argument of type A, for otherwise we could not define it in a total way. Some functions
only give sensible results when the obvious appropriate preconditions on their arguments are
met. For example, we have

equals(i(x), index(l(x),at(i(x), l(x)))) = tr

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 85

at : N× List(A)→ A

index : List(A)→ N

prefix : N× List(A)→ List(A)

isprefix : List(A)× List(A)→ B

contains : A× List(A)→ B

unique : A× List(A)→ B

distinct : List(A)→ B

Figure 2.7: List operations related to equality (possibly requiring it)

for any morphisms l : X → List(A) and i : X → N such that

(· < ·) ◦ 〈i, length ◦ l〉 = const(tr),

unique ◦ 〈at ◦ 〈i, l〉 , l〉 = const(tr).

While left implicit, the proofs of many of these invariants benefit from the internal induction
principles presented in the next subsection.

Special attention should be paid to the fact that all equations using the internal logic are
always assumed to implicitly quantify universally over their free variables on both sides. For
example, the next to last equation formally reads

λx. equals (index(l(x),at(i(x), l(x)))) = λx. tr .

2.5.3 Internal Induction-Like Principles

Let us prove a general structural-induction-like principle for the internal Boolean logic. As
always for the internal language, all equations are assumed to implicitly be universally quantified
over their free variables. Formally, given an expression

S[v0, . . . , vk−1] = T [v0, . . . , vk−1]

between expressions of type B where we have variables vi : Ai for i < k, we interpret the
equation as stating that S = T where we interpret S and T as morphisms from A0× . . .×Ak−1

to B.

Lemma 2.28 (Internal Structural Induction). Consider a traversable functor F : C → C and
a function f : µF → B. Assume that the following equation over F (µF)→ B holds:

(implies) ◦
〈
δFB ◦F (f), f ◦ initF

〉
= const(tr).

In pointed notation, this equivalently reads

δFB(F (f)(w)) implies f(initF (w)) = tr .

Then, f = const(tr).

Proof. Let us define an F -algebra over µF ×B as follows:

g : F (µF ×B)→ µF ×B

g =
〈
initF ◦π1, (or) ◦ (f ◦ initF)× δFB

〉
◦ 〈F (π1), F (π2)〉

We claim that

〈id, f〉 : µF → µF ×B,

〈id,const(tr)〉 : µF → µF ×B

both form algebra morphisms from initF to g. The claim then follows by initiality of initF in
the category of algebras over F .

86 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

One half Let us verify

〈id, f〉 ◦ initF = g ◦F 〈id, f〉

over F (µF) → µF × B. The equality on the first projection holds trivially. For the second
projection, we need to check

f ◦ initF = (or) ◦ (f ◦ initF)× δFB ◦ 〈F (π1), F (π2)〉 ◦F 〈id, f〉

over F (µF)→ B. Let us rewrite the right-hand side as follows:

(or) ◦ (f ◦ initF)× δFB ◦ 〈F (π1), F (π2)〉 ◦F 〈id, f〉
= (or) ◦ (f ◦ initF)× δFB ◦ 〈id, F (f)〉
= (or) ◦

〈
f ◦ initF , δ

F
B ◦F (f)

〉

= (and) ◦
〈
(or) ◦

〈
f ◦ initF , δ

F
B ◦F (f)

〉
,const(tr)

〉

(using the assumption of the lemma in slightly rewritten form)

= (and) ◦
〈
(or) ◦

〈
f ◦ initF , δ

F
B ◦F (f)

〉
, (or) ◦

〈
f ◦ initF ,not ◦ δFB ◦F (f)

〉〉

= (or) ◦
〈
f ◦ initF , (and) ◦ 〈id,not〉 ◦ δFB ◦F (f)

〉

= (or) ◦ 〈f ◦ initF ,const(fl)〉
= f ◦ initF .

Here, we implicitly used some trivial equations for the Boolean connective morphisms.

The other half Let us verify

〈id,const(tr)〉 ◦ initF = g ◦F 〈id,const(tr)〉

Again, the equality on the first projection holds trivially. For the second projection, we need
to check

const(tr) ◦ initF = (or) ◦ (f ◦ initF)× δFB ◦ 〈F (π1), F (π2)〉 ◦F 〈id,const(tr)〉

over F (µF)→ B. This immediately simplifies to

const(tr) = (or) ◦
〈
f ◦ initF , δ

F
B ◦F (const(tr))

〉
.

Now just note that

(or) ◦
〈
f ◦ initF , δ

F
B ◦F (const(tr))

〉
= (or) ◦

〈
f ◦ initF , δ

F
B ◦F (const(tr) ◦const(•))

〉

= (or) ◦
〈
f ◦ initF ,const(tr) ◦ δF• ◦F (const(•))

〉

= (or) ◦ 〈f ◦ initF ,const(tr)〉
= const(tr)

since const(tr) is a monoid homomorphism from the terminal monoid • to B, exploiting
naturality of traversals in the applicative functor argument.

Note that the statement and proof of the above lemma can in fact be generalized to any
Boolean algebra, not just B. This is just a literal transcription, replacing Boolean operations
with the corresponding operations of the Boolean algebra. We have chosen to present the
proof only for the apparent special case of the Booleans simply to avoid the need of having to
introduce new notation.

In particular, note that BA forms a Boolean algebra for any type A : C. Reusing the
notation for Boolean operations for the corresponding pointwise operations on BA, we thus
obtain a version of the internal induction principle in any context A : C.

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 87

Lemma 2.29 (Internal Structural Induction in a Context). Consider a traversable functor
F : C → C, an object A : C to serve as context, and a function f : µF → BA. Assume that the
following equation over F (µF)→ BA holds:

(implies) ◦
〈
δFBA ◦F (f), f ◦ initF

〉
= const(tr).

In pointed notation, this equivalently reads

δFBA(F (f)(w))(a) implies f(initF (w))(a) = tr .

Then, f = const(tr), i.e. f(v)(a) = tr.

Proof. A direct transcription of the proof of Lemma 2.28.

Note that it would be in general invalid to write the pointed version of the above assumption
as

δFB(F (λv. f(v)(a))(w)) implies f(initF (w))(a) = tr

since functor application is not an internal operation. However, the functors we will be dealing
with will usually have an associated strength, allowing us to get around this restriction. Using
this notation then makes implicit use of this strength.

In another direction, the above principle generalizes canonically to mutual initial algebras.

Lemma 2.30 (Internal Mutual Structural Induction in a Context). For a finite set M , consider
a functor K : CM → CM that is componentwise traversable, an object A : C to serve as context,
and a family of functions fm : (µK)m → BA for m : M . Assume that the following equation
over K(µK)→

〈
BA
〉
m:M

holds:

(implies) ◦
〈
δKB ◦K(f), f ◦ initK

〉
= const(tr).

In pointed notation, this equivalently reads

δKm

BA (Km(f)(w))(a) implies fm(initK,m(w))(a) = tr

for m : M . Then, f = const(tr), i.e. fm(n)(a) = tr for m : M .

Proof. Analogous to the proof of Lemma 2.29.

Recalling that the internal naturals N : C were defined as the initial algebra of a trivially
traversable functor, we retrieve the usual form of induction for the internal Boolean logic.

Corollary 2.11 (Internal Induction in a Context). Consider an object A : C to serve as context
and a function f : N→ BA, and assume that the following two equations hold:

f(0) = tr

f(n) implies f(S(n)) = tr

Then, f = const(tr).

2.5.4 Internal Generalized Equality Predicates

Motivating Considerations Any functor F : D → C distributes over products in the sense
that

splitF : F ◦(×)→ (×) ◦∆(F),

i.e.

splitFX,Y : F (X × Y)→ F (X)× F (Y),

splitFX,Y = 〈F (π1), F (π2)〉

88 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

natural in X,Y : D. We are interested in as to what degree splitFX,Y has an inverse. Since we
cannot expect a full affirmation, let us weaken our goal to that of constructing a morphism

eF : (×) ◦∆(F)→M ◦F ◦(×),
i.e.

eFX,Y : F (X)× F (Y)→MF (X × Y)

natural in X,Y : CN , for some pointed endofunctor M : C → C. For the laws, we require the
diagram

F (X × Y)
splitFX,Y //

ηF (X×Y)

��

F (X)× F (Y)
eFX,Y

tt
t

��
MF (X × Y)

M splitFX,Y

// M(F (X)× F (Y))

(2.11)

to commute where t as defined here needs to have some partial correctness property depending
on M .

In what will later turn out to be the principal case M = 1+ ·, the requirement is that t, as
a partial function, acts as the identity whenever defined in the sense of the below Lemma 2.31,
i.e. that

λz. [λ • . z, id](t(z)) = id . (2.12)

In total, this will make eFX,Y a partial inverse to splitFX,Y according to Definition 2.6.

Note that if splitF already happens to be a natural isomorphism for some choice of F ,
then condition (2.11) determines the choice eF = η ◦(splitF)−1. In particular, we have this
case if F is a right adjoint functor, as it will then preserve products. Obviously, this validates
condition (2.12) as well.

Partial Inverses Consider two morphisms from a type A to a type B, the first one being
partial in the sense of having signature A → 1 + B. The following lemma gives us several
equivalent options of making precise the proposition that both morphisms have equal action on
defined inputs:

Lemma 2.31. Consider morphisms f : A → B and g : A → 1 + B in a bicartesian-closed
category C. Then the following conditons are equivalent:

λa. [λ • . f(a), id](g(a)) = f, (2.13)

λa. (1 + const(f(a)))(g(a)) = g. (2.14)

Proof. Assume (2.14). Applying the inverted equation to λk, a. [λ • . f(a), id](k(a)), we get

λa. [λ • . f(a), id](g(a)) = λa. [λ • . f(a), id]((1 + const(f(a)))(g(a)))

= λa. [λ • . f(a), const(f(a))](g(a))
= λa. const(f(a))(g(a))

= f.

For the reverse implication, assume (2.13). Applying the inverted equation to λh, a. [1 +
const(h(a))](g(a)), we get

λa. [1 + const(f(a))](g(a)) = λa. [1 + const([λ • . f(a), id](g(a)))](g(a))
= λa. (λs. [1 + const([λ • . f(a), id](s))](s))(g(a))

= λa.

[
λ • . [1 + const([λ • . f(a), id](inl(•)))](inl(•)),
λb. [1 + const([λ • . f(a), id](inr(b)))](inr(b))

]
(g(a))

= λa. [λ • . inl(•), λb. inr(b)](g(a))
= g

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 89

where we heavily exploited η-expansion for coproducts to simplify the duplicated occurrence of
g(a) in the right-hand side of the first line.

Definition 2.6. Consider a morphism f : A → B in a bicartesian-closed category C. A
morphism g : B → 1 +A is called a partial inverse to f if g ◦ f = inr and f ◦ g : B → 1 +B as
a partial function behaves as the identity whenever defined in the sense of Lemma 2.31.

Note that only monomorphisms can have partial inverses.

Lemma 2.32. In the context of Definition 2.6, the pseudo-inverse g is unique if it exists.

Proof. Consider two pseudo-inverses g1, g2 : B → 1+A to f . Since g ◦ f = inr and inr is mono,
we know that f , and with it 1 + f , is mono as well. It thus suffices to prove (1 + f) ◦ g1 =
(1 + f) ◦ g2.

For i = 1, 2, define

si : B → B,

si = [λ • . fl, const(tr)] ◦(1 + f) ◦ gi.

By Lemma 2.31, we have

(1 + f) ◦ gi = λb. (1 + const(b))(((1 + f) ◦ gi)(b)) =

λb. if si(b) then inr(b) else inl(•) (2.15)

It will thus be enough to show that s1 = s2.
Now note that

(1 + (1 + f) ◦ g2) ◦(1 + f) ◦ g1 = (2 + f) ◦(1 + g2 ◦ f) ◦ g1
= (2 + f) ◦(1 + inr) ◦ g1
= (1 + inr) ◦(1 + f) ◦ g1

with the usual convention of universally abstracted free variables in place. Precomposing with
[λ • . tr, λ • . fl,const(tr)] and rewriting using (2.15), we get

if s1(b) then (if s2(b) then trelse fl) else tr = if s1(b) then trelsetr,

that is
if s1(b) then s2(b) else tr = tr,

or equivalently s1(b) implies s2(b) = tr. By symmetry, we also have s2(b) implies s1(b) = tr.
Combining both assertions with the usual η-rewriting for B, we conclude s1 = s2.

Constructing it In the following, we will try to construct eF subject to the law (2.11) for a
regular functor F : CN → C by structural induction on a compositional representation of the
shape of F . Notably, certain cases will require a strengthening of the properties of M : these
will be motivated individually. In the end, the requirement will be that M is a strong monad
with a zero morphism 1→M . For the choice of the maybe monad M = 1 + ·, it will turn out
that the law (2.12) is also fulfilled. Defining our internal (structural) equality predicate as an
irrelevant (i.e. codomain B) version of e, all its expected properties are derivable from (2.11)
and (2.12).

Variable selector Let F : CN → C be the variable selector for a variable n : N , i.e.
F = πN

n . Variable selection is the middle entry of an adjoint triple and thus a right adjoint
functor.

Finite products Let F : CI → C be the finite product of its variables given by the finite
parameter index set I, i.e. F =

∏
I . Of course, then F is right adjoint to the diagonal functor

∆ : C → CI .

90 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Finite coproducts Let F : CI → C be the finite coproduct of its variables given by the
finite parameter index set I, i.e. F =

∑
I . Recall distributivity of products over sums, i.e.

θX,Y :
∑

I

X ×
∑

I

Y =
∑

I

X × Y +
∑

(i,j)∈(I×I)\∆(I)

Xi × Yj ,

where we have split the distributed sum into its diagonal and non-diagonal part. Here, every-
thing is natural in X,Y : CI . Note that

split
∑

I

X,Y = θ−1
X,Y ◦ inl .

To satisfy condition (2.11), we are thus constrained to set

e
∑

I =
[
η∑

I X×Y , fX,Y

]
◦ θX,Y

for some

fX,Y :
∑

(i,j)∈(I×I)\∆(I)

Xi × Yj →M

(∑

I

X × Y

)
.

This non-diagonal case proves problematic, and in fact provides the reason for introducing the
endofunctor M in the first place. To be able to handle this scenario, we assert the existence of
a zero natural transformation z : 1→M . We then choose

fX,Y = z∑
I X×Y ◦!

where the latter morphism denotes the unique morphism to the terminal object. Using the
usual η-rewriting, one easily checks that condition (2.12) is satisfied for the canonical choice z
of the zero morphism for the maybe monad M = 1 + ·.

Composition Let F : CN → C be the composition of a regular functor H : CI → C with
regular functors (Gi)i:I : CN → CI . Assume that we already have eH and eGi

for i : I subject
to the pseudo left-inverse law (2.11). Pasting these given triangular diagrams together, we
construct a larger triangle as follows:

H ◦G ◦(×)
H ◦(splitGi)

i:I //

η ◦H ◦G ◦(×)

��

H ◦(×) ◦∆(G)
splitH ◦∆(G) //

η ◦H ◦(×) ◦∆(G)

��

(×) ◦∆(H ◦G)

eH ◦∆(G)tt
M ◦H ◦G ◦(×)

M ◦H ◦(splitGi)
i:I//

M ◦H ◦∆(η) ◦G ◦(×)

��

M ◦H ◦(×) ◦∆G

M ◦H ◦(eGi)
i:Itt

M ◦H ◦∆(M) ◦G ◦(×)

Of course, now the composite left vertical morphism is no longer just the unit of M , but a
composition of it with something else.

Let us try finding a morphism M ◦H ◦∆(M) → M that cancels out the apparent extra
morphism M ◦H ◦∆(η). First, note that we have available a generalized traversal operation
δHM : H ◦∆(M)→M ◦H if M is applicative. Second, if we require M to actually be a monad,
then we have a join operation µ : M ◦M → M . Let us investigate the coherence requirements
needed for the desired cancellation:

M ◦H M ◦H ◦∆(η) //

M ◦ η ◦H

**id

&&

M ◦H ◦∆(M)

M ◦ δHM
��

M2 ◦H
µ ◦H

��
M ◦H

(2.16)

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 91

CN × CN ∆(G) // CI × CI ∆(H) //

eH

C × C × // C

CN × CN ∆(G) //

(eGi)
i:I

CI × CI × // CI H // C M // C

CN × CN × // CN G // CI ∆(M) //

δHM

CI H // C M // C

CI H // C M //

µ

C M // C

CN × CN × // CN G // CI H // C M // C

Figure 2.8: An artist’s depiction of the compositional structure of eH ◦G.

For the lower triangle to commute, it is enough to specify that η is actually the unit of the
monad structure we have just postulated, i.e. that we have a monad (M,η, µ). The upper
triangle commutes by naturality of traversals in the applicative functor argument if we make
η into an applicative morphism from the identity applicative functor to M as an applicative
functor. This will hold if we assume M to be strong as a monad and the multiplication of M
as an applicative functor be given by the join and strength of M as a monad. In total, we have
strengthened the requirements from M being pointed to M being a strong monad. The final
expression for eF such that condition (2.11) is fulfilled is

eH ◦G = (µ ◦H ◦G ◦(×)) ◦
(
M ◦ δHM ◦G ◦(×)

)
◦
(
M ◦H ◦

(
eGi
))
◦
(
eH ◦∆(G)

)

as seen in Figure 2.8.
In the particular case of the maybe monad M = 1 + ·, one checks that condition (2.12)

holding for eH and eGi with i : I implies condition (2.12) for eH ◦G.

Parametric initial algebras Finally, consider the case F (X) = µX ′. G(X,X ′) with
a regular functor G : CN+1 → C for which we already have constructed eG subject to the
law (2.11). All following constructions and reasoning steps will be natural in X,Y : CN . Let
u denote the algebra over the functor G(X, ·) with carrier F (Y) → MF (X × Y) given in
uncurried form as the following composition shown in Figure 2.9. With this, we define eFX,Y as

G(X,F (Y)→MF (X × Y))× F (Y)

id× init
−1
G(Y,·)

��

. . .

