3,357 research outputs found

    Context classification for service robots

    Get PDF
    This dissertation presents a solution for environment sensing using sensor fusion techniques and a context/environment classification of the surroundings in a service robot, so it could change his behavior according to the different rea-soning outputs. As an example, if a robot knows he is outdoors, in a field environment, there can be a sandy ground, in which it should slow down. Contrariwise in indoor environments, that situation is statistically unlikely to happen (sandy ground). This simple assumption denotes the importance of context-aware in automated guided vehicles

    Constructing 3D faces from natural language interface

    Get PDF
    This thesis presents a system by which 3D images of human faces can be constructed using a natural language interface. The driving force behind the project was the need to create a system whereby a machine could produce artistic images from verbal or composed descriptions. This research is the first to look at constructing and modifying facial image artwork using a natural language interface. Specialised modules have been developed to control geometry of 3D polygonal head models in a commercial modeller from natural language descriptions. These modules were produced from research on human physiognomy, 3D modelling techniques and tools, facial modelling and natural language processing. [Continues.

    An Explainable AI Approach to Process Data in Mixed Reality Environments for Field Service Operations

    Get PDF
    Digital Twins is a concept that describes how physical objects can be represented and connected to the virtual world, the main goal of a Digital Twin is to centralise all the available information of an object of interest in a single virtual model. The Digital Twin consist of three main components: the physical object, a virtual representation of that object (typically a 3D model), and a real-time connection between both objects so that any change can be communicated to the other part. The possibility of understanding, visualising, and interacting with physical objects through a virtual environment is, at a very high level, the main benefit of using Digital Twins. The adoption of this concept has grown a lot in the recent years in industries such as the manufacturing, construction, health, and energy. Utility companies in the telecommunication industry, water services, and gas services are still falling behind in the adoption of these new concepts. The potential benefit for these sectors is huge where some of these benefits are real-time remote monitoring, predictive maintenance, scenario and risk assessment, better collaboration between stakeholders (internal and external), and better documentation. Existing Mixed Reality, Virtual Reality and Augmented Reality technologies can help with the interaction and visualisation of the virtual twin. The different levels of reality in combination with the digital twins will help with different tasks, for example, Virtual Reality is useful for remote tasks were most of the interaction happens with the virtual twin and Augmented Reality will help bringing the virtual twin and all its information to onsite tasks to help field engineers. However, there are different challenges when trying to connect all the different components and some of these challenges did slow down the adoption of these technologies by the utility companies. The research work in this thesis will focus on two main challenges: the cost of creating these digital twins from existing sources of information and the lack of an explainable AI approach that can be used as an enabler for the interaction between human and Digital Twin in the mixed reality environment. To address the challenge of automating the creation of digital representations at a low cost, two interval type-2 Fuzzy Rule-based Systems are presented as the best explainable AI alternatives to the opaque AI models for processing images and extracting information of the objects of interest. One of them was used to extract information about trees in a satellite image and generate a 3D representation of the geographic area combined with terrain data. This will be used for remote scenario and risk assessment and prediction of the telecommunication equipment getting damaged by natural elements like trees. The proposed approach achieved an 86.90% of accuracy, 3.5% better than the type-1 but 3.0% worse than the opaque Multilayer Perceptron model. The second interval type-2 Fuzzy Rule-based System is an explainable AI model that incorporates the use of context information in its rule to process 2D floor plan images, identify elements of interest and create a 3D digital representation of the building floors. This will benefit the telecommunication company by automating, at a low cost, the process of creating a more detailed in-building map with the telecommunication assets and improve the collaboration with external stakeholders like contractors for maintenance tasks or construction companies for any works in the building. The proposed method achieved a 97.5% Intersection over Union metric value which was comparable to the 99.3% Intersection over Union of the opaque Convolutional Neural Network model, however our proposed solution is highly interpretable and augmentable by human experts which cannot be achieved via opaque box AI models. Additionally, another interval type-2 Fuzzy Rule-based System for hand gesture classification is also presented in this thesis. This rule-based system achieved a 96.4% accuracy, and it is an easily adjustable model that can be modified to include more hand gestures, the opaque model alternative, a K-Nearest Neighbour algorithm achieved a 98.9% accuracy, however, this model cannot be easily modified by a human expert and re-training is needed which results in a cost of time. This hand gesture recognition model, alongside another fuzzy rule-based system, will help to address the challenge of the interaction between human and digital twin objects in Mixed Reality environments

    Automatic object classification for surveillance videos.

