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Abstract

This paper presents a rational operator based approach to depth from defocus (DfD) for the reconstruction

of 3-dimensional scenes from 2-dimensional images, which enables fast DfD computation that is independent

of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are

based on the Gaussian point spread function (PSF), and the second based on the generalised Gaussian PSF

are considered. A novel DfD correction method is also presented to further improve the performance of the

approach. Experimental results are considered on real scenes and show that both approaches outperform

existing ROs-based methods.
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1. Introduction

Depth from Defocus (DfD) and Depth from Focus (DfF) are methods for recovering 3-

dimensional (3D) shape of a scene. DfF (e.g., [1, 2]) is based on the lens law [3], i.e.,

1

F
=

1

u
+

1

w
, (1)

where F is the focal length, w is the distance between the lens and the image plane when

the image is in focus, and u is the distance between an object point P and the lens as shown

in Fig. 1. Thus, if w is known then u, i.e., the depth of the object point can be recovered.

However, for an object with continuous change in depth, at least ten images are required

to estimate the object depth map [4]. The challenge of DfF is deciding when the object

is in focus. Recent methods to address this challenge include those in [1, 2]. DfD requires

only two images captured with different focus setting, hence it is more suitable than DfF

for real-time applications. In Pentland’s DfD scheme [5], the first image is captured with

a large depth-of-field so that its pixels have minimal defocus, while there is considerable

blur in the second image. The depth of each pixel and thus its coordinates in 3D space are

recovered by measuring the difference in blur. A more general DfD method in [6] uses two

images that do not have to be captured with large depth-of-field.

Image blur can be modelled as a 2-dimensional (2D) convolution of a focused image with

a point spread function (PSF). By modelling the PSF as a downturn quadratic function, and

representing it as a look-up-table of the convolution ratio, the corresponding image depth

can be found. The method in [7] computes the convolutional ratio of sub-images using

regularisation, and searches the table iteratively to determine the depth for each sub-image.

In [8], the PSFs are modelled as the derivatives of Gaussian using moment and hyper-

geometric filters. In [9] the intensity and depth values of every image pixel are modelled as

a Markov Random Field (MRF) and a maximum a posterior (MAP) function is maximised

using simultaneous annealing to obtain the optimal depth estimation.

An orthogonal projector that spans the null-space of an image of a certain depth is

used in [10]. For each depth, a number of different images are captured by a camera and

the corresponding orthogonal projector is created, not requiring any PSF. Each projector

is multiplied with each sub-image, and the depth corresponding to the projector with the

minimal product gives the optimal depth estimation. Image segmentation is used to separate

the object from the background together with a three-layered neural network in [11] to
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Fig. 1. The telecentric DfD system.

achieve high accuracy. However, the use of segmentation implies that the algorithm is only

suitable for objects on a flat surface.

Recent DfD methods also include those based on coded aperture (e.g., [12, 13]) which

customise the PSF by modifying the aperture shape, and most use a complex statistical

model which is computationally expensive. In [14] the image blurring effect is described

by oriented heat-flows diffusion, whose direction is determined from the local coherence

geometry, and the diffusion strength corresponds to the amount of blur. Using this method,

ridge-like artefacts on sharp edges are eliminated. In [15], an improvement on DfD is achieved

by manipulating exposure time and guided filtering. In [16], improvement is achieved by

minimising, via geometric optics regularisation, the information divergence between the

estimated and actual blurred images.

None of the above-mentioned methods achieves frequency independence without a com-

plex statistical model or training/testing based algorithm, i.e., the estimated depth is only

related to the blur size rather than the pattern of the blurred object. A solution is to incor-

porate a frequency parameter into the PSF as suggested in [17]. For most existing methods,

the depth is estimated from the ratio of two images with different degree of blur at a par-

ticular frequency. In contrast, the rational operator (RO) approach to DfD computes depth

using the normalised image ratio (NIR), or the M/P ratio which is a function of both depth

and frequency. The NIR is the ratio between the difference in the magnitude of two images

at all frequencies (M for minus) and the sum of the magnitude of them (P for plus). Due to

the complex and iterative optimisation procedure used for the RO design in [17], a simpler
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(a) (b)

(c)

Fig. 2. (a) The Pillbox NIR varies with the normalised depth. (b) Gaussian NIR with k=0.4578.

(c) Generalised Gaussian NIR with p=4 and k=0.5091. For each plot, the radial frequency of each

curve increases in the direction of the arrow. All the frequencies are shown as their ranges are

within [-1 1].

procedure has been proposed in [18] which also improves the depth estimation.