Mδ
G(X×Y,·)

M,F (X×Y)

��
G(X,F (Y)→MF (X × Y))×G(Y, F (Y))

eG(X,F (Y)→MF (X×Y)),(Y,F (Y))

��

M2G(X × Y, F (X × Y))

µG(X×Y,F (X×Y))

��
MG(X × Y, (F (Y)→MF (X × Y))× F (Y))

MG(X×Y,eval)

��

MG(X × Y, F (X × Y))

M initG(X×Y,·)

��
MG(X × Y,MF (X × Y)) MF (X × Y)

Figure 2.9: Definition of the algebra morphism over G(X, ·) with carrier F (Y)→MF (X ×Y).

92 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

the uncurried form of the unique algebra morphism over G(X, ·) from the initial algebra to u:

eFX,Y = uncurry
(
elim

G(X,·)
F (Y)→MF (X×Y)

)
.

Note that this morphism is natural in X,Y : CN .

Observe that

eFX,Y ◦ splitFX,Y ◦ initG(X×Y,·)

= eFX,Y ◦
(
initG(X,·)× initG(Y,·)

)
◦ splitG(X,F (X)),(Y,F (Y)) ◦ G

(
X × Y, splitFX,Y

)

= M initG(X×Y,·) ◦µG(X×Y,F (X×Y)) ◦Mδ
G(X×Y,·)
M,F (X×Y)

◦MG(X × Y, eval) ◦ eG(X,F (Y)→M(F (X×Y))),(Y,F (Y))

◦
(
G
(
X, curry

(
eFX,Y

))
×G(Y, F (Y))

)
◦ splitG(X,F (X)),(Y,F (Y)) ◦G

(
X × Y, splitFX,Y

)

(by naturality of splitG)

= M initG(X×Y,·) ◦µG(X×Y,F (X×Y)) ◦Mδ
G(X×Y,·)
M,F (X×Y)

◦MG(X × Y, eval) ◦ eG(X,F (Y)→M(F (X×Y))),(Y,F (Y))

◦ splitG(X,F (X)),(Y,F (Y)) ◦G
(
X × Y,

(
curry

(
eFX,Y

)
× F (Y)

)
◦ splitFX,Y

)

(by the cancellation law (2.11) for splitG followed by eG)

= M initG(X×Y,·) ◦µG(X×Y,F (X×Y)) ◦Mδ
G(X×Y,·)
M,F (X×Y)

◦MG(X × Y, eval) ◦ ηG(X×Y,(F (Y)→M(F (X×Y))×F (Y))

◦G
(
X × Y,

(
curry

(
eFX,Y

)
× F (Y)

)
◦ splitFX,Y

)

(by naturality properties and unit absorption of the monad (M,η, µ))

= M initG(X×Y,·) ◦ δG(X×Y,·)
M,F (X×Y) ◦G(X × Y,eval)

◦G
(
X × Y,

(
curry

(
eFX,Y

)
× F (Y)

)
◦ splitFX,Y

)

= M initG(X×Y,·) ◦ δG(X×Y,·)
M,F (X×Y) ◦G(X × Y,M(F (X × Y)))

◦G
(
X × Y, eFX,Y ◦ splitFX,Y

)
,

yielding the following algebra morphism:

G(X × Y, F (X × Y))
G(X×Y,eFX,Y ◦ splitFX,Y)

//

initG(X×Y,·)

��

G(X × Y,MF (X × Y))

δ
G(X×Y,·)

M,F (X×Y)

��
MG(X × Y, F (X × Y))

M initX×Y

��
F (X × Y)

eFX,Y ◦ splitFX,Y // M(F (X × Y))

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 93

On the other hand, we have a simpler morphism

G(X × Y, F (X × Y))
G(X×Y,ηF (X×Y)) //

ηG(X×Y,F (X×Y)) ,,
initG(X×Y,·)

��

G(X × Y,MF (X × Y))

δ
G(X×Y,·)

M,F (X×Y)

��
MG(X × Y, F (X × Y))

M initX×Y

��
F (X × Y)

ηF (X×Y) // MF (X × Y)

between the same algebras, with commutativity of the triangle following since η is an applicative
morphism between applicative functors Id and M — the same reasoning as for diagram (2.16)
applies.

Since the domain algebra of both algebra morphisms eFX,Y ◦ splitFX,Y and ηF (X×Y) is the
initial one, they must hence be equal. This proves the cancellation law (2.12) for F .

In the particular case of the maybe monad M = 1+ ·, a similarly tedious calculation verifies
that property (2.12) holding for eG makes it true for eF as well.

There seems to be opportunity for some refactoring. Certain parts of the construction and
verification of laws for the composition of regular functors appear duplicated in the above details
for the parametric initial algebra case. How this redundancy may precisely be eliminated eludes
us for the moment.

Generalized Equality Predicate Let us now make the particular choice of the maybe
monad M(X) = 1 + X. Observe that this monad has zero given by const(inl(•)) : Id → M .
We may then define the internal generalized equality predicate genequalsF for any regular
functor F :

genequalsFX,Y : F (X)× F (Y)→ 1 + F (X × Y),

genequalsFX,Y = eF ,

having exhibited it as the partial inverse to splitFX,Y . Recall from condition (2.12) that

[λ • . (a, b), splitFX,Y](genequalsFX,Y (a, b)) = (a, b)

with the usual convention of universally abstracted free variables. Using Lemma 2.31, we may
restate this as

(1 + const(a, b))(genequalsFX,Y (a, b)) = (1 + splitFX,Y)(genequalsFX,Y (a, b)). (2.17)

The function genequals satisfies the expected properties, for example we have the following
statement:

Lemma 2.33 (Generalized Symmetry). Given regular F : CN → C and X,Y : CN , we have

(1 + F (swapN))(genequalsFX,Y (a, b)) = genequalsFY,X(b, a).

In other words, the following diagram commutes:

F (X)× F (Y)
swap //

genequals
F
X,Y

��

F (Y)× F (X)

genequals
F
Y,X

��
1 + F (X × Y)

1+F (swap
N)// 1 + F (Y ×X)

Proof. Just observe that genequalsFX,Y and (1 + F (swapN)) ◦genequalsFY,X ◦ swap both

form partial inverses to splitFX,Y since the latter commutes trivially with swapping. Conclude
by applying Lemma 2.32.

94 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Equality predicate In case F is of empty arity, i.e. F : C0 → C, note the signature

genequalsF•,• : F (•)× F (•)→ 1 + F (•).

We proceed as already evident in the proof of Lemma 2.32 to define the internal equality
predicate as a non-relevant special case of the generalized one, setting

· equalsA · : A×A→ B,

· equalsA · = [λ • . fl,const(tr)] ◦genequalsλ•. A•,• .

Note that in contrast to genequals, we use infix notation for equals.
In this case, note that (2.17) may be given the particular simple form of

if a equalsA b then inr(a, b) else inl(•) = (1 + diag)(genequalsλ•. A•,• (a, b)).

Applying this equation to either 1 + π1 or 1 + π2 to cancel out the occurrence of 1 + diag, we
derive

genequalsλ•. A•,• (a, b) = if a equalsA b then inr(a) else inl(•)
= if a equalsA b then inr(b) else inl(•),

(2.18)

showing (again) that equals and genequals (for nullary functors) are mutually interdefinable.
The internal equality function satisfies the expected properties. We list a couple of repre-

sentative statements.

Lemma 2.34 (Reflection). Consider morphisms f, g : A → B with B regular. Then from
f(x) equalsB g(x) = tr we can conclude f = g.

Proof. Using the assumption to β-reduce the right-hand sides of (2.18), we derive inr ◦ f =
inr ◦ g. The conclusion follows since inr is mono.

Lemma 2.35. Let f : A×B → C and g : A→ C with B regular. Then

if b1 equalsB b2 then f(a, b1) else g(a)

= if b1 equalsB b2 then f(a, b2) else g(a)

Proof. Both sides are equal to

[λ • . g(a), f(a, ·)](genequalsλ•. B(b1, b2))

by (2.18).

Lemma 2.36. Let s, t, u : A×B2 → C with B regular. Assume that s(a, b, b) = t(a, b, b). Then

if b1 equalsB b2 then s(a, b1, b2) else u(a, b1, b2)

= if b1 equalsB b2 then t(a, b1, b2) else u(a, b1, b2)

Proof. Two opposite applications of the previous lemma reduce the goal to

if b1 equalsB b2 then s(a, b1, b1) else u(a, b1, b2)

= if b1 equalsB b2 then t(a, b1, b1) else u(a, b1, b2),

which is true by assumption.

Lemma 2.37 (Internal Leibniz property). Consider a morphism f : A × B → C with B and
C regular. Then

b1 equalsB b2 implies f(a, b1) equalsC f(a, b2) = tr .

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 95

Proof. We rewrite the goal as

if b1 equalsB b2 then (f(a, b1) equalsC f(a, b2)) else tr = if b1 equalsB b2 thentrelsetr

and recognize it as a special case of the previous lemma.

As trivial corollaries, we derive that internal equality forms an equivalence relation in the
internal sense.

Lemma 2.38 (Reflexivity). We have

x equalsA x = tr

Proof. By definition.

Lemma 2.39 (Symmetry). We have

x equalsA y implies y equalsA x = tr .

Proof. A corollary of Lemma 2.33. Alternatively, we can use the internal Leibniz property

Lemma 2.40 (Transitivity). We have

x equalsA y and y equalsA z implies x equalsA z = tr .

Proof. Follows from the internal Leibniz property.

2.5.5 Internal Polynomials

Fix a regular constant R : C that admits a semiring structure internal to C. Assume there
is a decomposition R = 1 + R′ with regular R′ : C such that the left summand on the right-
hand side is mapped to the zero of the ring R. The internal polynomials over R are defined
as Poly(R) = 1 + List(R) × R′. The intuition here is that a polynomial is a list of (possibly
zero) coefficients, and we want polynomials to always be represented by their normal form: the
leading coefficient should be non-zero if the polynomial itself is non-zero. This leads to the
above representation, where we already give Poly(R) decomposed into additive unit and other
elements as is suitable for iteration of polynomial ring formation. For sake of definiteness, say
that coefficients as ordered by degree are represented in traversing order in List(R). We have
obvious encoding and decoding functions

u : List(R)→ Poly(R),

v : Poly(R)→ List(R).

These functions satisfy u ◦ v = id, as an easy internal structural induction shows, but not the
other way around: lists with final element zero will not be represented. However, defining
arithmetic operations over polynomials is easier to be done in List(R), and we may use u as
encoding or v ◦u as normalization function. We may thus implicitly work with polynomials
Poly(R) as if they were represented by List(R), with the understanding of implicit de- and
encoding.

Polynomials Poly(R) over R form a semiring extension R 7→ Poly(R) internal to C as
follows. The embedding is given by mapping an element of R to the singleton list of that
element. Additive and multiplicative units of Poly(R) are prescribed by this embedding.

Addition of polynomials is given by first right-concatenating the arguments with zero lists so
as to make them List-structure equal, and then mapping addition over the witness. Unitality
and associativity are easily verified by internal induction. On singleton list, this addition
coincides with the addition inherited from R. Note that Poly(R) will have additive inverses if
R does, preserving its ring structure.

96 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Multiplication of a polynomial P with a scalar r : R is given by mapping multiplication
with r over P . Again, on singleton lists this coincides with the multiplication inherited from
R. Note that every polynomial may be uniquely decomposed into a linear combination of
monomials with non-zero scalar factors. Here, the monomial Mk of degree k : N is given by the
multiplicative unit left-concatenated with a zero list of length k. Anticipating distributivity, it
thus suffices to define multiplication of polynomials only for monomials. The product of Mi and
Mj with i, j : N is defined as Mi+j . Again, one verifies the laws of unitality and associativity for
multiplication and distributivity of multiplication over addition in a straightforward fashion,
utilizing repeated internal structural induction.

The polynomial (semi-)ring Poly(R) satisfies the following universal property: given any
other (semi-)ring S : C internal to C and an internal (semi-)ring homomorphism R → S as
well as a designated map x : C(1, S), there is a unique internal (semi-)ring homomorphism
Poly(R)→ S extending the given one such that M1 is mapped to x.

Internal multivariate polynomials In the context of the preceding paragraph, we may
define the internal multivariate polynomials PolyM (R) over R with respect to a finite parameter
index set M . As alluded to above, this proceeds by iteratively forming the internal (semi-
)ring of polynomials, with the number of iterations given by the size of M . Simultaneously,
one may define an appropriate notion of (multivariate) monomials and verify the appropriate
universal property of multivariate polynomial rings. In an entirely straightforward but lengthy
calculation, one may convince oneself that the concrete isomorphism M = 1 + . . .+ 1 used for
this iterative construction does not influence the end result, constructing canonical identification
internal (semi-)ring isomorphisms between instances of PolyM (R) for different decompositions
of M and showing that they preserve monomials and universal property data.

Given a polynomial (semi-)ring PolyI(R) and a (semi-)ring S, let

subst : (R→ S)× SI → (PolyI(R)→ S)

be the substitution map witnessing the universal property. The resulting map will be a (semi-
)ring homomorphism if the first argument is one.

Note that the operation of forming a polynomial (semi-)ring can be regarded not just as
an endofunctor over a certain subcategory of (semi-)rings and (semi-)ring homomorphisms, but
also as a monad. Concretely, we have a unit

ηR[XI] : R→ PolyI(R)

constituting the canonical embedding, and a join operation

µR[XI] : PolyI(PolyI(R))→ PolyI(R),

µR[XI] = subst(id,X),

fulfilling the expected laws.

2.5.6 Internal Power Series

Fix R : C admitting a (semi-)ring structure internal to C. Fix a finite parameter index set M .
Then NM → R will serve as the base type of our internal representation of power series.

Let describe the basic internal arithmetic operations on power series. We will continue to
overload our syntax, reusing the symbols for arithmetic over N.

The constant zero and the addition operator are defined pointwise for power series NM → R.
They are easily seen to inherit unitality and associativity from R. They same holds for inverse
laws in case R has additive inverses.

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 97

The finitary product of power series p0, . . . , pj−1 : NM → R is informally defined as

p0 · . . . · pj−1 : NM → R,

(p0 · . . . · pj−1)(k) =
∑

k0≤k

. . .
∑

kj−1≤k

{
p0(k0) · . . . · pj−1(kj−1) if k0 + . . .+ kj−1 = k,

0 else.

For fixed arity j, in particular for j = 0 and j = 2, this definition is easily seen to be translatable
as a λ-term internal to C. As a special case, the constant one has non-zero coefficient only
at index 0, with the coefficient being one there. It is straightforward by internal structural
induction to verify the laws of unitality and associativity for multiplication, and distributivity
of multiplication over addition.

This makes power series NM → R into a (semi-)ring internal to C. However, as already
elaborated upon above, they lack an internal equality predicate.

One may define an internal embedding PolyM (R) → (NM → R) of internal polynomials
into internal power series using the list accessor operations. Lookup operations exceeding the
length of the list of coefficients of the given polynomial return the neutral element 0 of addition
of R.

Analogously to case of polynomials, formation of the power series (semi-)ring NI → R can
be regarded as an endofunctor over the subcategory of (semi-)rings and (semi-)ring homomor-
phisms. It also forms a monad, having unit

ηRJXIK : R→
(
NI → R

)
,

ηRJXIK(r)(k) = if k equals 0 then r else 0,

and join

µRJXIK :
(
NI → NI → R

)
→
(
NI → R

)
,

µRJXIK(q)(k) =
∑

k1,k2≤k,
k1+k2equalsk

q(k1)(k2).

Note the use of shorthand summation notation for the obvious list monadic generation and
filtering followed by a traversal. Again, one may verify the corresponding laws in a more or less
straightforward fashion.

2.5.7 Derived Concepts

Similar to the above internalizations, we may derive internal presentation of fields, Euclidean
domains, GCD domains, and the field of fractions over GCD domains, where in the latter case
we exploit constructive normalizability of fractions. We may internally derive basic theorems
of algebra about multivariate polynomials, showing them to exhibit unique factorization. This
justifies taking the field of fractions and eventually allows us to define internally what it means
for a power series to be algebraic. An explicit development of all these internally concepts
would lead to an explosion in size of exposition, with none of the internalization procedures
interesting enough to offset this. We have thus only briefly sketched the direction of these
technical developments.

2.5.8 Interlude: Classification of Regular Constants

The purpose of this subsection is to sketch how to use the tools developed so far to prove that
in the initial model, and thus any model, any regular constant, i.e. any regular functor of arity
zero, is isomorphic to either a finite union of unit types or the internal naturals.

By following a similar strategy as in the proof of Theorem 2.1, it can be seen that it is
sufficient to consider the following case:

98 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Theorem 2.6. Fix a finite parameter index set M . Let S : CM → CM denote the generalized
polynomial successor functor S(X) = 1 + X. Consider an arbitrary generalized polynomial
functor F : CM → CM . Then, µ(K) = (N, . . . ,N) for K = S + F .

Let us fix notation as in the theorem and develop its proof.

Degrees Let NM : CM denote the constant vector NM = (N, . . . ,N). Recall that N

forms a monoid in C with respect to the maximum operator max and constant 0. Since Km is
traversable for m : M , we have a traversal

maxK : K(NM)→ NM ,

(maxK)m = δKm

(N,0,max).

Let the family of degree functions denote the unique algebra morphism from µK to the algebra
S
M ◦maxK :

deg : µK → NM

deg = elimK

(
S
M ◦maxK

)
.

Values Recall that List : C → C forms a monad with respect to the constant singleton

and the product concat. 18 Note that this makes ListM : CM → CM into a monad on CM as
well. Fix m : M . Since Km is traversable, we have a traversal

δKm

List,X : Km

(
ListM (X)

)
→ List (Km(X))

with respect to the monad structure natural in X : CM . Since Km is polynomial, it has a
strength

σKm

X,Y :
∏

X ×Km(Y)→ Km(X × Y)

natural in X,Y : CM . Mixing these ingredients, we get the tabulating iterator

tabX :
∏

m:M

List(Xm)→
∏

m:M

List (Km(X)) ,

tabX(xs)m =
⊕

k:Km(1)

δKm

List,X

(
σKm

ListM (X),1
(xs, k)

)
.

