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Abstract. We study polynomial functors over locally cartesian closed cate-
gories. After setting up the basic theory, we show how polynomial functors
assemble into a double category, in fact a framed bicategory. We show that
the free monad on a polynomial endofunctor is polynomial. The relationship
with operads and other related notions is explored.

Introduction

Background. Notions of polynomial functor have proved useful in many areas of
mathematics, ranging from algebra [41, 34] and topology [10, 50] to mathematical
logic [17, 45] and theoretical computer science [24, 2, 20]. The present paper deals
with the notion of polynomial functor over locally cartesian closed categories. Before
outlining our results, let us briefly motivate this level of abstraction.

Among the devices used to organise and manipulate numbers, polynomials are
ubiquitous. While formally a polynomial is a sequence of coefficients, it can be
viewed also as a function, and the fact that many operations on polynomial func-
tions, including composition, can be performed in terms of the coefficients alone is
a crucial feature. The idea of polynomial functor is to lift the machinery of polyno-
mials and polynomial functions to the categorical level. An obvious notion results
from letting the category of finite sets take the place of the semiring of natural
numbers, and defining polynomial functors to be functors obtained by finite com-
binations of disjoint union and cartesian product. It is interesting and fruitful to
allow infinite sets. One reason is the interplay between inductively defined sets and
polynomial functors. For example, the set of natural numbers can be characterised
as the least solution to the polynomial equation of sets

X ∼= 1 +X ,

while the set of finite planar trees appears as least solution to the equation

X ∼= 1 +
∑

n∈N

Xn.

Hence, one arrives at considering as polynomial functors on the category of sets all
the functors of the form

(1) X 7→
∑

a∈A

XBa ,

where A is a set and (Ba | a ∈ A) is an A-indexed family of sets, which we represent
as a map f : B → A with Ba = f−1(a). It is natural to study also polynomial
functors in many variables. A J-indexed family of polynomial functors in I-many
variables has the form

(2) (Xi | i ∈ I) 7→
( ∑

a∈Aj

∏

b∈Ba

Xs(b) | j ∈ J
)
,
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where the indexing refers to the diagram of sets

(3) I B
soo

f
// A

t // J .

This expression reduces to (1) when I and J are singleton sets. The functor specified
in (2) is the composite of three functors: pullback along s, the right adjoint to
pullback along f , and the left adjoint to pullback along t. The categorical properties
of these basic types of functors allows us to manipulate polynomial functors like (2)
in terms of their representing diagrams (3); this is a key feature of the present
approach to polynomial functors.

Although the theory of polynomial functors over Set is already rich and interest-
ing, one final abstraction is due: we may as well work in any category where pullback
functors exists and have both adjoints. These are the locally cartesian closed cate-
gories, and we develop the theory in this setting, applicable not only to some current
developments in operad theory and higher-dimensional algebra [32, 33], but also in
mathematical logic [45], and in theoretical computer science [2, 20]. We hasten to
point out that since the category of vector spaces is not locally cartesian closed,
our theory does not immediately apply to various notions of polynomial functor
that have been studied in that context [41, 50]. The precise relationship is under
investigation.

Main results. Our general goal is to present a mathematically efficient account
of the fundamental properties of polynomial functors over locally cartesian closed
categories, which can serve as a reference for further developments. With this
general aim, we begin our exposition by including some known results that either
belong to folklore or were only available in the computer science literature, giving
them a unified treatment and streamlined proofs. These results mainly concern
the diagram representation of strong natural transformations between polynomial
functors, and some of these results can be found in Abbott’s thesis [1].

Having laid the groundwork, our first main result is to assemble polynomial func-
tors into a double category, in fact a framed bicategory in the sense of
Shulman [52], hence providing a convenient and precise way of handling the base
change operation for polynomial functors. There are two biequivalent versions of
this framed bicategory: one is the strict framed 2-category of polynomial functors,
the other is the (nonstrict) bicategory of their representing diagrams.

Our second main result states that the free monad on a polynomial functor
is a polynomial monad. This result extends to general polynomial functors the
corresponding result for polynomial functors in a single variable [16] and for finitary
polynomial functors on the category of sets [32, 33]. We also observe that free
monads enjoy a double-categorical universal property which is stronger than the
bicategorical universal property that a priori characterises them.

The final section gives some illustration of the usefulness of the double-category
viewpoint. We give a purely diagrammatic comparison between Burroni
P -spans [12], and polynomials over P (for P a polynomial monad). This yields in
turn a concise equivalence between polynomial monads over P and
P -multicategories [12, 40], with base change (multifunctors) conveniently built into
the theory. Operads are a special case of this.

Related work. Polynomial functors and closely related notions have been rein-
vented several times by workers in different contexts, unaware of the fact that such
notions had already been considered elsewhere. To help unifying the disparate de-
velopments, we provide many pointers to the literature, although surveying the
different developments in any detail is outside the scope of this paper.
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We should say first of all that our notions of polynomial and polynomial func-
tor are almost exactly the same as the notions of container and container func-
tor introduced in theoretical computer science by Abbott, Altenkirch and Ghani
[1, 2, 3, 4] to provide semantics for recursive data types, and studied further in [5].
The differences, mostly stylistic, are explained in Paragraph 2.16. A predecessor
to containers were the shapely types of Jay and Cockett [24] which we revisit in
Paragraphs 3.16–3.17. The importance of polynomial functors in dependent type
theory was first observed by Moerdijk and Palmgren [45], cf. Paragraph 4.3. Their
polynomial functors are what we call polynomial functors in one variable.

The use of polynomial functors in program semantics goes back at least to Manes
and Arbib [43], and was recently explored from a different viewpoint under the
name ‘interaction systems’ in the setting of dependent type theory by Hancock and
Setzer [20] and by Hyvernat [22], where polynomials are also given a game-theoretic
interpretation. The morphisms there are certain bisimulations, more general than
the strong natural transformations used in the present work.

Within category theory, many related notions have been studied. In Para-
graph 1.17 we list six equivalent characterisations of polynomial functors over Set,
and briefly comment on the contexts of the related notions: familially representable
functors of Diers [14] and Carboni-Johnstone [13] (see also [40, App. C]), and local
right adjoints of Lamarche [36], Taylor [55], and Weber [56, 57]. We also comment
on the relationship with species and analytic functors [27, 9], and with Girard’s
normal functors [17].

Although the category of topological spaces is not locally cartesian closed, the
notion of polynomial functor makes sense if one separately requires the ‘middle
maps’ f : B → A to be exponentiable. Bisson and Joyal [10] used such topological
polynomial functors to give a geometric construction of Dyer-Lashof operations in
bordism.

Tambara [54] studied a notion of polynomial motivated by representation theory
and group cohomology, where the three operations are, respectively, ‘restriction’,
‘trace’ (additive transfer), and ‘norm’ (multiplicative transfer). In Paragraph 1.22,
we give an algebraic-theory interpretation of one of his discoveries. Further study
of Tambara functors has been carried out by Brun [11], with applications to Witt
vectors.

The name polynomial functor is often given to endofunctors of the category of
vector spaces involving actions of the symmetric groups, cf. Appendix A of Mac-
donald’s book [41], a basic ingredient in the algebraic theory of operads [34]. The
truncated version of such functors is a basic notion in functor cohomology, cf. the
survey of Pirashvili [50]. As mentioned, these developments are not covered by our
theory in its present form.

This paper was conceived in parallel to [32, 33], to take care of foundational is-
sues. Both papers rely on the double-categorical structures described in the present
paper, and freely blur the distinction between polynomials and polynomial func-
tors, as justified in Section 2 below. The paper [33] uses polynomial functors to
establish the first purely combinatorial characterisation of the opetopes, the shapes
underlying several approaches to higher-dimensional category theory [39], starting
with the work of Baez and Dolan [6]. In [32], a new tree formalism based on polyno-
mial functors is introduced, leading to a nerve theorem charactersising polynomial
monads among presheaves on a category of trees.

Outline of the paper. In Section 1 we recall the basic facts needed about locally
cartesian closed categories, introduce polynomials and polynomial functors, give
basic examples, and show that polynomial functors are closed under composition.
We also summarise the known intrinsic characterisations of polynomial functors in
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the case E = Set. In Section 2 we show how strong natural transformations between
polynomial functors admit representation as diagrams connecting the polynomials.
In Section 3 we assemble polynomial functors into a double category, in fact a
framed bicategory. In Section 4 we recall a few general facts about free monads,
and give an explicit construction of the free monad on a polynomial endofunctor,
exhibiting it as a polynomial monad. Section 5 explores, in diagrammatic terms,
the relationship between polynomial monads, multicategories, and operads.

Acknowledgments. Both authors have had the privilege of being mentored by
André Joyal, and have benefited a lot from his generous guidance. In particular,
our view on polynomial functors has been shaped very much by his ideas, and the
results of Section 2 we essentially learned from him. We also thank Anders Kock
and Mark Weber for numerous helpful discussions. Part of this work was carried
out at the CRM in Barcelona during the special year on Homotopy Theory and
Higher Categories; we are grateful to the CRM for excellent working conditions and
for support for the first-named author. The second-named author acknowledges
support from research grants MTM2006-11391 and MTM2007-63277 of the Spanish
Ministry for Science and Innovation.

1. Polynomial functors

1.1. Throughout we work in a locally cartesian closed category E , assumed to have
a terminal object and finite disjoint sums [15, 45]. For f : B → A in E , we write
∆f : E /A→ E /B for pullback along f . The left adjoint to ∆f is called the dependent
sum functor along f and is denoted Σf : E /B → E /A. The right adjoint to ∆f is
called the dependent product functor along f , and is denoted Πf : E /B → E /A. We
note that both unit and counit for the adjunction Σf ⊢ ∆f are cartesian natural
transformations (i.e. all their naturality squares are cartesian), whereas the unit
and counit for ∆f ⊢ Πf are generally not cartesian.

Following a well-established tradition in category theory [42], we will use the
internal logic of E to manipulate objects and maps of E syntactically rather than
diagrammatically, when this is convenient. This internal language is the extensional
dependent type theory presented in [51]. In the internal language, an object X → A
of E /A is written as (Xa | a ∈ A), and the three functors associated to f : B → A
take the form

∆f (Xa | a ∈ A) = (Xf(b) | b ∈ B)

Σf (Yb | b ∈ B) = (
∑

b∈Ba

Xb | a ∈ A)

Πf (Yb | b ∈ B) = (
∏

b∈Ba

Xb | a ∈ A) .