For convolved DfD, the telecentric optics described in [20] prevent an image magnification

effect that limits DfD. The telecentric RO-DfD system is illustrated in Fig. 1. The light rays

from an object point P pass through the telecentric aperture of radius A, and then through

a circular part of radius A′ on the lens. The focused image of P is at l, a position between

the far-focused position l1 and the near-focused image position l2. The normalised depth α

is -1 at l1 and 1 at l2. The distance between l and l1 is (1 + α)e and that between l and

l2 is (1 − α)e. A blurred circle of radius R1 and another of radius R2 are formed at l1 and

l2, respectively. The other parameters are denoted as follows: u is the distance between an

object point and the lens, ; F is the focal length; s1 is the distance between the lens and l1;

and s2 is the distance between the lens and l2.
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Two images are captured: image i1 at l1, and image i2 at l2. When P is at far-focused

position, its focused image P ′ is at l1. Similarly, when P is at near-focused position, its

focused image is at l2. Hence the working range of the RO-DfD system is from the far-

focused object position to the near-focused object position.

The NIR or the M/P ratio is defined as [20]

M

P
(fr, α) =

H1(fr, α)−H2(fr, α)

H1(fr, α) +H2(fr, α)
, (2)

where H1 and H2 are respectively the PSFs of i1 and i2, α is the normalised depth which is

-1 when the focused image is on l1 and changes linearly from l1 to l2 so that it becomes 1

when it reaches l2, and fr is the radial frequency parameter in Hz. Using Eqn. (2) and the

Pillbox PSFs, curves representing the NIR changing with α are shown in Fig. 2(a), each of

which corresponds to a different discrete frequency. Each curve is modelled as a third order

polynomial of NIR with respect to the depth, as described by [20]

M

P
(fr, α) =

Gp1(fr, α)

Gm1(fr, α)
α +

Gp2(fr, α)

Gm1(fr, α)
α3, (3)

where the first order and third order coefficients are expressed as Gp1(fr, α)/Gm1(fr, α) and

Gp2(fr, α)/Gm1(fr, α), respectively.

The corresponding spatial filters (the ROs) are then computed. During run-time, these

ROs are convolved with (i1− i2)(i1+ i2) in a specific order as in [17] followed by a coefficient

smoothing procedure and a 7x7 post median filtering.

The advantages of RO based DfD in [17] include: (a) ability to produce a dense depth map

in real time with parallel hardware implementation; (b) the 3D reconstruction is invariant

to textures; and (c) the depth error can be as low as 1.18%. Therefore a RO based method

is feasible for real-time applications such as robotics and endoscopy. Its drawbacks are: (a)

using Pillbox PSF is only valid when the lens induced aberrations and diffraction are small

compared to the radius of the blur circle [19]; (b) a problematic filter design procedure used

in the Levenberg-Marquardt algorithm (see Section 2.B); (c) lack of careful consideration

on the NIR leads to the presence of some adverse frequency components. To address these

drawbacks, we propose two RO-based methods: the Gaussian rational operator (GRO) based

on the Gaussian PSF and the generalised Gaussian rational operator (GGRO) based on the

generalised Gaussian PSF.

The novelties of the proposed methods are: (1) the GROs address the situation when the

lens aberrations and diffraction are significant, producing smaller root mean square error
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(RMSE); (2) a practical calibration method finds the linear relationship between the radius

of the blurred circle and the standard deviation of the Gaussian or the generalised Gaussian

PSF; (3) GGROs can be automatically configured to deal with the any levels of diffraction

and aberrations; (4) the ROs are designed with a new and simpler method; (5) the pre-filter

is redesigned to achieve better stability; and (6) an accurate and efficient DfD correction

method is presented in Section 3 to reduce the severe circular distortion encountered in any

DfD algorithm.

This paper is organised as follows. Section 2 presents the proposed GRO and GGRO

including the method for their calibration, a method for configuring GGRO, and the pre-

filter. Section 3 presents the DfD correction procedure. The experiments on real images and

discussion are presented in Section 4, and Section 5 concludes the paper.

2. The Proposed Rational Operators

The design of our proposed ROs involves three steps. The first step determines either the

Gaussian NIR or the Generalised Gaussian NIR. The second formulates the kernels of the

ROs from the corresponding NIR. The third formulates the pre-filter for both types of ROs.

2.A. The Gaussian NIR

When the aberrations and diffraction of the camera lens used in DfD are significant when

compared to the radius of the blurred circle, the Gaussian PSF is a better model than the

Pillbox PSF for modelling the image blur [19]. While the depth-related parameter of the

Pillbox model is the radius of the blurred circle, that of the Gaussian model is the standard

deviation (SD). The SD is related to the radius of the blurred circle R by σ = kR [21], where

k is measured for the camera system used. Hence, unlike the Pillbox ROs that are generally

designed for every camera, the Gaussian ROs are designed for a specific camera system.

