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Abstract 

Digital Twins is a concept that describes how physical objects can be represented and 

connected to the virtual world, the main goal of a Digital Twin is to centralise all the available 

information of an object of interest in a single virtual model. The Digital Twin consist of three 

main components: the physical object, a virtual representation of that object (typically a 3D 

model), and a real-time connection between both objects so that any change can be 

communicated to the other part. The possibility of understanding, visualising, and interacting 

with physical objects through a virtual environment is, at a very high level, the main benefit of 

using Digital Twins.  

 

The adoption of this concept has grown a lot in the recent years in industries such as the 

manufacturing, construction, health, and energy. Utility companies in the telecommunication 

industry, water services, and gas services are still falling behind in the adoption of these new 

concepts. The potential benefit for these sectors is huge where some of these benefits are real-

time remote monitoring, predictive maintenance, scenario and risk assessment, better 

collaboration between stakeholders (internal and external), and better documentation.  

 

Existing Mixed Reality, Virtual Reality and Augmented Reality technologies can help with the 

interaction and visualisation of the virtual twin. The different levels of reality in combination 

with the digital twins will help with different tasks, for example, Virtual Reality is useful for 

remote tasks were most of the interaction happens with the virtual twin and Augmented Reality 

will help bringing the virtual twin and all its information to onsite tasks to help field engineers.  

 

However, there are different challenges when trying to connect all the different components 

and some of these challenges did slow down the adoption of these technologies by the utility 
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companies. The research work in this thesis will focus on two main challenges: the cost of 

creating these digital twins from existing sources of information and the lack of an explainable 

AI approach that can be used as an enabler for the interaction between human and Digital Twin 

in the mixed reality environment.  

 

To address the challenge of automating the creation of digital representations at a low cost, two 

interval type-2 Fuzzy Rule-based Systems are presented as the best explainable AI alternatives 

to the opaque AI models for processing images and extracting information of the objects of 

interest. One of them was used to extract information about trees in a satellite image and 

generate a 3D representation of the geographic area combined with terrain data. This will be 

used for remote scenario and risk assessment and prediction of the telecommunication 

equipment getting damaged by natural elements like trees. The proposed approach achieved an 

86.90% of accuracy, 3.5% better than the type-1 but 3.0% worse than the opaque Multilayer 

Perceptron model.  

 

The second interval type-2 Fuzzy Rule-based System is an explainable AI model that 

incorporates the use of context information in its rule to process 2D floor plan images, identify 

elements of interest and create a 3D digital representation of the building floors. This will 

benefit the telecommunication company by automating, at a low cost, the process of creating a 

more detailed in-building map with the telecommunication assets and improve the 

collaboration with external stakeholders like contractors for maintenance tasks or construction 

companies for any works in the building. The proposed method achieved a 97.5% Intersection 

over Union metric value which was comparable to the 99.3% Intersection over Union of the 

opaque Convolutional Neural Network model, however our proposed solution is highly 
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interpretable and augmentable by human experts which cannot be achieved via opaque box AI 

models.  

 

Additionally, another interval type-2 Fuzzy Rule-based System for hand gesture classification 

is also presented in this thesis. This rule-based system achieved a 96.4% accuracy, and it is an 

easily adjustable model that can be modified to include more hand gestures, the opaque model 

alternative, a K-Nearest Neighbour algorithm achieved a 98.9% accuracy, however, this model 

cannot be easily modified by a human expert and re-training is needed which results in a cost 

of time. This hand gesture recognition model, alongside another fuzzy rule-based system, will 

help to address the challenge of the interaction between human and digital twin objects in 

Mixed Reality environments.  
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Chapter 1. Introduction 

 

1.1 An Introduction to the Concept of Network Digital Twin 

The new technological advancements in the recent years have enabled the connectivity of 

multiple devices and entities across the world. Large quantities of data are generated daily by 

companies, people, and even machines or systems generate their own historical data. 

Companies seek to use the data that they are constantly capturing to be better in different 

aspects, e.g., improve the quality of their services and products, reduce the cost of their 

processes, guarantee safety of their employees, and prevent failures in their systems.  

All the data is stored in large size databases with thousands or millions of rows. In recent years 

a new concept for modelling and representing the information of objects called “Digital 

Twins”, has been proposed [1], [2]. The digital twin concept proposes the idea of creating a 

digital representation for an existing object and linking both entities (physical and digital) 

through a remote connection that enable the exchange of information. Essentially, the idea is 

to go from having the information of physical objects stored across multiple tables in one or 

more databases, to have a virtual environment with a replica of the object containing all the 

information. This is an attractive and game changer concept for organisations with thousands 

of physical assets that need to be constantly monitored. Digital twins used technologies such 

as Internet of Things (IoT) to establish a communication between both entities and mixed 

reality environments for the user to interact with the digital representation. Utility companies 

(i.e., water service, gas, electric, telecommunication) are part of the organisations with a high 

interest in developing a digital twin of their assets. The goal for utility companies is to create a 

Network Digital Twin (NDT), which is a collection of connected digital twins, each of them 

representing an asset in a big network, replicating with this the actual physical network, e.g., 

telecommunications company having a virtual world with a 3D digital map of every cable and 
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equipment in the country. The idea of having an engineer do network planning tasks remotely 

using the virtual world with the digital twins is big cost reduction, considering that before the 

engineer needed to attend the site to do the survey and analysis.  

The UK government has its National Digital Twin programme (NDTp) that they use to push 

utility companies to develop their network digital twins, to then combine all of them in a single 

national digital twin of all the utility services assets in the county. The UK government believes 

that the country’s society, economy, business and environment will benefit from this digital 

twin [3], [4].  

Utility companies already have large numbers of data about their assets; however, this is not 

always in a structured format and tends to be a numeric table format. The challenges of a 

Network Digital Twin are in two areas: 1) creating the digital representations with the available 

data and 2) interacting with some of the digital twin assets through Mixed Reality (MR) 

environments. 

The cost for utility companies of creating the Network Digital Twin is high if it must be made 

manually. This thesis presents some alternative solutions for automating part of the creation of 

digital twins which will reduce the cost. Additionally, solutions presented in later chapters are 

interpretable models that a human can understand and modify. In this way utility companies 

can still take advantage of their expert engineers and capture their knowledge in these 

explainable models. 

 

1.2 Aims of the Thesis 

The work in this thesis aims to present novel explainable AI models that can automate the 

process of creating 3D representations of physical objects in a virtual world to contribute to the 

idea of the Network Digital Twin. Additionally, this thesis also seeks to create a novel 

explainable AI approach for guiding the user in this mixed reality environments that contain 
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information from the network digital twin. Deep learning and traditional machine learning 

models are “black box” models, i.e., they are systems that receive inputs, perform an unknown 

process with those inputs, and return an output to the user. Their main advantage over other 

approaches is that these models have a higher performance, and their outputs tend to be more 

accurate. The disadvantages are that large volumes of data are required to achieve a high-

performance level, it is practically impossible for a user to understand the inference process 

and modify it using their knowledge, and these models require the data to be labelled which 

has a high cost for acquiring this type of data (cost can be in time, money, or both).  

The research in this thesis focuses on evaluating the capabilities of a fuzzy rule-based system 

(FRBS) as an explainable AI alternative for processing image data. A comparison against a 

black box model is provided for each of the use cases.  

The aims of the research are: 

1) To understand if an explainable AI alternative is viable for image processing and if the 

performance is close to the one of a black box model. 

2) To create an explainable system that extracts information from 2D image sources to 

then generate 3D digital representations automatically for the objects of interest in 

different type of images. 

3) To develop an explainable and augmentable model that understands the hand gesture 

of a user in a mixed reality environment and if the gesture is expected for the task that 

is being performed. 

4) To guarantee a high degree of interpretability in the developed systems so that the user 

understands the inference process and can augment it using human expert knowledge. 
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1.3 Thesis Layout 

The thesis is organized in a way that the first part covers the basic concepts needed to 

understand and implement explainable AI models. Then the application of these explainable 

AI models to the processing of images is explored and analysed. Finally, the thesis concludes 

with a description on a proposed explainable AI system for guiding a user in a Mixed Reality 

environment.  

The structure of the thesis chapter by chapter is as follows; Chapter 2 provides a detailed 

description of fuzzy logic systems, the basic concepts, advantages and how to use fuzzy logic 

to build a classifier.  

Chapter 3 describes the selected Big Bang-Big Crunch optimisation strategy for improving the 

performance of the fuzzy rule-based systems. It describes what are the three main components 

to optimise and how each of the components affect the performance and the interpretability of 

a FRBS. Additionally, it describes how to encode the FRBS into a numeric vector that can be 

then optimised.  

Chapter 4 provides an overview of the concept of digital twins and their applications. This 

chapter tries to highlight the different challenges for companies that try to integrate the use of 

digital twins in their processes. These challenges and high-cost tasks of integrating everything 

can be minimised by the automating the process of creating digital twins, the value and purpose 

of the work of the next chapters is highlighted in this chapter. 

Chapter 5 presents the first application of a FRBS for processing satellite images and 

automatically generate a 3D object from the output of those images. The type-2 FRBS 

outperforms the type-1 FRBS, however, the black box model solution has a significantly higher 

performance value. This chapter discusses the benefits of using an explainable AI model.  

Chapter 6 presents a novel interval type-2 FRBS solution that expands on the approach from 

chapter 5, this new solution incorporates the use of context information which was something 
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missing in the first implementation in chapter 5 of a FRBS for semantic segmentation. The 

context information is obtained using a similarity measure between patches of images. The 

advantages of choosing a solution like the FRBS are discussed in this chapter, however, the 

black box alternative performed better than the FRBS. Although, in this case the difference 

was considerably smaller than in chapter 5. The models in this chapter were used to 

automatically create 3D digital representations of a building floor which will help utility 

companies to connect their outside network with the inner network and elements of the floor.  

Chapter 7 starts discussing the need to consume this digital twin information. The digital twin 

loses a lot of value if it remains as a centralised database of information instead of being used 

as an object in mixed reality environment. This chapter also presents a detailed description of 

an overall architecture on how two FRBSs can be applied to combine and process multiple 

inputs and then return some form of feedback to the user.  

Finally, chapter 8 presents the conclusions and future work of the thesis.  
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Chapter 2. An Overview of Fuzzy Logic Systems 

 

2.1 A brief description on fuzzy logic 

Fuzzy Logic (FL) is a form of logic that can handle the uncertain and imprecise nature of human 

thinking and communication process. The main ideas and concepts were introduced by Lotfi 

Zadeh in “Fuzzy Sets” [5], where in this paper Zadeh states that most of the classes (or sets of 

values) that humans use to define and classify objects in the real world are ambiguous, i.e. it is 

possible to have objects that can be part of multiple classes depending on the context, and even 

in the same context the boundaries are not clearly defined.  

The height of a person can be used as an example of the ambiguity in classes. For example, 

consider a male person with a height of 180 centimetres (cm), he will be considered of “average 

height” in the United Kingdom, he will be classified as “tall” in Mexico, and he will be a 

“short” player in the National Basketball Association (NBA) tournament in the United States. 

The same person classified differently depending on the context, this makes the human 

communication process complex and ambiguous, to fully understand what it is meant by “that 

person is tall” a lot of context information is needed. If context information is available, it is 

possible to adapt the class to a specific context, e.g., to be considered “tall” in the NBA context 

you must be above a certain height. However, there is still uncertainty in defining the classes 

even if context information is available. For example, in the NBA context it can be defined that 

any player above 200 cm will be considered “tall”. Does this mean that a basketball player with 

a height of 199 cm is not tall? Is one centimetre enough difference to change the class? These 

classes are arbitrarily defined based on the perspective of a certain group of people and 

although most people will agree on the average characteristics of a class, there is high 

uncertainty and ambiguity on the boundaries of a class, which makes it difficult to understand 

when an object stops belonging to one class.  
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Elements in traditional logic either belong to a class or they do not (true or false, 0 or 1), which 

implies that the boundaries are absolute truth, and everything inside the limit is part of the class, 

with no exception. Additionally, it also implies that all elements of a set have the same 

membership value, which does not happen. For example, using again the height of a person, if 

it is assumed that any person with a height between 180 cm and 200 cm is “tall”, in reality we 

know that a person with a height of 180 cm will not be equally “tall” as a person with a height 

of 195 cm, the latter will be visibly taller, therefore, have a stronger (or higher) belonging to 

the class “tall”.  