1.2. We shall make frequent use of the Beck-Chevalley isomorphisms and of the dis-
tributivity law of dependent sums over dependent products [45]. Given a cartesian
square

·
_
�
g

//

u

��

·

v

��
·

f
// ·

the Beck-Chevalley isomorphisms are

Σg ∆u
∼= ∆v Σf and Πg ∆u

∼= ∆v Πf .
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Given maps C
u
−→ B

f
−→ A, we can construct the diagram

(4)

N
_
�

g
//

e

��		
		

		
	

w=∆f(v)

��

M

v=Πf (u)

��

C

u

��
55

55
55

5

B
f

// A ,

where w = ∆f Πf (u) and e is the counit of ∆f ⊣ Πf . For such diagrams the
following distributive law holds:

(5) Πf Σu ∼= Σv Πg ∆e .

In the internal language, the distributive law reads
( ∏

b∈Ba

∑

c∈Cb

Xc | a ∈ A
)
∼=

( ∑

m∈Ma

∏

n∈Nm

Xe(n) | a ∈ A
)

∼=
( ∑

m∈
Q

b∈Ba

Cb

∏

b∈Ba

Xm(b) | a ∈ A
)
.(6)

1.3. We recall some basic facts about enrichment, tensoring, and strength [29, 31].

For any object a : A→ I in E /I, the diagram A
a
→ I

u
→ 1 defines a pair of adjoint

functors
Σa∆a∆u ⊣ ΠuΠa∆a .

The right adjoint provides enrichment of E /I over E by setting

Hom(a, x) = ΠuΠa∆a(x) ∈ E , x ∈ E /I .

The left adjoint makes E /I tensored over E by setting

K ⊗ a = Σa∆a∆u(K) ∈ E /I , K ∈ E .

Explicitly, K ⊗ a is the object K × A → A → I. In the internal language, the
formulae are (for a : A→ I and x : X → I in E /I):

Hom(a, x) =
∏

i∈I

XAi

i , K ⊗ a = (K ×Ai | i ∈ I) .

For any f : B → A, there is a canonical strength [31] on each of the three functors
∆f , Σf , and Πf . Furthermore, the natural transformations given by the units
and counits for the adjunctions, as well as those expressing pseudo-functoriality of
pullback and its adjoints, are all strong natural transformations. We shall work with
strong functors and strong natural transformations, as a convenient alternative to
the purely enriched viewpoint.

1.4. We define a polynomial over E to be a diagram F in E of shape

(7) I B
soo

f
// A

t // J .

We define PF : E /I → E /J as the composite

E /I
∆s

// E /B
Πf

// E /A
Σt

// E /J .

We refer to PF as the polynomial functor associated to F , or the extension of F ,
and say that F represents PF . In the internal language of E , the functor PF has
the expression

PF (Xi | i ∈ I) =
( ∑

a∈Aj

∏

b∈Ba

Xs(b) | j ∈ J
)
.



6 GAMBINO, KOCK

By a polynomial functor we understand any functor isomorphic to the extension
of a polynomial. The distinction between polynomial and polynomial functor is
similar to the usage in elementary algebra, where a polynomial defines a polyno-
mial function. The bare polynomial is an abstract configuration of exponents and
coefficients which can be interpreted by extension as a function. This extension
is of course a crucial aspect of polynomials, and conversely it is a key feature of
polynomial functions that they can be manipulated in terms of the combinatorial
data. A similar interplay characterises the theory of polynomial functors. We shall
shortly establish a result justifying the blur between polynomials and polynomial
functors; only in the present paper do we insist on the distinction.

1.5. When I = J = 1, a polynomial is essentially given by a single map B → A,
and the extension reduces to

P (X) =
∑

a∈A

XBa .

Endofunctors of this form, simply called polynomial functors in [45], will be referred
to here as polynomial functors in a single variable.

1.6. Examples.

(i) The identity functor Id : E /I → E /I is polynomial, it is represented by

I
=
← I

=
→ I

=
→ I .

(ii) For any B ∈ E /J , the constant functor E /I → E /J with value B is polyno-
mial, represented by

I ← ∅ → B → J .

1.7. Example. A span I
s
←M

t
→ J can be regarded as a polynomial

I
s
←M

=
→M

t
→ J.

The associated polynomial functor

PM (Xi | i ∈ I) =
( ∑

m∈Mj

Xs(m) | j ∈ J
)

is called a linear functor, since it is the formula for matrix multiplication, and
since PM preserves sums. Hence polynomials can be seen as a natural ‘non-linear’
generalisation of spans.

1.8. Example. Let C = (C0

s

⇇
t
C1) be a category object in E . The polynomial

C0
s
← C1

=
→ C1

t
→ C0

represents the polynomial (in fact linear) endofunctor E /C0 → E /C0 which gives
the free internal presheaf on a C0-indexed family [38, §V.7].

1.9. Example. The free-monoid monad, also known as the word monad or the list
monad,

M : Set −→ Set

X 7−→
∑

n∈N

Xn

is polynomial, being represented by the diagram

1 N′oo // N // 1 ,

where N
′ → N is such that the fibre over n has cardinality n, as given for example

by the second projection from N
′ = {(i, n) ∈ N× N | i < n}.
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1.10. Example. (Cf. [32].) A rooted tree defines a polynomial in Set:

A M
soo

f
// N

t // A

where A is the set of edges, N is the set of nodes, and M is the set of nodes with a
marked incoming edge. The map t returns the outgoing edge of the node, the map
f forgets the marked edge, and the map s returns the marked edge. It is shown in
[32] that every polynomial is a colimit of trees in a precise sense.

1.11. We now define the operation of substitution of polynomials, and show that
the extension of substitution is composition of polynomial functors, as expected. In
particular, the composite of two polynomial functors is again polynomial. Given
polynomials

B
f

//

s

����
��

��
��

A
t

��
??

??
??

?

I F J

D
g

//

u

��~~
~~

~~
~

C
v

  
@@

@@
@@

@

J G K

we say that F is a polynomial from I to J (and G from J to K), and we define
G ◦ F , the substitution of F into G, to be the polynomial I ← N → M → K
constructed via this diagram:

(8)

N
n

~~}}
}}

}}
}}

p
//

(iv)

D′

ε
~~||

||
||

||

q
//

(ii)

M

w

��

B′

m

~~}}
}}

}}
}

r //

(iii)

A′

k

  B
BB

BB
BB

B
h

~~}}
}}

}}
}}

(i)B
f

//

s

����
��

��
��

A

t
  A

AA
AA

AA
A D

u
}}||

||
||

||

g
// C

v

  B
BB

BB
BB

B

I J K

Square (i) is cartesian, and (ii) is a distributivity diagram like (4): w is obtained
by applying Πg to k, and D′ is the pullback of M along f . The arrow ε : D′ → A′

is the k-component of the counit of the adjunction Σg ⊣ ∆g. Finally, the squares
(iii) and (iv) are cartesian.

1.12. Proposition. There is a natural isomorphism

PG◦F
∼= PG ◦ PF .

Proof. Referring to Diagram (8) we have the following chain of natural isomor-
phisms:

PG ◦ PF = Σv Πg ∆u Σt Πf ∆s

∼= Σv Πg Σk ∆h Πf ∆s

∼= Σv Σw Πq ∆ε ∆h Πf ∆s

∼= Σv Σw Πq Πp ∆n ∆m ∆s

∼= Σ(v w) Π(q p) ∆(smn)

= PG◦F .

Here we used the Beck-Chevalley isomorphism for the cartesian square (i), the
distributivity law for (ii), Beck-Chevalley isomorphism for the cartesian squares
(iii) and (iv), and finally pseudo-functoriality of the pullback functors and their
adjoints. �
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1.13. Let us also spell out the composition in terms of the internal language, to
highlight the substitutional aspect. By definition, the composite functor is given by

PG ◦ PF (Xi | i ∈ I) =
( ∑

c∈Ck

∏

d∈Dc

∑

a∈Au(d)

∏

b∈Ba

Xs(b) | k ∈ K
)
.

For fixed c ∈ C, by distributivity (6), we have
∏

d∈Dc

∑

a∈Au(d)

∏

b∈Ba

Xs(b)
∼=

∑

m∈Mc

∏

d∈Dc

∏

b∈Bm(d)

Xs(b) ,

where we have put

Mc =
∏

d∈Dc

Au(d) ,

the w-fibre over c in Diagram (8). If we also put, for m ∈Mc,

N(c,m) =
∑

d∈Dc

Bm(d) ,

the (q ◦ p)-fibre over m ∈Mc, we can write
∑

m∈Mc

∏

d∈Dc

∏

b∈Bm(d)

Xs(b)
∼=

∑

m∈Mc

∏

(d,b)∈N(c,m)

Xs(b) .

Summing now over c ∈ Ck, for k ∈ K, we conclude

PG ◦ PF (Xi | i ∈ I) ∼=
( ∑

(c,m)∈Mk

∏

(d,b)∈N(c,m)

Xs(b) | k ∈ K
)
,

(where Mk =
∑

c∈Ck
Mc is the (v ◦ w)-fibre over k ∈ K).

1.14. Corollary. The class of polynomial functors is the smallest class of functors
between slices of E containing the pullback functors and their adjoints, and closed
under composition and natural isomorphism. �

1.15. Proposition. Polynomial functors have a natural strength.

Proof. Pullback functors and their adjoints have a canonical strength. �

1.16. Proposition. Polynomial functors preserve connected limits. In particular,
they are cartesian.

Proof. Given a diagram as in (7), the functors ∆s : E /I → E /B and
Πf : E /B → E /A preserve all limits since they are right adjoints. A direct cal-
culation shows that also the functor Σt : E /A → E /J preserves (in fact creates)
connected limits [13]. �

1.17. For the remainder of this section, with the aim of putting the theory of poly-
nomial functors in perspective, we digress into the special case E = Set, then make
some remarks on finitary polynomial functors, and end with finite polynomials.
This material is not needed in the subsequent sections.

The case E = Set is somewhat special due to the equivalence Set/I ≃ SetI , which
allows for various equivalent characterisations of polynomial functors over Set.

For a functor P : Set/I → Set/J , the following conditions are equivalent.

