4,548 research outputs found

    PonyGE2: Grammatical Evolution in Python

    Full text link
    Grammatical Evolution (GE) is a population-based evolutionary algorithm, where a formal grammar is used in the genotype to phenotype mapping process. PonyGE2 is an open source implementation of GE in Python, developed at UCD's Natural Computing Research and Applications group. It is intended as an advertisement and a starting-point for those new to GE, a reference for students and researchers, a rapid-prototyping medium for our own experiments, and a Python workout. As well as providing the characteristic genotype to phenotype mapping of GE, a search algorithm engine is also provided. A number of sample problems and tutorials on how to use and adapt PonyGE2 have been developed.Comment: 8 pages, 4 figures, submitted to the 2017 GECCO Workshop on Evolutionary Computation Software Systems (EvoSoft

    Complex systems and the history of the English language

    Get PDF
    Complexity theory (Mitchell 2009, Kretzschmar 2009) is something that historical linguists not only can use but should use in order to improve the relationship between the speech we observe in historical settings and the generalizations we make from it. Complex systems, as described in physics, ecology, and many other sciences, are made up of massive numbers of components interacting with one another, and this results in self-organization and emergent order. For speech, the “components” of a complex system are all of the possible variant realizations of linguistic features as they are deployed by human agents, speakers and writers. The order that emerges in speech is simply the fact that our use of words and other linguistic features is significantly clustered in the spatial and social and textual groups in which we actually communicate. Order emerges from such systems by means of self-organization, but the order that arises from speech is not the same as what linguists study under the rubric of linguistic structure. In both texts and regional/social groups, the frequency distribution of features occurs as the same pattern: an asymptotic hyperbolic curve (or “A-curve”). Formal linguistic systems, grammars, are thus not the direct result of the complex system, and historical linguists must use complexity to mediate between the language production observed in the community and the grammars we describe. The history of the English language does not proceed as regularly as like clockwork, and an understanding of complex systems helps us to see why and how, and suggests what we can do about it. First, the scaling property of complex systems tells us that there are no representative speakers, and so our observation of any small group of speakers is unlikely to represent any group at a larger scale—and limited evidence is the necessary condition of many of our historical studies. The fact that underlying complex distributions follow the 80/20 rule, i.e. 80% of the word tokens in a data set will be instances of only 20% of the word types, while the other 80% of the word types will amount to only 20% of the tokens, gives us an effective tool for estimating the status of historical states of the language. Such a frequency-based technique is opposed to the typological “fit” technique that relies on a few texts that can be reliably located in space, and which may not account for the crosscutting effects of text type, another dimension in which the 80/20 rule applies. Besides issues of sampling, the frequency-based approach also affects how we can think about change. The A-curve immediately translates to the S-curve now used to describe linguistic change, and explains that “change” cannot reasonably be considered to be a qualitative shift. Instead, we can use to model of “punctuated equilibrium” from evolutionary biology (e.g., see Gould and Eldredge 1993), which suggests that multiple changes occur simultaneously and compete rather than the older idea of “phyletic gradualism” in evolution that corresponds to the traditional method of historical linguistics. The Great Vowel Shift, for example, is a useful overall generalization, but complex systems and punctuated equilibrium explain why we should not expect it ever to be “complete” or to appear in the same form in different places. These applications of complexity can help us to understand and interpret our existing studies better, and suggest how new studies in the history of the English language can be made more valid and reliable

    Grammatical evolution to design fractal curves with a given dimension

    Full text link
    Original paper in http://ieeexplore.ieee.org/Lindenmayer grammars have frequently been applied to represent fractal curves. In this work, the ideas behind grammar evolution are used to automatically generate and evolve Lindenmayer grammars which represent fractal curves with a fractal dimension that approximates a predefined required value. For many dimensions, this is a nontrivial task to be performed manually. The procedure we propose closely parallels biological evolution because it acts through three different levels: a genotype (a vector of integers), a protein-like intermediate level (the Lindenmayer grammar), and a phenotype (the fractal curve). Variation acts at the genotype level, while selection is performed at the phenotype level (by comparing the dimensions of the fractal curves to the desired value).This paper has been sponsored by the Spanish Ministry of Science and Technology (MCYT), project numbers TIC2002-01948 and TIC2001-0685-C02-01

    A Survey on Modeling Language Evolution in the New Millennium

    Get PDF
    AbstractLanguage is a complex evolving system and it is not a trivial task to model the dynamics of processes occurring during its evolution. Therefore, modeling language evolution has attracted the interest of several researchers giving rise to a lot of models in the literature of the last millennium. This work reviews the literature devoted to computationally represent the evolution of human language through formal models and provides an analysis of the bibliographic production and scientific impact of the surveyed language evolution models to give some conclusions about current trends and future perspectives of this research field. The survey provides also an overview of the strategies for validating and comparing the different language evolution models and how these techniques have been applied by the surveyed models

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Behavior finding: Morphogenetic Designs Shaped by Function

    Get PDF
    Evolution has shaped an incredible diversity of multicellular living organisms, whose complex forms are self-made through a robust developmental process. This fundamental combination of biological evolution and development has served as an inspiration for novel engineering design methodologies, with the goal to overcome the scalability problems suffered by classical top-down approaches. Top-down methodologies are based on the manual decomposition of the design into modular, independent subunits. In contrast, recent computational morphogenetic techniques have shown that they were able to automatically generate truly complex innovative designs. Algorithms based on evolutionary computation and artificial development have been proposed to automatically design both the structures, within certain constraints, and the controllers that optimize their function. However, the driving force of biological evolution does not resemble an enumeration of design requirements, but much rather relies on the interaction of organisms within the environment. Similarly, controllers do not evolve nor develop separately, but are woven into the organism’s morphology. In this chapter, we discuss evolutionary morphogenetic algorithms inspired by these important aspects of biological evolution. The proposed methodologies could contribute to the automation of processes that design “organic” structures, whose morphologies and controllers are intended to solve a functional problem. The performance of the algorithms is tested on a class of optimization problems that we call behavior-finding. These challenges are not explicitly based on morphology or controller constraints, but only on the solving abilities and efficacy of the design. Our results show that morphogenetic algorithms are well suited to behavior-finding

    An Empirical Study of Graph Grammar Evolution

    Get PDF
    Vukovar, Croati
    • …
    corecore