26,193 research outputs found

    Measurement of the electromagnetic field backscattered by a fractal surface for the verification of electromagnetic scattering models

    Get PDF
    Fractal geometry is widely accepted as an efficient theory for the characterization of natural surfaces; the opportunity of describing irregularity of natural surfaces in terms of few fractal parameters makes its use in direct and inverse electromagnetic (EM) scattering theories highly desirable. In this paper, we present an innovative procedure for manufacturing fractal surfaces and for measuring their scattering properties. A cardboard–aluminum fractal surface was built as a representation of a Weiestrass–Mandelbrot fractal process; the EM field scattered from it was measured in an anechoic chamber. A monostatic radarlike configuration was employed. Measurement results were compared to Kirchhoff approximation and small perturbation method closed-form results that were analytically obtained by employing the fractional Brownian motion to model the surface shape. Matching and discrepancies between theories andmeasurements are then discussed. Finally, fractal and classical surface models are compared as far as their use in the EM scattering is concerned.Postprint (published version

    The 10 micron amorphous silicate feature of fractal aggregates and compact particles with complex shapes

    Get PDF
    We model the 10 micron absorption spectra of nonspherical particles composed of amorphous silicate. We consider two classes of particles, compact ones and fractal aggregates composed of homogeneous spheres. For the compact particles we consider Gaussian random spheres with various degrees of non-sphericity. For the fractal aggregates we compute the absorption spectra for various fractal dimensions. The 10 micron spectra are computed for ensembles of these particles in random orientation using the well-known Discrete Dipole Approximation. We compare our results to spectra obtained when using volume equivalent homogeneous spheres and to those computed using a porous sphere approximation. We conclude that, in general, nonspherical particles show a spectral signature that is similar to that of homogeneous spheres with a smaller material volume. This effect is overestimated when approximating the particles by porous spheres with the same volume filling fraction. For aggregates with fractal dimensions typically predicted for cosmic dust, we show that the spectral signature characteristic of very small homogeneous spheres (with a volume equivalent radius r_V<0.5 micron) can be detected even in very large particles. We conclude that particle sizes are underestimated when using homogeneous spheres to model the emission spectra of astronomical sources. In contrast, the particle sizes are severely overestimated when using equivalent porous spheres to fit observations of 10 micron silicate emission.Comment: Accepted for publication in A&

    Two Sets of Simple Formulae to Estimating Fractal Dimension of Irregular Boundaries

    Full text link
    Irregular boundary lines can be characterized by fractal dimension, which provides important information for spatial analysis of complex geographical phenomena such as cities. However, it is difficult to calculate fractal dimension of boundaries systematically when image data is limited. An approximation estimation formulae of boundary dimension based on square is widely applied in urban and ecological studies. However, the boundary dimension is sometimes overestimated. This paper is devoted to developing a series of practicable formulae for boundary dimension estimation using ideas from fractals. A number of regular figures are employed as reference shapes, from which the corresponding geometric measure relations are constructed; from these measure relations, two sets of fractal dimension estimation formulae are derived for describing fractal-like boundaries. Correspondingly, a group of shape indexes can be defined. A finding is that different formulae have different merits and spheres of application, and the second set of boundary dimensions is a function of the shape indexes. Under condition of data shortage, these formulae can be utilized to estimate boundary dimension values rapidly. Moreover, the relationships between boundary dimension and shape indexes are instructive to understand the association and differences between characteristic scales and scaling. The formulae may be useful for the pre-fractal studies in geography, geomorphology, ecology, landscape science, and especially, urban science.Comment: 28 pages, 2 figures, 9 table

    Deterministic diffusion in flower shape billiards

    Full text link
    We propose a flower shape billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles of flower shape, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form by different schemes all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance to reproduce the precise parameter dependence of the diffusion coefficent.Comment: 8 pages (revtex) with 9 figures (encapsulated postscript

    Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Get PDF
    This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).Peer reviewedPostprin

    Dynamical Symmetry Breaking in Fractal Space

    Get PDF
    We formulate field theories in fractal space and show the phase diagrams of the coupling versus the fractal dimension for the dynamical symmetry breaking. We first consider the 4-dimensional Gross-Neveu (GN) model in the (4-d)-dimensional randomized Cantor space where the fermions are restricted to a fractal space by the high potential barrier of Cantor fractal shape. By the statistical treatment of this potential, we obtain an effective action depending on the fractal dimension. Solving the 1/N leading Schwinger-Dyson (SD) equation, we get the phase diagram of dynamical symmetry breaking with a critical line similar to that of the d-dimensional (2<d<4) GN model except for the system-size dependence. We also consider QED4 with only the fermions formally compactified to d dimensions. Solving the ladder SD equation, we obtain the phase diagram of dynamical chiral symmetry breaking with a linear critical line, which is consistent with the known results for d=4 (the Maskawa-Nakajima case) and d=2 (the case with the external magnetic field).Comment: 28 pages, 5 figures, LaTeX with epsf macr

    Multiple light scattering and near-field effects in a fractal tree-like ensamble of dielectric nanoparticles

    Full text link
    We numerically study light scattering and absorption in self-similar aggregates of dielectric nanoparticles, as generated by simulated ballistic deposition upon a surface starting from a single seed particle. The resulting structure exhibits a complex tree-like shape, intended to mimic the morphologic properties of building blocks of real nanostructured thin films produced by means of fine controlled physical deposition processes employed in nanotechnology. The relationship of scattering and absorption cross sections to morphology is investigated within a computational scheme which thoroughly takes into account both multiple scattering and near-field effects. Numerical results are compared with a pre-existing single scattering limited analytical treatment of light scattering in fractal aggregates of small dielectric particles.Comment: 10 pages, 9 figures. Accepted for publication in Physical Review
    • 

    corecore