Fuzzy Logic seeks to handle this ambiguity in classes and instead of assigning a 1 or a 0 (it 

does or does not belong) to an element in a class, it assigns a degree of membership, which 

describes how much an element belongs to a given set (or class).  

The following sections of this chapter provide an overview about Fuzzy Logic Systems (FLSs), 

their basic components, how they are created, how they work, and how they use Fuzzy Logic 

to handle uncertainty in the inputs. Furthermore, there are different types of fuzzy logic that 

will be described in this chapter alongside an explanation of why rule-based models using fuzzy 

logic can be considered Explainable AI models and how they will be used in the rest of this 

thesis.  

 

2.2 Type-1 Fuzzy Logic Systems 

A fuzzy logic system (FLS) is a nonlinear mapping of crisp inputs to crip outputs by using a 

rule base with linguistic labels for the inference process [6]. The process of the FLS has three 

main stages: 1) map the crisp numeric value to a linguistic label (i.e., a human understandable 

word), 2) Find the rule (or rules) that have the linguistic labels that were mapped to the crisp 

input values and get the output linguistic labels, and 3) convert the output linguistic labels to a 

crisp numeric value that can then be used by other computer-based system that only understand 
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numbers. Fig. 2.1 shows the components of a FLS and how these components are connected. 

The fuzzifier component is used in the first stage where crisp numeric inputs are mapped to 

linguistic labels. The inference engine component consists of If-Then rules of linguistic labels, 

these are used in stage 2 of the FLS process to map input linguistic labels to output linguistic 

labels. The defuzzifier component is used in stage 3 of the FLS process to map the output 

linguistic labels to a crisp value, this is important so that the output can be used outside the 

FLS by other systems. For example, if a FLS is used to control at what distance a vehicle should 

start breaking the output that goes to the vehicle has to be numeric because the vehicle will not 

understand “start breaking when you are close”, “close” is human label used to define a set of 

valid distance values for starting to stop the car.  

 

Figure 2.1. The components in a fuzzy logic system, image based on [6]. 

2.2.1 Type-1 Membership Functions 

As mentioned earlier, the first step of the FLS is to convert the crisp inputs to linguistic labels 

and this is done by the fuzzifier component. Linguistic labels as defined by Zadeh [5], [7] are 

variables whose values are not numbers but words that represent a set of valid numeric values 

to describe a class. In other words, a linguistic label is a variable that describes what a range of 

values mean, e.g., consider the linguistic label “close”, distance values from 0 to 5 meters are 

a “close” distance. The difference in fuzzy logic is that linguistic labels are described by a 

function that assigns a numeric value from 0 to 1 to each of the input values in the set, this is 
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called degree of membership. The function that assigns the degree of membership is referred 

to as membership function, and there are different types and shapes of functions.  

 

Figure 2.2. Example of a fuzzy set using Type-1 Membership functions. Dashed lines represent an example input value 'x'. 

Fig. 2.2 shows and example of a membership function to calculate 𝜇(𝑥) which is the degree of 

membership of an input value 𝑥. The 𝑦 axis represent the degree of membership of the input in 

the 𝑥 axis, the highest value is always 1. The membership degree for a triangular fuzzy set can 

be computed as follows: 

 

𝜇(𝑥) =  
𝑥−𝑎

𝑏−𝑎
 𝑤ℎ𝑒𝑛 𝑎 ≤ 𝑥 ≤ 𝑏    (2.1) 

𝜇(𝑥) =  
𝑐 −𝑥

𝑐 −𝑏
 𝑤ℎ𝑒𝑛 𝑏 < 𝑥 ≤ 𝑐    (2.2) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝜇(𝑥) =  0     

      

Similarly, equations 2.3 – 2.5 are used for a trapezoid shape these are as follows: 

 

𝜇(𝑥) =  
𝑥−𝑎

𝑏−𝑎
 𝑤ℎ𝑒𝑛 𝑎 ≤ 𝑥 < 𝑏    (2.3) 

𝜇(𝑥) =  1 𝑤ℎ𝑒𝑛 𝑏 ≤ 𝑥 ≤ 𝑐     (2.4) 

𝜇(𝑥) =  
𝑑−𝑥

𝑑−𝑐
 𝑤ℎ𝑒𝑛 𝑐 < 𝑥 ≤ 𝑑    (2.5) 
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𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝜇(𝑥) =  0     

 

The singleton fuzzification process, is completed once the membership functions have 

calculated the membership value of each input. The next step is to use the linguistic labels and 

their degree of membership for the inference process.  

 

2.2.2 Rules and Inference Process 

In this stage, the inference process of a fuzzy logic system decides which rules are relevant to 

the input data based on the degrees of membership that were computed. This stage is the one 

that maps the input values to an output value (the output value is the consequence part of the 

rule) using linguistic variables.  

Rules are the logic and the core component of the inference process, they are in a form of If-

Then statements, the “If” is the inputs section, and the “then” has the desired output for the 

specific combination of inputs in the “if” part.  

 

𝑅1 = 𝐼𝐹 𝑥1 𝑖𝑠 𝐹1
𝑙  𝑎𝑛𝑑 … . 𝑎𝑛𝑑 𝑥𝑙  𝑖𝑠 𝐹𝑚

𝑙   𝑇𝐻𝐸𝑁 𝑦1 𝑖𝑠 𝐶1
𝑘  (2.6) 

 

Equation 2.6 shows an example of a rule, 𝑥1 is an input value that belongs to fuzzy set 𝐹𝑙, with 

𝑙 = 1,2, … 𝑁. 𝑁 is the total number of antecedents or fuzzy sets and 𝑚 is the number of 

membership function inside the fuzzy set used to represent the input value 𝑥𝑖. 

Once the degree of membership for each value is calculated then the rule needs to calculate the 

firing strength of the complete rule. To do this the following Equation 2.7 is used (using the 

min t-norm to represent the AND logical connective): 

                                              𝑓 = min [𝜇(𝑥1), … , 𝜇(𝑥𝑙)]                                           (2.7) 
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The firing strength of the rule is calculated by computing the minimum value between the 

membership values of all the antecedents in the rule. For example, consider a rule with two 

antecedents 𝐴1 𝑎𝑛𝑑 𝐴2, if 𝜇(𝐴1) = 0.8 𝑎𝑛𝑑 𝜇(𝐴2) = 0.4, then the firing strength of the rule 

will be 𝑓 = 0.4. 

 

 

Figure 2.3. Type-2 Fuzzy Logic System. Image based on [8]. 

2.3 Type-2 Fuzzy Logic Systems 

Type-1 fuzzy logic systems have limitations when modelling and minimising the uncertainty 

in inputs and outputs. Although the type-1 fuzzy membership functions are designed to handle 

uncertainty by having soft limits and allowing input values to be part of different sets, there is 

still a degree of uncertainty in the arbitrary definition of the boundaries. Why does input 𝑥 has 

a 0.5 membership value for the linguistic label “close” instead of a 0.6 membership value? The 

answer is that it was an arbitrary decision of human expert, this is the kind of uncertainty that 

type-1 fuzzy logic systems still have. Expert knowledge may differ between users, which is the 

type of uncertainty type-1 fuzzy sets cannot handle. A type-2 membership function has a 

footprint of uncertainty (FOU) to handle type-1 uncertainty [6], [9]. 
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Figure 2.4. Example of a fuzzy set using type-2 Membership Functions. The solid vertical line represents and input value 'x'. The horizontal 

solid and dashed lines represent the ranges of membership value that describe the input 'x'. 

 

2.3.1 Type-2 Membership Function 

Fig. 2.4 shows an example of a fuzzy set using type-2 Membership functions to describe each 

of the linguistic labels. These types of function assign a range of values as a degree of 

membership instead of a single crisp value. This is to represent the uncertainty of how much 

an input belongs to a set. The membership functions shown in Fig. 2.4 are interval type-2 

membership function, the name comes from the fact that they use a range or an interval to 

represent the degree of membership of an input. To calculate the degree of membership of a 

type-2 membership functions the same Equations from 2.1 to 2.5 are used, however, the 

difference is that now they are applied to the lower limit of the function and to the upper limit. 

 

�̅�(𝑥) = 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝜇(𝑥) = 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Every type-2 membership function will have two values of degree of membership that 

represents the lower end of the interval and the upper end of the interval.  
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2.3.2 Footprint of Uncertainty 

The FOU The FOU is created by blurring a type-1 membership function’s line to the left and 

right. This means that some points in the set will have a range of values as a membership degree 

instead of a crisp value. Interval type2 membership functions use the upper and lower bounds 

of the range to describe the firing strength of the membership function. The FOU gives interval 

type-2 fuzzy logic systems additional degrees of freedom beyond those in type-1 fuzzy logic 

systems. 

 

2.3.3 Type Reduction 

In type-2 fuzzy logic systems, there is a type-reduction process that converts the output fuzzy 

sets from a type-2 to a type-1 fuzzy set, so that it can then be reduced again from a type-1 to a 

crisp numeric output [6]. This type-reduction step is shown in Fig. 2.3. More details can be 

found in [8]. 

 

2.4 Fuzzy Rule-based System Classifiers 

Fuzzy rule-based system (FRBS) classifiers have the same components as a fuzzy logic system 

except for the defuzzifier, and the reason is that the output of the classifier is a class, i.e., the 

linguistic label of the consequence part of the triggered rule is used as the output class. If 

multiple rules are activated then a voting system, using the firing strength of the rule as the 

vote strength, is used to determine the output class.  

 

2.4.1 Rule Modelling Process 

The rule base of a FRBS can be constructed either by 1) human experts or 2) using data from 

the problem. If data is going to be used for finding the rules, then a rule modelling process is 

needed. The idea of the rule modelling process is to replace human expert knowledge by 
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extracting from data the consequence for all possible rules. The dataset contains pairs of input 

data in the format of (𝑥𝑖 , 𝐶𝑗) where 𝑥𝑖 is a vector of input values and 𝐶𝑗 is the expected class 

label for that input vector. 

For each rule, the firing strength 𝑓(𝑥𝑖 ) is computed using the membership functions of each 

antecedent. This value measures the vector 𝑥𝑖 belonging to the fuzzy region of that rule. If type-

2 fuzzy logic is used then two values define the firing strength 𝑓(𝑥𝑖 ), the lower (𝑓(𝑥𝑖) and the 

upper (𝑓(𝑥𝑖) bounds of the interval type-2 membership functions. 

The rules that are fired with the input vector 𝑥𝑖 will get assigned the consequence label 𝐶𝑗 that 

is paired with 𝑥𝑖. 

Two challenges of the automated rule modelling process are: 

1) There might be a situation where a possible combination of antecedents does not get 

assigned a consequence because there is no input data that covers this combination of 

antecedents. In this case, the rule is not added to the rule base until a human expert or 

additional training data can provide a consequence for it. If the rule is needed in the 

prediction phase, then a similarity measure can be used to find a prediction using other 

rules that already have a consequence assigned, this similarity concept is discussed in 

section 3.5.1.  

2) The second challenge of the rule modelling process is how to handle conflicting rules. 

Two or more conflict between each other when they share the exact same combination 

of antecedents, but they were assigned a different consequence.  

Using the values of confidence, support, and dominance, it is possible to solve the conflicts in 

these rules, i.e., decide which of the multiple consequences assigned to the exact same 

combination of antecedents is the most appropriate.  

The confidence value for a class 𝑞 is used to measure how certain is the rule modelling process 

that a class 𝑞 is the consequence for a given set of antecedents. The firing strength of the rule 
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is expected to be higher when fired with input data that has class 𝑞 as the expected consequence. 

When working with interval type-2 fuzzy logic systems two confidence values are needed, one 

for the lower and another one for the upper bounds used to define the fuzzy sets, but the 

calculation is the same.  

Equation 2.8 computes the confidence for class q, the summation of the firing strength of the 

rule for all the training patterns with an expected class q is divided by the summation of the 

firing strength of the rule for all training patterns [9]–[11] . For interval type-2 FLS, the upper 

bound confidence measure calculation uses only the upper bound firing strength, in a similar 

way, the lower bound confidence uses the lower bound firing strength. 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑞, 𝑐(𝐴𝑞 ⟹ 𝐶𝑞) =  
∑ 𝑥𝑖 ∈𝐶𝑙𝑎𝑠𝑠 𝐶𝑞 𝑓 (𝑥𝑖)

∑ 𝑓𝑗𝑚
𝑗=1 (𝑥𝑖)

  (2.8) 

 

The support value for a class 𝑞 is used to measure the coverage of training patterns for a given 

rule, i.e., if there is enough evidence in the dataset to assign the class 𝑞 as the consequence. 