Note here that K(1) is isomorphic to a finite coproduct of unit types, justifying the fixed-length
concatenation, and that we swept conversion of ListM (X) × 1 to ListM (X) under the carpet.
Also note that while we have chosen for clarity to make the use of a strength explicit here,
we may not always do so in the future. For example, we allow ourselves to write the above
definition as

tabX(xs)m =
⊕

k:Km(1)

δKm

List,X (Km (const(xsi))i:M (k)) .

The tabulating iterator lifts to an endofunction
∏

ListM (initK) ◦tabµK :
∏

m:M

List ((µK)m)→
∏

m:M

List ((µK)m) ,

enabling us to define the enumeration of values of µK with bounded degree

values : N→
∏

m:M

List ((µK)m) ,

values(n) =
(∏

ListM (initK) ◦tabµK

)n
(nil, . . . ,nil),

18As usual, we view a monad on C as a monoid in the category of endofunctors on C with respect to functor
composition as the monoidal operation.

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 99

and the enumeration of values of µK with fixed degree

valuesfix : N→
∏

m:M

List ((µK)m) ,

valuesfixm(n) = filter(λv. degm(v) equals n,valuesm(n)),

Let us show that values(n) contains only values with degree bounded by n. For obvious
reasons of length, we will not usually be as explicit as in the proof of this fact. Its main purpose
is to show how to execute an internal induction proof in every detail.

Lemma 2.41. For all m : M , we have

all
(
List (λv. degm(v) ≤ n) (valuesm(n))

)
= tr .

Proof. Define f : N→ B by

f(n) = (and)m:Mfm(n)

= (and)m:M all
(
List (λv. degm(v) ≤ n) (valuesm(n))

)
.

Our goal is to show f = const(tr).
By simple evaluation, we find

f(0) = (and)m:M all
(
List (λv. degm(v) ≤ n) (valuesm(0)

)

= (and)m:M all
(
List (λv. degm(v) ≤ n) (nil

)

= (and)m:M all(nil)

= tr .

Now, let us try to prove
f(n) implies f(S(n)) = tr .

By trivial Boolean logic, it will suffice to fix m : M and prove

f(n) implies fm(S(n)) = tr .

Let us calculate

all
(
List (λv. degm(v) ≤ S(n)) (valuesm(S(n)))

)

= all
(
List (λv. degm(v) ≤ S(n)) (List(initK,m)(tabµK(values(n))m))

)

= all
(
List (λw. degm(initK,m(w)) ≤ S(n)) (tabµK(values(n))m)

)
.

At this point, we can trigger a reduction for the recursively defined degree function:

λw. degm (initK,m(w)) ≤ S(n) = λw. S ((maxK)m (Km(deg)(w))) ≤ S(n)

= λw. (maxK)m (Km(deg)(w)) ≤ n

= (· ≤ n) ◦ δKm

(N,0,max) ◦Km(deg)

= δKm

(B,tr,and) ◦Km ((· ≤ n) ◦degi)i:M

since (· ≤ n) is a monoid homomorphism from (N, 0,max) to (B,tr,and) and thus forms an
applicative morphism between the applicative functors that constantly return the respective
monoids.

Furthermore, since List can be seen as a functor from C to the category of monoids in
the cartesian-closed category C and all is a monoid homomorphism from (List(B),nil,⊕) to
(B,tr,and), we can move the fixed-length concatenation at the start of tabµK upwards. Once
again, it will suffice to fix k : Km(1) and prove f(n) implies α(n) = tr where

α(n) = all

(
List

(
δKm

(B,tr,and) ◦Km ((· ≤ n) ◦degi)i:m

)(
δKm

List,X(σKm

List(X),1(values(n), k))
))

.

100 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Now we calculate

all ◦
(
List

(
δKm

(B,tr,and) ◦Km ((· ≤ n) ◦degi)i:M

))
◦ δKm

List,X

= all ◦List
(
δKm

(B,tr,and)

)
◦ δKm

List,X ◦Km (List ((· ≤ n) ◦degi))i:M

= all ◦ δKm

List(B,tr,and) ◦Km (List ((· ≤ n) ◦degi))i:M

= δKm

(B,tr,and) ◦Km (all ◦List ((· ≤ n) ◦degi))i:M

by naturality and linearity of traverals, and noting that all forms a monoid homomorphism
from List(B,tr,and) to (B,tr,and), with traversals being natural in their applicative functor
argument. By naturality of the strength, we thus have

α(n) = δKm

(B,tr,and)

(
σKm

B,1 ((all (List ((· ≤ n) ◦degi) (valuesi(n))))i:M , k)
)

= δKm

(B,tr,and)

(
σKm

B,1 ((fi(n))i:M , k)
)
,

so

f(n) implies α(n) = ((and)i:Mfi(n)) implies δKm

(B,tr,and)

(
σKm

B,1 ((fi(n))i:M , k)
)

= ((and)i:Mfi(n)) implies δKm

(B,tr,and)

(
σKm

B,1 ((tr)i:M , k)
)
.

In reverse, we reduce

δKm

(B,tr,and)

(
σKm

B,1 ((tr)i:M , k)
)

= δKm

(B,tr,and)

(
σKm

B,1 ((const(tr)(•))i:M , k)
)

= δKm

(B,tr,and)

(
Km (const(tr))i:M

(
σKm

B,1 (•, k)
))

= const(tr)
(
δKm
•

(
Km

(
σKm

B,1 (•, k)
)))

= tr

by naturality of the strength and since const(tr) is a monoid homomorphism from the terminal
monoid • to (B,tr,and), again exploiting naturality of traversals in their applicative functor
argument.

It follows that f(n) implies α(n) = tr and hence, backtracing the chain of reasoning, that

f(n) implies f(S(n)) = tr .

We may finally apply Corollary 2.11 and derive f(n) = tr.

Lemma 2.42. For all m : M , we have

filter (λv. degm(v) ≤ k,valuesm(n)) equals valuesm(min(i, n)).

Proof. It suffices to show

filter (λv. degm(v) ≤ k,valuesm(k + d)) equals valuesm(k).

For this, apply internal induction on the naturals, i.e. Corollary 2.11, on k in context d : N.
The induction base uses that degm(v) ≥ 1. The induction step is proved in the same fashion
is for Lemma 2.41.

Lemma 2.43. For all m : M , we have

unique(v,valuesm(degm(v))) = tr .

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 101

Proof. Analogous to the part of the proof of Lemma 2.51 dealing with parametric initial alge-
bras.

Lemma 2.44. For all m : M , we have

length(valuesfixm(n)) ≥ 1 = tr .

Proof. A consequence of K = S + F .

Let us now introduce the perhaps weirdly named technical concept of a well-stocked fibra-
tion.

Definition 2.7. A finitely fibred fibration over N of an object A : C consists of functions

d : A→ N,

e : N→ List(A)

such that the following two equations hold:

all(List(λx. d(x) equals n)(e(n))) = tr, (2.19)

unique(x, e(d(x))) = tr (2.20)

We call such a fibration well-stocked if in addition there is a function q : N→ N such that

q(S(n)) > S(q(n)) = tr,

length(e(q(n))) ≥ 1 = tr .

We see that degm and valuesm form a well-stocked fibration for any m : M . The following
lemma will now take care of Theorem 2.6:

Lemma 2.45. For any well-stocked finitely fibred fibration over N of an object A : C, we have
A = N.

Proof. Let us first introduce some preliminaries. Define contiguous sequences of natural num-
bers

sequence : N×N→ List(N),

sequence(a, ·) = recList(N)(nil, a :: List(S)(·)).

Note by elementary internal inductions that we alternatively have

sequence(a, ·) = π2 ◦recN×List(N)((0,nil), λ(b, v). v ⊕ (a+ b :: nil)).

Some easy to prove properties include

length(sequence(a, i)) = i,

sequence(a, i)⊕ sequence(a+ i, j) = sequence(a, i+ j),

count(n, sequence(a, i)) = ifn ≥ a and n < a+ i then 1else 0 . (2.21)

Let (d, e, q) denote the given well-stocked finitely fibred fibration of some object A : C
over N. Abbreviate

u(n) = concat(List(e)(sequence(0, n))).

Our strategy will be to construct a "limiting stream" of u as n goes to infinity. The extra
well-stockedness data in form of q enables us to explicitely state a candidate such stream:

g : N→ A,

g(n) = at
(
n, u

(
q
(
S
2(n)

)))
.

102 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Recall that the at operator is only well-defined since we assumed A to come with a default
inhabitant that may be returned when the supplied index argument is out of range. This stream
will associate to each element of A a unique index, which can be computed by bounded lookup
and forms the inverse to the list index accessor function. The challenge — which in this case
is admittedly rather elementary since we assumed A to be endowed with an internal equality
predicate — is to verify that this all goes through in the internal equational theory with our
restricted form of induction with truth values the internal Booleans.

Using well-stockedness We claim that

q(n) ≥ n = tr, (2.22)

length(u(q(S(n)))) ≥ n = tr . (2.23)

The first claim is shown by trivial internal induction. Let us elaborate on the second claim.
By various elementary monoidal structure preservation properties, we see that

length(concat(List(e)(sequence(q(n), q(S(n))− q(n)))))

= length(e(q(n))) + length(concat(List(e)(sequence(S(q(n)), q(S(n))− q(n)− 1)))).

Note that we used q(S(n)) ≥ S(q(n)) = tr in order to have (q(S(n)) − q(n) − 1) + 1 =
q(S(n))− q(n). Since

length(e(q(n))) ≥ 1 = tr,

this implies

length(concat(List(e)(sequence(q(n), q(S(n))− q(n))))) ≥ 1 = tr .

Noting that

u(q(S(n))) = u(q(n))⊕ concat(List(e)(sequence(q(n), q(S(n))− q(n))))),

we then have claim (2.23) by basic arithmetic and internal induction on n.

Stability of u Note that property (2.23) ensures that the call to u will return a list of
length at least S(n), thus ensuring that accessing this list at the n-th position will return a
sensible result. However, for the definition of g to make sense, we need to ensure that the result
does not depend on this particular arbitrary choice, i.e. that

length(u(i)) > n implies at(n, u(i)) equals g(n) = tr . (2.24)

Incorporating property (2.23), a more abstract and general way to state our intentions is

length(u(i)) > n and length(u(j)) > n implies at(n, u(i)) equals at(n, u(j)) = tr,

which in turn may be generalized to

length(u(i)) ≥ n and length(u(j)) ≥ n

implies prefix(n, u(i)) equals prefix(n, u(j)) = tr .

By monotonicity of the antecedent and reverse monotonicity of the consequent, it sufficies to
handle the case where we have substituted max(length(u(i)), length(u(j))) for n. Using
monotonicity of length ◦u, let us break symmetry by introducing a constraint i ≤ j. We may
then write the goal simply as

i ≤ j implies prefix(length(u(i)), u(i)) equals prefix(length(u(i)), u(j)) = tr,

i.e.
i ≤ j implies u(i) equals prefix(length(u(i)), u(j)) = tr,

2.5. TOOLS FOR WORKING IN THE INITIAL MODEL 103

i.e.

i ≤ j implies isprefix(u(i), u(j)) = tr,

which is a simple consequence of

u(i+ t) = u(i)⊕ concat(List(e)(sequence(i, t))),

thus proving (2.24).

Unique containment Let us now state the reverse direction of the isomophism ex-
plicitely:

f : A→ N,

f(v) = index(v, u(S(d(v))))

For this definition to make sense, we need to ensure that unique(v, u(S(d(v)))) = tr. A more
general way to state this is to say

d(v) < n implies unique(v, u(n)) = tr . (2.25)

Note that requirement (2.19) may be reformulated as

contains(v, e(n)) implies d(v) equals n = tr .

By case distinction, with our internal decidable equality on the naturals, using condition (2.20)
in the affirmative case, we have

count(· equals v, e(n)) = if d(v) equals n then 1else 0 .

With this, we may rewrite

count(· equals v)(u(n)))

= sum(List(λi. count(· equals v, e(i)))(sequence(0, n)))

= sum(List(λi. if d(v) equals i then 1else 0)(sequence(0, n)))

= count(d(v), sequence(0, n))

= if d(v) < n then 1else 0 .

using the usual monoidal preservation properties as well as property (2.21), proving claim 2.25
and general pairwise distrinction of the values of u in the form of

max(i, j) < length(u(n)) and at(i, u(n)) equals at(j, u(n)) implies i equals j. (2.26)

Noting that

g(m) = at
(
m,u

(
q
(
S
2(max(m,n)

)))
,

g(n) = at
(
n, u

(
q
(
S
2(max(m,n)

)))

by property (2.24) and monotonicity of u ◦ q ◦S2, we hence prove injectivity of the "stream
limit" g of u:

g(m) equals g(n) implies m equals n. (2.27)

104 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Verifying the laws Let us first prove g ◦ f = idA. By well-definedness

unique(v, u(S(d(v)))) = tr

of f , we have
f(v) < length(u(S(d(v)))).

Using that for the antecedent of property 2.24, it follows that

g(f(v)) = at(f(v), u(S(d(v))))

= at(index(v, u(S(d(v)))), u(S(d(v))))

= v,

where the last step again uses well-definedness of f , i.e. property (2.25).
Now let us show f ◦ g = idN. By (2.27), it will be enough to verify g(f(g(b))) = g(n), but

this is just a special case of the last paragraph.

2.6. THE INITIAL MODEL 105

2.6 The Initial Model

The technique for dealing with the guarded part internally will involve defining an internal
notion of listings of possible shapes with the same positions, even though we lack a proper
notion of containers. This listing — together with associated completeness properties — may
then be used as a lookup structure (using the internal equality predicate), transforming the
possible shapes with given positions into easily transferable list indices. Using data extraction
and injection techniques closely resembling the framework of shapely functors, we may then
construct isomorphisms between guarded regular functors by simply showing that the associated
listings have equal lengths for any given cardinality of positions.

Data Extraction and Injection

For ease of presentation, we will only consider the case of a unary regular functors F : C → C.
The translation of the derived concepts and lemmata is entirely analogous for regular functors
with multiple arguments.

Let us first deal with data extraction. Let U : C × C → C denote the state monad over

S(Y) = List(Y)→ List(Y).

Recall that the functorial structure of U is given by U(Y, Z) = S(Y)→ Z × S(Y). We have an
operation

putY : Y → U(Y, 1),

putY (y)(s) = (•, s ◦(y :: ·))

natural Y : C. Using this, we may define our data extraction function as

extractY : F (Y)→ F (1)× List(Y),

extractY = 〈id, eval(·,nil)〉 ◦eval(·, id) ◦ δFU ◦F (putY)

natural in Y : C.
Data injection is a bit more technical due to partiality issues in need of resolution. Let V :

C ×C → C denote the state monad transformer over T (Y) = List(Y) composed with the maybe
monad. Recall that the functorial structure of V is given by V (Y, Z) = T (Y)→ 1+Z × T (Y).
We have an operation

getY : V (Y, Y),

getY = init
−1
List

natural in Y : C, extracting the first element of the state list. Note the use of the aborting
functionality of the maybe monad to alleviate partiality issues in case the state list is empty.
Let further denote

checkY : F (Y)× List(Y)→ 1 + F (Y),

checkY (v, t) = Jinr(v), inl(•)K
(
init

−1
List(t)

)

the operation of Kleisli arrow type over the maybe monad checking that all of the given list
data input has been consumed. Using this, we may define our data injection function as

injectY : F (1)× List(Y)→ 1 + F (Y),

injectY (v, t) =
(
δFV (F (λ • . getY) (v)) (t)

)
;1+· checkY

natural in Y : C. Here, the intuition is that the function will return in the right summand if
the exact amount of data needed to fill the shape argument of type F (1) has been delivered in
the list data argument of type List(Y). Recall that ·;1+· · denotes the monadic bind operation
over the maybe monad.

106 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Lemma 2.46. Injection and extraction form inverses in the following sense. Let q : F (1) ×
List→ 1 + F (1)× List denote the natural transformation given by

qY (v, t) = if deg(v) equals length(t) then inr(v, t) else inl(•).

We have
inject ◦extract = inr

and
(1 + extract) ◦ inject = q.

In other words, the following diagram commutes:

F
extract //

inr

��

F (1)× List

inject

tt

q

��
1 + F

1+extract // 1 + F (1)× List

Proof. Using the laws of traversals (no internal induction necessary).

In the presence of richer categorical structure, we would have wished to directly define
inject over the pullback of the degree and length morphisms into the internal naturals. Even
though we lack pullbacks in general, we still recover one in this specific instance. This makes
regular functors into shapely functors over any bicartesian-closed category with finitary induc-
tive types. Previous work on shapely functors assumed extensive categories, i.e. stability of
coproduct diagrams under pullbacks, as the ambient framework in which to derive this result,
an assumption far stronger than we are willing to make.

Lemma 2.47. The following diagram forms a pullback square:

F
π1 ◦ extract//

π2 ◦ extract

��

F (1)

deg

��
List

length // N

Proof. A more or less direct consequence of the preceeding lemma.

Lemma 2.48. Consider A : C → C with natural transformations f : A→ F (1) and g : A→ List
such that the following diagram commutes:

A
f //

g

��

F (1)

deg

��
List

length // N

Then inject ◦ 〈f, g〉 lifts uniquely through inr, i.e. there exists a unique natural transformation
h : A→ F such that the outer square in the following diagram commutes:

A
h //

〈f,g〉

��

F

inr

��

extract

vv
F (1)× List

inject // 1 + F

Furthermore, the upper triangle commutes as well. Together with the preceeding lemma, this
makes all of the diagram commute.

2.6. THE INITIAL MODEL 107

Proof. A consequence of the pullback property Lemma 2.47.