    Get PDF
    PhDThe recent popularity of surveillance video systems, specially located in urban scenarios, demands the development of visual techniques for monitoring purposes. A primary step towards intelligent surveillance video systems consists on automatic object classification, which still remains an open research problem and the keystone for the development of more specific applications. Typically, object representation is based on the inherent visual features. However, psychological studies have demonstrated that human beings can routinely categorise objects according to their behaviour. The existing gap in the understanding between the features automatically extracted by a computer, such as appearance-based features, and the concepts unconsciously perceived by human beings but unattainable for machines, or the behaviour features, is most commonly known as semantic gap. Consequently, this thesis proposes to narrow the semantic gap and bring together machine and human understanding towards object classification. Thus, a Surveillance Media Management is proposed to automatically detect and classify objects by analysing the physical properties inherent in their appearance (machine understanding) and the behaviour patterns which require a higher level of understanding (human understanding). Finally, a probabilistic multimodal fusion algorithm bridges the gap performing an automatic classification considering both machine and human understanding. The performance of the proposed Surveillance Media Management framework has been thoroughly evaluated on outdoor surveillance datasets. The experiments conducted demonstrated that the combination of machine and human understanding substantially enhanced the object classification performance. Finally, the inclusion of human reasoning and understanding provides the essential information to bridge the semantic gap towards smart surveillance video systems

    A Big Bang Big Crunch Type-2 Fuzzy Logic System for Machine Vision-Based Event Detection and Summarization in Real-world Ambient Assisted Living

    Get PDF
    The recent years have witnessed the prevalence and abundance of vision sensors in various applications such as security surveillance, healthcare and Ambient Assisted Living (AAL) among others. This is so as to realize intelligent environments which are capable of detecting users’ actions and gestures so that the needed services can be provided automatically and instantly to maximize user comfort and safety as well as to minimize energy. However, it is very challenging to automatically detect important events and human behaviour from vision sensors and summarize them in real time. This is due to the massive data sizes related to video analysis applications and the high level of uncertainties associated with the real world unstructured environments occupied by various users. Machine vision based systems can help detect and summarize important information which cannot be detected by any other sensor; for example, how much water a candidate drank and whether or not they had something to eat. However, conventional non-fuzzy based methods are not robust enough to recognize the various complex types of behaviour in AAL applications. Fuzzy logic system (FLS) is an established field of research to robustly handle uncertainties in complicated real-world problems. In this thesis, we will present a general recognition and classification framework based on fuzzy logic systems which allows for behaviour recognition and event summarisation using 2D/3D video sensors in AAL applications. I started by investigating the use of 2D CCTV camera based system where I proposed and developed novel IT2FLS-based methods for silhouette extraction and 2D behaviour recognition which outperform the traditional on the publicly available Weizmann human action dataset. I will also present a novel system based on 3D RGB-D vision sensors and Interval Type-2 Fuzzy Logic based Systems (IT2FLSs) ) generated by the Big Bang Big Crunch (BB-BC) algorithm for the real time automatic detection and summarization of important events and human behaviour. I will present several real world experiments which were conducted for AAL related behaviour with various users. It will be shown that the proposed BB-BC IT2FLSs outperforms its Type-1 FLSs (T1FLSs) counterpart as well as other conventional non-fuzzy methods, and that performance improvement rises when the number of subjects increases. It will be shown that by utilizing the recognized output activity together with relevant event descriptions (such as video data, timestamp, location and user identification) detailed events are efficiently summarized and stored in our back-end SQL event database, which provides services including event searching, activity retrieval and high-definition video playback to the front-end user interfaces