(i) P is polynomial.
(ii) P preserves connected limits (or, equivalently, pullbacks and cofiltered limits,

or equivalently, wide pullbacks).
(iii) P is familially representable (i.e. a sum of representables).
(iv) The comma category (Set/J)↓P is a presheaf topos.
(v) P is a local right adjoint (i.e. the slices of P are right adjoints).
(vi) P admits strict generic factorisations [56].
(vii) Every slice of el(P ) has an initial object (Girard’s normal-form property).
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The equivalences (ii)⇔ (v)⇔ (vi) go back to Lamarche [36] and Taylor [55], who
were motivated by the work of Girard [17], cf. below. They arrived at condition (vi)
as the proper generalisation of (vii), itself a categorical reformulation of Girard’s
normal-form condition [17]. Below we give a direct proof of (i)⇔ (vii), to illuminate
the relation with Girard’s normal functors. The equivalence (ii) ⇔ (iii) is due to
Diers [14], and was clarified further by Carboni and Johnstone [13], who established
in particular the equivalence (ii)⇔ (iv) as part of their treatment of Artin gluing.
The equivalence (i) ⇔ (iii) is also implicit in their work, the one-variable case
explicit. The equivalence (i) ⇔ (v) was observed by Weber [57], who also notes
that on general presheaf toposes, local right adjoints need not be polynomial: for
example the free-category monad on the category of directed graphs is a local right
adjoint but not a polynomial functor.

1.18. A polynomial functor P : Set/I → Set/J is finitary if it preserves filtered
colimits. If P is represented by I ← B → A → J , this condition is equivalent to
the map B → A having finite fibres.

1.19. Recall [26, 9] that a species is a functor F : FinSetbij → Set, or equivalently,
a sequence (F [n] | n ∈ N) of Set-representations of the symmetric groups. To a
species is associated an analytic functor

Set −→ Set

X 7−→
∑

n∈N

F [n]×Sn X
n .

Species and analytic functors were introduced by Joyal [27], who also characterised
analytic functors as those preserving weak pullbacks, cofiltered limits, and filtered
colimits. It is the presence of group actions that makes the preservation of pullbacks
weak, in contrast to the polynomial functors, cf. (ii) above. Species for which the
group actions are free are called flat species [9]; they encode rigid combinatorial
structures, and correspond to ordinary generating functions rather than exponential
ones. The analytic functor associated to a flat species preserves pullbacks strictly
and is therefore the same thing as a finitary polynomial functor on Set. Explicitly,
given a one-variable finitary polynomial functor P (X) =

∑
a∈AX

Ba represented by
B → A, we can ‘collect terms’: let An denote the set of fibres of cardinality n, then
there is a bijection ∑

a∈A

XBa ∼=
∑

n∈N

An ×X
n.

The involved bijections Ba ∼= n are not canonical: the degree-n part of P is rather
a Sn-torsor, denoted P [n], and we can write instead

(9) P (X) ∼=
∑

n∈N

P [n]×Sn X
n,

which is the analytic expression of P .
As an example of the polynomial encoding of a flat species, consider the species

C of binary planar rooted trees. The associated analytic functor is

X 7→
∑

n∈N

C[n]×Sn X
n ,

where C[n] is the set of ways to organise an n-element set as the set of nodes of
a binary planar rooted tree; C[n] has cardinality n! cn, where cn are the Catalan
numbers 1, 1, 2, 5, 14, . . . The polynomial representation is

1←− B −→ A −→ 1

where A is the set of isomorphism classes of binary planar rooted trees, and B is
the set of isomorphism classes of binary planar rooted trees with a marked node.
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1.20. Girard [17], aiming at constructing models for lambda calculus, introduced

the notion of normal functor : it is a functor SetI → SetJ which preserves pullbacks,
cofiltered limits and filtered colimits, i.e. a finitary polynomial functor. Girard’s in-
terest was a certain normal-form property (reminiscent of Cantor’s normal form for
ordinals), which in modern language is (vii) above: the normal forms of the functor
are the initial objects of the slices of its category of elements. Girard, independently
of [27], also proved that these functors admit a power series expansion, which is just
the associated (flat) analytic functor. From Girard’s proof we can extract in fact
a direct equivalence between (i) and (vii) (independent of the finiteness condition).
The proof shows that, in a sense, the polynomial representation is the normal form.
For simplicity we treat only the one-variable case.

1.21. Proposition. A functor P : Set→ Set is polynomial if and only if every slice
of el(P ) has an initial object.

Proof. Suppose P is polynomial, represented by B → A. An element of P is a
triple (X, a, s), where X is a set, a ∈ A, and s : Ba → X . The set of connected
components of el(P ) is in bijection with the set P (1) = A. For each element
a ∈ A = P (1), it is clear that the triple (Ba, a, IdBa) is an initial object of the slice
el(P )/(1, a, u), where u is the map to the terminal object. These initial objects
induce initial objects in all the slices, since every element (X, a, s) has a unique
map to (1, a, u).

Conversely, suppose every slice of el(P ) has an initial object; again we only need
the initial objects of the special slices el(P )/(1, a, u), for a ∈ P (1). Put A = P (1).
It remains to construct B over A and show that the resulting polynomial functor
is isomorphic to P . Denote by (Ba, b) the initial object of el(P )/(1, a, u). Let
now X be any set. The unique map X → 1 induces P (X) → P (1) = A, and
we denote by P (X)a the preimage of a. For each element x ∈ P (X)a, the pair
(X,x) is therefore an object of the slice el(P )/(1, a, u), so by initiality we get a
map Ba → X . Conversely, given any map α : Ba → X , define x to be the image
under P (α) of the element b; clearly x ∈ P (X)a. These two constructions are easily
checked to be inverse to each other, establishing a bijection P (X)a ∼= XBa . These
bijections are clearly natural in X , and since P (X) =

∑
a∈A P (X)a we conclude

that P is isomorphic to the polynomial functor represented by the projection map∑
a∈AB

a → A. �

1.22. Call a polynomial over Set

(10) I ← B → A→ J

finite if the four involved sets are finite. Clearly the composite of two finite poly-
nomials is again finite. The category T whose objects are finite sets and whose
morphisms are the finite polynomials (up to isomorphism) was studied by Tam-
bara [54], in fact in the more general context of finite G-sets, for G a finite group.
His paper is probably the first to display and give emphasis to diagrams like (10).
Tambara was motivated by representation theory and group cohomology, where the
three operations ∆, Σ, Π are, respectively, ‘restriction’, ‘trace’ (additive transfer),
and ‘norm’ (multiplicative transfer). We shall not go into the G-invariant achieve-
ments of [54], but wish to point out that the following fundamental result about
polynomial functors is implicit in Tambara’s paper and should be attributed to him.

1.23. Theorem. The skeleton of T is the Lawvere theory for commutative semi-
rings.

The point is firstly that m+n is the product of m and n in T (this is most easily seen
by extension, where it amounts to Set/(m + n) ≃ Set/m × Set/n). And secondly
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that for the two Set-maps

0
e
−→ 1

m
←− 2

the polynomial functor Σm, considered as a map in T, represents addition, Πm

represents multiplication, and Σe and Πe represent the additive and multiplicative
neutral elements, respectively. Pullback provides the projection for the product in
T, and is also needed to account for distributivity, which in syntactic terms involves
duplicating elements. It is a beautiful exercise to use the abstract distributive law
(5) to compute

Πm ◦Σk

where k : 3 → 2 is the map pictured as , recovering the distributive law a(x+
y) = ax+ ay of elementary algebra.

2. Morphisms of polynomial functors

Since polynomial functors have a canonical strength, the natural notion of mor-
phism between polynomial functors is that of strong natural transformation. We
shall see that strong natural transformations between polynomial functors are uniquely
represented by certain diagrams connecting the polynomials.

2.1. Given a diagram

(11)

F ′ : I B′

_
�
f ′

//s′oo

β

��

A′
t′ //

α

��

J

F : I B
f

//
s

oo A
t

// J

we define a cartesian strong natural transformation φ : PF ′ ⇒ PF by the pasting
diagram

E /I ′
∆s′ //

∆s
""F

FF
FF

FFF

∼=

E /B′
Πf′

//

∼=

E /A′

⇓ ε

Σt′ //

Σα

""F
FFF

FFFF
E /J ′

E /B
Πf

//

∆β

;;xxxxxxxx
E /A

∆α

<<xxxxxxxx
E /A

Σt

<<xxxxxxxx

It is cartesian and strong since its constituents are so.
In the internal language of E , the component of φ : PF ′ ⇒ PF at X=(Xi | i ∈ I)

is the function

φX :
( ∑

a′∈A′

j

∏

b′∈B′

a′

Xs′(b′) | j ∈ J
)
→

( ∑

a∈Aj

∏

b∈Ba

Xs(b) | j ∈ J
)

defined by

φX(a′, x′) =
(
α(a′), x′ · β−1

a′

)
,

where βa′ : B
′
a′ → Bα(a′) is the isomorphism determined by the cartesian square

in (11).

2.2. Lemma. Let P : E /I → E /J be a polynomial functor. If Q⇒ P is a cartesian
natural transformation, then Q is also a polynomial functor.

Proof. Assume P is represented by I ← B → A→ J . Construct the diagram

I B′

_
�
f ′

//s′oo

β

��

A′
t′ //

α

��

J

I B
f

//
s

oo A
t

// J
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by setting A′ = Q(1), and taking α : A′ → A to be the map φ1 : Q(1)→ P (1), and
letting B′ be the pullback. The top row represents a polynomial functor P ′, and
the diagram defines a cartesian natural transformation to P . Since P ′ and Q both
have a cartesian natural transformation to P which agree on the terminal object,
they are naturally isomorphic. Hence Q is polynomial. �

2.3. Recall that, for a category C with a terminal object 1 and a category D with
pullbacks, the functor

[C ,D ] −→ D

P 7−→ P (1)

is a Grothendieck fibration. The cartesian arrows for this fibration are precisely
the cartesian natural transformations, while the vertical arrows are the natural
transformations whose component on 1 is an identity map. We refer to such natural
transformations as vertical natural transformations.

If C and D are enriched and tensored, then the above remark carries over to
the case where [C ,D ] denotes the category of strong functors and strong natural
transformations. The verification of this involves observing that the cartesian lift
of a strong functor has a canonical strength.

2.4. Proposition. Let I, J ∈ E . The restriction of the Grothendieck fibration
[E /I,E /J ]→ E /J to the category of polynomial functors and strong natural trans-
formations is again a Grothendieck fibration.

Proof. Lemma 2.2 implies that the cartesian lift of a polynomial functor is again
polynomial. �

2.5. Proposition 2.4 implies that every strong natural transformation between poly-
nomial functors factors in an essentially unique way as a vertical strong natural
transformation followed by a cartesian one. We proceed to establish representations
of the two classes of strong natural transformations between polynomial functors.
The key ingredient is the following version of the enriched Yoneda lemma.