This is to try to avoid any outliers or mislabelled pairs of input data with high confidence to 

mislead the assignment of the consequence [9]–[11] 

Equation 2.9 is used to compute the support for class q. The summation of the firing strength 

of the training patterns with an expected class q is divided by the total number of training 

patterns [9]–[11]. In a similar way to the confidence measure, if interval type-2 fuzzy logic is 

used then two support values are calculated, one for each bound describing the fuzzy set. 

 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑠(𝐴𝑞 ⟹ 𝐶𝑞) =  
∑ 𝑥𝑖 ∈𝐶𝑙𝑎𝑠𝑠 𝐶𝑞 𝑓(𝑥𝑖)

𝑚
   (2.9) 
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Finally, the dominance value for class 𝐶𝑞 is calculated by multiplying the confidence and 

support values for 𝐶𝑞. The conflicting rule with the highest dominance value is selected and 

added to the rule base. The use of dominance-based approach for the rule inference is the low 

complexity and computationally efficient process; additionally, this approach is known for 

being capable of handling the uncertainty in an imbalanced dataset, i.e., there is not the same 

number of examples for each class in the training dataset. When working with images most of 

the datasets tend to not be perfectly balanced for all classes, which can cause an issue if we are 

building rules from the data. This dominance-based approach can be easily adapted to handle 

this imbalance by just modifying the firing strength used in the equations, the following sub-

section describes how to calculate the scaled firing strength and use it to find the dominance 

value. 

 

2.4.2 Scaled Firing Strength 

One of the challenges of extracting rules from data is how to handle an imbalanced dataset, 

i.e., when there are considerably more input pair examples of one class. This kind of imbalance 

affects the confidence, support, and dominance metrics used in the rule modelling process by 

favouring the class with a larger number of input pairs.  

It is possible to scale the firing strength to handle the imbalance in the dataset. The scaled firing 

strength of a rule with consequence 𝐶𝑞 is calculated dividing the firing strength by the 

summation of the firing strength of all rules with consequence 𝐶𝑞, this is shown in Equation 

2.10. 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑓𝑖𝑟𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑓𝑠 =  
𝑓

∑ 𝑓𝑞
𝑞∈𝐶𝑙𝑎𝑠𝑠 𝑞

   (2.10) 

 

Once the scaled firing strength is calculated then the scaled confidence, scaled support, and 

scaled dominance, can be calculated just by replacing the firing strength in Equations 2.8 and 
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2.9 with the scaled firing strength [9]–[11]. Then the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑎𝑙𝑒𝑑 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 can be 

calculated by the following Equation 2.11: 

 

𝑤𝑑(𝐴𝑞 ⟹ 𝐶𝑞) = 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝐴𝑞 ⟹ 𝐶𝑞) − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑎𝑣𝑔  (2.11) 

 

In Equation 2.11, 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑎𝑣𝑔 is the average dominance of all the fuzzy rules that share the 

same set of antecedents 𝐴𝑞 but have a difference consequence 𝐶𝑞 [10], [11]. 

If interval type-2 fuzzy logic is used then two values for scaled firing strength are needed, one 

for the upper bound (𝑓𝑠̅̅ ̅) and another one for the lower bound (𝑓𝑠). Similarly, for the weighted 

dominance, 𝑤𝑑̅̅ ̅̅  is calculated for the upper bound and 𝑤𝑑 is calculated for the lower bound. 

 

2.4.3 Prediction Class Vote 

As mentioned before, in FRBS classifiers there is not a defuzzification process because the 

output is a prediction label or class that tends to be the same as the consequence assigned to 

the rules.  

When passing an input vector through the FRBS at least one of the rules is expected to be fired 

(if not, a similarity measure needs to be calculated, this is described in section 3.5.1) and the 

consequences of the fired rules are returned as the predictions.  

However, the FRBS classifier should return a single prediction for an input, this can be an issue 

when multiple rules with different consequences are fired. In these situations, a voting system 

similar to the one presented in [9]–[11] is used to decide which one of the different 

consequences is returned as the predicted class. Equation 2.12 shows how to calculate the vote 

value for each class ℎ. 

𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥𝑖) =  
∑ 𝑓(𝑥𝑖)×𝑤𝑑(𝐴𝑞𝑗∈ℎ ⟹𝐶𝑞)

max
𝑗∈ℎ

(𝑓𝑗(𝑥𝑖)×𝑤𝑑(𝐴𝑞⟹𝐶𝑞)) 
  (2.12) 
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Equation 2.12 shows that the voting value for a given 𝑐𝑙𝑎𝑠𝑠ℎ is calculated by computing the 

summation of the product of the firing strength and weighted dominance of all rules with 

𝑐𝑙𝑎𝑠𝑠ℎ as a consequence, and then dividing that value by the maximum of the product of firing 

strength and weighted dominance of the rules with 𝑐𝑙𝑎𝑠𝑠𝑞. When using interval type-2 fuzzy 

logic then two values for 𝑍𝐶𝑙𝑎𝑠𝑠ℎ are computed, one for the upper bound (�̅�𝐶𝑙𝑎𝑠𝑠ℎ) and 

another one for the lower bound (𝑍𝐶𝑙𝑎𝑠𝑠ℎ), in both cases using the corresponding upper and 

lower values of firing strength and weighted dominance. Then both values are merged using 

the following Equation 2.13: 

𝑍𝐶𝑙𝑎𝑠𝑠ℎ =  
𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥𝑖)+𝑍𝐶𝑙𝑎𝑠𝑠ℎ(𝑥𝑖)

2
  (2.13) 

2.5 Using Fuzzy Rule-based Systems as Explainable Artificial Intelligence 

Models 

Artificial Intelligence (AI) algorithms have received a lot of attention in recent years due to 

their considerable progress in performance, particularly machine learning and deep learning 

networks [12]–[14]. Despite their good evaluation metrics these AI models are black box 

models that lack transparency in their decision process, i.e., it is not possible for a human to 

understand how the model is making a decision [15]. This is starting to become an issue 

because thanks to the advances in the performance of the models, more black box models are 

being developed for life-changing decisions, such as in the medical areas [16]. If there is no 

explanation available on how the models are working and taking the decisions that affect the 

life of a person, the user’s trust and adoption of these systems will be affected [17], [18]. 

Additionally, there is no way to guarantee a fair judgement of the circumstances, i.e., a model 

can make decisions that are not fair, diverse, and inclusive, because the data used to train it was 

biased [19]. 
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Efforts from organizations and governments have been made to push for the ethical 

development and application of AI systems. The UK government mentioned in their guidelines 

for AI the need for transparency, understanding the technical development process and the 

inference process of the final model [20]. Similarly, the Defense Advanced Research Project 

Agency (DARPA) also stated the importance of having explainable AI (XAI) systems, the idea 

is to provide humans with explanations to help them in their tasks instead of replacing them, 

this way AI systems are a tool and not a black box replacing a human [21]. 

The XAI field has gained attention from researchers in an attempt to replace the current AI 

systems with alternatives that can be understood by human users [22]. Some of the proposed 

XAI solutions seek to explain how existing deep learning solutions work. For example, LIME 

is a technique that presents to the user the set of features that contributed to the model decision 

and the user can evaluate the model’s decision [23]. In a similar way, SHAPLEY technique 

attributes each of the features an importance value for a specific prediction [24]. Another 

example is the use of a saliency map of images to understand what features and what areas are 

the Convolutional Neural Networks (CNNs) giving more importance when analysing input 

images [25].  
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Figure 2.5. A classification of the different explainable AI methods or models according to DARPA report [21]. 

These are techniques or models used to understand existing black box solutions, instead a XAI 

model can be used, these models are characterised by using an inference process that can be 

understood by a human, i.e., there is no need for an additional model or technique to explain 

the decision process. Transparency is not free, there normally is a trade-off between 

transparency and performance, complex models tend to achieve better performance scores but 

are much less transparent [26]. Fig. 2.5. from the DARPA report shows a classification of 

different existing AI models based on how explainable they are, according to their 

classification, a Decision Tree is the currently most explainable model [27]. However, this 

report does not consider the use of fuzzy rule-based systems which are considered to have a 

high degree of “explainability” thanks to the use of If-Then rules and linguistic labels. 

Additionally, the use of fuzzy logic allows them to handle uncertainty and achieve good 

performances [22], [26], [28]. In [29], multiple layers of FRBS are used to create a complex 

model that can achieve better performance, and it is compared to deep learning solution; 
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although the use of different layers, the model is still considered to be interpretable, this show 

how FRBS can be used for complex solutions and still be an explainable AI model.  

One of the aims of this thesis is to present a XAI model for processing unstructured and 

structured data for virtual environments, FRBS is considered as a viable alternative to black 

box models and it will be evaluated and compared against black box solutions in later chapters. 

 

2.6 Discussion 

The human decision process can be modelled using If-Then rules, for a given situation there is 

an expected behaviour. However, this decision process is imprecise, it is based on estimations 

perceived by the user’s sensors, and this can vary in different situations and differ between 

different users. This chapter presented an overview of Fuzzy Logic, a concept that can help to 

handle this kind of uncertainty, the overview includes basic theory and a description of the 

type-1 and type-2 fuzzy logic systems.  

Type-1 FLS can handle the uncertainty associated with the class of an input value, i.e., a crisp 

value can belong to more than one class, something that is not possible in traditional logic 

where the input belongs only to one class. However, type-1 FLSs still have uncertainty in their 

inputs because the definition and boundaries of the fuzzy sets are an arbitrary shape that a user 

defined. To solve this problem the field of fuzzy logic expanded the ideas of type-1 and created 

the concept of type-2 fuzzy logic systems. Type-2 FLSs make use of the footprint of uncertainty 

to handle the uncertainty associated with the definition of the fuzzy sets. Consider the 

boundaries defined by a type-1 fuzzy set, if those boundaries are blurred to the left and right, 

the region that is created is the FOU and this represents the possible strength values of 

membership an input can take. 

These concepts of fuzzy logic can be used to create rule-based systems that use either type-1 

or type-2 fuzzy sets. As mentioned before the fuzzy logic system maps input values to linguistic 
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labels. This means that the rules used can be understood by a human. Contrary to the inference 

process of other classifiers or machine learning models where it is not possible for the user to 

understand how decisions are made. This is what makes fuzzy rule-based systems an 

explainable AI model that has the following advantages: 

• It can be understood by humans, so the user can still be involved in the decision process. 

The FRBS becomes a tool for helping users, instead of replacing their decision process 

with a black box machine learning model. 

• It can be modified by humans. When the real-world changes and the model becomes 

old and needs to be re-trained and re-adjusted and labelled training data is not available. 

Human experts can help to tune the generated models, which can reduce the cost of 

acquiring and labelling data. Additionally, if there are gaps in the data and some 

situations are not included then these gaps can be filled by expert knowledge. 

The work presented in the next chapters of this thesis proposes the use of FRBS as classifiers 

for merging information from different sources. The goal is to present an explainable AI 

alternative solution for situations where it is critical for the user to understand the decision 

process and where there is no available data for optimising black box alternatives or the cost 

of acquiring the data is considerably high. 

Before describing how the FRBS is used and how it compares to a black box model, the next 

chapter will describe how to optimise these explainable AI models to be able to achieve the 

best performance.  
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Chapter 3. An Overview of Big Bang – Big Crunch 

Optimisation Strategy 

 

3.1 An Overview on Fuzzy Rule-based Systems Optimisation 

The goal of the optimisation (or tuning) stage in the creation process of a Fuzzy Rule-based 

System (FRBS) is to find the combination of parameters that have the lowest error. There are 

two main approaches for tuning a FRBS: a manual process using expert human knowledge or 

an automatic process using labelled data, i.e., pair of data point where we have input data vector 

and the expected output. It is possible to combine the two approaches in the creation of a FRBS, 

a first design can be done with either approach, then the other approach can tune the parameters 

to find a better configuration.  

According to Mendel [6], there is no such thing as “the FLS” for all problems, there are multiple 

architectural decisions that have to be made every time a FLS is built. Some of these decisions 

are the shape of the membership functions, the use of singleton or non-singleton fuzzifier, t-

norm operation to be used by antecedents and consequences, type of defuzzification process.  