The 2D Gaussian PSF is [6]

h(x, y) =
1

2πσ2
exp

[

−(x− x)2 + (y − y)2

2σ2

]

, (4)

where x − x and y − y are the distances between a point at (x, y) and the reference point

(x, y), which is the centre of the PSF. The corresponding optical transfer function (OTF) is
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the Fourier transform of the PSF, i.e.,

H(u, v) =

∫ ∫

1

2πσ2
exp[C1] exp[−jux− jvy] dx dy, (5)

where C1 = − (x−x)2+(y−y)2

2σ2 . Rewriting the inner integral of Eqn. (5) as a quadratic function

of x, and using the quadratic exponential integration formula gives

H(u, v) =

∫

C2 exp[C3 + C4]dy, (6)

where C2 = 1√
2πσ2

, C3 = 1
2

[

1
σ
x− juσ

]2
, and C4 = − 1

2σ2x
2 − 1

2σ2 (y − y)2 − jvy. Similarly,

rewriting the integral as a quadratic function of y and using the quadratic exponential

integration formula gives

H(u, v) = exp

[

−1

2
σ2(u2 + v2)− j(xu+ yv)

]

= exp

[

(−1

2
σ2(u2 + v2)

]

exp[−j(xu+ yv)]. (7)

In polar coordinates, the OTF is

H(r, θ) = r exp[−jθ], (8)

where the magnitude r = exp[−1
2
σ2(u2 + v2)], and the angle θ = xu + yv. Assuming the

OTF to be circular symmetric, it does not depend on angles and thus

H(u, v, σ) = exp

[

−1

2
σ2(u2 + v2)

]

. (9)

σ is related to the blur circle radius R by [21]

σ = kR, (10)

where k is a camera constant obtained by measurement. In this paper k is obtained as

follows:

1. Place a flat test pattern in front of the camera and perpendicular to the optical axis.

2. Focus the camera by computing its Fourier transform, where the image with the largest

high frequency magnitude is chosen as the sharpest (i.e., most focused). Denote the

position of the camera sensor as l1 (i.e., the far-focused sensor position) and the image

as i1 (i.e., the far-focused image).
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3. Move the sensor along the optical axis and away from l1 to the position of l2, such

that l2 − l1 = 2e, where e is a constant as shown in Fig. 1. Capture the image as i2

(i.e., the near-focused image) at l2 (i.e., the near-focused position). Note that i1 is in

focus and i2 is blurred by a radius R = (1 + α)e/(2Fe).

4. Convolve image i1 with a Gaussian PSF of SD σt to generate image i′2t, i.e., i
′
2t =

i1 ∗G(σt). The mean square error is ǫ(t) = mean(i2 − i′2t)
2.

5. Repeat step (4) with a number of σt values. The estimated SD is given by σ1 =

argminσt
ǫ(t).

6. Repeat steps 1-5 by making i2 in focus and i1 blurred to get another approximation of

the SD σ2. The final estimated SD is σ = (σ1 + σ2)/2, and k is σ/R. This is because

when the image is in focus on i1, the SD of the blurred circle on i2 is the same as that

on i1 when the image is in focus on i2.

Using trigonometric similarity in Fig. 1 gives

2R1

(1 + α)e
=

2A′

w
,

where the effective f-number Fe is w/(2A
′), so that

2R1

(1 + α)e
=

1

Fe

⇒ R1 =
(1 + α)e

2Fe

. (11)

Substituting Eqn. (11) in Eqn. (10) and then in Eqn. (9) gives the far-focused OTF:

H1(u, v, α) = exp

[

−1

2

(

k(1 + α)e

Fe

)2

(u2 + v2)

]

. (12)

The near-focused OTF is similarly obtained as

H2(u, v, α) = exp

[

−1

2

(

k(1− α)e

Fe

)2

(u2 + v2)

]

. (13)

Note that the maximum radius of the blurred circle is optimally chosen to be 2.703 pixels

in [17, 18]. Thus according to Eqn. (11), the f-number (focal length divided by aperture

diameter) controls the sensor separation 2e which in turn controls the working range, where

by definition α = 1 when the radius is maximised on l1. This is explained as follows. It is
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noted from Eqn. (1) that a larger 2e results in a larger difference in image position w between

the far-focused and near-focused conditions. This leads to a larger difference between the

far and near object positions, i.e. the working range. This means a larger f-number results

in a larger working range and vice versa. However, a larger f-number will generate a higher

noise level in the data due to higher level of diffractions [6]. Notably, only the choices of

maximum radius and the f-number will change the experimental set-up, while the value e is

determined by the radius and the f-number selected according to Eqn. (12).