2.6. Lemma. Let u : I → 1 denote the unique arrow in E to the terminal object.
For any s : B → I and s′ : B′ → I in E /I, the natural map

HomE /I(s, s
′) −→ StrNat(ΠuΠs′∆s′ ,ΠuΠs∆s)

sending an I-map w : B → B′ to the composite ΠuΠs′∆s′
η
⇒ ΠuΠs′Πw∆w∆s′

∼=
ΠuΠs∆s is a bijection.

Proof. Just note that ΠuΠs∆s = HomE/I(s,−) : E /I → E , and the result is the

usual enriched Yoneda lemma [29], remembering that since E /I is tensored over E ,
a natural transformation (between strong functors) is enriched if and only if it is
strong. �

2.7. Given a diagram

(12)

F ′ : I B′
f ′

//s′oo A
t // J

F : I B
f

//

w

OO

s
oo A

t
// J

we define a strong natural transformation φ : PF ′ ⇒ PF by the pasting diagram

E /B′

∆w

##F
FFFFFFF

∼= ⇓η

E /B′

∼=
Πf′

##F
FFFFFFF

E /I

∆s′

<<xxxxxxxx

∆s

// E /B

Πw

;;xxxxxxxx

Πf

// E /A
Σt

// E /J.
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In the internal language, the component of φ at X = (Xi | i ∈ I) is given by the
function

φX :
( ∑

a∈Aj

∏

b′∈B′
a

Xu(b) | j ∈ J
)
→

( ∑

a∈Aj

∏

b∈Ba

Xs(b) | j ∈ J
)

defined by
φX(a, x) =

(
a, x · wa).

Clearly φ1 = IdA, so φ is vertical for the Grothendieck fibration.

2.8. Proposition. For F and F ′ as above, every vertical strong natural transfor-
mation φ : PF ′ ⇒ PF is uniquely represented by a diagram like (12).

Proof. We already have the outline of the diagram (12), it remains to construct
the map w : B → B′ commuting with the rest. Since w must be an A-map, we can
construct it fibrewise, so we need for each a ∈ A a map B′

a → Ba. This allows
reduction to the case A = 1, and the result is a direct consequence of the above
Yoneda lemma. �

2.9. Proposition. Let I, J ∈ E . Let F : I → J and F ′ : I → J be polynomials.
Every cartesian strong natural transformation φ : PF ′ ⇒ PF is uniquely represented
by a diagram of the form (11).

Proof. We have A′ ∼= PF ′(1) and A ∼= PF (1). Define α : A′ → A to be the
composite

A′ ∼= PF ′(1)
φ1

// PF (1) ∼= A .

We need to construct β : B′ → B, and since it has to be compatible with α, f ′ and
f , it is enough to construct B′

a′ → Bα(a′) for each a′ ∈ A′. Thereby we can reduce
to the case where A′ = A = 1; in this case φ is invertible since it is simultaneously
vertical and cartesian. But in this case the enriched Yoneda lemma above already
ensures that the natural transformation is induced by a unique map B → B′, which
we furthermore know is invertible. Its inverse is what we need for B′

a′ → Bα(a′).
We have now constructed a diagram like (11), and it is routine to check that this
diagram represents φ. �

2.10. We give an example of a natural transformation that cannot be represented
by diagrams. On the category SetZ2 of involutive sets, the identity functor is rep-
resented by 1 ← 1 → 1 → 1. The twist natural transformation τ : Id ⇒ Id, whose
component on an object X is the involution of X , is both cartesian and vertical. It
is clear that it cannot be represented by any diagram connecting 1 ← 1 → 1 → 1,
since any connecting arrows would have to be identities and thereby induce the
trivial natural transformation. Observe that τ is not strong.

2.11. We can now combine the diagrams representing vertical and cartesian strong
natural transformations. Given a diagram

(13)

G : I D
g

//uoo C
v // J

B′ //

��

OO

_
� C

��

F : I B
f

//
s

oo A
t

// J

there is induced, by 2.1 and 2.7, a strong natural transformation Pφ : PG ⇒ PF .
We refer to a diagram like (13) as a morphism from G to F . We arrive at the
following result, a version of which appears as [2, Theorem 3.4], where it is stated
for polynomial functors between slice categories over discrete objects.
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2.12. Proposition. Every strong natural transformation PG ⇒ PF between poly-
nomial functors is represented in an essentially unique way by a diagram like (13).

Proof. By Proposition 2.4, every strong natural transformation factors as a ver-
tical strong transformation followed by a cartesian strong natural transformation
in an essentially unique way. The claim then follows from Proposition 2.8 and
Proposition 2.9. �

2.13. Corollary. Every strong natural transformation between polynomial functors
is a composite of units and counits of the basic adjunctions, their inverses when
they exist, and coherence 2-cells for pullback and its adjoints.

Proof. The ingredients of the constructions in 2.1 and 2.7 are units, counits,
pseudo-functoriality 2-cells, as well as Beck-Chevalley isomorphisms, which in turn
are constructed using units and counits (and inverses of their
composites). �

2.14. Polynomials from I to J and their morphisms form a category denoted
PolyE (I, J). Vertical composition of diagrams like (13) involves a simple pullback
construction that via extension amounts precisely to refactoring cartesian-followed-
by-vertical into vertical-followed-by-cartesian, cf. the fibration property. This can
also be described as the unique way of defining vertical composition of diagrams to
make the assignment given by extension functorial. If we let PolyFunE (E /I,E /J)
denote the category of polynomial functors from E /I to E /J and strong natural
transformations, Proposition 2.12 says that for any I, J ,

(14) PolyE (I, J)→ PolyFunE (E /I,E /J)

is an equivalence of categories. These equivalences assemble into a biequivalence:
we define the 2-category of polynomial functors PolyFunE as the sub-2-category of
CatE having slices of E as 0-cells, polynomial functors as 1-cells, and strong natural
transformations as 2-cells. Let PolyE denote the bicategory with objects of E as
0-cells, polynomials as 1-cells, and whose 2-cells are the morphisms of polynomials,
i.e. diagrams like (13).

2.15. Theorem. The extension pseudo-functor

PolyE → PolyFunE

is a biequivalence.

The details of the definition of PolyE and construction of the biequivalence are
given in the Appendix. The hom categories of PolyE are the categories defined in
Paragraph 2.14, and Proposition 2.12 implies the local equivalence. Composition
of polynomials is given by substitution, and the structure of pseudo-functor of the
biequivalence is provided by the isomorphisms PG◦F

∼= PG ◦PF of Proposition 1.12.

2.16. The notions of polynomial and polynomial functors are almost exactly the
same as what is called container and container functor by Abbott, Altenkirch and
Ghani [1, 2, 3, 4]. One minor difference is that they only consider slices over discrete
objects, i.e. of the form E /n ≃ E n, where n denotes the sum of n copies of the
terminal object. In our setting there is no reason for that restriction, and in fact
Altenkirch and Morris [5] have been able to lift the restriction also from the container
theory, introducing the notion of indexed container. Another difference, also quite
minor, is that while we prefer to work with strength, the container people work with
fibred categories, fibred functors and fibred natural transformations. This involves
replacing all slice categories E /I by the fibration over E whoseK-fibre is E /(K × I),
and work with those instead. The two viewpoints are in fact equivalent, thanks to
a result of Paré, who showed (cf. [25]) that if a strong functor preserves pullbacks
then it is canonically indexed, i.e. fibred. (It is easy to see that a fibred functor has
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a strength.) We have chosen the viewpoint of tensorial strength for its simplicity.
Modulo the above minor differences (and modulo Paré’s theorem), Lemma 2.2,
Proposition 2.12, and Theorem 2.15 were also proved in Abbott’s thesis [1].

3. The double category of polynomial functors

3.1. It is important to be able to compare polynomial functors with different end-
points, and to base change polynomial functors along maps in E . This need can
been seen already for linear functors 1.7: a small category is a monad in the bi-
category of spans [8], but in order to get functors between categories with different
object sets, one needs maps between spans with different endpoints [35]. The most
convenient framework for this is that of double categories, as it allows for diagram-
matic representation. The base change structure is concisely captured in Shulman’s
notion of framed bicategory [52]: our double categories of polynomial functors will
in fact be framed bicategories.

3.2. Recall that a double category D consists of a category of objects D0, a category
of morphisms D1, together with structure functors

D0
// D1

∂0

oo

∂1
oo

D1 ×D0 D1
comp.
oo

subject to the usual category axioms. The objects of D0 are called objects of D,
the morphisms of D0 are called vertical arrows, the objects of D1 are called hor-
izontal arrows, and the morphisms of D1 are called squares. As is custom [18],
we allow the possibility for the horizontal composition to be associative and uni-
tal only up to specified coherent isomorphisms. Precisely, a double category is a
pseudo-category [44] in the 2-category Cat; see also [40, §5.2].

3.3. A framed bicategory [52] is a double category for which the functor

(∂0, ∂1) : D1 −→ D0 × D0

is a bifibration. (In fact, if it is a fibration then it is automatically an opfibration,
and vice versa.) The upshot of this condition is that horizontal arrows can be base
changed and cobase changed along arrows in D0 ×D0 (i.e. pairs of vertical arrows).

3.4. We need to fix some terminology. The characteristic property of a fibration is
that every arrow in the base category admits a cartesian lift, and that every arrow
in the total space factors (essentially uniquely) as a vertical arrow followed by a
cartesian one. In the present situation, the term ‘cartesian’ is already in use to
designate cartesian natural transformations (which fibrationally speaking are verti-
cal rather than cartesian), and the word ‘vertical’ already has a double-categorical
meaning. For these reasons, instead of talking about ‘cartesian arrow’ for a fibra-
tion we shall say transporter arrow; this terminology goes back to Grothendieck [19].
Correspondingly, we shall say cotransporter instead of opcartesian. We shall simply
refrain from using ‘vertical’ in the fibration sense. The arrows mapping to identity
arrows by the fibration will be precisely the natural transformations of polynomial
functors.

3.5. We want to extend the bicategories PolyE and PolyFunE to double categories.
The objects of the double category PolyFunE are the slices of E , and the horizontal
arrows are the polynomial functors. The vertical arrows are the dependent sum
functors (i.e. functors of the form Σu for some u), and the squares in PolyE are of



16 GAMBINO, KOCK

the form

(15)

E /I ′

Σu

��

P ′

//

⇓φ

E /J ′

Σv

��

E /I
P

// E /J

where P ′ and P are polynomial functors and φ is a strong natural transformation.

3.6. Proposition. The double category PolyFunE is a framed bicategory.

Proof. The claim is that the functor sending a polynomial functor
P : E /I → E /J to (I, J) is a bifibration. For each pair of arrows u : I ′ → I,
v : J ′ → J in E we have the following basic squares (companion pairs and conjoint
pairs [18])

E /I ′
Σu

//

Σu

��

E /I

E /I ′ E /I

E /I ′

Σu

��

⇓ η

E /I ′

E /I
∆u

// E /I

E /J ′ E /J ′

Σv

��

E /J ′

Σv

// E /J

E /J
∆v

//

⇓ ε

E /J ′

Σv

��

E /J E /J.