In this thesis the tuning process of any FRBS will focus on the next 3 components. 

1) The shape of the membership functions describing the fuzzy sets and is used to map the 

crisp input values to linguistic labels. 

2) The number of antecedents used in a rule. In case there are too many antecedents per 

rule, some will be removed and inputs from those antecedents will be ignored. This 

help to reduce the dimensionality of the problem. 

3) The last component to be optimised is the number of rules. A high number of rules will 

make the inference process more complex, which results in more computational time 

needed and a less explainable model.  
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The first component is related to the prediction performance of the FRBS. As described in 

previous chapter, the shape of the membership function decides what input values are mapped 

to the linguistic label represented by that function, then the inference process will use the 

linguistic labels to decide the output. Therefore, changing the set of values that are mapped to 

a specific linguistic label will change the output, this can result in a better or a worse 

performance. The objective of the optimisation technique is to find the set of parameters that 

define the shape of membership functions with the best performance. The number of 

parameters and the process of changing them is described in the following sections of this 

chapter. 

The second and third components to be optimised are focused on reducing the complexity of 

the system without affecting its performance. Previously, Fuzzy Logic Systems have been used 

for different applications such as routing [30]–[32], control [8], and computer vision [33], [34]. 

In these applications fuzzy logic has been great for translating the expert human knowledge 

from the real-world to the system. However, there are applications where the FLS will have a 

lot of parameters and it will be unreasonable for a human to define each of them, additionally, 

the more complex the system becomes, the less explainable it is and it becomes difficult for 

the expert human to later on augment (or improve) the inference system of the FRBS [26]. 

Therefore, there is a need to reduce the complexity of the system without sacrificing 

performance. In the following sections of this chapter, a detailed description of how rules and 

antecedents are encoded and optimised is provided. 

 

3.2 Big Bang – Big Crunch Optimisation Strategy 

The Big Bang – Big Crunch (BB-BC) optimisation strategy is an algorithm inspired by the 

“Big Bang” theory in the field of physics, about the creation of the universe. It was presented 

Erol and Eksin in [35] where it was proved to have a high convergence speed and a low 
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computation time when compared to other Compact Genetic Algorithms (C-Gas). In a different 

study [36], BB-BC was compared against Genetic Algorithms (Gas) and Particle Swarm 

Optimisation algorithm (PSO), and it achieved better convergence speed and execution time 

results. Additionally, in that same study [36], it proved to be less dependent on the random 

initialisation of the generations, which helps on reducing the number of candidate solutions 

and iterations needed.  

The use of BB-BC optimisation strategy for fuzzy logic was introduced in [37] and since then 

it has been successfully used for the optimisation of FRBSs in different areas such PID 

controllers [38], machine vision [9], [39], and workforce optimisation [40]. The algorithm 

consists of a simple process with easy implementation, and it can be used for optimising the 

shape of membership functions, the number of antecedents per rule, and the total number of 

rules. This makes it a viable option for tuning any FRBS using real-world data instead of expert 

knowledge. In addition to the simple algorithmic implementation, the encoding process of the 

BB-BC, i.e., the process of generating the numeric vector representation, can also be easily 

implemented and it is an intuitive representation. This adapts to the focus of the thesis of 

exploring explainable AI solutions that can be understood by humans. When using GA’s 

optimisation processes, some of the encoding in those algorithms is based on biological 

chromosomes approaches that cannot be interpreted by humans. A detailed description of the 

step-by-step process of the BB-BC algorithm and how to use it to tune the different components 

is presented in the following sections of this chapter. 

 

3.3 A step-by-step overview of BB-BC process 

The BB-BC algorithm is divided into two main phases: Big Bang (BB) and Big Crunch (BC). 

The former phase is where randomness is introduced as the means for modifying and exploring 

different solutions within the search space [35]. This phase is like any other GA where an initial 
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random population of 𝑁 members is created, it is important to mention that every member (or 

candidate solution) of this population is an independent solution and that there will be two 

constraints for each solution; all solutions should be unique, and all solutions should comply 

with the limits in the search space. 

The big crunch phase is where the convergence to the optimal solution happens. All the 

candidate solutions created in the big bang phase are evaluated using a fitness function that 

measures the performance of each solution based on a specific objective. After all candidate 

solutions are evaluated, they will be ranked and sorted based on their fitness value (the numeric 

result of the fitness function). Then the centre of mass for this generation can be computed 

using the following equation: 

                                                                     𝑥𝑐 =  
∑

1

𝑓𝑖𝑥𝑖𝑁
𝑖=1

∑
1

𝑓𝑖
𝑁
𝑖=1

                               (3.1)[35] 

 

In Equation 3.1, 𝑥𝑖 is a candidate solution generated and 𝑓𝑖 is a fitness value for this candidate 

solution. The optimal solution is believed to be around the centre of mass point and the idea is 

to slowly reduce the search space and converge towards that point. It is possible to use the 

candidate solution with the best fitness value as the centre of mass of the population and make 

the algorithm converge towards that direction. 

The new generation must be created after all candidate solutions are evaluated and the centre 

of mass is calculated (or selected in case of using the best candidate solution of the iteration), 

this means the big bang phase is repeated. However, if another random population is created 

then the algorithm becomes a random search, knowledge of the previous generation is needed, 

other GAs use a combination of members in the population but BB-BC algorithm uses the 

centre of mass [35]. Therefore, the new candidate solutions are created by adding or subtracting 

a random number to the centre of mass. The formula for this is as follows: 
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𝑥𝑛𝑒𝑤 =  𝑥𝑐 +  
𝑙×𝑟

𝑘
   (3.2) [35] 

 

In Equation 3.2, 𝑙 is the limit in the search space, e.g., if the search space goes from 0 to 1, then 

𝑙 = 1. The parameter 𝑟 is a random number between [-1,1], thus, the multiplication of 𝑙 × 𝑟 

will define a positive or negative change to the centre of mass to create the new point. It is 

important to note that search space limits still need to be respected and if the new candidate 

point exceeds the limits, then 𝑥𝑛𝑒𝑤 value is changed to be within the limits to an arbitrary point 

or Equation 3.2 must be repeated until a new candidate point within the limits is generated. The 

parameter 𝑘 is the iteration number of the process, the longer the process is running for the 

smaller the change to the centre of mass will be. This is because the first iterations of the 

process are meant to be for exploring different solutions across the search space, so there will 

be large changes. However, as the number of iterations advances, the process is meant to 

converge towards one of the best solutions found, so the changes are small because the 

assumption of the process is that the best solution will be in the area nearby the current best 

solution. 

 

3.4 BB-BC Algorithm for Membership Functions Optimisation 

For the optimisation process of the shape of membership functions the key part is to encode 

the parameters that define the function in a 1-D numeric vector. This numeric vector will be 

the equivalent to the chromosome in GAs, that are used to represent a candidate solution. The 

proposed encoded representation used in this research was inspired by the encoding process in 

[10], [11], [41], some minor changes were made to make it work with the BB-BC algorithm, it 

was initially presented in [9], [42]–[44].  
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Before describing the encoding process, it is important to mention some assumptions used that 

will help define the scope of this research and provide an idea of what kind of FRBS were 

tested. These assumptions are about the shape of membership functions used in the different 

fuzzy sets, for the number of rules or number of antecedents per rule. The process later 

described will focus on and work around these assumptions. However, guidelines and brief 

descriptions on how to apply this approach to fuzzy sets that do not comply with these 

assumptions will also be provided. The assumptions are: 

1) Each fuzzy set will have at least 2 membership functions. The encoding process 

described in this section is focused on fuzzy sets with 2 or more membership functions 

because some points are going to be overlapped and the process describes how to 

identify which points to use in the vector. Additionally, the presented use cases have 

multiple linguistic labels for each input variable. However, if the BB-BC optimisation 

process is going to be applied to a single membership function, the encoding process 

will be simply using the points described in Fig. 3.1. 

2) First and last membership function in the fuzzy set should be a right angle (or shoulder) 

trapezoid shape. This is to make sure that the degree of membership is 1 at the beginning 

and at the end of the fuzzy set.  

3) All other membership functions between the first and last will have a triangular shape. 

The advantages of using a triangular or trapezoidal shape function instead of other 

functions are: 

a. They are computational efficient. 

b. They reach zero value (unlike Gaussian shape functions). 

c. They have proven to have better or similar performance to functions with other 

shapes [45]. 
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d. And most importantly the focus of this work, is that they are close to human 

intuition and understanding, which makes them a better option for building an 

explainable AI system [26]. 

However, it is important to note that the change in triangular or trapezoidal shape is 

linear, i.e., the function is a straight line with variations of slope. There might be a case 

where this characteristic doesn’t fit the problem to be solved. A further tuning strategy 

for the system will be to try different membership functions' shape. Regardless, 

triangular and trapezoidal shape functions are an adequate starting point for this work 

because of the previously mentioned advantages.  

4) All membership functions in a fuzzy set will have no gaps between their limits, i.e., as 

soon as a membership function in a fuzzy set starts having a membership value less 

than 1, the membership value of the function next to it will be greater than 1, and the 

addition of the membership value of all functions at a given point will always be equal 

to 1.  
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Figure 3.1 trapezoid and triangular type-1 membership function shapes and the points used to encode them represented by a circle. a) 

trapezoid shape, b) triangular shape, c) right angle (or shoulder) trapezoid shape, d) triangular shape encoded with four points instead of 

three. For consistency, the encoded points use same variables from equations 2.1 to 2.5. 

It is important to first understand how each different membership function shape is flattened to 

a numeric vector, i.e., how each function is represented in a set of 2 or more numeric values. 

In Fig. 3.1, the main shapes considered for this research are shown, and a dashed arrow 

indicates which point in the function will be flattened to the vector representation, essentially, 

all points where there is a change in the function need to be captured. If the fuzzy set has a 

combination of triangular and trapezoid membership functions, then a four-point vector is used 

to represent each function, as shown in Fig. 3.1a and 3.1d. If only triangular shape functions or 
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a combination of triangular and right-angle trapezoid (shown in Fig. 3.1c and this can also be 

mirrored), then a three-point vector is used as shown in Fig. 3.1b and 3.1c.  

 

Figure 3.2 Example fuzzy sets with a total of 3 triangular type-1 membership function. a) show how some of the points overlap when there 

is no gap between membership functions. b) show how to encode a fuzzy set when there might be a gap between the limits of membership 

functions. 

Consider having the fuzzy set shown in Fig. 3.2 with 3 triangular type-1 membership functions. 

The dashed lines in the sets of those figures show the points that are going to be used in the 

encoded process. It is possible to see how in Fig. 3.2a there is some overlap between the points 

of the different functions, this is beneficial because it means there are fewer parameters to be 

optimised. This overlap happens when there is no gap between limits of membership functions; 

this is the assumption number 4 previously discussed. In Fig. 3.2b all the points needed to 

encode the fuzzy set are also shown by dashed lines, more points are needed for this fuzzy set 

than in Fig. 3.2a, this is because there is no overlap of points, or there is some gap between the 

limits of the different linguistic labels represented by each membership function, this fuzzy set 

does not comply with assumption 4. The optimisation process that will be described here can 

still be used for those kinds of fuzzy sets, however, there will be more parameters to optimise, 

which may increase the convergence time of the process. 

There are two options to create the initial population of candidate solutions: 

1) Use human expert knowledge on where the limits of the membership functions 

should be. 
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In this case, the human expert defines the numeric limits of each linguistic label. The expert 

should provide 4 points within the possible search space:  

• First point is the low confidence lower limit, where the membership value starts to be 

greater than 0.  

• Second point is the high confidence lower limit, where the membership value is equal 

to 1 for the first time.  

• Third point is the high confidence high limit, this is the last point in the function where 

the memberships values are equal to 1.  

• Fourth point is the low confidence high limit, this is the point in the fuzzy set where the 

function ends and where the membership value becomes 0.  

These four points are previously described in Fig. 3.1 and are needed for any triangular or 

trapezoid membership function shape 

2) When there is no human expert knowledge available, an equally distributed vector 

of points can be created as the first fuzzy set, or it can be a random set of points. 

There might be a case where human expert knowledge is not available, but there is data 

available to create and optimise a FRBS, this is the second option for initialising the 

candidate solutions. The proposed approach is to calculate the number of parameters 

needed to represent the fuzzy set and then equally distribute the points across the set.  