An example Gaussian NIR graph is shown in Fig. 2(b), where k = 0.4578 as measured

for the camera system used to obtain the subsequently reported results. Unlike the Pill-

box NIR shown in Fig. 2(a), even the high-frequency curves of the Gaussian NIR increase

monotonically with depth. However, this does not mean they will not generate any adverse

effects. A discussion of this is presented in Section 2.D.

2.B. The Generalised Gaussian NIR

A 1-dimensional (1D) generalised Gaussian PSF, generated using a combination of the Pill-

box and Gaussian models with an adjustable parameter p is proposed in [22]. When p = 2,

it is equivalent to a Gaussian PSF, and when p → ∞ it is equivalent to the Pillbox PSF.

The 1-D generalised Gaussian PSF is [22]

h(x) =
p1−

1

p

2σΓ
(

1
p

) exp

[

−1

p

|x− x|p
σp

]

, (14)

where Γ() is the Gamma function, σ is the SD such that σ = kR, x is the spatial index and

x is the centre of the PSF. In this paper the value of p is obtained together with the value

k (using the method for determining k in Section 2.A) as follows:

1. Beginning with a very small value of p (e.g. p=1), find the mean square error ǫ(t) for

every attempted σ(t). Store the minimum of ǫ as E(p), and the corresponding k value

as K(p).

2. Repeat the previous step with a slightly larger p value (e.g., 0.1 larger), until the

minimum of E(p) is identified. The estimated p value is given by pest = argminpE(p),

and the corresponding k value is given by kest = K(pest)
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Denoting C5 = 2σΓ
(

1
p

)

p
1

p
−1, Eqn. (14) becomes

h(x) =
1

C5

exp

[

−1

p

|x− x|p
σp

]

, (15)

where C5 is used to keep the overall gain as 1. The equivalent 2D PSF is

h(x, y) =
1

C5

exp

(

−|x− x|p + |y − y|p
pσp

)

. (16)

The OTF can be derived by the 2D Fourier transform of Eqn. (16), but no closed formed OTF

can be obtained. To address this problem, numerical methods such as Adaptive Simpson

Quadrature [23] can be used to calculate the OTF. The Fast Fourier Transform is a possible

alternative but it should be used with care. This is because when the SD is small, it fails

to produce accurate OTF values, whereas the Fourier transform by numerical integration

almost always give accurate results but is much slower to compute. Fig. 2(c) shows an

example of the NIR graph generated using p=4 and k=0.5091. As a result of the Pillbox-

Gaussian combination, each curve in the NIR graph has a smaller range than the Pillbox

NIR while the high-frequency curves do not increase monotonically with depth.

2.C. Design of the Rational Operators Kernels

Sections 2.A-2.B present the methods for finding the NIRs as given by Eqn. (3). The first

and third order coefficients can be found by performing a least squares fitting of the NIR.

The procedure used in [17] first sets Gp1 as the frequency response (FR) of a Log of Gaussian

(LOG) band-pass filter and then derives the other terms accordingly. The proposed method

adapts this procedure by using a different method to estimate the corresponding spatial

filters, i.e., the ROs.

In [17] and [18], the frequencies within [-0.5 0.5] Nyquist are divided into 32 discrete

portions to allow the polynomial coefficients to be found. Since the ROs operate in the spatial

domain, their FRs must be converted to the corresponding spatial filters. The elements of

the matrices (representing the filters) have to be real. Hence if they are determined by

inverse Fourier transform, the imaginary values violate this condition. In [17], the two

operators gm1 and gp2 are acquired by the Levenberg-Marquardt algorithm, where only one

cost function is used to find both gm1 and gp2. However, P (u, v;α) in [17] is assumed to

be the FR of a fractal image, which corresponds to Brownian motion. This may not be a

10



good approximation since P (u, v;α) is the FR of the sum of the two input images, and thus

cannot be a constant. Moreover, our experiments show that the weighting factor used in

their method significantly affects the optimisation result.

We solve this problem with a different cost function, which is the difference between the

left hand side and right hand side of Eqn. (2), i.e., to find the ROs, the FRs of which best

fit the NIR curves (this is also the final target of the ROs’ design in [17, 18]). Denoting

M
P (u, v, α) =

G′
p1(u, v)

G′
m1(u, v)

α +
G′

p2(u, v)

G′
m1(u, v)

α3

where (u, v) is the frequency index such that fr =
√
u2 + v2, G′

p1, G
′
m1 and G′

p2 are the

magnitudes of the FRs of the ROs gp1, gm1 and gp2 respectively, the cost function is given

by:

ǫ2 =
∑

u,v,α

(

M

P
(u, v, α) · Fpre(u, v)−

M
P (u, v, α)

)2

, (17)

where M
P

is the NIR calculated using Eqn. (2) and Fpre is magnitude of the FR of the pre-

filter used to filter the input images before DfD computation (see Section 2.D). Thus the

ROs are estimated as

[gp1, gm1, gp2] = arg min
gp1,gm1,gp2

ǫ2. (18)

Therefore, all three ROs are estimated simultaneously, without approximating P (u, v;α).

