91,908 research outputs found

    Multichannel Sampling of Pulse Streams at the Rate of Innovation

    Full text link
    We consider minimal-rate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on sub-Nyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimal-rate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Extended depth-of-field imaging and ranging in a snapshot

    Get PDF
    Traditional approaches to imaging require that an increase in depth of field is associated with a reduction in numerical aperture, and hence with a reduction in resolution and optical throughput. In their seminal work, Dowski and Cathey reported how the asymmetric point-spread function generated by a cubic-phase aberration encodes the detected image such that digital recovery can yield images with an extended depth of field without sacrificing resolution [Appl. Opt. 34, 1859 (1995)]. Unfortunately recovered images are generally visibly degraded by artifacts arising from subtle variations in point-spread functions with defocus. We report a technique that involves determination of the spatially variant translation of image components that accompanies defocus to enable determination of spatially variant defocus. This in turn enables recovery of artifact-free, extended depth-of-field images together with a two-dimensional defocus and range map of the imaged scene. We demonstrate the technique for high-quality macroscopic and microscopic imaging of scenes presenting an extended defocus of up to two waves, and for generation of defocus maps with an uncertainty of 0.036 waves

    Rational-operator-based depth-from-defocus approach to scene reconstruction

    Get PDF
    This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods

    Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging

    Full text link
    Signals comprised of a stream of short pulses appear in many applications including bio-imaging and radar. The recent finite rate of innovation framework, has paved the way to low rate sampling of such pulses by noticing that only a small number of parameters per unit time are needed to fully describe these signals. Unfortunately, for high rates of innovation, existing sampling schemes are numerically unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect reconstruction of periodic streams from the minimal number of samples. We then design a compactly supported class of filters, satisfying this condition. The periodic solution is extended to finite and infinite streams, and is shown to be numerically stable even for a large number of pulses. High noise robustness is also demonstrated when the delays are sufficiently separated. Finally, we process ultrasound imaging data using our techniques, and show that substantial rate reduction with respect to traditional ultrasound sampling schemes can be achieved.Comment: 14 pages, 13 figure

    Model-Based Calibration of Filter Imperfections in the Random Demodulator for Compressive Sensing

    Full text link
    The random demodulator is a recent compressive sensing architecture providing efficient sub-Nyquist sampling of sparse band-limited signals. The compressive sensing paradigm requires an accurate model of the analog front-end to enable correct signal reconstruction in the digital domain. In practice, hardware devices such as filters deviate from their desired design behavior due to component variations. Existing reconstruction algorithms are sensitive to such deviations, which fall into the more general category of measurement matrix perturbations. This paper proposes a model-based technique that aims to calibrate filter model mismatches to facilitate improved signal reconstruction quality. The mismatch is considered to be an additive error in the discretized impulse response. We identify the error by sampling a known calibrating signal, enabling least-squares estimation of the impulse response error. The error estimate and the known system model are used to calibrate the measurement matrix. Numerical analysis demonstrates the effectiveness of the calibration method even for highly deviating low-pass filter responses. The proposed method performance is also compared to a state of the art method based on discrete Fourier transform trigonometric interpolation.Comment: 10 pages, 8 figures, submitted to IEEE Transactions on Signal Processin

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
    corecore