Let us consider the following generalization of Definition 2.7:

Definition 2.8. Consider types A,B : C with an internal equality predicate. A finitely fibred
fibration of A over B consists of functions

d : A→ B,

e : B → List(A)

such that the following two equations hold:

all(List(λa. d(a) equals b)(e(b))) = tr, (2.28)

unique(a, e(d(a))) = tr (2.29)

Lemma 2.49. Assume we are given an object Ai : C with a finitely fibred fibration

di : Ai → B,

ei : B → List(Ai)

over B for both i = 0 and i = 1. Assume further that both A0 and A1 have a default inhabitant,
and that

length ◦ e0 = length ◦ e1.
Then there exists an isomorphism s : A0 ≃ A1 of fibrations, i.e. fulfilling commutativity of the
following diagram:

A0
oo s //

d0

A1

d1~~
B

Proof. Since we have assumed default inhabitants for A0 and A1, we may use list accessing
functions. Let us define maps

s0 : A0 → A1,

s0(v) = at (index (v, e0 (d0(v))) , e1(d0(v)))

and

s1 : A1 → A0,

s1(w) = at (index (w, e1 (d1(w))) , e0(d1(w))) .

First of all, note that the properties of the finitely fibred fibration (d0, e0) guarantee that

index (v, e0 (d0(v))) < length(e0 (d0(v))) = tr

and thus

index (v, e0 (d0(v))) < length(e1 (d0(v))) = tr,

guaranteeing that the index lookup and accessing functions in the definition of s0 behave as
expected. In particular, using the properties of the finitely fibred fibration (d1, e1), we conclude

d1(s0(v)) = d0(v).

Symmetrically, the corresponding assertions hold for s1 as well.

108 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Noting that

index (at (index (v, e0 (d0(v))) , e1(d0(v))) , e1(d1(s0(v))))

= index (at (index (v, e0 (d0(v))) , e1(d1(s0(v)))) , e1(d1(s0(v))))

= index (v, e0 (d0(v)))

again using completeness of the listing e1, we have

s1(s0(v)) = at (index (v, e0 (d0(v))) , e0(d1(s0(v))))

= at (index (v, e0 (d0(v))) , e0(d0(v)))

= v

using completeness of the listing e0. Symmetrically, we verify s0 ◦ s1 = id, concluding that s0
and s1 form an isomorphism A0 = A1. Preservation of the fibrations d0 and d1 has already
been shown.

2.6.1 Listings

Given a regular functor F : CM → C, a listing for F with respect to I ⊆ M is a function
e : NI → List(F (1)) such that

all(List(λv. degI(v) equals k)(e(k))) = tr .

With this intuition, let us introduce helper functions

lcontains : F (1)×
(
NI → List(F (1)

)
→ B,

lcontains(v, e) = contains(v, e(degI(v)))

and

lunique : F (1)×
(
NI → List(F (1)

)
→ B,

lunique(v, e) = unique(v, e(degI(v))).

Again returning to the context of the listing e, we say that e is sound if

distinct(e(k)) = tr,

and that e is complete if

lcontains(v, e) = tr .

Together, soundness and completeness synthesize into

lunique(v, e) = tr .

Note that any function NI → List(F (1)) may be transformed into a listing by a filtering
operation, removing elements of incorrect degree. If the original function fulfilled the soundness
or completeness condition of listings, the resulting listing will be sound or complete correspond-
ingly.

Given a regular functor F : CM → C and parameter index subsets I ⊆ J ⊆ M , one may
convert any listing e : NI → List(F (1)) into a listing NI → List(F (1)) by precomposing with
restriction to J and then applying the above filtering operation. Noting that degI = ·|I ◦degJ ,
this operation preserves soundness as well as completeness. In this way, construction of a sound
and complete listing with respect to I ⊆M entails sound and complete listings with respect to
J ⊆M such that I ⊆ J .

2.6. THE INITIAL MODEL 109

Bounded listing For technical reasons, let us introduce a function that computes a represen-
tation for the set of points with non-negative integral coordinates bounded in all components
by such a point:

(·) : NI → List(NI),

k = δ
(·)I

List (sequence(0,S(k))) .

Here, note that I denotes a finite parameter index set.
Given a listing e : NI → List(F (1)) that fulfills at least the first soundness condition, let us

introduce the abbreviation

e≤ : NI → List(NI),

e≤ = concat (List(e) (k))

for the derived listing that collects all values bounded by a given degree sequence. It is quite
straightforward to verify the assertions

all (λi. distinct(e, i), k) implies distinct
(
e≤(k)

)
= tr,

degI(v) ≤ k and lcontains(v, e) implies contains
(
v, e≤(k)

)
= tr .

Therefore, we have
distinct

(
e≤(k)

)
= tr

if the original listing was sound, and

deg(v) ≤ k implies contains
(
v, e≤(k)

)
= tr

if the original listing was complete, and thus

deg(v) ≤ k implies unique
(
v, e(k)≤

)
= tr

if the original listing was sound and complete.

Composition of listings Consider a regular functor F : CM → C guarded over I ⊆ M that
is the composition F = H ◦G of regular functors Gn : CM → C guarded over I for n : N with
a regular functor H : CN → C guarded over J ⊆ N such that in addition Gj is shielded over I
for j : J . Given listings gn : NI → List(Gn(1)) for Gn with n : N and h : NJ → List(H(1)) for
H, let us construct a listing f : NI → List(F (1)) for F . We want to do this in such a way that
the resulting listing will together inherit soundness and completeness from the original listings.

For intuition, let us first play out how to attack this problem in a more pointful setting.
Consider a value v : H(G(1)). Using the framework for data injection and extraction, we may
decompose v first into a shape s : H(1) and data dn : List(Gn(1)) for n : N . The I-degree of
v will then be the sum of the I-degrees of the elements of all lists dn. Note that guardedness
implies that the I-degrees of the elements of dj will be non-zero for j : J .

To generate an enumeration of values of F of given I-degree k, we would thus first enumerate
over possible shapes s. Note that guardedness implies that the I-degrees of the elements of dj
will be non-zero for j : J . We can thus keep this first enumeration step finite by enumerating
only over values s : H(1) such that |degJ(s)| ≤ |k|. Next, we would enumerate over the data
points of type Gn(1) with n : N for the shape s. For n : N , we require degn(s) such data points.
Again, this enumeration step can be kept finite by enumerating only over values d : Gn(1) such
that degI(d) ≤ k. Finally, we must check that the total I-degree matches, discarding the
candidate otherwise.

An elegant way to put this together into an internal term is given by traversals over the list
monad:

f ′ : NI → List(H(G(1)))

f ′ = h≤ (|k|)j:J ; δHList ◦H
(
λ • . g≤n (k)

)
n:N

110 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Note that we made implicit use of the strength of H. We may then define

f : NI → List(F (1))

f(k) = filter(λv. degI(v) = k, f ′(k)).

As remarked earlier, note that f validates the first soundness condition by definition.

Lemma 2.50. Assume we are given listings gn for Gn where n : N and h for H. Constructing
the listing f for F = H ◦G as above, we have

(
(and)n:N distinct

(
g≤n (k)

))
and distinct

(
h≤(k)

)
implies distinct(f(k)) = tr

and

lcontains(v, f) = lcontains(H(!)(v), h) and δHB (H (lcontains(·, gn))n:N (v)) .

If gn for n : N and h are all sound and complete, then the above assertions certainly imply
that f is sound and complete.

Lemma 2.51. If a regular functor F : CM → C is guarded over I ⊆ M , then it has a sound
and complete listing eF with respect to I. If in addition F is shielded over J ⊆ I, then

eF

({
0 if i ∈ J,

ki else

)

i:I

= nil .

Proof. By mutual structural induction on a compositional representation of F as a guarded
regular functor.

For the regular constants F : C0 → C where F = 0 and F = 1, it is trivial to verify
that eF (•) = nil and eF (•) = • :: nil constitute sound and complete listings, respectively.
Furthermore, note that the additional assertion for shieldedness is satisfied in the case F = 0.

Let F : C2 → C be the binary sum operation F (X,Y) = X + Y . By an initial remark,
it suffices to deal with the case I = ∅ ⊆ [2]. We may set eF (•) = inl(•) :: inr(•) :: nil

and verify that this constitutes a sound and complete listing. Note that the derived listing
eF : N2 → List(F (1)) for I = [2] fulfills eF (0, 0) = nil. This covers the case where F is viewed
as being shielded over [2].

Let F : C2 → C be the binary product operation F (X,Y) = X × Y . Again, by an initial
remark, it suffices to deal with the case I = ∅ ⊆ [2]. We set eF (•) = (•, •) :: nil and verify that
this constitutes a sound and complete listing. Note that the derived listing eF : N→ List(F (1))
for both I = {0} ⊆ [2] and I = {1} ⊆ [2] fulfills eF (0) = nil. This covers the cases where F is
viewed as being shielded over either {0} or {1}.

Let F : CM → C be given by F (X) = Xm for m : M . Set

eF (k) = if k =

({
1 if i = m,

0 else

)

i:I

then • :: nil elsenil .

If J constrained by I ⊆ J ⊆ M contains m, then F is shielded over J . In that case, since
m ∈ I, we see that eF (0) = nil.

Composition Next, consider the case F = H ◦G with regular functors Gn : CM → C for
n : N and H : CN → C. Assume that Gn is guarded over I ⊆ M for n : N and that H is
guarded over J ⊆ N such that in addition Gj is shielded over I for j : J . Recall that this makes
F guarded over I. By induction hypothesis, we have sound and complete listings available for
Gn with n : N and H. By Lemma 2.50, we derive a sound and complete listing eF for F .

Now assume further that H is shielded over T ⊆ J and that Gt is shielded over S ⊆ I for
t : T . Recall that this makes F shielded over S. Fix k : I such that k|S = 0. Referring to

2.6. THE INITIAL MODEL 111

the construction of f ′ leading to Lemma 2.50, note that g≤t (k) = nil for t : T . Writing H
explicitly as a sum over t : T of products with left factors πN

t and unravelling the construction
of traversals for regular functors through this decomposition, we see that

δHList ◦H
(
λ • . g≤n (k)

)
n:N

= const(nil),

recalling that nil is a zero for the list monad. It follows that eF (k) = nil.

Parametric initial algebras Finally, consider shielded formation of parametric initial
algebras. Let F : CM → C be given by F (X) = µY.G(X,Y) for a regular functor G : CM+1 → C
shielded over I ⊆M ⊆M + 1. By induction hypothesis, we have a sound and complete listing
eG : NI → List(G(1)) for G fulfilling eG(0) = nil. For any functor H : CM → C and listing
h for H with respect to I, note that Lemma 2.50 gives us a way of constructing a listing
l(h) : G ◦ 〈Id, H〉. This mapping is explicitly given as a natural transformation

lH :
(
NI → List(H(1))

)
→
(
NI → List(G(1, H(1)))

)

over regular functors H. Recall that the proof of lH(h) constituting a listing did not depend on
the corresponding assertion for h, but was derived purely from an a posteriori filtering. For the
specific composition G ◦ 〈Id, H〉 and using the induction hypothesis of eG constituting a sound
and complete listing, the assertions of Lemma 2.50 simplify to

distinct
(
h≤(k)

)
implies distinct(l(h)(k)) = tr (2.30)

and
lcontains(v, l(h)) = δ

G(1,·)
B (G(1, lcontains(·, h))(v)) (2.31)

still assuming that h is a listing.
From lH , we derive the iteration step endomorphism

s :
(
NI → List(µY.G(1, Y))

)
→
(
NI → List(µY.G(1, Y))

)
,

s(e) = List (initF) ◦ lF (e)
and the stream of candidate listings

f : N→
(
NI → List(F (1))

)
,

fn = sn(const(nil)).

By a simple internal induction using that l(fn) is a listing, we may strengthen equation 2.30
to

distinct
(
f≤
n , k

)
implies distinct

(
f≤
S(n), k

)
= tr,

where we have also used that initF is an isomorphism. Together with the base that the listing
const(nil) is sound, a direct application of internal induction shows

distinct
(
f≤
n (k)

)
,

i.e. that the listing fn is sound for all n.

Parametric initial algebras: the first step to completeness Recall the definition of
the iteration count c : F (1)→ B for the initial algebra of G(1, ·) as c = elimN (S ◦ δN,0,max):

G(1, F (1))

initG(1,·)

��

G(1,c) // G(1,N)

δ
G(1,·)

(N,0,max)

��
N

S

��
F (1)

c // N

(2.32)

112 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Proving a variation of completeness for the sequence of fn as a whole is more technically in-
volved. With a more classical approach one is used to e.g. from proofs in denotational semantics,
one would try to prove the proposition

∀(v). c(v) ≤ n implies lcontains(v, fn) = tr

by induction over n. In our setting, recall that internal induction is not strong enough to prove
quantified propositions. Thus, the above approach does not transfer: we would have to fix v
before inducting, in which case by pursuing induction on n one gains absolutely nothings. The
same is true for internal structural induction on v : µY.G(1, Y), of course.

Instead, we will prove the assertion

lcontains(v, fc(v)) = tr (2.33)

by internal structural induction on v. We will endevaour after the most elegant technical
presentation, staying on as high a level of abstraction as possible.

For this, we first need to observe that the listings fn are monotonous in n:

m ≤ n implies lcontains(v, fm) implies lcontains(v, fn). (2.34)

This is seen by writing n = m+ i and internally inducting on i. The internal induction step

lcontains(v, fi) implies lcontains(v, fS(i)) = tr,

essentially asserting that lF is monotonous, is proved by going through the details of the con-
struction of f ′ before Lemma 2.50 and verifying all involved operations are monotonous in
suitable senses.

Expressing monotonicity of the listing function f in a slightly different way, we may write

lcontains
(
v, fmax(m,n)

)
= lcontains (v, fm) and lcontains (v, fn)

and see that lcontains(v, ·) ◦ f is a family of monoid homomorphisms from the maximum
monoid (N, 0,max) to (B,tr,and). Alternatively, we may say that

λn. lcontains(·, fn) : N→ F (1)→ B

is a monoid homomorphisms from (N, 0,max) to (BF (1),tr,and).
Let us abbreviate

u : F (1)× F (1)→ B,

u(v, w) = lcontains
(
v, fc(w)

)
,

i.e. u = lcontains ◦(id×(f ◦ c)). We calculate

(u ◦diag ◦ initF) (v) = lcontains

(
initF (v), f

S

(
δ
G(1,·)

(N,0,max)
(G(1,c)(v))

)
)

= lcontains

(
v, lF

(
f
δ
G(1,·)

(N,0,max)
(G(1,c)(v))

))

(by equation (2.31))

= δ
G(1,·)
B

(
G

(
1, lcontains

(
·, f

δ
G(1,·)

(N,0,max)
(G(1,c)(v))

))
(v)

)

(by the remark on a monoid homomorphism preceding this calculation, using the laws of traver-
sals)

= δ
G(1,·)
B

(
G
(
1, δ

G(1,·)

(BF (1),fl,or)
(G(1,curry(u))(v))

)
(v)
)
.

This term fits the right-hand side of the internal implication asserted by Corollary 2.12. We
deduce that

δ
G(1,·)
B (G(1, u ◦diag)(v)) implies (u ◦diag ◦ initF) (v) = tr .

By internal structural induction in a context, we therefore conclude u ◦diag = const(tr). We
finally have verified equation (2.33).

2.6. THE INITIAL MODEL 113

Parametric initial algebras: bounding the iteration count The technical condition
of shieldedness allows us to bound the iteration count of values of type F (1) by their degree
with respect to I. In formula:

c(v) ≤ |degI(v)| = tr . (2.35)

This bound will allow us to transform our first approximation (2.33) to completeness into

lcontains
(
v, f|degI(v)|

)
= tr . (2.36)

by invoking monotonicity (2.34). We may then define the final listing

f : NI → List(F (1)),

f(k) = f|k|(k)

through the obvious diagonalization argument. This denoting a sound listing follows from the
individual approximations fn being sound listings, while (2.36) states that f is complete.

Let us prove equation (2.35) through a standard internal structural induction argument.
Given a finite parameter index set T , Let θTS : NT denote the internal characteristic vector of
the subset S ⊆ T . For a singleton S = {s}, we write θs for θS . Commutativity of the following
diagram follows from the fact that ·|I and |·| constitute monoid homomorphisms between the
designated monoids:

F (1)
F(const(θM

m))
m:M

ww

F(const
M(θM

I))

''
F (NN)n:N

F(·|I) //

δF
(NN,0,+)

��

F (NI)n:N
F (|·|) //

δF

(NI ,0,+)
��

F (N)n:N

δF(N,0,+)

��
NN

·|I // NI
|·| // N

Recalling that degI = (·|I) ◦degN where the original degree function degN : F (1) → Nk is
defined as

degN = δF(NM ,0,+) ◦F
(
const

(
θMm
))

m:M
,

we deduce that
|degI(·)| = δF(N,0,+) ◦F

(
constM

(
θMI
))

.

Recall from the construction of traversals over regular functors that

δ
µY.G(N,Y)
(N,0,+) = elim

G(N,Y)
N

(
δ(N,0,+)

)
.

By stability of initial algebras, we hence identify |degI(·)| as the following fold:

G(1, F (1))

initG(1,·)

��

G(1,|degI(·)|) // G ((1)m:M ,N)

G(const
M(θM

I),id)
��

G ((N)m:M ,N)

δG(N,0,+)

��
F (1)

|degI(·)| // N

Comparing this diagram with (2.32), it is easy to see that (2.35) will follow from an application
of internal structural induction if we are able to prove

(· ≤ ·) ◦
〈
S ◦ δG(1,·)

(N,0,max), δ
G
(N,0,+) ◦G

(
constM

(
θMI
)
, id
)〉

= tr .