In addition, the weight is set to be the same for every frequency index without the need

to compute it as a specific matrix as in [17]. This is because every frequency component

has even contribution to minimise the overall cost function of Eqn. (17). This results in the

right hand side of Eqn. (17) not having a denominator.

Eqn. (17) and (18) can be implemented with any non-linear optimisation algorithm such

as the Gauss-Newton algorithm, gradient descent algorithm or Levenberg-Marquardt algo-

rithm. A crucial step is the initialisation of ROs gm1 and gp2. As mentioned earlier, gp1 is

initialised as a LOG filter, then its FR Gp1 is calculated. Gm1 and Gp2 are then computed

with the estimated first and third order coefficients. The Parks-McClellan FIR filter design

algorithm and McClellan transformation are then used to find the initial guess for gm1 and

gp2 [24, 25].

The procedure to initialise gm1 and gp2 is as follows: 1) Generate a 1D vector ftar by

sampling 6 values of the RO’s FR (Gm1 or Gp2) across 6 equally spaced frequency indices

from 0 to 0.5 Hz.; 2) Use ftar and the corresponding frequency indices vector as input to
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the Parks-McClellan algorithm to find the 1D spatial filter f1d; 3) Use f1d as input to the

McClellan Transformation algorithm to get the corresponding 2D filter, which is the initial

guess for the RO (gm1 or gp2).

(a) (b) (c)

(d) (e)

Fig. 3. An example DfD correction problem. Grey-coded depth maps of a flat surface: (a) without

correction and (b) after correction. (c) The grey-bar of (a) and (b). Mesh plots: (d) the side view

of (a); and (e) the side view of (b), where the horizontal units are in pixel and the vertical units

are in mm. The horizontal lines in (d) and (e) represent the expected depth.

2.D. The pre-filter

The purpose of the pre-filter is to remove the frequency components which adversely affect

the accuracy and stability of the 3D reconstruction. To design the pre-filter appropriately,

these adverse frequency components are identified using a NIR graph, e.g., as is shown in

Fig. 2(b), as follows. For each frequency, if the variable represented by the vertical axis

in Fig. 2(b) (i.e., the NIR) is used as the input argument, and the output is the variable

represented by the horizontal axis.

Note that if the input varies even slightly, the resulting output depth will be highly

unstable. For example, for the second lowest frequency of 0.1963 Hz, represented by the

curve just next to the horizontal line, if the input varies within ±0.1, the output will vary

across the entire depth range. Similarly, some high-frequency components also suffer from
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this problem since some parts of them are almost horizontal. Thus, a lack of consideration on

this problem can result in significant depth variation, requiring larger coefficient smoothing

and larger median filtering kernels (our experiments show that a 3x3 median filtering kernel

is typically enough to remove most high frequency noise, but it can be larger if the noise

power increases significantly) which slow down the processing.

The frequency components containing a large proportion of low-gradient or negative

gradient (corresponding to non-monotonicity) should thus be removed. This is achieved by

minimising the cost function

ǫ2 =
∑

u,v

(

Fpre(u, v)− F ′
pre(u, v)

ζ(u, v)

)2

, (19)

where Fpre is the target FR (to be determined later), F ′
pre is the FR of the estimated pre-

filter and ζ is the weight matrix (to be determined later). In order to obtain a pre-filter that

effectively remove the components that introduce significant instability, which corresponds

to the NIR curves that contain parts with small or negative gradient, the corresponding

elements of Fpre need to be set small enough while maintaining Fpre to be smooth. In

addition, the weight matrix needs also be set in a way that the optimisation is focused on

obtaining small values for the adverse frequency components.

The optimal Fpre is obtained as follows: 1) Compute the gradients along each curve of

the NIRs at different depths; 2) Find the smallest gradient for each curve which corresponds

to a unique radial frequency fr; 3) Each element of Fpre is assigned by the smallest gradient

value (0 if negative) of corresponding curve with the same radial frequency fr =
√
u2 + v2,

resulting in small values for the adverse components while enforcing smoothness of the filter;

4) Fpre is then divided by its maximum value to give a unity gain filter; 5) ζ(u, v) is set to be

Fpre incremented by a small value (e.g., 0.05) so that it does not contain zero, resulting in

the optimisation focused on the adverse components. The optimisation can be implemented

by one of the non-linear optimisation methods, initialised with the same method as the ROs

as presented in Section 2.C.