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

    Get PDF
    The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions. The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools. The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions. The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts. The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process. The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in MaganguĂ© and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility. The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203In vielen StĂ€dten nehmen die Auswirkungen von Hochwasser auf GebĂ€ude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden VulnerabilitĂ€t von BesitztĂŒmern stetig zu. Es existieren zwar bereits AnsĂ€tze zur Beurteilung von WasserschĂ€den an GebĂ€uden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großrĂ€umig anzuwenden, da es an einer prĂ€zisen Klassifizierung und Charakterisierung von GebĂ€uden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept fĂŒr ein genaueres VerstĂ€ndnis der physischen VulnerabilitĂ€t von GebĂ€uden gegenĂŒber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großrĂ€umigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden. Die Rahmenbedingungen des Konzepts grenzen die Begriffe der VulnerabilitĂ€t, der physischen VulnerabilitĂ€t und der physischen AnfĂ€lligkeit gegenĂŒber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen VulnerabilitĂ€t. Es werden die Merkmale der physischen AnfĂ€lligkeit von GebĂ€uden gegenĂŒber Hochwasser als Bestandteil der VulnerabilitĂ€t definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer GebĂ€udetypologie, (ii) Methoden zur Bewertung der AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude jedes GebĂ€udetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel. Das erste Modul zur GebĂ€udetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben GebĂ€udeparametern, die sich fĂŒr die Klassifizierung von GebĂ€uden bezĂŒglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur GebĂ€udeklassifizierung. Die anschließende Ermittlung reprĂ€sentativer GebĂ€ude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen. Das zweite Modul zur AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten GebĂ€udemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen WasserstĂ€nden. Die MaterialanfĂ€lligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschĂ€tzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der HauptgebĂ€udekomponenten berechnet, die durch unterschiedliche WasserstĂ€nde in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen. Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur UnterstĂŒtzung des automatisierten Verfahrens dienen Hilfsmittel, die die GebĂ€udetypologie mit der Funktion von Wasserstand und physischer Einwirkung fĂŒr GebĂ€ude in Hochwassergebieten kombinieren. Die Methoden wurden anschließend in drei hochwassergefĂ€hrdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in MaganguĂ© und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der DatenverfĂŒgbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung reprĂ€sentativer GebĂ€ude sowie die Darstellung der rĂ€umlichen Verteilung der physischen AnfĂ€lligkeit fĂŒr Hochwasser. In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificaciĂłn de los fenĂłmenos meteorolĂłgicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay mĂ©todos disponibles para evaluar los daños por inundaciĂłn en edificios e infraestructuras crĂ­ticas. Sin embargo, es muy difĂ­cil implementar estos mĂ©todos sistemĂĄticamente en grandes ĂĄreas debido a la falta de clasificaciĂłn y caracterizaciĂłn de estructuras construidas en resoluciones detalladas. Para superar este obstĂĄculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad fĂ­sica de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodolĂłgico para la combinaciĂłn de los mĂ©todos y herramientas para una anĂĄlisis de alta resoluciĂłn y en tercer lugar, la prueba de la metodologĂ­a en tres sitios experimentales, con distintas condiciones de desarrollo. El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relaciĂłn con la vulnerabilidad social y econĂłmica. En Ă©l se describen las principales caracterĂ­sticas fĂ­sicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodolĂłgico consta de tres mĂłdulos: (i) mĂ©todos para la derivaciĂłn de topologĂ­a de construcciones, (ii) mĂ©todos para evaluar la susceptibilidad de edificios representativos y (iii) la integraciĂłn de los dos mĂłdulos a travĂ©s herramientas tecnolĂłgicas. El primer mĂłdulo de topologĂ­a de construcciones se basa en una clasificaciĂłn de datos de sensoramiento rĂ©moto y procesamiento SIG para la extracciĂłn de siete parĂĄmetros de las edficaciones. Este mĂłdulo parece ser aplicable para una clasificaciĂłn de los edificios en relaciĂłn con los posibles impactos de las inundaciones. El resultado es una taxonomĂ­a de las edificaciones y una posterior identificaciĂłn de edificios representativos que se basa en anĂĄlisis estadĂ­sticos y funciones de pertenencia. El segundo mĂłdulo consiste en el anĂĄlisis de susceptibilidad de las construcciones representativas a travĂ©s de funciones de profundidad del impacto fĂ­sico. Las cuales relacionan los principales componentes de la construcciĂłn, incluyendo sus alturas, dimensiones y materiales con los impactos fĂ­sicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un anĂĄlisis a travĂ©s de sistemas expertos difusos. AquĂ­, las funciones de profundidad de impacto fĂ­sico son considerados como un medio para la interrelaciĂłn entre el nivel del agua y los impactos fĂ­sicos. El tercer mĂłdulo proporciona las herramientas necesarias para la aplicaciĂłn de la metodologĂ­a. Estas herramientas tecnolĂłgicas consisten en la arquitectura para la alimentaciĂłn de los datos relacionados a la tipologĂ­a de construcciones con las funciones de profundidad del impacto fĂ­sico apoyado en procesos automĂĄticos. La metodologĂ­a es probada en tres sitios piloto: (i) en el Barrio Sur en MaganguĂ© y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del RĂ­o Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del rĂ­o Elba, en Alemania. Las pruebas de la metodologĂ­a abarca la descripciĂłn de la disponibilidad de los datos y la precisiĂłn, los pasos a seguir para obtener las funciones profundidad de impacto fĂ­sico de edificios representativos y la presentaciĂłn final de la distribuciĂłn espacial de la susceptibilidad fĂ­sica frente inundaciones El discusiĂłn analiza las aportaciones de este trabajo y evalua los resultados de la metodologĂ­a con relaciĂłn a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigaciĂłn en tĂ©rminos de avances metodolĂłgicos y empĂ­ricos y la aplicabilidad general de gestiĂłn del riesgo de inundaciones.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 20
    • 

    corecore