It is now direct to check that the pasted square

E /I ′
Σu

//

Σu

��

E /I
P // E /J

∆v
//

⇓ ε

E /J ′

Σv

��

E /I E /I
P

// E /J E /J

is a transporter lift of (u, v) to P . We call ∆v ◦ P ◦ Σu the base change of P along
(u, v), and denote it (u, v)∗(P ).

Dually, it is direct to check that the pasted square

E /I ′

Σu

��

⇓ η

E /I ′
P ′

// E /J ′ E /J ′

Σv

��

E /I
∆u

// E /I ′
P ′

// E /J ′

Σv

// E /J

is a cotransporter lift of (u, v) to P ′. We call Σv ◦ P ′ ◦∆u the cobase change of P ′

along (u, v), and denote it (u, v)!(P
′). �

The above procedure of getting a framed bicategory out of a bicategory is a gen-
eral construction: one starts with a bicategory C with a subcategory L consisting
of left adjoints and comprising all the objects of C , and obtains a framed bicate-
gory by taking as vertical arrows the arrows in L . The details can be found in [52,
Appendix].

3.7. Via the biequivalence PolyE ≃ PolyFunE between the bicategory of polyno-
mials and the 2-category of polynomial functors, Proposition 3.6 gives us also a
framed bicategory of polynomials PolyE , featuring nice diagrammatic representa-
tions which we now spell out, extending the results of Section 2 and the Appendix.
The following proposition is the double-category version of Proposition 2.12.
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3.8. Proposition. The squares (15) of PolyFunE are represented by diagrams of
the form

(16)

P ′ : I ′

u

��

B′oo // A′ // J ′

v

��

·
_

�

OO

//

��

·

��

P : I Boo // A // J .

This representation is unique up to choice of pullback in the middle. It follows that
extension constitutes a framed biequivalence

PolyE
∼→ PolyFunE .

Proof. By Proposition 2.12, diagrams like (16) (up to choice of pullback) are
in bijective correspondence with strong natural transformations Σv ◦ P ′ ◦∆u ⇒ P ,
which by adjointness correspond to strong natural transformations Σv◦P ′ ⇒ P ◦Σu,
i.e. squares (15) in PolyFunE . �

3.9. The vertical composition of two diagrams

·

��

·oo // · // ·

��

·
_
�

OO

//

��

·

��
·

��

·oo // · // ·

��

·
_
�

OO

//

��

·

��
· ·oo // · // ·

is performed by replacing the two middle squares

·
_
�

//

��

·

��
· // ·

·

OO

// ·

by a configuration

· // ·

·
_
�

//

OO

��

·

��
· // ·

and then composing vertically. The replacement is a simple pullback construction,
and checking that the composed diagram has the same extension as the vertical
pasting of the extensions is a straightforward calculation.
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3.10. At the level of polynomials, the bifibration PolyE → E × E is now the ‘end-
points’ functor, associating to a polynomial I ← B → A→ J the pair (I, J). With
notation as in the proof of Proposition 3.6, we know the cobase change of P ′ along
(u, v) is just Σv ◦ P

′ ◦∆u, and it is easy to see that

P ′ : I ′

u

��

B′oo // A′ // J ′

v

��

(u, v)!(P
′) : I B′oo // A′ // J

is a cotransporter lift of (u, v) to P ′.
The transporter lift of (u, v) to P , which is the same thing as the base change of

P along (u, v), is slightly more complicated to construct. It can be given by first
base changing along (u, Id) and then along (Id, v):

(17) (u, v)
∗
(P ) : I ′ ·oo

_
�

//

��

·
_

�

��

// J ′

v

��
(u, Id)

∗
(P ) : · ·

_
�

oo

��

// ·

��

// ·

·

u
��

·�
_

oo

��

P : I Boo // A // J

3.11. The intermediate polynomial (u, Id)
∗
(P ) is called the source lift of P along

u, and we shall need it later on. Since ∂0 (as well as ∂1) is itself a bifibration,
for which the source lift is the transporter lift, it enjoys the following universal
property: every square

P ′ : I ′

u

��

·oo // · // J ′

v

��

·
_
�

OO

//

��

·

��

P : I ·oo // · // J

factors uniquely through the source lift, like

P ′ : I ′ ·oo // · // J ′

v

��

·
_
�

OO

//

��

·

��
(u, Id)∗(P ) : I ′

u
��

·
_
�

oo

��

// ·

��

// ·

P : I ·oo // · // J

where the bottom part is as in (17).

3.12. All the constructions and arguments of this section apply equally well inside
the cartesian fragment: starting with the 2-category PolyFunc

E of polynomial func-
tors and their cartesian strong natural transformations, a double category PolyFunc

E

results, which is a framed bicategory. The only point to note is that all the con-
structions are compatible with the cartesian condition, since they all depend on
the Σ ⊣ ∆ adjunction, which is cartesian. Note also that the transporter and co-
transporter lifts belong to the cartesian fragment. The following two results follow
readily.
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3.13. Proposition. The double category PolyFunc
E whose objects are the slices of

E , whose horizontal arrows are the polynomial functors, whose vertical arrows are
the dependent sum functors, and whose squares are cartesian strong natural trans-
formations

E /I ′

Σu

��

P ′

//

⇓φ

E /J ′

Σv

��

E /I
P

// E /J

is a framed bicategory.

3.14. Proposition. The squares of PolyFunc
E are represented uniquely by diagrams

(18)

I ′

��

B′oo

_
�

//

��

A′

��

// J ′

��

I Boo // A // J ,

hence extension constitutes a framed biequivalence

Polyc
E
∼→ PolyFunc

E .

3.15. For the remainder of this paper, we shall only deal with the cartesian frag-
ment, which is also what is needed in [32] and [33]. In those two papers, a central
construction is to label trees by a polynomial endofunctor P . Trees are themselves
seen as polynomial endofunctors (cf. Example 1.10), and the labelling amounts
precisely to a cartesian 2-cell in the double category of polynomial functors. The
importance of the cartesian condition (a bijection of certain fibres) is to ensure that
a node in a tree is labelled by an operation of the same arity.

3.16. We finish this section with a digression on the relationship between polynomial
functors and the shapely functors and shapely types of Jay and Cockett [24, 23],
since the double-category setting provides some conceptual simplification of the
latter notion.

A shapely functor [24] is a pullback-preserving functor F : Em → E n equipped
with a strength. Since, for a natural number n, the discrete power E n is equivalent
to the slice E /n, where n now denotes the n-fold sum of 1 in E , it makes sense
to compare shapely functors and polynomial functors. Since a polynomial functor
preserves pullbacks and has a canonical strength, it is canonically a shapely functor.
It is not true that every shapely functor is polynomial. For a counter example, let
K be a set with a non-principal filter D , and consider the filter-power functor

F : Set −→ Set

X 7−→ colim
D∈D

XD ,

which preserves finite limits since it is a filtered colimit of representables. Since every
endofunctor on Set has a canonical strength, F is a shapely functor. However, F
does not preserve all cofiltered limits, and hence, by 1.17 (ii) cannot be polynomial.
For example, ∅ = limD∈D D itself is not preserved. This example is apparently at
odds with Theorem 8.3 of [2].

3.17. Let L : E → E denote the list endofunctor, L(X) =
∑

n∈N
Xn, which is

the same as what we called the free-monoid monad in Example 1.9. A shapely
type [24] in one variable is a shapely functor equipped with a cartesian strong natural
transformation to L. A morphism of shapely types is a natural transformation
commuting with the structure map to L. The idea is that the shapely functor
represents the template or the shape into which some data can be inserted, while
the list holds the actual data; the cartesian natural transformation encodes how the
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data is to be inserted into the template. As emphasized in [46], the cartesian strong
natural transformation is part of the structure of a shapely type. Since any functor
with a cartesian natural transformation to L is polynomial by Lemma 2.2, it is
clear that one-variable shapely types are essentially the same thing as one-variable
polynomial endofunctors with a cartesian natural transformation to L, and that
there is an equivalence of categories between the category of shapely types and the
category Polyc

E (1, 1)/L.
According to Jay and Cockett [24], a shapely type in m input variables and n

output variables is a shapely functor Em → E n equipped with a cartesian strong
natural transformation to the functor Lm,n : Em → E n defined by

Lm,n(Xi | i ∈ m) =
(
L(

∑
i∈mXi) | j ∈ n

)
,

and they motivate this definition by considerations on how to insert data into tem-
plates. With the double-category formalism, we can give a conceptual explanation
of the formula: writing um : m → 1 and un : n → 1 for the maps to the terminal
object, the functor Lm,n : Em → E n is nothing but the composite

∆un ◦ L ◦ Σum = (um, un)
∗
L ,

the base change of L along (um, un). Hence we can say uniformly that a shapely
type is an object in Polyc

E /L with endpoints finite discrete objects.

4. Polynomial monads

4.1. Let I ∈ E . A polynomial monad on E /I is a monad (T, η, µ) for which T is a
polynomial functor and η and µ are cartesian strong natural transformations. From
the point of view of the formal theory of monads [53], a polynomial monad is a
monad in the 2-category PolyFunc

E . A basic example of a polynomial monad is the
free-monoid monad of Example 1.9.

4.2. We are interested in the construction of the free monad on a polynomial end-
ofunctor, and start by recalling from [28, 7] some general facts about free monads.
Let C be a category and P : C → C an endofunctor. The free monad on P is a
monad (T, η, µ) on C together with a natural transformation α : P ⇒ T enjoying
the following universal property: for any monad (T ′, η′, µ′) on C and any natural
transformation φ : P ⇒ T ′ there exists a unique monad morphism φ♯ : T ⇒ T ′

making the following diagram commute:

P
α //

φ ,,

T

φ♯

��

T ′ .