The following equations can be used to calculate the number of parameters needed for fuzzy 

sets that comply with the 4 assumptions stated before. 

 

# 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  𝑃 + 2   (3.3) 

 

Equation 3.3 is for calculating the number of parameters needed when the fuzzy set uses type-

1 membership functions. 𝑃 is the number of membership functions in the set.  
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# 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑃 ∗ 3   (3.4) 

 

Equation 3.4 is for calculating the number of parameters needed when the fuzzy set uses 

interval type-2 membership functions. 𝑃 is the number of membership functions in the set.  

There are two constraints that need to be considered when creating the vector representation of 

each candidate solution: 

1) First and last points of the vector will always be equal to the lower and upper limits of 

the search space. This guarantees that all valid crisp input values will be mapped to a 

linguistic label.  

2) Every other point in the vector cannot have an equal or lower value than the point before 

it, and it cannot have a higher value than the point next to it.  

Having described the encoding process of the membership functions, here is a summary of the 

BB-BC optimisation steps applied to membership function tuning. 

Step 1. Create an initial population of 𝑵 candidate solutions. Make sure every 

candidate solution complies with the two previously mentioned constraints. 

Additionally, if human expert knowledge is available, one of the initial candidate 

solutions can be designed by expert knowledge and let this solution compete against 

the others in the optimisation process. 

Step 2. Evaluate all candidate solutions. Each candidate solution needs to be 

converted from a vector representation to a fuzzy set, and a FRBS must be created using 

these fuzzy sets. Testing data is passed through the FRBS to evaluate the performance 

(using an appropriate error metric depending on the problem). Regarding the rules of 

the FRBS, if there is already an existing rule base defined by a human expert this can 

be used, if there is no rule base available then one must be created using rule modelling 
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techniques to extract the rules from the data using the fuzzy sets defined by the 

candidate solution.  

Step 3. Choose the centre of mass for the generation of candidate solutions. The 

proposed approach is to use the best candidate solution as the centre of mass. A 

historical best solution can be saved, and the centre of mass of each generation will be 

compared against this historical best solution and replaced if it performs better. 

Step 4. A new generation of candidate solutions is created using the centre of mass 

and the Equation 3.2 described in the previous section. For example, if the centre of 

mass has 5 points, Equation 3.2 will be used 5 times, one time for each point in the 

vector representation. If the 𝑥𝑛𝑒𝑤 does not comply with any of the two constraints than 

another value must be generated until a valid number is created or an arbitrary value 

should be assigned, e.g., the value becomes equal to the previous point. Additionally, 

invalid values can be accepted if they are identified in the evaluation section and a 

fitness value of zero is automatically assigned to this candidate solution, this way the 

BB-BC algorithm will get rid of these invalid solutions.  

Step 5. Repeat steps 2 – 4 until a valid stopping criterion is met. A stopping criterion 

can be finding a candidate solution with an acceptable performance level or reaching a 

maximum number of iterations in the algorithm. 

Essentially, the optimisation process described above is trying to find the distance between the 

dashed lines shown in Figure 2 that will result in a FRBS with the lowest error value. This is 

the automated evolutionary approach of what a human normally will do by trying to shift the 

limits of the linguistic labels and then test how the FRBS performs under the new limits.  

 



53 
 

3.5 BB-BC for Rule Optimisation 

The optimisation process for the rules in a FRBS is described in this section. The inference 

engine of a FRBS consists of if-then rules using linguistic labels as antecedents and 

consequences. The advantage of this inference engine over the opaque machine learning or 

prediction processes is that it can be easily interpreted and augmented by humans, which means 

that an expert human can use their expertise to cover gaps in the data [26]. However, this 

advantage is only true if the inference engine remains simple enough for a human to understand 

it. One of the reasons why the FRBS lost popularity was that they tend to suffer from the “curse 

of dimensionality”, i.e., a FRBS solution for a problem with a large number of input features 

will end up with a large rule base and rules with a large number of antecedents [26]. The issue 

is that, as the complexity of the rule base of the inference engine increases, the more difficult 

it becomes for a human to understand the model, which ends up turning the FRBS in a black 

box model.  

Therefore, optimising the number of rules and the number of antecedents per rule is key to 

maintain the transparency of the FRBS. In this section an optimisation process is presented, the 

goal of this process is to reduce the complexity of the inference engine of a FRBS while 

maintaining (or sometimes even increasing) the performance. The process presented here was 

inspired by the work in [10], [41], [46], [47], where the authors used evolutionary algorithm to 

find the reduced rule base with the best performance. Their process was adapted to work with 

the BB-BC algorithm, the main step is to define the encoding process for the rules and the rest 

of the steps are very similar to the previously described BB-BC process for membership 

functions optimisation in section 4.2. 
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3.5.1 Rule Similarity 

It is important to first understand the concept of rule similarity, to then understand the complete 

rule base optimisation process. Rule similarity is a numeric measure of how similar two rules 

are, and it is completely based on the linguistic labels used by the antecedents of the rules. The 

rule similarity measure will help us with two things: 

1) To help the BB-BC optimisation algorithm make small and big changes to the 

rules. It is necessary to guarantee that a small change of a rule will result in a similar 

rule and not a completely different rule, if not the BB-BC algorithm will become a 

random search of the best rules. The rule similarity measure will help us control these 

changes. 

2) To select a rule when none of the existing rules in the rule base were fired by the 

input. There must be at least one rule fired for the FRBS to be capable of giving an 

output. However, after reducing the number of rules in the optimisation process, there 

might be the case where an input value does not match with any of the rules that were 

left, in this case the best thing to do is find the most similar rule and used it predict an 

output for the given input. 

The possible linguistic labels for each antecedent must be encoded using an integer number, 

this is done by assigning the lowest integer value to the linguistic label that covers the lowest 

crisp input values, and then sequentially assigning the next to the next linguistic label. For 

example, a fuzzy set with linguistic labels low, medium, and high, can be encoded as {1=low, 

2=medium, 3=high}. The previous encoding process is done for each input variable fuzzy set. 

Then, the similarity measure between two rules can be calculated using equation 3.5 presented 

in [10], [46]: 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑖, 𝑅𝑗) =  ∏ (1 −
𝑎𝑏𝑠(𝑉(𝑅𝑖)−𝑉(𝑅𝑗))

𝑁𝐿𝑘

𝑛
𝑘=1 )   (3.5) 
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𝑅𝑖 and 𝑅𝑗 are two rules from the rule base, each of them has 𝑘 antecedents. The value 𝑁𝐿𝑘 

represents the total number of linguistic labels for the antecedent 𝑘, in the case of {low, 

medium, high} the value of 𝑁𝐿𝑘 = 3. The highest similarity value is 1, i.e., the rule similarity 

value of a rule against the same rule is 1.  

For example, consider having two fuzzy sets 𝐴1𝑎𝑛𝑑 𝐴2, both antecedents have 3 possible 

linguistic variables {𝑙𝑜𝑤 = 1, 𝑚𝑒𝑑𝑖𝑢𝑚 = 2, ℎ𝑖𝑔ℎ = 3}. Now consider the following three 

rules: 

𝑅1 = 𝐼𝐹 𝐴1 𝑖𝑠 𝑙𝑜𝑤 𝐴𝑁𝐷 𝐴2 𝑖𝑠 𝑙𝑜𝑤 𝑇𝐻𝐸𝑁 𝐶1𝑖𝑠 𝑋 

𝑅2 = 𝐼𝐹 𝐴1 𝑖𝑠 𝑚𝑒𝑑𝑖𝑢𝑚 𝐴𝑁𝐷 𝐴2 𝑖𝑠 ℎ𝑖𝑔ℎ 𝑇𝐻𝐸𝑁 𝐶1𝑖𝑠 𝑌 

𝑅3 = 𝐼𝐹 𝐴1 𝑖𝑠 𝑚𝑒𝑑𝑖𝑢𝑚 𝐴𝑁𝐷 𝐴2 𝑖𝑠 𝑙𝑜𝑤 𝑇𝐻𝐸𝑁 𝐶1𝑖𝑠 𝑋 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅1, 𝑅2) = (1 −
𝑎𝑏𝑠(1−2)

3
) × (1 −

𝑎𝑏𝑠(1−3)

3
) = (1 − .33) × (1 − .66) =  .228  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅1, 𝑅3) = (1 −
𝑎𝑏𝑠(1−2)

3
) × (1 −

𝑎𝑏𝑠(1−1)

3
) = (1 − .33) × (1) =  .67  

 

In the previous example the similarity of 𝑅1 with the other rules is calculated and it can be seen 

that 𝑅1 𝑎𝑛𝑑 𝑅3 are the most similar rules, which is expected since both rules have the same 𝐴2 

linguistic value and the two linguistic labels in 𝐴1 are next to each other in the fuzzy set.  

 

3.5.2 Optimisation of the Rule Base 

The total number of rules and the total antecedents per rule can be optimised at the same time, 

this means that there are two inputs for the rule base optimisation process, an integer 𝑇𝑅 which 

is the maximum number of rules allowed in the rule base, and another integer 𝑇𝐴 which is the 

maximum number of antecedents allowed per rule. To do so: 
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Step 1. Create the search space, this is a list of all possible rules for the rule base. When 

creating this list, it is necessary to include an additional linguistic label for each antecedent, 

this linguistic label will be “empty”, which means that any rule that has an “empty” linguistic 

label in any of its antecedents, those antecedents should be removed from the rule. This way it 

is possible to create rules, that comply with the 𝑇𝐴 parameter. All rules that have number of 

antecedents greater than 𝑇𝐴 will be removed from the list.  

Step 2. Sort the list so that all similar rules are close to each other. The similarity measure 

will help us to do this sorting. A dummy empty rule will be created, and it will be used as the 

base rule, i.e., the similarity between this rule and other rules will be calculated, each rule will 

have a similarity value assigned and they will be ranked based on this similarity. For example, 

consider having two fuzzy sets 𝐴1 and 𝐴2, both with the following 3 linguistic labels 

{𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ}. In step 1, “empty” linguistic label is added, which results in the sets 

being {𝑒𝑚𝑝𝑡𝑦 = 1, 𝑙𝑜𝑤 = 2, 𝑚𝑒𝑑𝑖𝑢𝑚 = 3, ℎ𝑖𝑔ℎ = 4}. Then, the following rule is created: 

𝑅1 = 𝐼𝐹 𝐴1 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝐴𝑁𝐷 𝐴2 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 

A similarity value between 𝑅1 and all other rules is calculated by following the process 

described in the previous section. Then the search space of possible rules is sorted based on 

this measure from highest to lowest. 

Step 3. Create the candidate solutions for the BB-BC population. Each candidate solution 

represents a possible set of rules for the rule base of the FRBS. The candidates are encoded in 

a 1-D vector of size 𝑇𝑅 that contains integers from 1 to 𝑁, where 𝑁 is the total number of 

possible rules in the search space, each integer in the candidate solution vector refers to the one 

index in the list of possible rules. For example, a candidate solution might have the integer 1, 

this means that the first rule in the list of possible rules is included as part of this potential set 

of rules. 
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Step 4. Evaluate each of the candidate solutions. For each candidate solution, create a rule 

base using the list of all possible rules, only select the rules with an index value that is included 

in the candidate solution. Use this rule base in a FRBS and evaluate the performance of the 

FRBS by using an appropriate error metric for the problem. Only create one rule inside the rule 

base for repeated index values. 

Step 5. Choose the candidate solution with the best performance as the centre of mass.  

Step 6. Create the next generation of candidate solutions by using Equation 3.2 (presented 

earlier in this chapter) and the centre of mass chosen in Step 5. The 𝑙 parameter of Equation 

3.2 will be equal to the total number of possible rules in the search space and the 𝑥𝑐 parameter 

will be the integer that is being modified from the centre of mass. The idea is that the algorithm 

explores different combinations of rules by making big changes and as the iterations of the 

algorithm progress the changes will become smaller which means that a rule will be changed 

for similar rules because the search space is sorted by similarity. If the same rule index is 

selected multiple times, then there are some options: 

1) Keep adding 1 to the value until a non-duplicate rule index is found.  

2) Use Equation 3.2 to calculate another 𝑥𝑛𝑒𝑤. 

3) Leave the duplicate inside the candidate solution, duplicates should be ignored in step 

4, there should not be duplicated rules when evaluating the rule base.  