3. DfD Correction Method

During numerous experiments using three different lenses (a professional 50 mm lens, a 35

mm lens, and a widely available 1 mm Webcam lens), a common and severe problem was
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observed using all the DfD algorithms mentioned in Section 1. Such a problem is illustrated

in Fig. 3. Here a hill-like result is generated from a flat plane that is perpendicular to the

optical axis. The hill is more or less circularly symmetric which is similar to the surface

of a common lens. Also its centre deviates from the centre of the map due to the focus

adjustment during the experiment. An analysis of the experiment reveals the following

concern. When an image is defocused by moving the sensor, it cannot be defocused evenly

across the image, where some parts are more blurred than the others (the shape of the

defocused pattern is similar to the distorted depth map in Fig. 3(a), where the varying grey

levels denote the uneven surface). In addition, the small f-number used results in a narrow

depth of field, making the problem easily observed. In other words, the distorted blur field

leads to a distorted depth map. Note that both results are generated with the same scale

using Watanabe’s [17] DfD method. The expected depth map should be flat with a value of

933 mm.

Generally, it is possible to correct either the input images or the output depth map.

The former is considered not practical due to the complex measurement involved, so the

proposed method is based on correcting the output depth maps. An immediate thought is

to subtract any depth map by a calibration pattern (i.e., the depth map generated for the

far-focused object position) and then minus the expected depth of that pattern (the depth

offset). However, our experiments show that the appropriate calibration pattern is depth

dependent. Thus, a closed-form solution is needed to find the correction factor for each

element of the pattern.

The offset ∆ at the location defined by the Cartesian coordinates (x, y) is modelled

as a third order polynomial of the coordinates x and y and the corresponding raw depth

uraw(x, y), i.e.,

∆(x, y) = c1(1) +
4

∑

i=2

c1(i)x
i−1 +

7
∑

i=5

c1(i)y
i−4 +

10
∑

i=8

c1(i)(uraw(x, y))
i−7. (20)

Samples of ∆ and uraw are obtained by capturing a pair of DfD images of a test flat

surface at a location within the working range, e.g., ∆ is -1, when the surface is at the

far-focused object point, and uraw is thus the corresponding computed depth map. The

coefficient vector c1 is in turn obtained using least squares fitting. The correction factor is
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given by

uc(x, y) = c2(1) +
4

∑

i=2

c2(i)x
i−1 +

7
∑

i=5

c2(i)y
i−4 +

10
∑

i=8

c2(i)(∆(x, y))i−7, (21)

where uc(x, y) is equivalent to uraw(x, y), and ∆(x, y) is found by the previous step and the

coefficient vector c2 is similarly computed with a least square fit. Finally, to correct any

depth result at a specific location (x, y), the following procedure is required:

1. The location coordinate (x, y) and the uncorrected result uraw are substituted into

Eqn. (20) to get the offset ∆(x, y).

2. The location coordinate (x, y) and uc(x, y) are substituted into Eqn. (21) to compute

the correction factor uc(x, y).

3. The corrected depth is thus estimated by ucorrected(x, y) = uraw(x, y) − uc(x, y) +

∆(x, y).

An example of the corrected depth map is shown in Fig. 3(b) and (e), where the working

range is within [886.8 933] mm away from the lens. To show that the correction method

works with any RO-DfD, the depth results are generated using Watanabe’s ROs [17]. While

the local noise level is not visibly magnified, the general shape of the hill has been restored

to be flat. A typical correction of a depth map only accounts for 4-8% of the total RO-DfD

computational time, hence it is suitable for real-time applications.

4. Experiment

Since the proposed RO-DfD methods are based on different PSFs than those used in [17]

and [18], experiments with simulated images are not of any use because they are generated

with a specific PSF. Thus we only discuss the depth results using real images. In addition,

since the ROs in the Raj’s method [18] produce better results than the ROs in [17], the

comparison is made between the state-of-the-art Raj’s method and the proposed method.

A professional 50 mm lens is used with a telecentric aperture whose diameter is 12.8 mm.

The f-number Fe is thus obtained by dividing the focal length F = 50 mm by the aperture

diameter 2A = 12.8 mm, which is 3.9063. The side-length of each CCD sensor element is 7.4

µm. The maximum radius of the blur circle is 2.703 pixels. Hence the radius of the blurred
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circle is 2.703× 7.4−3 = 0.0200 mm The far-focused object position u1 is set 933 mm away

from the lens.