The following construction of the free monad on P is standard. Let P -alg denote the
category of P -algebras and P -algebra morphisms. We denote P -algebras as pairs
(X, supX) where X is the underlying object, and supX : PX → X is the structure
map, sometimes suppressed from the notation for brevity. If the forgetful functor
U : P -alg → C has a left adjoint, then the monad (T, η, µ) resulting from the
adjunction is the free monad on P . If C has binary sums, a necessary and sufficient
condition for the existence of the left adjoint to U is that, for every X ∈ C , the
endofunctor X + P (−) : C → C has an initial algebra. Indeed, in that case we can
construct the free monad as follows. For X ∈ C , we define TX as the initial algebra
for X + P (−) : C → C , and ηX : X → TX as the composite

X
ι1 // X + P (TX)

tX // TX

where ι1 is the first sum inclusion and tX is the structure map of TX . Finally, since
T 2X is the initial algebra for the functor TX+P (−), we can define µX : T 2X → TX
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as the unique map making the following diagram commute:

TX + P (T 2X)
TX+P (µX )

//

tT X

��

TX + P (TX)

��

TX +X + P (TX)

(1T X ,tX)

��

T 2X µX

// TX .

Functoriality, naturality, and the monad axioms follow readily from these defini-
tions. Note that the X-component of the natural transformation α : P ⇒ T is
given as the composite

PX
P (ηX )

// P (TX)
ι2 // X + P (TX)

tX // TX .

4.3. Let us now return to the extensive locally cartesian closed category E . Recall
from [45] that E is said to have W-types if every polynomial functor in a single
variable on E has an initial algebra. This terminology is motivated by the fact that
initial algebras for polynomial functors in a single variable are category-theoretic
counterparts of Martin-Löf’s types of wellfounded trees [48]. Every elementary topos
with a natural numbers object has W-types [45]. If E has W-types, then every poly-
nomial endofunctor, not just those in a single variable, has an initial algebra [16,
Theorem 14]. Initial algebras for general polynomial functors are category-theoretic
counterparts of Petersson and Synek’s general tree types [49]; see also [47, Chap-
ter 16].

Henceforth, we assume that E has W-types. For any polynomial endofunctor
P : E /I → E /I and any X ∈ E /I, the functors X + P (−) : E /I → E /I are again
polynomial, hence have initial algebras. Therefore every polynomial endofunctor
admits a free monad.

4.4. Theorem 4.5 below asserts that the free monad on a polynomial functor is
polynomial. The proof exploits the possibility of recursively defining maps out of
initial algebras for polynomial functors, and we need first to set up some notation
to handle this. Let P : E /I → E /I be the polynomial functor represented by the
diagram

I B
soo

f
// A

t // I .

We regard such a diagram as a generalised many-sorted signature. This point of
view is most easily illustrated by considering the case of E = Set. The object I
provides the set of sorts of the signature. The set of terms of the signature is defined
inductively by saying that we have a term supa(x) of sort t(a) whenever a ∈ A and
x = (xb | b ∈ Ba) is a family of terms such that xb has sort s(b) for all b ∈ Ba. Such
a term may be represented graphically as a one-node tree

t(a)

s(b)

xb

sup(a, x)

The incoming edges are indexed by the elements of Ba and further labelled by
elements of I, with the edge indexed by b ∈ Ba labelled by s(b) ∈ I. The outgoing
edge is labelled by t(a) ∈ I. We label the node sup(a, x) if the family x = (xb | b ∈
Ba) labels its incoming edges.
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Let W be the initial algebra for P , with structure map supW : PW → W . Ini-
tiality of the algebra means that for any other algebra (X, supX), there exists a
unique algebra map θ : W → X , thus making the following diagram commute

PW
P (θ)

//

supW

��

PX

supX

��

W
θ

// X .

In the internal language of E , we can represent the structure map of W as the
I-indexed family

supWi
:

∑

a∈Ai

∏

b∈Ba

Wsb →Wi .

The initiality of W can be expressed by saying that there exists a unique family of
maps θi : Wi → Xi satisfying the recursive equation

θi(supWi
(a, h)) = supXi

(a, (λb ∈ Ba) θsb(hb)) ,

where we employ lambda notation (λb ∈ Ba) θsb(hb) to indicate the function Ba →
X sending b to θsb(hb).

4.5. Theorem. The free monad on a polynomial endofunctor is a polynomial monad.

Proof. Let P : E /I → E /I be the polynomial endofunctor represented by

I B
soo

f
// A

t // I ,

and let (T, η, µ) be the free monad on P . We need to show that T : E /I → E /I is a
polynomial functor, and that η : Id ⇒ T and µ : T 2 ⇒ T are cartesian strong natural
transformations. We shall show that T is naturally isomorphic to the polynomial
functor represented by the diagram

(19) I D
uoo

g
// C

v // I

whose constituents we now proceed to construct. Intuitively, C is the set of well-
founded trees with branching profile given by the polynomial endofunctor 1 +
P : E /I → E /I, while D is the set of such trees but with a marked leaf. We
construct these two objects as least fixpoints. Put Q = 1 + P ; in the internal
language we have

Q(Xi | i ∈ I) =
(
{i}+

∑

a∈Ai

∏

b∈Ba

Xsb | i ∈ I
)
.

Let (Ci | i ∈ I) be the initial algebra for Q. Its structure map is given by the family
of isomorphisms

(20) supCi
: {i}+

∑

a∈Ai

∏

b∈Ba

Csb
∼→ Ci ,

meaning that a Q-tree is either a trivial tree (of some type i ∈ I) or a one-node tree
which is a term from P (that is the choice of a ∈ Ai) and whose incoming edges are
labelled by Q-trees (that is the map k : Ba → Csb). We now define the polynomial
endofunctor R : E /C → E /C by letting

R(Xc | c ∈ C) =
(
X̃c | c ∈ C

)
,

where

X̃c =

{
{i} if c = sup(i) ,
∑
b∈Ba

Xkb if c = sup(a, k) .
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This definition can be seen to be that of a polynomial functor using the isomor-
phisms in (20) and the extensivity of E . Let (Dc | c ∈ C) be the initial algebra for
R. Its structure maps consists of the following isomorphisms:

supDsupC(i)
: {i} ∼→ DsupC(i) , supDsupC(a,h)

:
∑

b∈Ba

Dhb
∼→ DsupC(a,h) .

The idea here is that a tree with a marked leaf is either a trivial tree, with the
unique leaf marked, or it is a pointed collection of trees, for which the distinguished
tree has a marked leaf. We now define u : D → I recursively so that we have

u(d) =

{
i if d = supD(i) ,
u(d′) if d = supD(b, d′) .

We have now constructed the polynomial in (19), and we proceed to verify that
the associated polynomial functor is naturally isomorphic to T . To prove this, it is
sufficient to show that for every X = (Xi | i ∈ I), the object

( ∑

c∈Ci

∏

d∈Dc

Xud | i ∈ I
)

enjoys the same universal property that characterises TX , namely that of being an
initial algebra for the functor X + P (−) : E /I → E /I. The required structure map
is given by the following chain of isomorphisms:

Xi +
∑

a∈Ai

∏

b∈Ba

∑

c∈Csb

∏

d∈Dc

Xud
∼= Xi +

∑

a∈Ai

∑

k∈
Q

b∈Ba

Csb

∏

b∈Ba

∏

d∈Dkb

Xud

∼= Xi +
∑

(a,k)∈
P

a∈Ai

Q

b∈Ba

Csb

∏

(b,d)∈
P

b∈Ba

Dkb

Xud

∼=
∑

c∈Ci

∏

d∈Dc

Xud .

The initiality of the algebra follows by the initiality of C and D via lengthy, but
not difficult, calculations.

It remains to show that the unit and multiplication are cartesian. For the unit
η : Id ⇒ T , we construct a diagram

I I
_
�

��

I

e

��

I

I Du
oo

g
// C v

// I

representing a cartesian strong natural transformation that coincides with η, modulo
the isomorphism established above. For i ∈ I, we define ei : {i} → Ci by letting
ei(i) = supC(i). With this definition, we have an isomorphism {i} ∼= Dei(i) for
every i ∈ I, hence the middle square is cartesian. We proceed analogously for the
multiplication. We will construct a diagram of the form

I Foo

_
�

//

��

E //

m

��

I

I Du
oo

g
// C v

// I

where the top polynomial represents T 2 : E /I → E /I and the diagram represents
the multiplication. Direct calculations with the definition of substitution show that,
for i ∈ I, we have

Ei =
∑

c∈Ci

∏

d∈Dc

Cud ,
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and that, for (c, k) ∈ Ei, we have

F(c,k) =
∑

d∈Dc

Dkd .

The family of maps mi : Ei → Ci is defined recursively so that, for (c, k) ∈ Ei, we
have

mi(c, k) =

{
k(i) if c = supC(i)
sup(a, (λb ∈ Ba) msb(hb, kb)) if c = supC(a, h) .

To check that the second clause is well-defined, observe that if supC(a, h) ∈ Ci then,
for b ∈ Ba, we have hb ∈ Csb. Furthermore we have

∏

d∈Dsup(a,h)

Cud ∼=
∏

(b,d′)∈
P

b∈Ba

Dhb

Cu(b,d′)
∼=

∏

b∈Ba

∏

d′∈Dhb

Cu(d′) .

Hence, for b ∈ Ba, we can regard kb as an element of
∏

d′∈Dhb

Cu(d′)

so that (hb, kb) ∈ Esb, and therefore msb(hb, kb) ∈ Csb, as required. It is now easy
to check that, for (c, k) ∈ Ei, we have an isomorphism

Dmi(c,k)
∼= F(c,k) .

It remains to check that the natural transformation induced by the diagram above
is indeed the multiplication of the free monad on P . This involves checking that its
components satisfy the condition that determines µX : T 2X → TX uniquely. This
is a lengthy calculation which we omit. �

4.6. To conclude this section, we prove a corollary of Theorem 4.5. Let PolyEndE

denote the category whose objects are pairs (I, P ) consisting of an object I ∈ E and
a polynomial endofunctor P on E /I, and whose morphisms from (I, P ) to (I ′, P ′)
consist of a map u : I ′ → I in E and a cartesian strong natural transformation

(21) E /I ′
P ′

//

Σu

��

⇓φ

E /I ′

Σu

��

E /I
P

// E /I .

The category PolyMndE of polynomial monads in E is defined in a similar way: the
objects are pairs (I, T ) consisting of an object I ∈ E and a polynomial monad T
on E /I. Maps from (I, T ) to (I ′, T ′) are as in (21), but required now to satisfy the
following monad map axioms:

(22)

Σu
Σu η

′

//

ηΣu ..

Σu T
′

φ

��

T Σu

Σu T
′2

φ T ′

//

Σuµ
′

��

T Σu T
′

Tφ
// T 2 Σu

µΣu

��

Σu T
′

φ
// T Σu .

Let us point out that the monad morphisms defined above are more special than
those that would arise by instantiating the notion of a monad morphism between
monads in a 2-category, as defined in [53], to the 2-category PolyFunc

E : we allow only
functors of the form Σu : E /I ′ → E /I, rather than arbitrary polynomial functors,
as vertical maps in the diagram (21). Note also that our direction of 2-cells are the
oplax monad maps rather than the lax ones.