114 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Note that

δG(NI ,0,+) ◦G
(
constM

(
θMI
)
, id
)

= (·+ ·) ◦
〈
δ
G(·,N)
(N,0,+), δ

G((N)m:M ,·)
(N,0,+)

〉
◦G

(
constM

(
θMI
)
, id
)

= (·+ ·) ◦
〈
δ
G(·,1)
(N,0,+) ◦G

(
constM

(
θMI
)
,const(•)

)
, δ

G(1,·)
(N,0,+)

〉
.

Since

δ
G(1,·)
(N,0,max)(v) ≤ δ

G(1,·)
(N,0,+)(v) = tr,

we are done if we are able to show

1 ≤ δ
G(·,1)
(N,0,+)

(
G
(
constM

(
θMI
)
,const(•)

)
(v)
)
= tr .

But this is easily seen to be true by unfolding the construction of traversals for regular functors
over the decomposition of G according to its shieldedness over I.

Let us briefly develop a technical tool needed in the proof of the preceding lemma.
Consider functors F,G : C → C with strengths σF

X,Y : X × F (Y) → F (X × Y) and σG
X,Y :

X ×G(Y)→ G(X × Y). Then there is a natural transformation

mF,G
X,Y : F (X)×G(Y)→ G(F (X × Y)),

mF,G
X,Y = F

(
σG
F (X),Y ◦ swap

)
◦σF

G(X),Y ◦ swap

we call left multiplication of F and G, despite the overloaded connotation. There is an analogous
right multiplication with codomain F ◦G, but since it can be derived from the left multiplication
with flipped argument, we will not introduce it explicitly.

Now consider a strong functor F : C → C. The left diagonalization of F is the natural
transformation

dFX,Y : F (X × Y)→ F 2(X × Y),

mF
X,Y = mF,F

X,Y ◦ splFX,Y

defined using the left multiplication of F with itself. Again, there is an analogous right diago-
nalization, but it can be derived from the left diagonalization by swapping.

Lemma 2.52. Consider a strong traversable functor F : C → C. Let u : X × Y → B with
X,Y : C. Consider the following parallel pair of arrows:

F (X × Y)
F (u) // F (B)

all
F

// B

F (X × Y)
dF
X,Y // F 2(X × Y)

F 2(u) // F 2(B)
F(anyF)

// F (B)
all

F

// B

The first arrow p is related to the second arrow q via an internal implication, i.e.

implies(p(v), q(v)) = tr .

Proof. Recall that we have a natural transformation F → List preserving strength and traversal
operations. Since the codomain of the equation is seen to be free of F , it thus suffices to verify
the lemma in the case F = List. Here, the proof is rather straightforward using several internal
structural inductions on lists. The intuition is that the element list of dListX,Y (v) at position i
agrees with v at position i for any valid list index i.

2.6. THE INITIAL MODEL 115

Corollary 2.12. Consider a strong traversable functor F : C → C. Let u : X ×X → B with
X : C. Making implicit use of the strength, we have

allF (F (u ◦diag) (v)) implies allF
(
F
(
anyF

BX (F (curry(u))(v))
)
(v)
)
= tr

of type F (X)→ B.

Proof. Precompose the statement of Lemma 2.52 with F (diag) to get splFX,X ◦F (diag) =
diag. Note further that

anyF
BX (F (curry(u))(v)) (x) = anyF (F (u(·, x))(v))

as evaluation at a fixed argument is a monoid homomorphism from (BX , fl,or) to (B, fl,or),
thus constituting an applicative morphism between the constant applicative functors involved
in the definition of anyF

BX and anyF as traversals. The remainder of the argument consists of
shifting strengths around.

Let us finally harvest the fruits of our efforts.

Lemma 2.53. Consider regular functors G,H : CM → C. If 1 +G = 1 +H, then G = H.

Proof. Left to the reader.

Lemma 2.54. Consider regular functors F0, F1 : CM → C with complete listings

e0 : NM → List(F0(1)),

e1 : NM → List(F1(1)).

Assume that

length ◦ e0 = length ◦ e1.

Then F0 = F1.

Proof. By the following argument, we may without loss of generality assume that both F0(1)
and F1(1) have a default inhabitant. Replace the functors F0 and F1 with 1 + F0 and 1 + F1,
respectively. The complete listings are easily modified to accomodate for this trivial change,
and Lemma 2.53 implies that F0 = F1 will follow from 1 + F0 = 1 + F1.

By Lemma 2.49, we have a degree-preserving isomorphism s : F0(1)→ F1(1). Together with
Lemma 2.47, this yields the following commutative diagram illustrating the decomposition into
shape and data:

F0(1) oo
s //

degF0 ##

F1(1)

degF1{{
F0

π1 ◦ extract
F0

==

π2 ◦ extract
F0

))

NM F1

π1 ◦ extract
F1

aa

π2 ◦ extract
F1

uu
ListM

length

OO

Here, the left and right cells form pullback squares. Since pullbacks over isomorphic cospans
are isomorphic, it follows that F0 = F1.

As a consequence to this result, guarded regular functors F : CM → C are completely
described by their associated power series description PF : NM → N where PF = length ◦ eF .

116 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

2.6.2 Polynomial Listings

Consider a listing f : NI → List(F (1)) for a regular functor F : CI+K → C guarded over I
with the implicit embedding I ⊆ I +K. With each value v : F (1), we associate the monomial
m(v) = Xα in PolyK(N) given by the degree sequence α = degK(v). This way, we derive the
polynomial listing

f : NI → Polyk(N),

f = δList(PolyK(N),0,+) ◦List(m) ◦ f

associated with f . Note that NI → Polyk(N) again forms a semiring with addition computed
pointwise. We will continue to overload addition and multiplication symbols. Also note that

δList(PolyK(N),0,+) ◦List(m)

forms a monoid homomorphism from (List(F (1)),nil,⊕) to (PolyK(N), 0,+).
As will be shown soon, if the listing f is sound and complete, then the regular functor F

is characterized by f up to equivalence. Let us rephrase the closure of sound and complete
listings under all guarded regular functor forming operations as established by Lemma 2.51 in
terms of the associated polynomial listings.

Variable Selection Let F : CM → C be the variable selector F = πM
m for m : M . In case

m ∈ I, we have

eF (k) = if k =

({
1 if i = m,

0 else

)

i:I

then 1 else 0,

and in case m 6∈ I, we have

eF (k) = if k = 0 then Xm else 0.

Finite sums If F : CI+K → C is given by F = 0, then clearly eF (k) = nil via the nullary
decomposition F = 0 ◦ 〈〉 as seen in Lemma 2.51. Using our overloaded semiring notation, we
may write eF = 0.

Let F = G + H with regular functors G,H : CI+K → C guarded over I. The sound and
complete listing eF for F was derived via the decomposition F = (+) ◦ 〈G,H〉. Since the sound
and complete listing associated with (+) is rather trivial, let us unravel the construction from
Lemma 2.50 of sound and complete listings for compositions for this particular case. After some
straightforward elimination of redundancy, we see that

eF (k) = List(inl)
(
eG(k)

)
⊕ List(inr)

(
eH(k)

)
.

Using naturality of traversals in applicative morphisms, this transforms into

eF (k) = eG(k) + eH(k),

or just eF = eG + eH .

Finite products If F : CI+K → C is given by F = 1, then clearly

eF (k) = if v equals 0 then • :: nil elsenil

via the nullary decomposition F = 1 ◦ 〈〉 as seen in Lemma 2.51. This requires only a very brief
unfolding of the listing composition construction from Lemma 2.50. This corresponds directly
to the multiplicative unit in our type of polynomial listings. Continuing using our overloaded
semiring notation, we write eF = 1.

2.6. THE INITIAL MODEL 117

Let F = G × H with regular functors G,H : CI+K → C guarded over I. The sound and
complete listing eF for F was derived via the decomposition F = (×) ◦ 〈G,H〉. Again, since
the sound and complete listing associated with (×) is rather trivial, let us unravel the listing
composition construction from Lemma 2.50. We see that

eF (k) = filter

(
degI(·) = k, µList

(
eG

≤
(k), eH

≤
(k)
))

where µList denotes the natural transformation witnessing preservation of binary products for
the applicative functor List. Since deg

G×H
I (v, w) = degG

I (v)+degH
I (w), by various naturality

properties of traversals it follows that

eF (k) =
∑

kg,kh≤h,
kg+khequalsk

eG(kg) · eH(kh)

where the summation is just shorthand notation for the very verbose expression

eF = List
(
λ(kg, kh). e

G(kg) · eH(kh)
)

◦ filter(λ(kg, kh. kg + kh equals k, ·)
◦µList ◦diag ◦ sequence(0,S(·)).

But this is just the definition of multiplication for power series, so that we may conclude
eF = eG · eH .

In the following, we will continue to use such shorthand notation as above whenever it is
clear what internal term it actually stands for.

Parametric algebra formation Let us consider shielded formation of parametric initial
algebras. Let F : CM → C be given by F (X) = µY.G(X,Y) with a regular functor G : CM+1 →
C shielded over I ⊆ M ⊆ M + 1. We will represent the polynomial listing associated with eG

as having signature

eG : NI → Poly
(
PolyM\I(N)

)

Recall from the corresponding section in the proof of Lemma 2.51 that for any functor H :
CM → C, we have a way of transforming a listing h for H into a listing lH(h) for G ◦ 〈Id, H〉.
Let us see how we can factor this map through formation of polynomial listings:

NI → List(H(1))
lH //

·

��

NI → List(G(1, H(1)))

·

��
NI → PolyM\I(N)

l // NI → PolyM\I(N)

Note that we expect the map l to end up no longer depending on the functor H. Using monadic
notation for power series formation, our candidate for the desired map is

l(h) = µPolyM\IJXIK

(
subst

(
ηPolyM\IJXIK, h

)
◦ eG

)
.

The verification process is not particular surprising, being yet another study in the practical
application of the laws for traversals. In the interest of brevity, we skip it.

Note that the polynomial listing associated with eµY.G(·,Y) will be a fixpoint of l. Using the
fact that G is shielded over I, i.e. that eG(0) = 0, we may see — in a fashion similar to the
corresponding part of the proof of Lemma 2.51 — that l(h) is a contractive map in the sense
that

((all)t<k(h1)(t) equals (h2)(t)) implies l(h1)(k) = l(h2)(k) = tr

118 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

where the internal finite Boolean quantification is again shorthand notation for the obvious
proper internal term. We may thus construct a fixpoint explicitly by for example choosing

eF : NI → PolyM\i(N),

eF (k) = l
|k|
(0)(k),

observing that l(h)(0) = 0. An internal version of standard fixpoint theory then proves that
this fixpoint is in fact unique, i.e. given f such that l(f) = f , then f = eF .

2.6.3 Verifying Algebraicity of Polynomial Listings

By another induction on the structure of guarded regular functors, we may verify that our
polynomial listings fulfill the same polynomial equations as did the associated power series
in the case of the set model. This involves an internalization of the arguments presented in
the corresponding section, using the basic algebraic operations and properties presented and
alluded to earlier.

2.7. RELATED WORK 119

2.7 Related Work

Decidability and complexity of type isomorphism is a rich and broad subject with relations
to automata theory, combinatorics, mathematical logic, rewriting theory, and type theory. In
the specific setting of typically ambiguous type isomorphism in a simply typed λ-calculus with
sums, products, and recursive types, our results perhaps thematically come closest to work by
Fiore [18], which expands on more expository work of the same character like the problem of
‘Seven Trees in One’ [8]. The crucial difference however, is that Fiore’s recursive types are
generically recursive instead of being given by initial algebras, leading to a much weaker —
though more structural — type-level equational theory based only on the basic isomorphism
µF ∼= F (µF) for folding/unfolding, i.e. one-step expanding, recursive types, with isomorphism
decision problems reducing to problems of equality in quotients of polynomial semirings. 19

In constrast, the term-level η-equations generated in our settings by uniqueness of eliminators
from initial algebras yield a richer, more complicated theory of type isomorphisms.

From a slightly different angle, Backhouse et al. [6] relate recursive type isomorphism in a
theory with sums and products to Solitaire-like games and other tiling problems. They show
how an understanding of decision procedures for recursive type isomorphism classify solution
strategies. Again, their recursive types are generically recursive and the type isomorphisms
structural, placing their work closer to Fiore’s [18] than ours.

Moving to a semantic notion of type isomorphism (though retaining the initial algebra
semantics for recursive types), our results relate to automata theory. Specifically in the set
model, as already observed by Altenkirch [4], type isomorphism corresponds to equivalence of
context free grammars when allowing terminal symbols to commute and counting the number
of possible derivations for each word, known as the ambiguity. Both context free grammars
with commuting terminals [46] and context free grammars with count of ambiguity [19] have
separately been considered, though we are not aware of any work that combines the two mod-
ifications. We again note that the restriction of our situation to indefinite types reduces to
Parikh’s theorem [46] in the set model.

With regards to possibly novel technical means deployed in our development, our method-
ology of establishing type-level isomorphisms without having to reason about term equality
whenever possible follows the spirit of — and extends where necessary — the µ-calculus of
Backhouse et al. [5]. Let us briefly comment on two further aspects.

Traversability of regular functors Our work on traversability of regular functors in any
bicartesian-closed category with suitable initial algebras builds on work by Jaskelioff and Ry-
pacek [30]. Without their making rigorous of the categorical meaning of traversability, our
results could not have even be stated properly. Previous work on establishing traversability
of regular functors relied either on working on very special categories like the category of sets
Set [30] where initial algebras can conveniently be descibed as colimits and the framework of
containers [1] unfolds much of its power, or was restricted to traversing only with respects to
monads [20] instead of general applicative functors. The latter restriction was seemingly born
out of the oversight of generalizing to simultaneous traversals in several parameters. The ad
hoc fix of requiring a monad structure made the treatment unnecessarily convoluted by mix-
ing together two orthogonal concerns, requiring extra structure alignment requirements [20,
Paragraph 5.1] on the monad.

Integrals of quotient containers Our classification result on integrals of cycle quotient
containers [3, 22] relates to work by Joyal [32] on combinatorial species. It is superseded by
Rajan [49].

19This is not to be confused with the use of ’fold’ for eliminators from initial algebras in the functional
programming community.

120 CHAPTER 2. ISOMORPHISM OF FINITARY INDUCTIVE TYPES

Chapter 3

Higher Homotopies in Univalent

Universes

3.1 Introduction

Homotopy type theory [56], closely related to the Univalent Foundations program instigated by
Vladimir Voevodsky, is a relatively recent interpretation of type theory that introduces a new
way of looking at Martin-Löf identity types [42]. Traditionally, these are defined as inductive
types IdA(x, y) over two indices x, y of a given type A with a canonical inhabitant refla : IdA(a, a)
for definitionally equal indices. Originally, with this notion of equality, it was unknown whether
it is provable that all inhabitants of IdA(x, y) are equal, an assertion known as Uniqueness of
Identity Proofs (UIP). In the habilitation thesis [55], Streicher presented heuristic evidence 1

that UIP is not derivable, and suggested that to remedy this apparent accident it should be
assumed in equivalent form as an additional axiom K 2 allowing us to eliminate over elements
of IdA(a, a) with a : A fixed. In a seminal paper [27], Hofmann and Streicher later constructed a
model of type theory with one universe, the groupoid model, that invalidates axiom K, formally
showing that UIP is not derivable.

In contrast, homotopy type theory asserts that the lack of UIP is not a fault, but a feature.
An intuitive model interprets types as topological spaces; elements of a type as points in that
space varying continuously with respect to the context; and the identity type IdA(x, y) as the
space of paths between points x and y in the space A. Any space with non-trivial fundamental
group, i.e. having loops that cannot be continuously contracted to a point, like the circle will
then invalidate UIP.

In the terminology of homotopy type theory, a type equivalent to the unit type is known
as contractible. A type such that every two of its elements are equal is known as propositional.
A type that validates UIP is known as a set, or 0-type. Proponents of homotopy type theory
argue that the usefulness of UIP when working with algebraic structures can be recovered by
restricting oneself to the subuniverse of types that are sets.

Homotopy type theory introduces a more structural view of the identity type. Under a
suitable notion of equivalence, equality of (dependent) pairs is essentially a (dependent) pair
of equalities. Similarly, equality of (dependent) functions should be equivalent to a dependent
function valued in equalities, an assumption known as function extensionality. Going further,
homotopy type theory inquires about the suitable structural equality on type universes. The
correct notion of equality of two types turns out to be equivalence itself. This assumption,
known as Voevodsky’s Univalence Axiom (UA) [58], in fact implies function extensionality and
directly contradicts UIP in the presence of a universe. It is, however, validated by the groupoid
model and other homotopy theoretic models like the simplicial set model [33] and Coquand’s

1in terms of failed approaches and philosophical reasoning
2named in reference to the standard identity type eliminator J

121

122 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

et al. cubical set model [7]. Equality of (co-)inductive types then turns out to be equivalent to
a (co-)inductive type of equalities of the same structure.

One is inclined to give equality a more primitive, structural status 3, but the general question
of computation rules for equality is still under debate. This question is related to the problem
of recovering a version of canonicity: under the Univalence Axiom, no longer does every closed
term s : 2 of Boolean type reduce, i.e. is definitionally equal, to either 02 or 12. However, it
is expected that there is an algorithm for deriving a closed inhabitant of either Id2(s, 02) or
Id2(s, 12).

In this chapter, we present a solution to an open problem from the special year on Univalent
Foundations of Mathematics at the Institute for Advanced Study 2012/2013. An n-type is a
type such that all higher equalities above level n are trivial. In the context of a hierarchy of
cumulative universes U0,U1, . . ., is it possible to construct types of arbitrarily high truncation
level? 4 Specifically, we show that Un

n , the n-th universe restricted to n-types, has truncation
level strictly n+ 1.

An Agda development [37] of the contents of this chapter is available.

3.2 Type Theory

We work in a type theory essentially identical to the one described in appendix A.2 of the
current main reference in the subject of homotopy type theory [56]. Rule names and most
naming conventions have deliberately been left in place. Exploiting an infinite hierarchy of
universes, we are able to restrict ourselves to only three basic types of judgements: context
wellformedness Γ ctx, term typing Γ ⊢ a : A, and typed definitional equality Γ ⊢ a ≡ a′ : A. In
a typing judgement Γ ⊢ X : Ui, we will refer to X as a type.