Step 7. Repeat steps 4 – 6 until a stopping criterion is met.  

The process is very similar to the process for tuning membership functions, the main two 

differences are: a) how the rules are encoded and b) how the search space of rules is 

represented.  

This concludes the chapter on how to optimise some of the main components of a FRBS to 

increase its performance and avoid the “curse of dimensionality”.  
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3.6 Discussion 

This chapter presented the Big Bang-Big Crunch optimisation strategy as the selected approach 

for finding the set of parameters that creates FRBS with the lowest error metric or highest 

performance value. The BB-BC is an easy to implement algorithm that consists of two main 

phases: big bang and big crunch. The goal of the former phase is to search the universe of 

possible solutions and the goal of the latter phase is to slowly converge toward the optimal 

solution. In the first phase new candidate solutions are created and in the second phase solutions 

are evaluated to be able to select the one with the best performance.  

This optimisation process is used for the following 3 components of a FRBS: 

1. Shape of the membership functions in the different fuzzy sets. 

2. The number of antecedents in a rule. 

3. The total number of rules in the rule base used by the inference engine.  

The goal of optimising the first component is to reduce the error of the FRBS. On the other 

hand, the main goal of optimising the second and third components is to prevent an increase of 

the complexity of the FRBS. A larger number of rules or a larger number of antecedents per 

rule increases the complexity of the inference engine which results in a loss of interpretability 

of the system.  

It is necessary to encode the FRBS parameters in a one-dimension numeric vector to be able to 

apply this optimisation process. The encoding process of the FRBS for each component 

optimisation was described in this chapter.  

The described process in this chapter will be used in the following chapters to find the best 

configuration of parameters for the different FRBSs. The next chapters present the concepts 

related to digital twins to be able to understand what kind of information is processed by the 

optimised FRBS. 

 



59 
 

  



60 
 

Chapter 4. An Overview of Digital Twins and their 

Applications 

 

4.1 The Concept of Digital Twins 

Digital Twins (DT) tackle the challenge of operating, maintaining, or improving processes and 

systems remotely based on the concept that high-fidelity virtual models can mirror real-world 

physical assets using real-time data. Currently, state-of-the-art use cases for DTs have been 

explored in manufacturing, automotive, aerospace, construction, and the built environment.  

It is difficult to define the concept of digital twins (DTs), everyone in the industry seems to 

have a different understanding or a different implementation of what they believe a digital twin 

is, in recent years it has become more of a buzzword than an actual concept. I want to highlight 

the idea that a DT is a concept for modelling physical objects in a digital environment, it is not 

a specific tool, computer system, or algorithm, that can be bought by a company as a solution 

for the challenges in their processes. The DT concept was first introduced by Grieves in the 

early 2000s as the idea of gathering from all available sources the data of a single object and 

centralise it in a digital representation (in recent years, a 3D model has been used) of the 

physical object [1]. The concept continued to evolve over the years, and although it remains a 

broad concept, the following three core components have been defined as a requirement of 

every digital twin [1], [48]: 

1) Physical asset or entity. This is the object of interest that is going to be linked to a digital 

representation. It can be any physical object that the users want to monitor, e.g., a 

computer server, a building, a car, or even simple bench in the park. 

2) Digital representation or entity. This is the “twin” of the physical object, and it belongs 

only in the digital environment, hence the name “Digital Twin”. This entity normally 
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has a 3D model associated with it, which is an exact replica of the latest state of the 

physical object. However, the important aspect is to centralise all the information that 

fully describes the physical object [2], the lack of a 3D model for visualisation purposes 

does not stop the possibility of having a DT. This digital entity acts as a centralised 

digital database of all the information of the object, instead of having the information 

spread across different tables in one or more traditional databases. It is a different way 

of modelling real-world object.  

3) Bi-directional connection between both entities. Both “twins” (physical and digital) 

must be connected and capable of exchanging information. A digital twin is useless if 

it does not have the latest state of the physical asset, updates from the physical to the 

digital world should be possible. In a similar way, any change in the configuration of 

the DT must be transmitted to the physical object which needs to reflect the desired 

new configuration. This is where current technologies such as Internet of Things (IoT) 

sensors and fast-internet connections (such as 5G) help establish a connection between 

and make the DT concept possible [48]. This is the most relevant component that 

defines if both entities can be considered digital twins or not. 

The concept of digital twins was created with the idea of modelling in the virtual world a 

physical object and using the digital twin to reduce the cost of tasks that require the physical 

object. It is now possible to simulate forces on the object over time, test changes on any 

property, or simply monitor the object remotely, all of this by using the digital twin [2]. Before 

these were high cost (both in time and money) tasks that required an interaction between human 

and object, e.g., building a replica of the physical object to test if the current design can resist 

cold temperatures.  
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4.1.1 Maturity Levels of Digital Twins 

The basic definition of a digital twin is not specific, if the 3 components exist then it can be 

considered a digital twin. However, it is not the same a digital twin with an automated bi-

directional connection and a digital twin that requires a manual process in its connection. The 

definition has continued to evolve and in [49] a 3-level classification of digital twin was 

proposed. This classification considers the different maturity level and it consists of the 

following new concepts: 

• Digital Model. This consists of a digital replica of a physical object, the digital 

representation is linked to the physical object, however, the communication process 

between elements is not automated. A manual process tends to be a high-cost process 

which means that in terms of costs it does not offer all the benefits of a digital twin.  

• Digital Shadow. This is when there is an automated connection between the physical 

and the digital object that goes from the physical world to the virtual world. It is mostly 

a connection to keep the digital object up to date, however, the digital object does not 

pass any information to the physical object or is not an automated process.  

• Digital Twin. This is the last level of maturity, it is achieved when both directions of 

the connection are automated, this considerably reduces the need for human 

intervention which reduces the cost of maintenance.  

The digital twin maturity level is the ideal scenario, but it does not mean that a digital model 

or digital shadow is useless, actually, if a correct manual process is in place, then the 

functionality of the first two levels can be almost the same as a digital twin, however, the cost 

will be greater. Additionally, each level builds on top of the previous which means that in a 

later stage a digital model can become a complete digital twin. The main use case of a digital 

model or digital shadow is to provide context information to an existing digital twin or for 
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monitoring purposes, where the information of the latest state of the physical object is the only 

thing needed. 

 

4.1.2 Twinning Rate of Digital Twins 

Another important concept of digital twins is the twinning rate. Twining is the act of 

synchronising the virtual and the physical objects, therefore, twinning rate is a value that 

describes how often this synchronisation process is triggered [50].  

 

 

Figure 4.1. The synchronisation process between the digital and the physical objects, proposed by [50]. 

Fig. 4.8 shows the synchronisation process between the virtual and the physical environments. 

Between the two entities, there are two stages: metrology and realisation. Metrology refers to 

the capturing of data and is normally done in an automated way through sensors. Realisation 

refers to processing the recently captured data and updating the twin (either digital or physical).  
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4.1.3 Mixed Reality Environments for Digital Twins 

By definition a digital twin is a 3D replica of a physical object that lives in the virtual world. 

There is a natural need to be able to visualise and interact with this digital replica, therefore, 

technologies that connect the physical and the virtual world are needed.  

 

 

Figure 4.2. Reality-Virtuality Continuum proposed by [51]. 

 

Fig. 4.9 shows the reality-virtuality continuum proposed by [51], in there he defines the 

concepts of mixed reality (MR), augmented reality (AR) and virtual reality (VR). MR is an 

overall concept that covers everything in between the real and the virtual world, i.e., if in the 

user's view there is a combination of both worlds, it is considered a mixed reality application 

[51]–[54]. In this broad spectrum an important concept called augmented reality can be 

found, AR overlays information from the virtual world to the user’s view and it is the closest 

point in the continuum to reality, and the interaction with the objects tends to be limited [52], 

[53]. AR applications make use of screen displays to show additional information and also of 

tracking techniques to understand the user’s environment and to save the location of the 

virtual information displayed [55]. As shown by the continuum in Fig. 4.9, VR is one of the 

ends of it and it is characterised by completely removing the real-world from the user’s view. 

This is normally achieved by headsets that completely immerse the users in a new view. MR 

technologies are the perfect partners for DTs, they merge both realities, therefore, they can 

merge both twin objects in a single view for the user. Additionally, VR technologies can 
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display only the digital twin and allow to visualise a replica of the physical object remotely. 

MR technologies are currently being used for training purposes [56]–[59]. However, there is 

also research looking at field engineers accessing virtual information on-site through MR 

technologies [60]–[62]. 

 

4.1.4 Handling 3D Objects Rendering in Mixed Reality Environments 

One of the challenges of using MR technologies during outdoors tasks is that 3D models can 

be considerably large, and the hardware devices will not be capable of loading them, 

especially the MR or AR devices that are not connected to an external processor and have 

limited memory such as the Microsoft HoloLens shown in Fig.4.10. 

  

Figure 4.3. Microsoft HoloLens. 

To address this situation a type-1 FRBS was proposed to handle the loading of 3D objects 

into the user’s view [63]. The FRBS uses the following 4 input variables: 

• Average frame per second (FPS) rate, provided information on the performance at 

runtime.  

• Distance of the next object to the user’s location. 

• The memory usage of the device.  

• Download speed available for the device. 

The membership functions and the rules were created using expert knowledge and a heuristic 

approach.  
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The value of using a FRBS is that it understands when to reduce the number of requests and 

when to increase them based on the computing power of the device. When compared to a 

static loading process using non-fuzzy heuristic rules the performance of the application was 

2.33 times worse.  

As the computational power of the hardware increases this solution will no longer be needed 

but for now it helps to keep the application running at a better FPS rate than when having a 

static load of objects. 

 

4.2 National Digital Twin 

For the built environment, many companies and governments are looking at digital 

transformation programmes to create large-scale digital twin ecosystems towards delivering on 

the grand challenges facing society, including sustainable development, efficient urbanisation, 

population growth, and escalating infrastructure costs [64]. For example, the UK’s National 

Digital Twin programme (NDTp) aims to enable better use, operation, maintenance, planning 

and delivery of national and local assets, systems and services to benefit the country’s society, 

economy, business, and environment [3], [4]. Similarly, Singapore’s National Research 

Foundation (NRF) launched Virtual Singapore, an authoritative 3D digital twin platform to 

enable tools and applications for test-bedding, planning, decision-making and research to solve 

emerging and complex challenges for Singapore [65].  

Digital twins present a significant opportunity to model an organisation’s assets, services, and 

operations. Utility companies are crucial stakeholders in these objectives due to their 

significant investment and ownership of infrastructure assets. They own many assets that 

expand over extensive areas, from towns to cities and even different countries. These 

companies have multiple information about their assets, from location to their latest status. 

However, a big challenge is that data comes from many sources and is presented in many 
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formats, adding to the interoperability challenge. For example, a great deal of the information 

is 2D, from digitalised floorplans (CAD) to paper schematics. A survey from [66] showed that 

89% of the companies use GIS databases to store the location of their assets, but only 19% use 

3D enabled frameworks (such as Building Information Modelling or BIM) to map the physical 

assets in buildings. From the telecommunication industry perspective, 2D network schematics 

contain assets’ location and cables routes from geolocated points A to B. However, the 

information can become complex when managing assets in extended areas. Furthermore, 

traditional 2D CAD plans and schematics show assets’ location, lacking context information 

or historical data. Whilst decisions might be made via 2D data, a 3D digital twin provides visual 

confirmation and spatial context, making it easier for end-users to understand what, where, and 

why the work is required. 

A DT of the telecoms network and its assets can be fundamental for understanding the network, 

assisting in monitoring and optimising the operation and maintenance of physical assets, 

systems, and processes during onsite and remote tasks [66], enabling better-informed decision 

making and leading to improved outcomes in the physical world. This could translate into 

operational cost reduction and better service for customers. Despite these benefits, the 

implementation of digital twins for service and operations is not widespread. The challenges 

include:  

a) Model context-aware DTs using different data sources with different data formats. 