4.7. Corollary. The forgetful functor U : PolyMndE → PolyEndE has a left adjoint.
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Proof. Both PolyEndE and PolyMndE are fibred over E via the functors mapping
an object (I,−) to I, and U is a fibred functor. Therefore, to define a left adjoint
to U , it is sufficient to define left adjoints to the forgetful functors

UI : PolyMndE (E /I)→ PolyEndE (E /I) ,

where PolyMndE (E /I) and PolyEndE (E /I) denote the fibre categories over I ∈ E .
But each UI has a left adjoint, sending P to the free monad on P , cf. Theorem 4.5.
The only remaining thing to check is that the canonical natural transformation
α : P ⇒ T is strong and cartesian. But this follows by its very definition. �

4.8. Observe that even if the forgetful functor U : PolyMndE → PolyEndE is fibred,
its left adjoint is not. The situation is analogous to the one represented in the
diagram

Cat //

""D
DD

DD
DD

D Grph

||xxx
xxx

xx

Set

where Cat is the category of small categories, and Grph is the category of directed,
non-reflexive graphs. The forgetful functor, mapping a category to its underlying
graph, is a fibred functor, but its left adjoint, the free category functor, is not.

5. P -spans, P -multicategories, and P -operads

5.1. Let SpanE denote the bicategory of spans in E , as introduced in [8]. Under the
interpretation of spans as linear polynomials (cf. Example 1.7), composition of spans
(resp. morphisms of spans) agrees with composition of polynomials (resp. morphisms
of polynomial), so we can regard SpanE as a locally full sub-bicategory of Polyc

E ,
and view polynomials as a natural ‘non-linear’ generalisation of spans.

5.2. There is another notion of ‘non-linear’ span, namely the P -spans of Burroni [12],
which is a notion relative to is a cartesian monad P . This section is dedicated to
a systematic comparison between the two notions, yielding (for a fixed polyno-
mial monad P ) an equivalence of framed bicategories between Burroni P -spans and
polynomials over P in the double-category sense. We show how the comparison
can be performed directly at the level of diagrams by means of some pullback con-
structions. Considering monads in these categories, we find an equivalence between
P -multicategories (also called coloured P -operads) and polynomial monads over P ,
in the double-category sense.

In this section, strength plays no essential role: everything is cartesian relative
to a fixed P , eventually assumed to be polynomial and hence strong, and for all the
cartesian natural transformations into P there is a unique way to equip the domain
with a strength in such a way that the natural transformation becomes strong.

5.3. We first need to recall some material on P -spans and their extension. To
avoid clutter, and to place ourselves in the natural level of generality, we work in a
cartesian closed category C , and consider a fixed cartesian endofunctor P : C → C .
We shall later substitute E /I for C , and assume that P is a polynomial monad on
E /I.

5.4. By definition, a P -span is a diagram in C of the form

(23) P (D) N
doo c // C ,
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A morphism of P -spans is a diagram like

(24)

P (D′)

P (f)

��

N ′
d′oo c //

g

��

C′

h

��

P (D) N c
//

d
oo C ,

We write P -Span for the category of P -spans and P -span morphisms in C .

5.5. Let CartC denote the category whose objects are cartesian functors between
slices of C and whose arrows are diagrams of the form

(25)

C /D′
Q′

//

Σu

��

⇓ψ

C /C′

Σv

��

C /D
Q

// C /C ,

for u : D′ → D and v : C′ → C in C , and ψ a cartesian natural transformation.
Under the identification C = C /1, we can consider P as an object of CartC , so it
makes sense to consider the slice category CartC /P : its objects are the cartesian
functors Q : C /D → C /C equipped with a cartesian natural transformation

(26)

C /D
Q

//

��

⇓φ

C /C

��

C
P

// C .

We now construct a functor Ext: P -SpanC → CartC /P . Its action on objects is

defined by mapping a P -span PD
d
←− N

c
−→ C to the diagram

C /D
P/D

//

��

C /PD

⇓

��

∆d // C /N
Σc //

��

C /C

��

C
P

// C C C .

Here P/D : C /D → C /PD sends f : X → D to Pf : PX → PD, and the outer
squares are commutative. The middle square is essentially given by the counit of
the adjunction Σd ⊣ ∆d, and is therefore a cartesian natural transformation. More
precisely, it is the mate [30] of the commutative square

C /PD

��

C /N
Σdoo

��

C C .

The action of the functor Ext: P -SpanC → CartC /P on morphisms is defined by
mapping a diagram like (24) to the natural transformation

C /D′

Σf

��

P/D′

// C /PD′

⇓ΣP f

��

∆d′

// C /N ′

Σg

��

Σc′ // C /C′

Σh

��

C /D
P/D

// C /PD
∆d

// C /N
Σc

// C /C ,
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together with the structure maps to P . The outer squares are just commutative
and the middle square (again cartesian) is the mate of the identity 2-cell

C /PD′

ΣP f

��

C /N ′
Σd′

oo

Σg

��

C /PD C /N .
Σd

oo

5.6. Proposition. The functor Ext: P -SpanC → CartC /P is an equivalence of
categories.

Proof. The quasi-inverse is defined by mapping

C /D
Q

//

��

⇓φ

C /C

��

C
P

// C

to the P -span

PD QD
φD

oo
Q(1D)

// C .

The verification of the details is straightforward. �

5.7. Given a cartesian natural transformation θ : P ⇒ P ′, there is a shape-change
functor

P -SpanC −→ P ′-SpanC

[PD ← N → C] 7−→ [P ′D
θD← PD ← N → C] .

We also have the functor

CartC /P −→ CartC /P
′

[Q⇒ P ] 7−→ [Q⇒ P
θ
⇒ P ′] .

5.8. Lemma. The equivalence Ext of Proposition 5.6 is compatible with change of
shape, in the sense that the following diagram commutes:

P -SpanC

Ext //

��

CartC /P

��

P ′-SpanC Ext
// CartC /P

′ .

Proof. The claim amounts to checking

∆θD ◦ P
′
/D = P/D

which follows from the assumption that θ is cartesian. �

5.9. We now assume that P is a cartesian monad, so we have two natural trans-
formations η : 1 ⇒ P and µ : P ◦ P ⇒ P at our disposal for shape-change. As is
well known [40], this allows us to define horizontal composition of P -spans: given
composable P -spans

N
c

��
??

??
?

d

����
��

�

CPD

U
t

��
??

??
??s

����
��

��

B ,PC



28 GAMBINO, KOCK

we define their composite P -span by applying P to the first P -span, performing a
pullback, and using the multiplication map:

(27)

PN ×PC U

��
??

??
??

?

����
��

��
�

PN
Pd

����
��

��
� Pc

��
??

??
??

? U
s

����
��

��
�

t

��
??

??
??

?

PPD
µD

����
��

��
�

PC B

PD

Associativity of the composition law (up to coherent isomorphism) depends on that
fact that P preserves pullbacks and that µ is cartesian. It further follows from the
fact that η is cartesian that for each D the P -span

PD D
ηD

oo
1D

// D

is the identity P -spans for the composition law (up to coherent isomorphisms). It
is clear that these constructions are functorial in vertical maps between P -spans,
yielding altogether a double category of P -spans, denoted P -SpanC : the objects
and vertical morphisms are those of C , the horizontal arrows are the P -spans, and
the squares are diagrams like (24).

5.10. We also have a double-category structure on CartC /P : the horizontal com-
posite of Q ⇒ P with R ⇒ P is R ◦ Q ⇒ P ◦ P ⇒ P , and the horizontal identity
arrow is Id ⇒ P . Let us verify that the extension of a horizontal composite is
isomorphic to the composite of the extensions: in the diagram

C /C
P/C

""D
DD

DD
DD

D

C /N

Σc

<<zzzzzzzz

P/N ""D
DD

DD
DD

D
C /PC

∆s

""D
DD

DD
DD

D

C /PD

∆d

<<zzzzzzzz

P/PD

""D
DD

DD
DD

D
C /PN

Σ(P c)

<<zzzzzzzz

""D
DD

DD
DD

D
B.C. C /U

Σt

""D
DD

DD
DD

D

C /D

P/D

<<zzzzzzzz

(PP )/D

// C /PPD

∆(Pd)

<<zzzzzzzz
C /PN ×PC U

<<zzzzzzzz
C /B

the top path is the composite of the extension functors, and the bottom path is the
extension of the composite span. The square marked B.C. is the Beck-Chevalley
isomorphism for the cartesian square (27), and the other squares, as well as the tri-
angle, are clearly commutative. The following proposition now follows from Propo-
sition 5.6.

5.11. Proposition. The functor Ext: P -SpanC −→ CartC /P is an equivalence of
double categories, in fact an equivalence of framed bicategories.

We just owe to make explicit how the double category of P -spans is a framed
bicategory: to each vertical map u : D′ → D we associate the P -span

PD′ ηD′

←− D′ u
−→ D .

This is a left adjoint; its right adjoint is the P -span

PD
ηD◦u
←− D′ =

−→ D′
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as follows by noting that their extensions are respectively Σu and ∆u. For this
the important fact is that η is cartesian. With this observation it is clear that the
equivalence is framed.

5.12. We now specialise to the case of interest, where C = E /I and P is a polynomial
monad on E /I, represented by

I ← B → A→ I .

Since now all the maps involved in the P -spans are over I, a P -span can be inter-
preted as a commutative diagram

N
d

����
��

� c

��
??

??
?

C

����
��

�
PD

��
??

??
?

I .

If C is an object of C , i.e. a map in E with codomain I, we shall write C also
for its domain, and we have a natural identification of slices C /C ≃ E /C. That
P : E /I → E /I is a polynomial monad, means thanks to Lemma 2.2, that all objects
in CartE/I/P are polynomial again, so CartE /I/P ∼= Polyc

E /P , the category of
polynomials cartesian over P in the double-category sense. In conclusion:

5.13. Proposition. The functor Ext: P -SpanE /I → Polyc
E /P is an equivalence of

framed bicategories. �

5.14. It is a natural question whether there is a direct comparison between P -spans
and polynomials over P , without reference to their extensions. This is indeed the
case, as we now proceed to establish, exploiting the framed structure. Given a
polynomial over P , like

Q : D

u

��

Moo

��

//

_
� N

��

// C

��

P : I Boo // A // I .

Consider the canonical factorisation of this morphism through the source lift of P
along u (cf. 3.11):

(28)

Q : D Moo //

��

_
� N

c //

d

��

C

��

(u, Id)
∗
P : D ·

_
�

oo

��

f
// PD //

��

I

D

u

��

·�
_

��

oo

P : I Boo // A // I .