Substitution and structural weakening rules need not be assumed, they are admissible. Sim-
ilarly, subject reduction, normalization, and canonicity of the presented type theory (without
the Univalence Axiom, and with a suitable notion of reduction) are folklore [42] and need not
concern us here.

3.2.1 Context Rules

· ctx ctx-emp

x1:A1, . . . , xn−1:An−1 ⊢ An : Ui
(x1:A1, . . . , xn:An) ctx

ctx-ext

(x1:A1, . . . , xn:An) ctx

x1:A1, . . . , xn:An ⊢ xi : Ai

Vble

3.2.2 Definitional Equality

Definitional equality is postulated to be an equivalence relation:

Γ ⊢ a : A

Γ ⊢ a ≡ a : A

Γ ⊢ a ≡ b : A

Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A

Γ ⊢ a ≡ c : A

It may also be used for rewriting types:

Γ ⊢ a : A Γ ⊢ A ≡ B : Ui
Γ ⊢ a : B

Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B : Ui
Γ ⊢ a ≡ b : B

In the following subsections, we omit the repetitive rules establishing closure of definitional
equality under application of type formers, constructors, and eliminators.

3while prohibiting so-called indexed inductive types, of which equality is the prime example
4Note that this is in a setting without higher inductive types, which artificially introduce higher path gener-

ators.

3.2. TYPE THEORY 123

3.2.3 Type Universes

Γ ctx

Γ ⊢ Ui : Ui+1

U-intro

Γ ⊢ A : Ui
Γ ⊢ A : Ui+1

U-cumul

3.2.4 Dependent Functions

For this and the next subsection, fix judgements Γ ⊢ A : Ui and Γ, x:A ⊢ B[x] : Ui. Formation
and introduction are as follows:

. . .

Γ ⊢∏(x:A)B[x] : Ui
Π-form

. . . Γ, x:A ⊢ b[x] : B[x]

Γ ⊢ λ(x :A). b[x] :
∏

(x:A)B[x]
Π-intro

Elimination and associated computational behaviour are given by:

. . . Γ ⊢ f :
∏

(x:A)B[x] Γ ⊢ a : A

Γ ⊢ f(a) : B[a]
Π-elim

. . . Γ, x:A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (λ(x :A). b[x])(a) ≡ b[a] : B[a]
Π-comp

We also have definitional uniqueness of dependent functions:

. . . Γ ⊢ f :
∏

(x:A)B[x]

Γ ⊢ f ≡ λx. f(x) :
∏

(x:A)B[x]
Π-uniq

Notation Given A : Ui and B : A→ Ui, we may write ΠAB for
∏

(x:A) B(x).

Given A,B : Ui, let A→ B be an abbreviation for
∏

(x:A) B.

3.2.5 Dependent Pairs

Formation and introduction are as follows:

. . .

Γ ⊢∑(x:A)B[x] : Ui
Σ-form

. . . Γ ⊢ a : A Γ ⊢ b : B[a]

Γ ⊢ (a, b) :
∑

(x:A)B[x]
Σ-intro

Fix an elimination type Γ, z:
∑

(x:A) B[x] ⊢ C[z] : Ui with witness

Γ, x:A, y:B[x] ⊢ c[x, y] : C[(x, y)]

and shorten ind∑
(x:A) B[x](C, c, ·) by writing ind(·). Elimination and associated computational

behaviour are given by:

. . . Γ ⊢ s :
∑

(x:A)B[x]

Γ ⊢ ind(s) : C[s]
Σ-elim

. . . Γ ⊢ a : A Γ ⊢ b : B[a]

Γ ⊢ ind(a, b) ≡ c[a, b] : C[(a, b)]
Σ-comp

Notation The projections

pr1 :
∑

(x:A)B(x)→ A

pr2 :
∏

(s:
∑

(x:A) B(x)) → B(pr1(s))

are defined in terms of the eliminator. They compute according to pr1(a, b) ≡ a and pr2(a, b) ≡
b).

Given A : Ui and B : A→ Ui, we may write ΣAB for
∑

(x:A) B(x).

Given A,B : Ui, let A×B be an abbreviation for
∑

(a:A) B.

124 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

3.2.6 Coproducts

For this subsection, fix judgements Γ ⊢ A : Ui and Γ ⊢ B : Ui. Formation and introduction
rules are as follows:

. . .

Γ ⊢ A+B : Ui
+-form

. . . Γ ⊢ a : A

Γ ⊢ inl(a) : A+B
+-intro1

. . . Γ ⊢ b : B

Γ ⊢ inr(b) : A+B
+-intro2

Fix an elimination type Γ, z:(A+B) ⊢ C[z] : Ui with witnesses

Γ, x:A ⊢ cl[x] : C[inl(x)],

Γ, y:B ⊢ cr[y] : C[inr(y)]

and shorten indA+B(C, cl, cr, ·) by writing ind(·). The elimination rule is then given by

. . . Γ ⊢ s : A+B

Γ ⊢ ind(s) : C[s]
+-elim

and has computational behaviour as follows:

. . . Γ ⊢ a : A

Γ ⊢ ind(inl(a)) ≡ cl[a] : C[inl(a)]
+-comp1

. . . Γ ⊢ b : B

Γ ⊢ ind(inr(b)) ≡ cr[b] : C[inr(b)]
+-comp2

3.2.7 Unit Type

Formation and introduction are as follows:

Γ ctx

Γ ⊢ 1 : U0
1-form

Γ ctx

Γ ⊢ ⋆ : 1
1-intro

Fix an elimination type Γ, x:1 ⊢ C[x] : U0 with witness Γ ⊢ c : C[⋆]. Elimination and
associated computational behaviour are given by:

. . . Γ ⊢ s : 1

Γ ⊢ ind1(C, c, s) : C[s]
1-elim

. . .

Γ ⊢ ind1(C, c, ⋆) ≡ c : C[⋆]
1-comp

Notation The type of Booleans 2 : U0 is defined as 2 :≡ 1+ 1. Its constructors are given by
02 :≡ inl(⋆) and 12 :≡ inr(⋆).

3.2.8 Empty Type

Formation and elimination are as follows:

Γ ctx

Γ ⊢ 0 : Ui
0-form

Γ, x:0 ⊢ C[x] : Ui Γ ⊢ s : 0

Γ ⊢ ind0(C, s) : C[s]
0-elim

Note that there are no introduction, hence also no computation rules.

Notation As usual, ¬A will abbreviate A→ 0.

3.3. PRELIMINARIES 125

Natural Numbers

Formation and introduction are as follows:

Γ ctx

Γ ⊢ N : Ui
N-form

Γ ctx

Γ ⊢ 0 : N
N-intro1

Γ ⊢ n : N

Γ ⊢ succ(n) : N
N-intro2

Fix an elimination type Γ, x:N ⊢ C[x] : Ui with witnesses

Γ ⊢ c0 : C[0],

Γ, x:N, y:C[x] ⊢ cs[x, y] : C[succ(x)]

and shorten indN(C, c0, cs, ·) by writing ind(·). Elimination and associated computational be-
haviour are given by:

. . . Γ ⊢ s : N

Γ ⊢ ind(s) : C[s]
N-elim

. . .

Γ ⊢ ind(0) ≡ c0 : C[0]
N-comp1

. . . Γ ⊢ n : N

Γ ⊢ ind(succ(n)) ≡ cs[n, ind(n)] : C[succ(n)]
N-comp2

3.2.9 Identity Types

We present the Paulin-Mohring version of equality [47]. For this subsection, fix judgements
Γ ⊢ A : Ui and Γ ⊢ a : A. Formation and introduction rules are as follows:

. . . Γ ⊢ b : A

Γ ⊢ a =A b : Ui
=-form

. . .

Γ ⊢ refla : a =A a
=-intro

Fix an elimination type Γ, y:A, q:a =A y ⊢ C[y, q] : Ui with witness

Γ, z:A ⊢ c[z] : C[z, reflz]

and shorten ind=A,a
(C, c, ·, ·) by writing ind(·, ·). Elimination, also called path induction, and

associated computational behaviour are given by:

. . . Γ ⊢ b : A Γ ⊢ p : a =A b

Γ ⊢ ind(b, p) : C[b, p]
=-elim

. . .

Γ ⊢ ind(a, refla) ≡ c[a] : C[a, refla]
=-comp

Notation We will omit the typing subscript A in a =A b if it is easily derivable. As usual,
a 6=A b will stand for ¬(a =A b), i.e. a =A b→ 0.

3.3 Preliminaries

We will briefly review basic ideas, constructions, facts, and terminology from homotopy type
theory. Detailed proofs and further discussion can be found in our main reference [56].

3.3.1 Types as ω-groupoids

Any type A can be regarded as a (weak) ω-groupoid where the 0-cells are the elements of A and
the 1-cells are the equalities, or paths, between them: we have a neutral element reflx : x = x
for x : A and can define composition p � q : x = z for p : x = y and q : y = z as well as reversal
p−1 : y = x for p : x = y. These operations fulfill the expected laws of neutrality, associativity,

126 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

and inversion. The witnesses of these laws, families of 2-paths, again cohere in a meaningful
way with each other and the 1-operations. 5

Functions between types preserve this ω-groupoidal structure, i.e. act as (weak) ω-functors.
That is, a function f : A → B induces a function apf : x =A y → f(x) =B f(y) for x, y : A
that is ω-functorial in f and its path space argument. Given p : x =A y, we will usually write
f(p) instead of apf (p) as is usual in category theory.

3.3.2 Truncation Levels

A type A is contractible, or a (−2)-type, if it has an inhabitant a and any other element x has
a designated path from a, i.e.

∏
(x:A) a = x. A type A is an (n+1)-type for n ≥ −2 if the path

space x =A y is an n-type for all x, y : A. 6

The (−1)-types are commonly known as propositions. They can also be characterized as
those types that have a choice for a path between any two elements. 7 Thus, an inhabited
proposition is contractible. The 0-types are known as sets. In the context of verifying A is an
n-type,

• if n ≥ −1, we can assume A is inhabited, 8

• if n ≥ 0, we only need to show x =A x is an (n− 1)-type for x : A. 9

The statement of A being an n-type is monotonic in n, i.e. for n1 ≤ n2, if A is an n1-type, then
also an n2-type. 10 Importantly, it is propositional itself. 11

3.3.3 Equivalences

The fiber of a function f : A → B over a point y : B is the type
∑

(x:A) f(x) = y. If all fibers

of f are contractible, then f is called an equivalence. This predicate isequiv(f) is propositional.
An equivalent definition is in terms of coherent isomorphism, consisting of a pointwise inverse
g : B → A with ǫ :

∏
(x:A) g(f(x)) = x and η :

∏
(y:B) f(g(y)) = y that are coherent by∏

(x:A) f(ǫ(x)) = η(f(x)). Any isomorphism can be made coherent by changing either ǫ or η.

We write A ≃ B :≡ ∑(f :A→B) isequiv(f) for the type of equivalences between A and B.
Equivalences, like equalities, are closed under identity, composition, and inverse. Given e : A ≃
B, we will also use e to designate the underlying function from A to B. Equality of equivalences
is equivalent to equality of the underlying functions. 12 An equivalence f : A → B induces
equivalences apf on the path spaces of A and B.

All type formers preserve equivalence. For example, given Aj : Ui and Bj : Aj → Ui for
j = 1, 2 with an equivalence u : A1 ≃ A2 and equivalences B1(a1) ≃ B2(u(a1)) for a1 : A, then
ΠA1B1 ≃ ΠA2B2 and ΣA1B1 ≃ ΣA2B2. These type-level compositional equivalences are best
understood in terms of coherent isomorphisms.

The notion of being an n-type is invariant under equivalence.

5Even though we can state these higher coherence laws for any bounded level of dimension, i.e. define an
n-groupoid for any n, actually giving a definition of an ω-groupoid on types inside homotopy type theory seems
to be a profound open problem.

6By convention, the notion of n-type ranges over n ≥ −2. We regard this as a simple notional convenience
with a canonical isomorphism N−2 ≃ N.

7This instructive exercise forms the core argument of Hedberg’s Theorem [24].
8Just note that we are given elements x, y : A for which we must show something (that x = y is an (n− 1)-

type).
9Given x, y : A, do path induction on the element of x =A y coming from the previous list item.

10This follows from contractible types being propositional with the above characterization of propositions.
11 A path between two witnesses of contractibility of A is given by contractibility of A and the structural

equality of (=-Σ) and (=-Π) below. The general notion of being an n-type inherits propositionality from the
case n ≡ −2 as explained under (=-Π).

12This follows from isequiv(·) being propositional and the structural equality (=-Σ) on Σ-types below.

3.3. PRELIMINARIES 127

3.3.4 Univalence

Given a family P : A→ Ui and a path p : a1 =A a2, there is a transport or substitution operation
transportP (p, ·) :≡ p∗ : P (a1) → P (a2) reducing to the identity for a reflexivity argument. We
will use the shorter second form if the type family P is clear from the context. It is (pointwise)
ω-functorial in p, and in particular p−1

∗(·) is a pointwise inverse to p∗(·). It thus induces an
equivalence P (a1) ≃ P (a2).

For A = Ui and P (X) = X, the above transportation equivalence yields a function idtoeqv :
X =Ui

Y → X ≃ Y coercing equalities on types to equivalences. The Univalence Axiom now
states that this function is an equivalence. 13 When reasoning about type equivalence, we will
henceforth use equality notation.

3.3.5 Structural Equality via Univalence

The Univalence Axiom enables us to identify equality on a given type former with the correct
structural notion of equality of the type former in question. This core tool will often be used
as primitive steps in our manipulations of types.

It is important to keep in mind not only the type equalities presented in this subsection,
but also the action of the underlying isomorphisms. They mediate ω-functorially between
the natural ω-groupoidal structure on a given type and a synthetic one built out of the type
structure. For instance, a reflexivity proof will correspond to a family of reflexivity proofs via
(=-Π). This will be made use of when these equations are cited later on.

Universes Ui Given A,B : Ui, univalence makes equality A =Ui
B on a universe equivalent

to equivalence A ≃ B via idtoeqv:

(A =Ui
B) = (A ≃ B). (=-U)

Writing Un
i :≡ ∑(X:Ui)

is-n-type(X) for the subuniverse of n-types, equality on Un
i coincides

with equality on its embedding in Ui. If one of A or B is an n-type, then so is A ≃ B, i.e.
A = B. 14 It follows that Un

i is an (n+ 1)-type. The central consequence of this work is that
Un
n is strictly an (n+ 1)-type, i.e. not an n-type.

Unit Type 1 Equality on the unit type is equivalent to the unit type itself. This situation
can be viewed as a degenerate instance of the general fact that equality on k-tuples is equivalent
to a k-tuple of equalities. Given s, t : 1, then

(s =1 t) = 1. (=-1)

Note that the unit type is contractible. Any contractible type is equivalent, and by univa-
lence hence equal, to the unit type.

Σ-Types The obvious structural notion of equality on A × B is a pair of equalities, one on
A and the other on B. Given (a1, b1), (a2, b2) : A×B, we indeed have an equivalence between
(a1, b1) = (a2, b2) and (a1 = a2)× (b1 = b2).

In case of a family B : A→ Ui and with (a1, b1), (a2, b2) : ΣAB, we cannot directly compare
b1 and b2 as they live in different types. However, given a path of type a1 = a2, transportation
induces an equivalence B(a1) ≃ B(a2) enabling us to state equality on the second components.

13The Univalence Axiom is the only axiom assumed in this development (in addition to the type theory
described in the previous section).

14 This assertion and the one before it follow from the paragraphs below on Π- and Σ-types and the unit type
1: an equality on dependent pairs with propositional second component type is equivalent to equality on the
first component.

128 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

Equality on dependent pairs on ΣAB is then equivalent to the structural notion of dependent
pairs of equality on A and B(·):

((a1, b1) =ΣAB (a2, b2)) =
∑

(p:a1=Aa2)
(p∗(b1) =B(a2) b2). (=-Σ)

The reverse direction of this equivalence is denoted pair=, defined by path induction on the first
and second component.

Again, induction on n shows that ΣAB is an n-type if A and B(a), for all a : A, are n-types.

Π-Types Fix f1, f2 : ΠAB. Equality of functions certainly implies pointwise equality. For
instance, we might define happly : f = g → Πa:A(f1(a) = f2(a)) via happly(p)(a) = apλf. f(a)(p).
Univalence now implies that happly is an equivalence, an assertion commonly known as function
extensionality. This makes equality on ΠAB equivalent to the structural notion of pointwise
equality on B(a) for a : A:

(f1 =ΠAB f2) =
∏

(a:A)(f1(a) =B(a) f2(a)). (=-Π)

By induction on n, we see that ΠAB is an n-type if B(a) is an n-type for all a : A.

Naturals N (Parametric) inductive types are modelled by so-called (parametric) W -types
that compute the least-fixed point of an (indexed) functor on types. In general, equality on
(parametric) W -types can be shown equivalent to a parametric W -type of equalities. 15

However, since our type theory does not include facilities for any inductive type besides N,
we will not delve into this direction. Still, along the lines of the reasoning alluded to above it
may be seen that N is a set. 16

3.3.6 Computing Transportation

If we know the shape of P : A → Ui, we expect to be able to decompose a transport p∗(·) :
P (a1) → P (a2) on P where p : a1 =A a2 into transports on its components. The proof of the
below reduction principles consists mainly of an application of path induction on p.