Multiple data sources are needed for creating accurate DT. Each data source should 

constantly feed information into the DT to keep it updated. Data that can be used include 

geolocated data, BIM models for information about manufactured structures, satellite 

images to identify elements of interest in an area, and existing network assets’ 

databases. This thesis proposes extracting elements and information of interest from 
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each data stream to create standard 3D objects that encapsulate relevant information, 

which virtual or augmented applications can use. 

b) Create DTs capable of interacting with each other. The ability of a digital twin to 

communicate with other digital twins will provide the model with context and allow it 

to react to changes around it. This is the first significant step towards creating 

autonomous digital twins [67].  

c) Enable better interaction between DTs and their end-users. Immersive 

technologies, such as Augmented Reality (AR) and Virtual Reality (VR), can visually 

present rich, volumetric data, which, combined with context-aware models, can allow 

users to access specific data when they need it. These solutions relieve cognitive 

overload, promote knowledge generation, and provide decision-making support. 

Creating relevant solutions requires a collaborative process of building context through 

the user and the system, keeping humans in the loop, and providing a more natural 

interaction between the user and system [68]. VR and AR interfaces could enable 

interactive data visualisations to support users with domain-specific tasks.  

Existing research on digital twins for service and operations focuses on using one source of 

information (e.g., BIM) to visualise assets during onsite tasks[61], [69], or to monitor the 

construction process and assets’ deployment [60]. However, there is a lack of research on the 

creation of context-aware digital twin assets in a geographic area using multiple data sources. 

This thesis proposes a processing pipeline to create 3D digital twins for elements of interest in 

a geographic area, merging data from different sources and visualising their latest state. The 

principal benefits of this approach are twofold:  

a) Unify models. Since the digital twin can consume data from different sources (e.g., 

terrain data, BIM data, satellite images, and network assets’ location), it would create a 

unified 3D digital twin of an area with all the available information. Each data stream 
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can feed the DT with the latest information to keep the digital twin updated. Context 

information around the network is added to the 3D twin by merging multiple data 

streams. This allows the users to visualise and run simulations on how the surroundings 

will interact or affect the assets.  

b) Onsite assets visualisation. Field engineers in maintenance tasks use a variety of data 

sources, from CAD plans and databases to traditional paper-based documentation. This 

represents a challenge for end-users because of how the information is conceptually 

presented in the documents (i.e., without context) and because these documents are 

rarely updated since their creation. Our proposal includes a 3D spatial visualisation 

presented to the field engineer through augmented reality headsets which can better 

support surveyors and field engineers, reducing maintenance tasks time. 

Chapters 5 and 6 present our work related to the creation of a Network Digital Twin and how 

this is not only a virtual representation of the network assets but also needs to include additional 

context information and interoperability with other digital twins to become a fully functional 

NDT. 

 

4.3 Discussion 

This chapter introduced the concept of digital twins, which describes the idea of modelling and 

centralising the information of a physical object in a 3D digital model located in a virtual 

environment. Every digital twin consists of at least the following components: 

• The physical object being modelled. 

• Virtual representation of the physical object, normally using a 3D object of the actual 

object since visualisation is a big part of the DTs. 

• A connection between the digital and the physical object. This connection is used to 

keep both sided updated and to influence the state of their twin. 
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This definition does not consider the scenarios where there is a 3D replica of the physical object 

without a bi-directional connection. The concept has evolved over the years and new 

definitions were proposed to describe the different levels of maturity of a digital twin.  

• Digital Model. A virtual representation of a physical object, however, there is no 

connection between objects, or the connection is a manual connection.  

• Digital Shadow. A virtual representation of a physical object. There is a connection 

between both objects, but it only goes from the physical to the virtual world.  

• Digital Twin. The highest level of maturity is achieved when there is a real-time bi-

directional connection between both objects.  

The difference between levels is how much automated the exchange of information is, the 

capabilities of a digital model can be the same as a digital twin, if a manual process for 

exchanging information exists. The issue is the cost of using just digital models because manual 

processes tend to have a high cost, hence why digital twins are preferred.  

Since each level builds on top of the previous a digital twin can start as a digital model and as 

it matures it will become a complete digital twin. This concept is important for the rest of the 

thesis because most of the data processing work that will be presented is to generate digital 

models or digital shadows, the idea is to get to achieve digital twin maturity level, but this will 

not be possible in all scenarios, and it does not mean that the output is useless. Having a digital 

model of an object is enough in cases where the state of the physical object does not change 

often and a semi-automated or manual process for exchanging information is enough. 

Additionally, the main purpose of these type of models is to serve as a context information in 

a virtual environment that contains multiple digital twins. Furthermore, an automated process 

for creating digital models from 2D data will reduce the manual cost of creating them.  

A utility company can use its information and sensors in their assets to create a digital twin of 

their network. Additionally, this can then be improved by including digital models, digital 
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shadows, and digital twins of physical objects surrounding the network assets, this is the idea 

of a network digital twin. Furthermore, combining the network digital twin of all utility 

companies will create a virtual environment with all the information of the physical 

infrastructure of a country and it will enable better collaboration between stakeholders. This is 

the idea of the National Digital Twin concept also introduced in this chapter. 

The work presented in the following chapters of this thesis seeks to automate the process of 

creating the digital models and digital shadows of physical objects that interact with the 

network assets and include them in a virtual environment where the network digital twin will 

be. The next chapter starts by identifying and extracting the vegetation in satellite images to 

create a digital model that will be connected to the network digital twin. 
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Chapter 5. Processing Satellite Images to Create Digital Twin  

5.1 Context Information for a Telecommunications Network Digital Twin 

A network digital twin (NDT) for a utility company is a concept inspired by the idea of a 

National Digital Twin [3]. The idea is to create a digital representation of all the different assets 

that are part of the network, e.g., for British Telecom (UK’s main telecommunications 

company) the assets modelled will be cables and distribution points (such as green cabinet 

outside houses or an exchange, i.e., a site with the server racks). The network digital twin will 

be stored in the cloud and objects will be loaded to a virtual environment when a user wants to 

access it.  

This will shift the paradigm used by utility companies to store their data, now every asset will 

be represented and have all the information centralised in the object. This will be a complex 

task that will require abandoning the legacy database systems with thousands of tables and 

moving to a virtual map of the network.  

For a digital twin to reach its full potential it is necessary to have communication with other 

DTs. It is not enough to create a 3D model representation of a physical asset, placing those 

models in a virtual environment and feeding them with all the available information. That will 

be enough for a detailed visualisation of the network and to run simulations of how changes 

within the network will affect only the objects inside the network. The DT needs to be capable 

of communicating with nearby DTs to understand how internal changes affect the external 

environment and vice versa. This is when contextual information takes an important role in 

maximising the value that a DT can bring to a company.  

There are two types of contextual information for a digital twin: 

1) Communication between DTs located nearby to each other. For example, exchange of 

information between the network digital twin from the water service company and the 

telecommunications company will improve the simulations each of the DTs does.  
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2) Environment objects that are not necessary already a DT. These objects have an impact 

on the NDT but are modelled as a property in the DT objects. Additionally, it can even 

be modelled as some digital model or digital shadow (DT maturity levels) that will be 

part of the virtual environment of the NDT. Still, it doesn’t reach the maturity level of 

a digital twin. 

 

Figure 5.1. The type of information used to build the network digital twin and a high-level view of the steps needed to visualise it in the 

virtual environment. 

Fig. 5.1. shows the proposed processing pipeline to create a digital twin from a geographic area 

using different data sources. The different stages of the pipelines are described in the following 

subsections. 

5.1.1 Input Data Streams 

The first stage of the proposed approach is to read the available data for the network assets. 

One of the goals of creating this Digital Twin is to visualise the interaction of the network 

assets with surrounding elements. Multiple data sources are used to provide context. There are 

two main types of data: 

1) Structured network assets data. This refers to any information about a specific asset 

available in existing company systems (e.g., databases) and can include assets’ type, 

ID, geographic location and historical data.  
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2) Context information. This refers to information in assets surroundings. In this thesis, 

three sources of information are considered when defining scope of the data processing 

work to be done.  

a. Terrain data. This is a simple context information which will be needed by the 

digital twin to do some more advanced simulations. However, this data is 

included in the object as a property, e.g., terrain elevation at the location of the 

asset.  

b. BIM models. Building information is essential for connecting the outside 

network with the in-building network, understanding where the network assets 

are in the building and helping field engineers with their tasks. This is further 

discussed in the next chapter.  

c. Satellite images. Satellite images are a good and cheap source of information 

about the objects in a geographic region. Processing this type of 2D data is the 

focus of this chapter. The idea is to extract the information about vegetation in 

the area and create a 3D object of it in the virtual environment with the network 

digital twin. 

5.1.2 Extracting Objects of Interest 

During this stage, the information received from the data streams is processed to extract only 

the elements of interest. Each data stream is processed differently. This allows us to transform 

and unify the data into the 3D DT.  

Satellite images require the most complex processing because computer vision techniques are 

required to find the objects of interest. For our use case, we identified all the trees in specific 

areas, adding context to our DT from these images. This will help users identify if there are 

trees in the way of an underground network route and if further analysis is required to determine 

if the overgrowth of the trees might damage the closest assets. To do so, we used semantic 
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segmentation to identify pixels that belong to trees. After that, “tree pixels” are merged in a 

single cluster of pixels and finally transform the trees’ position in the image to a 3D spatial 

position.  

 

5.1.3 Pairing Objects of Interest to its Virtual Representation 

The next stage creates a 3D representation of every information element extracted from the 

data streams. These 3D objects contain metadata such as their geolocation, position within the 

virtual representation, properties, and any available historical information.  

 

5.1.4 Updating the 3D Digital Twin 

The 3D objects created in the previous step are stored and further updated or presented in the 

3D visualisation. For example, in our use case, every tree identified in the satellite images is 

saved as a 3D object, terrain data is saved as tiles, and assets and elements in BIM models are 

saved independently from the others. 

 

5.1.5 Visualising the 3D Digital Twin 

The information produced in previous steps can be presented to end-users via VR-enabled 

devices for remote visualisation or AR devices for onsite visualisations. One of the current 

challenges for these devices is to load significant amounts of data in real-time due to their 

limited processing capabilities [70]. The proposed system explores loading the elements 

spatially closest to the user first and changing the number of elements loaded per frame based 

on the device capacity [63]. 
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5.2 Extracting Vegetation Information from Satellite Images 

 

5.2.1 Building a 3D Map of Trees in a Geographic Area 

In utility companies the remote network planning engineers are responsible for two main tasks: 

1) deciding the best route for new network assets and 2) scheduling maintenance of the current 

network assets. For these two tasks one of the obstacles or hazards is the vegetation (such as 

trees) in the area where the network assets are located. For example, consider the following 

two use cases: 

1) Planning the deployment of new network assets requires a field engineer to evaluate 

the area where the cable is going to pass through. Currently, this is done manually by 

field engineers that are sent to survey and evaluate the area. This is a high-cost task for 

the company, both in field engineer time and money. The reason for doing this is that 

before starting or scheduling any works in the area the company needs to guarantee that 

it is possible to have a cable or cabinet there without damaging any other elements in 

the area. Trees are some of the objects that delay the deployment of new assets because 

they are on the way to the planned route and a long process for removing trees must be 

started or a new route must be found.  

2) Other scenario is of existing overhead cables, i.e., the cables are routed in the air by 

using poles. There are situations when trees grow so much that they become a hazard 

to the cables between poles and cables might get damaged. There is a maintenance task 

that needs to be scheduled to trim the tree. This kind of hazard problem can also happen 

with underground cables and the roots of the trees; however, this is not common 

because during the planning phase cables are not routed close to any trees.  

The idea is to identify all the trees nearby network assets and create a digital representation that 

can be included in the NDT as context information of external objects of interest. Having both 
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type of objects sharing a virtual space will allow for advanced simulations and smart planning 

of the deployment of network assets.  

The challenge of creating this 3D digital twin of trees in a geographic area is to find data at a 

low cost. Using people to survey the area is not an option since it has a high cost in time and 

money, and to keep the model updated it will require revisits to the area, which again is a high-

cost task. One of the cheapest sources of information is 2D satellite images, they can also be 

obtained easily through automated drones, therefore, the cost of keeping the data updated is 

low when compared to sending a field engineer to the area.  