Now we just read off the associated P -span:

N
c //

d

��

C

��

PD // I .

Conversely, given such a P -span, place it on top of the rightmost leg of P ◦ Σα =
(u, Id)

∗
P (the middle row of the diagram, which depends only on α and P ), and
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let M be the pullback of N → P (D) along the arrow labelled f . It is easy to see
that these constructions are functorial, yielding an equivalence of hom categories
Polyc

E (D,C)/P ≃ P -SpanE/I(D,C).

5.15. Example. Endo-P -spans PC ← N → C, that is, polynomial endofunctors over
P , are called C-coloured P -collections. If furthermore C = I we simply call them
P -collections. These are just polynomial endofunctors Q : E /I → E /I equipped
with a cartesian natural transformation to P . This category is itself a slice of E : it
is easy to see that the functor

Polyc
E (I, I)/P −→ E /P1

Q 7−→ [Q1→ P1]

is an equivalence of categories.

5.16. Burroni [12], Leinster [40], and Hermida [21] define P -multicategories
(also called coloured P -operads) as monads in the bicategory of P -spans.
P -multicategories are also monads in the double category of P -spans — this de-
scription also provides the P -multifunctors as (oplax) cartesian monad maps. P -
multicategories based at the terminal object in E /I are called P -operads. If the
base monad P is a polynomial monad, the equivalence of Proposition 5.13 induces
an equivalence of the categories of monads, as summarised in the corollary below.

In the classical example, E is Set and P is the free-monoid monad M of
Example 1.9. In this case, M -multicategories are the classical multicategories
of Lambek [37], which are also called coloured nonsymmetric operads. In the one-
object case, M -operads are the plain (nonsymmetric) operads. The other standard
example is taking P to be the identity monad on Set. Then P -multicategories are
just small categories and P -operads are just monoids. Hence small categories are
essentially polynomial monads on some slice Set/C with an oplax cartesian double-
categorical monad map to Id, and monoids are essentially polynomial monads on
Set with a cartesian monad map to Id. In summary, we have the following result.

5.17. Corollary. There are natural equivalences of categories

P -Multicat ≃ PolyMnd/P P -Operad ≃ PolyMnd(1)/P

Multicat ≃ PolyMnd/M PlainOperad ≃ PolyMnd(1)/M

Cat ≃ PolyMnd/Id Monoid ≃ PolyMnd(1)/Id .

5.18. The double category of polynomials is very convenient for reasoning with P -
multicategories. The role of the base monad P for P -multicategories is to specify
a profile for the operations. This involves specifying the shape of the input data,
and it may also involve type constraints on input and output. In the classical case
of P = M , the fibres of N

′ → N (Example 1.9) are finite ordinals, expressing the
fact that inputs to an operation in a classical multicategory must be given as a
finite list of objects. In this case there are no type constraints imposed by P on the
operations.

For a more complicated example, let P : Set/N→ Set/N be the free-plain-operad
monad, which takes a collection (i.e. an object in Set/N) and returns the free plain
operad on it [40, p.135, p.145, p.155]. This monad is polynomial (cf. [33]): it is
represented by

N Tr•
soo

p
// Tr

t // N ,

where Tr denotes the set of (isomorphism classes of) finite planar rooted trees,
and Tr• denotes the set of (isomorphism classes of) finite planar rooted trees with a
marked node. The map s returns the number of input edges of the marked node; the
map p forgets the mark, and t returns the number of leaves.
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A P -multicategory Q has a set of objects and a set of operations. Each opera-
tion has its input slots organised as the set of nodes of some planar rooted tree,
since this is how the p-fibres look like. Furthermore, there are type constraints:
each object of Q must be typed in N, via a number that we shall call the degree
of the object, and a compatibility is required between the typing of operations and
the typing of objects. Namely, the degree of the output object of an operation must
equal the total number of leaves of the tree whose nodes index the input, and the
degree of the object associated to a particular input slot must equal the number
of incoming edges of the corresponding node in the tree. All this is displayed with
clarity by the fact that Q is given by a diagram

Q : D

α

��

Moo

��

//

_
� N

β

��

// D

α

��

P : N Tr•oo // Tr // N

The typing of the operations is concisely given by the map β, and the organisation
of the inputs in terms of the fibres of the middle map of P is just the cartesian
condition on the middle square. The typing of objects is encoded by α and the
compatibility conditions, somewhat tedious to formulate in prose, are nothing but
commutativity of the outer squares.

Finite planar rooted trees can be seen as M -trees, where M : Set → Set is the
free-monoid monad (1.9). Abstract trees, in turn, can be seen as polynomial functors
(1.10): to a tree is associated the polynomial functor

A← N → N → A ,

where A is the set of edges, N is the set of nodes, and N ′ is the set of nodes with
a marked incoming edge. Formally, an M -tree is a tree over M in Polyc

E , that is to
say a diagram

A

��

N ′oo

��

//

_
� N

��

// A

��

1 N
′oo // N // 1 .

Appendix A. The 2-category of polynomial functors

Let PolyFunE denote the sub-2-category of Cat having slices of E as 0-cells, poly-
nomial functors as 1-cells, and strong natural transformations as 2-cells.
Theorem 2.15 asserts the biequivalence with a bicategory PolyE having objects
of E as 0-cells, polynomials as 1-cells, and morphisms of polynomials as 2-cells.

The construction uses repeatedly the fullness and faithfulness of the functors

PolyE (I, J)→ PolyFunE (E /I,E /J)

defined by extension (Paragraph 2.14).

We begin by extending the family of functions mapping a pair of composable
polynomials F and G to their composite G◦F , which we defined in Paragraph 1.11,
to a family of functors

PolyE (J,K)× PolyE (I, J)→ PolyE (I,K) .

For this, let φ : F ⇒ F ′ be a morphism between polynomials from I to J , and
let ψ : G ⇒ G′ be a morphism between polynomials from J to K. We define the
morphism ψ ◦ φ : G ◦ F ⇒ G′ ◦ F ′ as the unique morphism of polynomials making
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the following diagram commute

P (G ◦ F )
P (ψ◦φ)

//

αG,F

��

P (G′ ◦ F ′)

αG′,F ′

��

P (G)P (F )
P (ψ)P (φ)

// P (G′)P (F ′).

Here αG,F denotes the isomorphism of Theorem 1.12, and the diagram now expresses
the naturality of α. We therefore get the following natural isomorphism of functors

PolyE (J,K)× PolyE (I, J) //

∼=
PJ,K×PI,J

��

PolyE (I,K)

PI,K

��

PolyFunE (E /J,E /K)× PolyFunE (E /I,E /J) // PolyFunE (E /I,E /K)

where the top horizontal functor is substitution of polynomials and the bottom
horizontal map is composition of functors in PolyFunE . The identity maps in PolyE

are represented by the polynomials IdI : I → I, and we have natural isomorphisms

PolyE (I, I)

PI,I

��

1

IdI

77nnnnnnnnnnnnn

1E/I
''PPPPPPPPPPPPP ∼=

PolyFunE (E /I,E /I).

We define the associativity and unit isomorphisms. For associativity, given polyno-
mials F : I → J , G : J → K, and H : K → L, define

θH,G,F : (H ◦G) ◦ F ⇒ H ◦ (G ◦ F )

to be the unique morphism of polynomials making the following diagram commute

(29)

P ((H ◦G) ◦ F )
P (θH,G,F )

//

αH◦G,F

��

P (H ◦ (G ◦ F ))

αH,G◦F

��

P (H ◦G)P (F )

αH,G P (F )

��

P (H)P (G ◦ F )

P (H) αG,F

��(
P (H)P (G)

)
P (F ) P (H)

(
P (G)P (F )

)
.

For the unit isomorphisms, given a polynomial F : I → J , define

λF : IdJ ◦ F ⇒ F , ρF : F ◦ IdI ⇒ F

to be the unique morphism of polynomials such that

(30)

P (IdJ ◦ F )
P (λF )

//

αIdJ ,F

��

P (F )

P (IdJ)P (F )
αJ P (F )

// 1E/J P (F )
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and

(31)

P (F ◦ IdI)
P (ρF )

//

φF,IdI

��

P (F )

P (F )P (IdI)
P (F )αI

// P (F ) 1E/I

commute. All the data of the bicategory PolyE have now been given. The naturality
and coherence axioms for a bicategory can be verified by standard diagram-chasing
arguments, which exploit the uniqueness properties with which we have defined the
components of θ, λ, and ρ. The interchange law of PolyFunE is used at several
points. Let us remark that the definition of the bicategory PolyE is essentially
determined by the requirement that we obtain a pseudo-functor

P : PolyE → PolyFunE .

Indeed, the diagrams in (29), (30), (31) express exactly the coherence conditions
for a pseudo-functor [8]. It is clear that P is a biequivalence, since it is essentially
bijective on objects and locally full and faithful.
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conjecture, Conférence Moshé Flato 1999, vol. I (Dijon) Math. Phys. Stud., vol. 21, Kluwer
Acad. Publ., 2000, pp. 255–307.

[35] S. Lack and R. Street, The formal theory of monads. II, J. Pure Appl. Alg. 175 (2002),
243–265.

[36] F. Lamarche, Modelling polymorphism with categories, Ph.D. thesis, McGill University, 1988.
[37] J. Lambek, Deductive systems and categories. II. Standard constructions and closed cat-

egories, Category Theory, Homology Theory and their Applications, I (Battelle Institute
Conference, Seattle, Wash., 1968, vol. One), Springer, Berlin, 1969, pp. 76–122.

[38] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos
theory, Universitext, Springer, New York, 1992.

[39] T. Leinster, A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70
(electronic).

[40] , Higher operads, higher categories, London Mathematical Society Lecture Note Series,
vol. 298, Cambridge University Press, Cambridge, 2004.

[41] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Mono-
graphs, The Clarendon Press Oxford University Press, New York, 1979.

[42] M. Makkai and G. Reyes, First-order categorical logic, Lecture Notes in Mathematics, vol. 611,
Springer-Verlag, Berlin, 1977.

[43] E. G. Manes and M. A. Arbib, Algebraic approaches to program semantics, Texts and mono-
graphs in computer science, Springer-Verlag, New York, 1986.

[44] N. Martins-Ferreira, Pseudo-categories, J. Homotopy Relat. Struct. 1 (2006), 47–78.
[45] I. Moerdijk and E. Palmgren, Wellfounded trees in categories, Ann. Pure Appl. Logic 104

(2000), 189–218.
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