Constant Types Let P (x) :≡ W with W : Ui, i.e. let P have no dependency on x. The
transportation action is then trivial: given w : W , we have

transportP (p, w) = w. (∗-const)

Σ-Types Let first P (x) :≡ U(x)× V (x) with U, V : A→ Ui. Transportation on a product is
componentwise transportation: given u : U(a1) and v : V (a1), we have

transportP (p, (u, v)) = (transportU (p, u), transportV (p, v)). (∗-×)

Let us now consider the dependent case P (x) :≡ ∑
(u:U(x)) V (x, u) with U : A → Ui and

V : ΣAU → Ui. Given u : U(a1) and v : V (a1, u), then

transportP (p, (u, v)) = (transportU (p, u), transportV (pair=(p, reflp∗(u)), v)). (∗-Σ)

15The same is true for (parametric) M -types modelling (parametric) coinductive types.
16Hedberg’s Theorem [24], occasionally cited in regards to this assertion, does not have much to do with this

at all and is more a confused instance of backwards reasoning: showing that N has decidable equality is in fact
just a selective reading of the above recursive presentation of equality on N in structural form, which is already
a proposition by trivial induction.

3.4. SOME USEFUL TYPE ISOMORPHISMS 129

Π-Types Let first P (x) :≡ U(x) → V (x) with U, V : A → Ui. Transportation on a func-
tion space is contravariant transportation on the domain and covariant transportation on the
codomain: given f : U(a1)→ V (a1), then

transportP (p, f) = transportV (p, ·) ◦ f ◦ transportU (p−1, ·). (∗-→)

Again, let us consider the dependent case P (x) :≡ ∏(u:U(x)) V (x, u) with U : A → Ui and

V : ΣAU → Ui. Given f :
∏

(u:U(x)) V (a1, u), then

transportP (p, f) = λu. transportV (pair=(p−1, reflp−1
∗(u)

)
−1

, f(transportU (p−1, u))). (∗-Π)

=-Types Let P (x) :≡ u(x) =B v(x) with u, v : A → B. 17 This case is related in spirit to
the non-dependent function space case: given q : u(a1) = v(a1), then

transportP (p, q) = u(p)
−1 � q � v(p). (∗-=)

3.4 Some Useful Type Isomorphisms

We will review straightforward generalizations of structural type isomorphisms in cartesian-
closed categories to dependent types. The witness maps for the below equivalences are canonical.
We will omit them.

The unit type is a left unit for dependent pairs and functions: for any family B : 1 → Ui,
we have

∑
(a:1)B(a) ≃ B(⋆), (Σ1-1)

∏
(a:1)B(a) ≃ B(⋆). (Π1-1)

The unit type is a right unit for dependent pairs and a right annihilator for dependent
functions: for any type A : Ui, we have

∑
(a:A)1 ≃ A, (Σ2-1)

∏
(a:A)1 ≃ 1. (Π2-1)

For the next three laws, fix a type A : Ui, a family B : A → Ui and a another family
C : ΣAB → Ui. Dependent pairs are associative:

ΣΣABC ≃ ∑
(a:A)

∑
(b:B(a))C(a, b). (Σ-Σ)

Currying is an equivalence:

ΠΣABC ≃ ∏
(a:A)

∏
(b:B(a))C(a, b). (Π1-Σ)

Dependent pairs distribute under dependent functions: 18

∏
(a:A)

∑
(b:B(a))C(a, b) ≃ ∑

(f :ΠAB)

∏
(a:A)C(a, f(a)). (Π2-Σ)

17 There is a more complicated, though equally natural, version where the underlying type B may depend
itself on a. However, we do not need to go that far in this development.

18also known controversially as the type-theoretic axiom of choice

130 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

3.5 Universe U0 is not a set

The result presented in this section has been well known since the beginnings of homotopy
type theory. It is a direct consequence of the fact that univalence allows the construction of a
non-trivial equality 2 =U0

2.
The Booleans 2 are the simplest example of a type with a non-trivial automorphism, here

given by negation swap : 2 ≃ 2. Indeed, swap = id would imply 12 ≡ swap(02) = id(02) ≡ 02.
Defining a family P : 2→ U0 by P (02) :≡ 0 and P (12) :≡ 1, we could use our proof p : 12 = 02
to transport ⋆ : 1 to p∗(⋆) : 0, showing swap 6= id. By definition of (−1)-types, this implies
2 ≃ 2 is not propositional. Univalence then shows the same holds for 2 =U0

2. Hence, U0
cannot be a set.

The obvious generalization of Un not being an n-type was long thought to be similarly trivial.
On detailed examination, this turned out to be a naive assumption. While several people were
able to give different constructions for the case n :≡ 1, the general case remained unsolved and
was indeed featured on the open problem list of the Special Year on Univalent Foundations. In
the remainder of this chapter, we will present our approach to this problem.

3.6 Pointed types

A pointed type is simply a type A with a chosen inhabitant a : A. We write U•
i :≡∑(A:Ui)

A for

the so-called universe of pointed types. A pointed function (A, a) →• (B, b) between pointed
types is a function f : A → B together with a proof f(a) = b that the basepoint is preserved.
A pointed equivalence (A, a) ≃• (B, b) is a pointed function where the function part is also an
equivalence. A straightforward19 calculation

[by (=-Σ)] (A, a) =U•
i
(B, b) =

∑
(p:A=B)p∗(a) = b

[by (=-U)] =
∑

(e:A≃B)e(a) = b

≡ (A, a) ≃• (B, b)

(=-U•)

reveals that pointed equivalence is indeed the correct notion of equality on U•
i , giving us a

version of univalence for pointed types.
Pointed types are significant in algebraic topology as they conveniently provide a basepoint

for looping paths (with respect to which, for example, homotopy groups can be computed).
This motivates the introduction of the loop space operator

Ω : U•
i → U•

i ,

Ω(A, a) :≡ (a = a, refla).

Note that, both endpoints of the path being identical, the identity path naturally serves as a
new basepoint.

Given a pointed type (A, a) : U•
i , a pointed predicate over (A, a) consists of a family B :

A→ Ui with a chosen point b : B(a). We write Pred•i (A, a) :≡∑(B:A→Ui)
B(a) for the type of

pointed predicates over (A, a). Note that pointed types can be recovered as pointed predicates
over the pointed unit type 1•. We can generalize the loop space operator to pointed predicates:

Ω̃(A,a) : Pred•i (A, a)→ Pred•i (Ω(A, a)),

Ω̃(A,a)(B, b) :≡ (λ(p : a =A a). p∗(b) =B(a) b, reflb).

The meaning of the transport will become apparent when defining pointed dependent pairs.
Again, under the equalities Pred•i (1

•) = U•
i and Ω(1•) = 1•, we have Ω̃1• = Ω.

For readability, we will sometimes use a pointed type or predicate to stand in for its under-
lying type or predicate, respectively, with the obvious coercion left implicit. For example, we

19in the sense of there only being one sensible way to proceed

3.6. POINTED TYPES 131

might call a pointed type an n-type when actually talking about its underlying type. Note that
for pointed types, being contractible and propositional is equivalent.

Let us try to generalize some of our type formers to pointed types.

Pointed unit type 1• The unit type 1 comes with a canonical inhabitant ⋆. We thus define
1• :≡ (1, ⋆). Trivially,

Ω(1•) = 1•. (Ω-1•)

Π•-types Given A : Ui, a family Φ : A→ U•
i of pointed types may be presented as Φ = 〈B, b〉

with a type family B : A→ Ui and a section b : ΠAB of basepoints. We may thus define a type
former for pointed dependent products:

Π• :
∏

(A:Ui)
(A→ U•

i)→ U•
i

Π•
AΦ :≡ (ΠAB, b).

We will also write Π•
a:AΦ(a) for Π•

AΦ.

In line with the above paradigm of equality on some type structure as a same-shape structure
of equalities, the loop space operator interacts nicely with our new type former Π•:

Ω(Π•
AΦ) ≡ Ω(ΠAB, b)

≡ (b = b, reflpr2 ◦Φ)

[by (=-Π)] = (
∏

(a:A)b(a) = b(a), λ(a :A). reflb(a))

≡ Π•
a:A(b(a) = b(a), reflb(a))

≡ Π•
a:A(Ω(Φ(a))).

(Ω-Π•)

Σ•-types We may define a type former for pointed dependent pairs

Σ• :
∏

((A,a):U•
i)
Pred•i (A, a)→ U•

i ,

Σ•
(A,a)(B, b) :≡ (ΣAB, (a, b)).

Let us look at the interaction of the loop space operator with the type former Σ•:

Ω(Σ•
(A,a)(B, b)) ≡ Ω(ΣAB, (a, b))

≡ ((a, b) = (a, b), refl(a,b))

[by (=-Σ)] = (
∑

(p:a=a)p∗(b) = b, (refla, reflb))

≡ Σ•
(a=a,refla)

(λ(p : a = a). p∗(b) = b, reflb)

≡ Σ•
Ω(A,a)(Ω̃(A,a)(B, b)).

(Ω-Σ•)

Here, we had to make use of our loop space indexed operator Ω̃ on pointed predicates.

Universe U with a point Fix A : Ui. Let us calculate

Ω(Ui, A) ≡ (A = A, reflA)

[by (=-U)] = (A ≃ A, idA)

≡ (
∑

(f :A→A)isequiv(f), (idA, idisequivA))

≡ Σ•
(A→A,idA)(isequiv, idisequivA)

≡ Σ•
Π•

a:A(A,a)(isequiv, idisequivA).

(Ω-U•)

132 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

Since the pointed predicate (isequiv, idisequivA) is a propositional family, it will vanish under
the next loop space iteration:

[by (Ω-Σ•)] Ω2(Ui, A) = Σ•
Ω(Π•

a:A(A,a))Ω̃(isequiv, idisequivA)

[by contractibility and (Σ2-1)] = Ω(Π•
a:A(A, a))

[by (Ω-Π•)] = Π•
a:AΩ(A, a).

(Ω2-U•)

For intuition, it might be helpful at this point to recall that Ω2(Ui, A) ≡ (reflA =A=Ui
A

reflA, reflreflA). Particularly at higher iterations, we prefer the abstract loop space notation
over the explicit expansion, which becomes hard to operate on quite early. As a further benefit,
loop spaces as abstract operations on pointed types force us to always be rigorous with respect
to how our type transformations affect the chosen inhabitant.

We call a type A transitive 20 if any x, y : A have an equivalence e : A ≃ A such that
e(x) = y. By (=-U•), a pointed type (A, a) is transitive if and only (A, a) = (A, x). 21 A
transitive pointed type (A, a) being an n-type with n ≥ 0 is equivalent to Ω(A, x) being an
(n − 1)-type for all x : A by our preliminaries on truncation levels, and by transitivity simply
equivalent to Ω(A, a) being an (n− 1)-type.

An important instance, the loop space Ω(A, a) of a pointed type (A, a) : U•
i is transitive:

for any x : A and p : a = x, we have

(a = a, refla) =U•
i
(a = x, p)

by path induction on x and p. Specializing x to a, we get the desired conclusion. 22 Using
this to iterate the previous argument, a transitive pointed type (A, a) is an n-type with n ≥ −1
exactly if Ωn+1(A, a) is a proposition, i.e. contractible. This implies

Lemma 3.1. Given n ≥ 0, a type A is an n-type exactly if Ωn+1(A, a) is contractible for all
a : A.

Proof. Simply recall that A being an n-type is equivalent to Ω(A, a) being an (n− 1)-type for
all a : A and use the remark preceeding the lemma.

3.7 Universe U1 is not a 1-type

Now we have the necessary machinery to elegantly handle the next step of our problem. By
Lemma 3.1, constructively disproving U1 a 1-type means finding A : U1 such that Ω2(U1, A) is
not contractible. Applying (Ω2-U•), it suffices to find a non-trivial element of Π•

a:AΩ(A, a).
Having already found that U0 exhibits non-trivial higher homotopies, it is tempting to

use this base case by inserting A :≡ U0. Under univalence (=-U), we know
∏

(X:U0)
X = X

corresponds to
∏

(X:U0)
X ≃ X. On a closed universe, with an induction principle on the form

of types available, we could endevaour to find such a non-trivial family of auto-equivalences.
In our situation, with an open universe, it seems hopeless. In fact, with a hypothetical form
of parametricity in the univalent setting, 23 we could metatheoretically show that the only
derivable example of such a family of auto-equivalences is the identities.

20 We came up with this terminology during our work on the article [36] this chapter is based on, in reference
to transitive actions. Subsequently, other people have chosen to use the term homogeneous.

21 Axiom K allows the formulation of McBride’s heterogeneous equality framework [43] where (A, a) =U•
i
(A, x)

always implies a = x. In that setting, the above statement would lose any meaning, serving to illustrate the
difference between UIP and univalence.

22This is an illuminating example of a common technique in homotopy type theory: generalizing path endpoints
by introducing separate point quantifiers where possible, we can often create surprising opportunities for path
induction.

23 Terms in type theory have certain naturality properties. For example, polymorphic operations, i.e. opera-
tions defined over a parameter that is an element of a universe, cannot base their behaviour on an inspection of
intensional properties of their argument like its structure. Parametricity is the name given to any metatheorical
theorem that makes these properties explicit. In a sense, it is the metatheorical analysis of the term model, i.e.

3.7. UNIVERSE U1 IS NOT A 1-TYPE 133

We are hence lead to a more refined approach. Consider the type

A :≡ ΣU0
Ω(U0, ·) ≡

∑
(X:U0)

Ω(U0, X).

Intuitively, A is the type of images of 1-spheres, or circles, in U0, with such an image given
by a basepoint and a loop. Elements of Π•

a:AΩ(A, a) correspond to uniform transformations of
such an image into itself. Pictorially speaking, a particular non-trivial such transformation is
given by rotating the given image of the circle along itself, and in the topological model, this
is exactly what the following construction corresponds to. For intuition, let us do the following
calculation for the underlying type only, disregarding pointedness.

Ω2(U1, A) =
∏

((X,p):A)Ω(A, (X, p))

=
∏

((X,p):A)(X, p) = (X, p)

[by (Π1-Σ) and (=-Σ)] =
∏

(X:U0)

∏
(p:X=X)

∑
(q:X=X)transport

λX.X=X(p, q) = p

[by (∗-=)] =
∏

(X:U0)

∏
(p:X=X)

∑
(q:X=X)q

−1 � p � q = p.

We are thus asked to find, for any type X : U0 and loop p : X = X, a loop q of the same
type commuting with p. Even though, in contrast to higher homotopy groups, the fundamental
group is not in general commutative, such examples are readily found in the powers of p, for
example

f0 :≡ λX. λp. (reflX , w0[X, p]),

f1 :≡ λX. λp. (p, w1[X, p]),

where w0[X, p] : reflX
−1 � p � reflX = p and w1[X, p] : p−1 � p � p = p are left implicit.

Note that f0 corresponds to the basepoint of Ω2(U1, A) under the above series of transfor-
mations. This separate transformation traversal can be avoided by carrying out the above steps
within our framework for loop spaces of pointed typed:

Ω2(U1, A) = Π•
(X,p):AΩ(A, (X, p))

≡ Π•
(X,p):AΩ(Σ

•
(U0,X)(Ω(U0, ·), p))

[by (Ω-Σ•)] = Π•
(X,p):AΣ

•
Ω(U0,X)Ω̃(Ω(U0, ·), p)

[by (Π2-Σ)] = Π•
X:U0

Π•
p:Ω(U0,X)Σ

•
Ω(U0,X)Ω̃(Ω(U0, ·), p)

where

Ω̃Ω(U0,X)(Ω(U0, ·), p) ≡ (λ(q :X = X). transportλX.X=X(p, q) = p, reflp)

[by (∗-=)] = (λq. q−1 � p � q = p, w0[X, p]).

While at first glance this mainly seems to introduce more obscurity, in particular the loop space
indexed operator Ω̃ on pointed predicates, it actually makes for a more modular and concise
formal development, avoiding redundant clutter. This will become ever more obvious in the
case n > 1.

Continuing where we left off, assuming f0 = f1, we have
∑

(r:reflX=p) r∗(w0[X, p]) = w1[X, p]

for all X and p after applications of (=-Π) and (=-Σ). In particular, we have reflX = p, showing
X = X contractible for all X : U0. This makes U0 a set, which we already know to be false.
Hence, f1 must be a non-trivial element, making Ω2(U1, A) non-contractible, and thus U1 a
non-1-type.

the syntactical form of closed inhabitants of a given type.
For a given internalization of naturality properties, parametricity is also the name given to an axiom stating

internally that all operations, not only those syntactibly definable, satisfy these properties. To a certain extent,
univalence is such an axiom. However, it deals only with naturality of isomorphisms, not all functions, between
types and structures. The study of how to extend identity types and univalence to cover this directedness is
part of the subject of directed type theory.

134 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

3.8 Universe Un is not an n-type

3.8.1 A failed approach

Inspired by our success in the case of U1, we will now try to attack the general case n ≥ 1.
Again, by Lemma 3.1, constructively disproving Un an n-type means finding A : Un such that
Ωn+1(Un, A) is not contractible, and with (Ω2-U•) it suffices to find a non-trivial element of
Π•

a:AΩ
n(A, a).

Generalizing from the previous section, we now make the educated guess of

A :≡ ΣUn−1
Ωn(Un−1, ·) ≡

∑
(X:Un−1)

Ωn(Un−1, X).

Intuitively, A is the type of images of n-spheres in Un, consisting of a basepoint and a higher
loop. Describing what an element of Π•

a:AΩ
n(A, a) corresponds to in this picture is becoming

rather difficult already for n :≡ 2, but we hope to have included enough homotopical complexity
on level n such that our calculation in pointed types will result in something useful.

The first steps in our calculation mirror the ones of the previous section:

Ωn+1(Un, A) = Π•
(X,p):AΩ

n(A, (X, p))

≡ Π•
(X,p):AΩ

n(Σ•
(Un−1,X)(Ω

n(Un−1, ·), p))
[by (Ω-Σ•)] = Π•

(X,p):AΣ
•
Ωn(Un−1,X)Ω̃

n(Ωn(Un−1, ·), p)
[by (Π2-Σ)] = Π•

X:Un−1
Π•

p:Ωn(Un−1,X)Σ
•
Ωn(Un−1,X)Ω̃

n(Ωn(Un−1, ·), p).

But what does Ω̃n(Ωn(Un−1, ·), p) compute to (recall the definition of Ω̃ from the section on
pointed types)?