The working range is computed as follows:

1. When radius of the blurred circle on l1 is 0 the scene is far-focused such that s1 = w,

substituting u = u1 = 933 mm and F = 50 mm into Eqn. (1) gives the far-focused

sensor-lens separation s1 = w = 52.8313 mm.

2. When radii of the blurred circles on l1 and l2 are respectively of 0.02000 (the maximum)

mm and 0 (the minimum), substituting R1 = 0.0200 mm, α = 1 (this is true when

R1 reaches its maximum) and Fe = 3.9063 into Eqn. (11) gives the sensor separation

2e = 0.1563 mm, such that the near focused sensor-lens separation is s2 = s1 + 2e =

52.9876 mm.

3. When radius of the blurred circle on l2 is 0 as in step 2, substituting w = s2 = 52.9876

mm and F = 50 mm into Eqn. (1) gives the near-focused object position u2 = u =

886.8 mm. Thus the working range is [886.8 933] mm away from the camera.

The input image resolution is 640× 480. The proposed RO-DfD method is implemented

on a computer with an Intel Pentium Dual-Core 2.16 GHz processor. A flat surface covered

with sandpaper is used as the test pattern for evaluation. It is set perpendicular to the

optical axis and shifted from the far-focused object position to the near-focused position,

with successive locations separated equally by 46.18/23 mm. 24 pairs of images are thus

captured and 24 depth maps computed.

A 7 × 7 window is used for coefficient smoothing. For comparison with Raj’s method, the

Root Mean Square Error (RMSE) is measured between the estimated depth map and the

ideal flat depth map for each pair of inputs. A set of 24 measurements is obtained for each

one of Raj’s method, GRO and GGRO. Here the k value for GRO is estimated as 0.4578

using the method presented in Section 2.A; p and k for GGRO are respectively estimated

as 1.8 and 0.4802 using the method presented in Section 2.B.

Fig. 4 shows the comparisons of RMSE between Raj’s ROs [18] and the ROs (i.e., the

Gaussian based and the Generalised Gaussian based) of the proposed method.

Note that the proposed DfD correction method only deals with the general shape of

the depth map, e.g., it restores a noisy hill to a noisy flat surface, maintaining the local
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Fig. 4. Comparison of RMSE of

Raj’s and the proposed methods. Key: ♦ - Raj; © - GRO uncorrected; ∗ - GGRO uncorrected;

� - GRO corrected; and + - GGRO corrected.

noise level as illustrated in Fig. 3. In addition, experiments show that the RMSE before

correction is dominated by the general shape and depends on the local noise level after

correction. Furthermore, the general shape distortion is worse for the smaller depths than

the larger ones, while the local noise level is worse for the larger depths than the smaller

ones. Thus, for the uncorrected results shown in Fig. 4 the RMSE is higher for the smaller

depths than the larger depths, while the RMSE after correction is higher for larger depths

than smaller depths.

Despite all these general RO-DfD problems, the results before correction of the proposed

ROs are more accurate than using Raj’s ROs for depths larger than 890.8 mm while GGROs

produce the least overall RMSE. Moreover, for the results after correction, the proposed

methods outperform the Raj’s method across the entire working range.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. Wireframe plots of the results using Raj’s and the proposed methods with the test objects.

Row 1 - the test scenes. Mesh plots of 3D scene reconstructions using: row 2 - Raj’s method; row 3

- GRO; and row 4 - GGRO. Note that the results in column 3 are generated using 5x5 post median

filtering whereas the others are obtained using 3x3 median filtering.
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Fig. 5 show the four real test scenes comprising different shaped objects for evaluating the

performance of the proposed method qualitatively. Note that our experiments show that 3x3

post median filtering (PMF) is typically sufficient to remove most noise while preserving the

depth discontinuity for scenes that are not reflective and having visible textures. However

the results in the third column are generated using 5x5 PMF instead of 3x3 PMF. This is

because the associated scene of the fingers is considerably more reflective than the others and

does not have sufficient textures to enable DfD to work with blurring. For a scene with no

or little texture, there is little different in blur with the two captured images. When the pre-

filter fails to remove some adverse frequency components, e.g., low frequencies corresponding

to little texture, high noise level is perceived (see Section 2.D). For the staircase and cone

scene in the first column, there is less noise in the reconstructed surface and the circular

distortion is eliminated. The wooden temple results in the second column test the algorithms

with complex objects that do not span the full working range, where the expected range of

the temple is significantly lower than than the working range. Similar results are obtained.

The third column shows the advantage of the smoothing nature of the GRO, which removes

much of the low-frequency components (due to the reflective hand surface) while preserving

the depth discontinuity. The object with a conical depression shown in the last column is

used to demonstrate the ability of the DfD correction method to cope with multiple depths.