3.8.2 The Remedy

There is a way to entirely avoid higher homotopical complexity, obviating the need to compute
Ω̃n(Ωn(Un−1, ·), p). Instead of looking at images of n-spheres in Un−1, we will look at such
images in Un−1

n−1 :

A :≡ ∑
(Y :Un−1

n−1)
Ωn(Un−1

n−1 , Y).

Note that A inherits its status as an n-type from Un−1
n−1 .

Let us once again calculate:

Ωn+1(Un, A) = Π•
(Y,q):AΩ

n(A, (Y, q))

≡ Π•
(Y,q):AΩ

n(Σ•
(Un−1

n−1 ,Y)
(Ωn(Un−1

n−1 , ·), q))

[by (Ω-Σ•)] = Π•
(Y,q):AΣ

•
Ωn(Un−1

n−1 ,Y)
Ω̃n(Ωn(Un−1

n−1 , ·), q)

Recalling Un−1
n−1 is an n-type, we see Ωn(Un−1

n−1 , ·) is a family of sets. Since we are in the case

n ≥ 2, we have Ω̃2(. . .) contractible:

[by (Σ2-1)] (. . .) = Π•
(Y,q):AΩ

n(Un−1
n−1 , Y)

= Π•
Y :AΠ

•
q:Ωn(Un−1

n−1 ,Y)
Ωn(Un−1

n−1 , Y).

The remainder of the argument proceeds similar to the case of n ≡ 1. Consider the elements

f0(Y, q) :≡ refl,

f1(Y, q) :≡ q,

of the above pointed type, the former just being basepoint. Assuming f0 = f1, we have refl = q
for all Y : Un−1

n−1 and q : Ωn(Un−1
n−1 , Y). By Lemma 3.1, this amount to Un−1

n−1 being an (n − 1)-

type. However, as seen below, we may assume by induction that Un−1
n−1 is strictly an n-type.

3.9. FURTHER WORK 135

This proves f0 6= f1 and, again by Lemma 3.1, shows Un a non-n-type. Furthermore, since A
is actually an n-type (this holds true in the section on n ≡ 1 as well), this also shows Un

n a
non-n-type, making it a strict (n+ 1)-type.

3.9 Further Work

It is possible to gain a better understanding of why our first approach failed. For this, we need
to develop some homotopy theory, requiring the introduction of so-called higher inductive types.
Using a practical theory of homotopy coherent diagrams and manipulating such diagrams while
controlling for their homotopy colimit, we may define the homotopy type theoretic Whitehead
product. Together with a parametricity argument to contrain the possible closed terms of type
Π•

a:AΩ
n(A, a) with A :≡∑(X:Un−1)

Ωn(Un−1, X), known results [38] on the Whitehead product
with the identity map on spheres show that the approach constructing non-trivial higher loops
in unrestricted universes cannot possibly work for even n, in particular n = 2.

However, all of this, in particular the theory of homotopy coherent diagrams, depends on a
workable generalization of the ω-groupoidal structure of types to an (ω, 1)-categorical structure
containing the original ω-groupoidal structure as the ω-subcategory of invertible morphisms.
This structure is still preserved internally, but only by those operations that properly take into
account variance.

As an example, consider the type of arrows in a universe U given by

W :≡∑(X:U)

∑
(Y :U)X → Y.

Univalence identifies the identity type on W with its structural equality: an equality between
elements (X0, Y0, f0) and (X1, Y1, f1) is given by triples (u, v, p) where u : X0 ≃ X1 and
v : Y0 ≃ Y1 establish equivalence of source and target while

px : v(f0(u
−1(x))) = x (3.1)

for x : X1 witnesses coherence of the morphisms. This coincides with the usual notion of
isomorphism for arrows. Now consider the notion of morphisms for arrows: a morphism from
(X0, Y0, f0) to (X1, Y1, f1) should consist of a triple (u, v, p) where u : X0 → X1 and v : Y0 → Y1

such that

v(f0(x)) = f1(u(x)) (3.2)

for x : X0, the only essential difference being the use of functions u and v instead of equivalences.
The need for rearranging the inverted occurrence of u when going from (3.1) to (3.2) is not

in any way ad-hoc, but reveals the need for a proper treatment of variance: the use of u in
translating between the domains of f0 and f1 is contravariant.

Can we find a framework for type theory that endows every type with a notion of directed
identity types that represent such a notion of morphisms similarly to how identity types repre-
sent isomorphism of structures? This is the topic of directed type theory, a subject still under
development. A reworked version of the univalence axiom in this setting is expected to have
connections with parametricity: directed identity types on universes are just function spaces.

In practical usage, the directed interpretation should allow the automatic and synthetic
generation of correct (higher) categorical structures for given type derivations, obviating the
need for explicitly defining these notions and then having to show coherence and preservation
properties. As an example for the potential use of this, consider the problem of formally showing
that the cartesian square of the 1-sphere is isomorphic to the torus, a formally completely
expanded proof of which has recently been given by Kristina Sojakova. 24 With the proper
directed categorical notions, we speculate this result should fall out of manipulations of algebras
of loops.

24See http://ncatlab.org/homotopytypetheory/files/torus.pdf.

http://ncatlab.org/homotopytypetheory/files/torus.pdf

136 CHAPTER 3. HIGHER HOMOTOPIES IN UNIVALENT UNIVERSES

3.10 Related Work

Our result falls cleanly into the recently emerged area of homotopy type theory [56]. It is
very specific and answers one detail question left open at the Special Year on Univalent Foun-
dations regarding non-trivial higher homotopies in higher univalent universes. Several other
groups of people independently made different candidate proposals for attacking this problem
in unpublished communication.

Coquand suggested to use the type

A :≡∑(X:U0
0)

∑
(f :X=X)f

2 = id : U1

of Z/(2)-sets. This is remarkably similar to our own suggestion for U1, differing only in having
an extra dependent sum component. Note that our suggestion corresponds to Z-sets. The proof
of U1 not having truncation level one works out identically in both cases. However, it is not
clear how to generalize Coquand’s suggestion to higher universe/truncation levels.

A different approach was taken by Finster and Lumsdaine, who suggested to use the type

B0 :≡∑(X:U0
0)
‖X = 2‖−1 : U1

of sets merely isomorphic to the Booleans. It should be noted that this makes use of proposi-
tional truncation, a language feature of homotopy type theory we have not needed to introduce
in our brief treatment of the syntactic theory. Allowing truncation, a special kind of higher
inductive type, has the potential of making the problem much easier. It can indeed be seen
that defining

Bn+1 :≡∑(X:Un+1
n+1)
‖X = Bn‖−1 : Un+2

yields a family of types Bn : Un+1
n+1 with n : N such that Bn = Bn is not an n-type.

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly
positive types. Theoretical Computer Science, 342(1):3–27, 2005.

[2] Michael Abott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives of
containers. In Typed Lambda Calculi and Applications, TLCA, 2003.

[3] Michael Abott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Constructing poly-
morphic programs with quotient types. In 7th International Conference on Mathematics
of Program Construction (MPC 2004), 2004.

[4] Thorsten Altenkirch. Isomorphisms on inductive types (talk), 2005. URL http://www.

cs.nott.ac.uk/~txa/talks/isos05.pdf.

[5] Roland Backhouse, Marcel Bijsterveld, Rik van Geldrop, and Jaap Van Der Woude. Cat-
egory theory as coherently constructive lattice theory, 1998. Working document.

[6] Roland Backhouse, Wei Chen, and JoãoF. Ferreira. The algorithmics of solitaire-like games.
In Claude Bolduc, Jules Desharnais, and Béchir Ktari, editors, Mathematics of Program
Construction, volume 6120 of Lecture Notes in Computer Science, pages 1–18. Springer,
2010.

[7] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets.
Preprint, 2013.

[8] Andreas Blass. Seven trees in one. J. Pure Appl. Algebra, 103:1–21, 1995.

[9] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages
with only two formation rules. Commun. ACM, 9(5):366–371, 1966.

[10] Wilfried Buchholz. A term calculus for (co-)recursive definitions on streamlike data struc-
tures. Ann. Pure Appl. Logic, 136(1-2):75–90, 2005.

[11] John H. Conway. Fractran: A simple universal programming language for arithmetic. In
T. M. Cover and B. Gopinath, editors, Open Problems in Communication and Computa-
tion, chapter 2, pages 4–26. Springer, 1987.

[12] Edgar W. Dijkstra. On the producitivity of recursive definitions. EWD749, 1980.

[13] David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150
of Graduate Texts in Mathematics. Springer, 1995.

[14] Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-oblivious stream produc-
tivity. In Proc. 15th Int. Conf. on LPAR, LPAR ’08, pages 79–96. Springer, 2008.

[15] Jörg Endrullis, Herman Geuvers, Jacob G. Simonses, and Hans Zantema. Levels of unde-
cidability in rewriting. Inf. Comput., 209(2):227–245, 2011.

137

http://www.cs.nott.ac.uk/~txa/talks/isos05.pdf
http://www.cs.nott.ac.uk/~txa/talks/isos05.pdf

138 BIBLIOGRAPHY

[16] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and Jan Willem
Klop. Productivity of stream definitions. In Proc. FCT 2007, volume 4639 of LNCS, pages
274–287. Springer, 2007.

[17] Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Complexity of Fractran and
productivity. In CADE, pages 371–387, 2009.

[18] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’04, pages 77–88. ACM, 2004.

[19] Philippe Flajolet. Analytic models and ambiguity of context-free languages. Theoretical
Computer Science, 49(2–3):283 – 309, 1987.

[20] Maarten M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda
Informatica 94-28, 1994.

[21] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mis-
love, and Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

[22] Håkon R. Gylterud. Symmetric containers. Master’s thesis, University of Oslo, 2011. URL
http://www.duo.uio.no/publ/matematikk/2011/144617/thesisgylterud.pdf.

[23] David Harel. On folk theorems. SIGACT News, 12:68–80, 1980.

[24] Michael Hedberg. A coherence theorem for Martin-Löf’s type theory. J. Funct. Program.,
8(4):413–436, 1998.

[25] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational
setting. Information and Computation, 145(2):107–152, 1998.

[26] Andreas M. Hinz. The Tower of Hanoi. Enseign. Math., 35(2):289–321, 1989.

[27] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Giovanni Sambin and Jan M. Smith, editors, Twenty-five years of constructive type theory
(Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford University Press,
1998.

[28] Thiet-Dung Huynh. The complexity of semilinear sets. In Jaco Bakker and Jan Leeuwen,
editors, Automata, Languages and Programming, volume 85 of Lecture Notes in Computer
Science, pages 324–337. Springer, 1980.

[29] Ryuichi Ito. Every semilinear set is a finite union of disjoint linear sets. J. Comput. Syst.
Sci., 3(2):221–231, 1969.

[30] Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of traversals. In
James Chapman and Paul Blain Levy, editors, Proceedings of the Fourth Workshop on
Mathematically Structured Functional Programming, volume 76 of EPTCS, pages 40–49,
2012.

[31] C. Barry Jay. A semantics for shape. Science of Computer Programming, 25(2–3):251–283,
1995. Selected Papers of ESOP’94.

[32] André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42
(1):1–82, 1981.

[33] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. Univalence in simpli-
cial sets. 2012. ArXiv e-print 1203.2553.

http://www.duo.uio.no/publ/matematikk/2011/144617/thesisgylterud.pdf

BIBLIOGRAPHY 139

[34] Stephen C. Kleene. Recursive predicates and quantifiers. Trans. AMS, 53(1):41–73, 1943.

[35] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-
ming. Addison-Wesley, third edition, 1997.

[36] Nicolai Kraus and Christian Sattler. On the Hierarchy of Univalent Universes: U(n) is not
n-Truncated. 2013. ArXiv e-print 1311.4002.

[37] Nicolai Kraus and Christian Sattler. On the hierarchy of univalent universes:
U(n) is not n-truncated, 2013. URL http://github.com/sattlerc/HoTT-Agda/tree/

universe-article. Agda Formalization.

[38] Leif Kristensen and Ib Madsen. Note on whitehead products in spheres. Mathematica
Scandinavica, 21:301–314, 1967.

[39] Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory, Series A, 13(3):297 – 305, 1972.

[40] Stuart A. Kurtz and Janos Simon. The undecidability of the generalized Collatz problem.
In TAMS, volume 4484 of LNCS, pages 542–553. Springer, 2007.

[41] Jeffery C. Lagarias. The Ultimate Challenge: The 3x+ 1 Problem. AMS, 2010.

[42] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M. Smith,
editors, Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford
Logic Guides, pages 127–172. Oxford University Press, 1998.

[43] Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui Luo, James
McKinna, and Robert Pollack, editors, Types for Proofs and Programs (Proceedings of the
International Workshop, TYPES’00), volume 2277 of LNCS. Springer-Verlag, 2002.

[44] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[45] Eugenio Moggi, Gianna Belle, and C. Barry Jay. Monads, shapely functors and traversals.
Electronic Notes in Theoretical Computer Science, 29:187–208, 1999.

[46] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.

[47] Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties.
In Marc Bezem and Jan Friso Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in Lecture Notes in Computer Science, 1993.

[48] Eleonora Perkowska. Theorem on the normal form of a program. Bull. Acad. Pol. Sci.,
Ser. Sci. Math. Astr. Phys., 22(4):439–442, 1974.

[49] Dayanand S. Rajan. The equations DkY = Xn in combinatorial species. Discrete Mathe-
matics, 118(1–3):197–206, 1993.

[50] Grigore Roşu. Equality of streams is a Π0
2-complete problem. In ICFP. ACM, 2006.

[51] Jan M. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comp. Sci., 308(1-3):1–53, 2003.

[52] Christian Sattler and Florent Balestrieri. Turing-completeness of polymorphic stream
equation systems. In Ashish Tiwari, editor, RTA, volume 15 of LIPIcs, pages 256–271,
2012.

[53] Jakob Grue Simonsen. The Π0
2-completeness of most of the properties of rewriting systems

you care about (and productivity). In Proc. 20th Int. Conf. on RTA, RTA ’09, pages
335–349. Springer, 2009.

http://github.com/sattlerc/HoTT-Agda/tree/universe-article
http://github.com/sattlerc/HoTT-Agda/tree/universe-article

140 BIBLIOGRAPHY

[54] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer, 1987.

[55] Thomas Streicher. Investigations into intensional type theory, 1993. Habilitationsschrift,
Ludwig-Maximilians-Universität München.

[56] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[57] Alfred J. van der Poorten. Power series representing algebraic functions. In Sinnou David,
editor, Séminaire de Théorie des Nombres, Paris (1990-1991), volume 108 of Progress in
Math., pages 241–262. Birkhäuser, 1993.

[58] Vladimir Voevodsky. A very short note on the homotopy λ-calculus. http:

//www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_

short_current.pdf, 2006.

[59] Hans Zantema. Well-definedness of streams by transformation and termination. LMCS, 6
(3), 2010. paper 21.

http://homotopytypetheory.org/book
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf

	0 Thesis Overview
	0.1 Chapter One
	0.1.1 Introduction
	0.1.2 Contributions
	0.1.3 Declaration of Authorship

	0.2 Chapter Two
	0.2.1 Contribution
	0.2.2 Declaration of Authorship

	0.3 Chapter Three
	0.3.1 Introduction
	0.3.2 Contributions
	0.3.3 Declaration of Authorship

	1 Polymorphic Stream Equation Systems: Productivity and Definability
	1.1 Introduction
	1.2 Syntax and Semantics
	1.2.1 Streams and Indexing Functions
	1.2.2 Stream Equation Systems
	1.2.3 Examples

	1.3 Definability
	1.4 Unary Definability
	1.4.1 Collatz Functions and If-Programs
	1.4.2 Iteration-Programs and Their Encoding
	1.4.3 Proof of the Main Result

	1.5 Unary Singleton Systems
	1.6 Further Work
	1.7 Related Work

	2 Isomorphism of Finitary Inductive Types
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 The Setting
	2.2.2 The mu-calculus

	2.3 Decomposition into Guarded and Unguarded Parts
	2.3.1 Guarded and Shielded Functors
	2.3.2 The Biased Derivative
	2.3.3 The Biased Derivative: Applications

	2.4 The Set Model
	2.4.1 Containers
	2.4.2 Interlude: Classification of Integrals of Certain Quotient Containers
	2.4.3 Containers Fiberwise
	2.4.4 Power Series of Guarded Functors
	2.4.5 Combining It?

	2.5 Tools for Working in the Initial Model
	2.5.1 Regular Functors are Traversable
	2.5.2 Practical Internal Language
	2.5.3 Internal Induction-Like Principles
	2.5.4 Internal Generalized Equality Predicates
	2.5.5 Internal Polynomials
	2.5.6 Internal Power Series
	2.5.7 Derived Concepts
	2.5.8 Interlude: Classification of Regular Constants

	2.6 The Initial Model
	2.6.1 Listings
	2.6.2 Polynomial Listings
	2.6.3 Verifying Algebraicity of Polynomial Listings

	2.7 Related Work

	3 Higher Homotopies in Univalent Universes
	3.1 Introduction
	3.2 Type Theory
	3.2.1 Context Rules
	3.2.2 Definitional Equality
	3.2.3 Type Universes
	3.2.4 Dependent Functions
	3.2.5 Dependent Pairs
	3.2.6 Coproducts
	3.2.7 Unit Type
	3.2.8 Empty Type
	3.2.9 Identity Types

	3.3 Preliminaries
	3.3.1 Types as omega-groupoids
	3.3.2 Truncation Levels
	3.3.3 Equivalences
	3.3.4 Univalence
	3.3.5 Structural Equality via Univalence
	3.3.6 Computing Transportation

	3.4 Some Useful Type Isomorphisms
	3.5 Universe U0 is not a set
	3.6 Pointed types
	3.7 Universe U1 is not a 1-type
	3.8 Universe Un is not an n-type
	3.8.1 A failed approach
	3.8.2 The Remedy

	3.9 Further Work
	3.10 Related Work

	Bibliography