Here not only is the background corrected, but the foreground objects are also corrected.

Table 1. The mean RMSE and the mean SD of all the flat surfaces in the reconstruction results of

the test scenes in Fig. 5, before and after correction. All units are in mm.

RMSE SD

SC TP HD CD SC TP HD CD

Raj 6.46 7.23 6.59 8.59 3.14 3.21 11.78 3.20

GRO before 4.59 5.43 6.03 8.02 2.49 2.75 6.88 2.45

GGRO before 4.17 5.14 6.19 7.88 2.21 2.36 6.32 2.29

GRO after 3.90 2.91 4.35 4.20 3.00 3.12 7.68 3.14

GGRO after 3.63 2.89 4.11 4.19 2.79 2.96 7.23 2.95

Table 1 shows the numerical comparisons based on the four sets of results. In these tables,

the acronym SC, TP, HD and CD respectively stand for Staircase and Cone, Temple, Hand
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and Conical depression that are shown in Fig. 5(a)-(d), respectively.

Column 2-5 in Table 1 shows the comparison of the RMSE between Raj’s results and

the proposed ones, generated from the four sets of results. The RMSE for each test scene

is measured as follows. For each flat surface that is perpendicular to the optical axis, the

RMSE is calculated between the estimated depth and the actual depth which is measured

with a vernier calliper. The average of these RMSEs is used as the RMSE for the scene. The

table shows that both GRO and GGRO produce smaller RMSE than Raj’s method, while

GGRO produces the smallest RMSE. Moreover, the correction method manages to reduce

the RMSE significantly.

Column 6-9 in Table 1 compares the noise levels between Raj’s results and those of the

proposed methods, which are measured by the average SD of the flat surfaces of the four sets

of results. For example, for the scene in the first column of Fig. 5, the SD is evaluated for

each step surface of the staircase, the surface of the wooden chunk at the bottom, and the

background. The average of these SDs is used to indicate the noise level of the depth result.

The table shows that both GRO and GGRO produce less noise than Raj’s method, while

GGRO generates the least noise. In addition, the correction method has little influence on

the noise level.

In terms of the computing time, the proposed depth estimation and depth correction only

take typically 0.35 second. If a parallel hardware implementation is used, a real-time DfD

processing is also achievable. Therefore the proposed DfD method can be very useful for

robotic and medical applications.

5. Conclusion

Lens aberrations and diffraction are two undesirable and unavoidable imperfection in image

acquisition where 3D object reconstruction techniques including DfD suffers. The former

occurs when sub-quality lenses are used and the latter occurs when small aperture is used

or the image centre is misaligned with the optical axis [26]. This paper presents two novel

RO-DfD methods, one using Gaussian PSF and another using Generalised Gaussian PSF.

The GROs cope well in situations where the lens aberrations and diffraction are significant

compared to the blur radius. The GGROs can cope with any levels of aberrations and

diffraction. In addition, the pre-filter is designed to take into account of the instability in
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the measurement of depth as well as its monotonicity. Moreover, the ROs are designed to

speed up the filters generation process.

The paper also presents a practical DfD correction method that addresses the circular lens

distortion and misalignment between the image centre and the optical axis. Experiments

on real images with both quantitative and qualitative results show that the GROs and

the GGROs together with the proposed correction algorithm respectively produce more

accurate results than the state-of-the-art Raj’s ROs. Furthermore, the proposed methods

are fast with the effective and efficient correction stage eliminating the hill-like depth map

distortion generated by existing DfD methods.

Our method works well because: 1) GROs use Gaussian model that is more suitable

than the Pillbox model for defocusing that is dominated by aberrations and diffraction; 2)

GGROs use generalised Gaussian model that generalises the RO-DfD method to deal with

any levels of aberrations/diffraction; 3) Input frequency components are analysed using the

NIR and removed with a pre-filter; 4) The ROs are designed with a simpler method achieving

comparable accuracy than [17, 18]; 5) A simple DfD correction procedure is devised to

eliminate the strong circular distortion originated from image acquisition.

Although our method works effectively, the general shape of the NIR cannot be repro-

duced without error and the adverse frequency components cannot be removed completely

due to the small-sized broad-band ROs. We will investigate as a future work the use of coded

aperture to produce a PSF suitable for small ROs. Moreover, the current implementation

of the proposed methods requires the sensor to be moved from one position to another with

typical precision of 5 µm. To increase the precision, we will investigate the use of a step

motor or a batch of piezoelectric-electric materials to control the movement. If the size of

the camera system is not an issue, two sensors and a half mirror could be used to remove

the need to move the sensors.
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