 

5.2.2 Semantic Segmentation of Satellite Images 

Analysing the satellite images using computer vision techniques can help to automate the 

extraction of information about trees in a geographic area. This information can then be used 

to automatically create a digital representation of the tree in a virtual environment. Previous 

research in this area includes the monitoring of forest resources through images [71], 

monitoring and analysis of agricultural land [72], and urban modelling and growth analysis of 

geographic areas [73]. The common approach in previous research is to use semantic 

segmentation techniques to find objects of interest. Semantic segmentation, pixel-wise 

classification is the task of assigning a label to every pixel in an image, e.g., in the case of 

finding trees in satellite images, every pixel can be classified as “tree” or “other” [74]. This 

approach is the one that provides the most detailed in the output when compared to other 

approaches, such as Image Classification and Object Detection. Image classification analyses 

features in the image and assigns a label to the complete image and object detection searches 

for objects of interest in the image and returns the location of those objects in the form of a 

bounding box. The level of detail in the segmented image provided by the semantic 

segmentation algorithms helps to create more accurate 3D representations of the trees.  
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In recent years, the popularity of deep learning approaches has grown considerably due to the 

advances in computing power that make it more accessible for anyone to create and optimise 

this kind of neural networks. In the particular area of computer vision, Convolutional Neural 

Networks (CNNs), have become the state-of-the-art for solving any image processing task [75]. 

These networks were originally designed for image classification tasks but they have been 

successfully adapted for semantic segmentation [76]. Some of the related research includes the 

use of CNNs based deep learning models to find poles in street view images and analyse their 

current state [77], which can be useful for monitoring network assets. Additionally, there is 

existing work on using deep learning approaches for analysing satellite images to find 

vegetation that needs trimming or maintenance because they are becoming a hazard [78]. The 

current research work lacks the part of creating of updating 3D digital representation of those 

objects found in the images, the current research is limited only to providing some insights for 

decision making based on some detections in satellite images. Furthermore, CNNs and other 

machine learning models used in image processing have two major problems:  

1) They require large amounts of data with labels for each pixel to achieve an acceptable 

performance [79]. This will result in a monetary cost if the company is buying the data 

or in a monetary and time cost if the company decides to capture its own data [80]. 

2) They lack transparency in their inference process, it is not possible for a human user to 

understand the decision process of the prediction, therefore, it is not possible to augment 

models with human expertise [81]. The models are limited to doing what they “learn” 

from the data, if the data provided during the training process is not high quality, then 

there is no way to complement this with human expertise. The only way to improve the 

deep learning solutions is to acquire more data and train them again or change the 

architecture parameters and train them again, both are high-cost options.  
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In this chapter an interval type-2 fuzzy rule-based system is presented as the best explainable 

AI alternative for doing pixel classification. The FRBS is compared against a Multilayer 

Perceptron (MLP) with Back-Propagation Learning that uses pixel-level features as an input 

vector to classify each pixel [82]. The reason to use the MLP instead of a CNN is to fairly 

compare the result of both the black box model and the explainable model using the same input 

vector, the CNN would not have used the same input vector due to the nature of the architecture 

of using convolution operations to extract features. 

 

5.3 An Explainable AI Fuzzy Rule-based System for processing Satellite 

Images 

5.3.1 Feature Selection and Data 

The selected features used to classify each pixel is the HSV (hue, saturation, value) colour 

space which is based on the characteristics and the way human perceive colour [83]. Hue (H) 

component is a value between 0 and 360 that represents the colour, unlike RGB that uses a 

combination of three values to represent colour, using a single value for colour is more human 

friendly. Saturation (S) component describes the purity of the colour and Value (V) component 

represents the amount of light in the colour, both of these are measured with a value between 

0 and 1 [84]. 

 

Figure 5.2. Image used for testing, similar to what can be found in the training set. 
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The images used for the experiments are RGB satellite images with a resolution of 30 cm per 

pixel [44]. The dataset was manually labelled for the class tree, then images were flattened to 

a 4-column table, the first column contains Hue value, second column contains Saturation 

value, third column contains the Value component, and the final column contains the expected 

label for that combination of HSV values. Fig. 5.2 shows a similar image to the ones used to 

generate the dataset; the image shown here is used in the evaluation process. After processing 

the available images, a csv file with 20,000 data rows was created, 80% was used for training 

and 20% for validation. This same dataset was used for both, the training of the MLP and for 

creating the explainable FRBS.  

 

5.3.2 Creating the Fuzzy Rule-based System 

The rule base of the FRBS is created using the rule modelling techniques described in the 

overview of fuzzy logic of chapter 2.  

 

 

Figure 5.3. Optimised fuzzy set for 'Value' component of HSV features. The vertical lines show the points to be optimised by the BB-BC 

algorithm. 

Fig. 5.3, shows the optimised fuzzy set for the ‘Value’ component of the HSV features and the 

vertical solid lines show the points that need to be used by the BB-BC optimisation process 

described in chapter 3, to find the configuration of points with the lowest possible error. The 
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BB-BC algorithm was executed for a maximum of 250 generations, each with 30 candidate 

solutions. A type-1 FRBS was also created and compared to the interval type-2 FRBS. The 

same fuzzy sets were used for both types of FRBS, but the footprint of uncertainty was removed 

for the type-1 FRBS.  

 

5.3.3 Results of the Experiments 

The three different models (type-1 FRBS, interval type-2 FRBS and MLP) were evaluated 

against images that are like the ones used for the training dataset. Fig. 5.4 shows a visual 

segmented output from the different models. The MLP model has the best performance, the 

interval type-2 FRBS is not far away from the MLP, and the type-1 FRBS has the worst 

performance, and it is not even a useful result from this model.  

 

Figure 5.4. Semantic segmentation output from the image in Figure 2. a) expected result for a perfect model, b) result from type-1 FRBS, c) 

result from type-2 FRBS and d) result for MLP model. 

The performance metric values for these experiments presented in [44] can be seen in Table 1. 

The Intersection over Union (IoU) metric is used for evaluation purposes since it is a standard 

in semantic segmentation problems and it can deal with the unbalanced results of a segmented 

output image normally having more background than actual predictions [85].  The type-1 FRBS 

has an IoU measure of 49.3%, while the Interval Type-2 Fuzzy Rule-based System (IT2FRBS) 
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has an IoU of 60.6%. The IT2FRBS, which gave the best result, was still outperformed by the 

MLP network by 8.4%. However, the IT2FRBS has the advantage over the MLP network of 

being a transparent box model, i.e., a human can easily understand how the system predicts a 

given class. In addition to the high degree of interpretability, the IT2FRBS uses a rule base that 

can be modified, allowing human experts to augment and complement the model with their 

knowledge by adding or modifying rules. This helps with the data problem, if not enough high-

quality data is available the human expert can complement what the FRBS learned from the 

data. For example, end users see rules like ‘IF Hue is green AND Saturation is high AND Value 

is medium THEN label is tree pixel’ and they will be capable of changing the output label of 

the rule to be ‘background pixel’ or augment the model capabilities by adding a new label like 

‘building’. This modification of the model does not require an understanding of the training 

process since it is not being trained again, unlike the MLP [44]. 

A post-processing stage is needed after segmenting the satellite images to convert the 2D 

segmented mask result to a 3D tree in a virtual world. The post-processing stage is a short and 

fully automated process using OpenCV python library for image processing, the stage consists 

of the following four steps: 

1) Noise removal of the segmented mask. Use a combination of median, dilation, and 

erosion filters to remove isolated white pixels in the segmented output. There is no 

perfect model for segmenting, they will all have some errors, and it is important to try 

to identify them and remove them in an automatic way.  

2) Clustering pixels together, finding the contours of the clusters and extracting the 

location in the image of these contours. 

3) Using the geographic location of the top left corner of the image or the centre of the 

image it is possible to calculate the estimated real-world location of the different 
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objects. The process also uses the resolution of the image to estimate the actual real-

world size of the tree crown, i.e., the upper part of the tree.  

4) Create a 3D object that reflects the estimated size of the tree crown and place it in part 

of the virtual world that represents the geographic location of the image. The heigh of 

the tree is unknown in this type of images, it is not possible to extract it, however, if the 

image contains LiDAR data, in step 3 this can be extracted for the location of the 3 and 

estimate the height.  

Fig. 5.5 shows the result how the 3D tree objects look in the virtual world after the segmentation 

and post-processing stages.  

 

One limitation of this approach and features is the use of only pixel level information, this 

limits the model to only colour-based characteristics of the objects, in some cases the distinctive 

factor is in the shape of the object, and this is not considered in this FRBS or MLP. In the next 

chapter, this work is expanded to combine context information and pixel-level information to 

be able to classify pixels of elements that share the same colour characteristics.  

 

  

Figure 5.5. View of the automatically generated 3D tree objects in the virtual environment. Left side is view from one side and right side is a 

top view. 
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5.4 Discussion 

As mentioned earlier in this chapter, trees are one of the main obstacles and hazards to the 

utility companies network assets, especially for the pipes and cables routed across the city. 

Therefore, it is important to include the location of the vegetation in a geographic area as part 

of the network digital twin and be capable of visualising the proximity of trees to network 

assets and identifying potential issues. 

One of the main challenges for creating these 3D digital models of the trees in a geographic 

area is the cost of sending a person to survey the area of interest. Even for utility companies 

with a large workforce it is a high-cost task to create the initial map and to update it. Satellite 

images are a cheap source of data that contains the necessary information on the location of 

vegetation in a geographic area, it can be used to replace the need of sending a person. Semantic 

segmentation is the process of labelling each pixel in an image and it is used in this chapter as 

the solution for automatically extracting the information of the area covered by a tree. 

This chapter proposed the use of an interval type-2 FRBS as an explainable AI approach for 

semantic segmentation of satellite images to extract the location of trees in a geographic area. 

Additionally, a comparison between this proposed approach, a type-1 FRBS (which is also an 

XAI approach), and a neural network model (black box alternative) was also presented as part 

of the results.  

The results in this chapter can be summarised as follows: 

• The type-2 FRBS outperforms its type-1 FRBS counterpart by a significant amount 

•  The black box model alternative still has a higher performance than the explainable AI 

model.  However, by adding the noise removal step into the post-processing of the 

result, the explainable AI model achieves a similar result and still has the advantage of 

being understood and possibly modified by a human.  
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Once the image has been segmented using either the proposed XAI method or the black box 

alternative, the pixels with similar characteristics are clustered together and by using image 

processing techniques, it is possible to find the contours and the location of these clusters.  

 

This information will allow us to create a 3D model of a tree that covers the same area as the 

extracted tree from the image. Therefore, a digital model is created, and it is possible to connect 

it to the network digital twin as context information. The use of contextual information helps 

improve digital twins by understanding what the surroundings of the physical objects are. This 

contributes to the idea of a national digital twin, where digital models, digital shadows, and 

digital twins interact all together to provide an accurate replica of the infrastructure and natural 

objects in a geographic area. 

 

The idea of creating these digital models of trees in a geographic area is to add context to the 

“outside” network, i.e., assets that are not inside the premise of a customer. The next chapter 

presents how to create a digital model for the building elements that surround the network 

assets in a customer premise. The presented methods in this chapter use pixel-level information 

to decide on the label, however, if the pixels of the object of interest share characteristics with 

other objects pixel-level information will not be enough to distinguish between elements. Next 

chapter expands on the use of a FRBS as an explainable AI approach for semantic segmentation 

and presents a process on how to include information on the surroundings of the pixels in the 

inference process of the FRBS.   
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Chapter 6. From 2D Floor Plan Images to 3D Virtual 

Representations of Buildings 

6.1 An Overview of Building Information Modelling and its Challenges for 

Utility Companies 

Building Information Modelling (BIM) is the standardised process for multiple stakeholders to 

work on a building’s lifecycle, from the early design phase to the post-construction 

maintenance phase [86]. The output of this process is a 3D data-rich digital model, called BIM 

model, that has relationships, properties, historical records of changes and geometric 

information for every element in the building [87]. It is important to highlight that the 

information is available per element and the relationships are what allows us to visualise all 

the elements as a single building, this is the main difference with other 3D models where the 

geometry shape information and visualisation is the most important factor.  

The BIM process was born in the construction industry to help manage the project from start 

to end. The reality is that most of the actual work needed in a construction project is already 

figured out; however, the projects still have a lot of complexity that comes from the interaction 

and integration of a lot of different people from different organizations [88]. The exchange of 

large numbers of documents with partial information related to just one part of the project 

makes the interaction between stakeholders confusing and difficult, which tends to cause 

conflicts, a need for further clarifications, frequent calls and a lack of trust [88]. Therefore, 

BIM is proposed as the standard process with a centralised 3D model that contains all the 

relationships, properties, and geometry of all elements, and that every stakeholder is capable 

of viewing at any point in time. There are many benefits in the construction industry, not only 

for visualisation and management, but also for using the relationships and properties of 

building elements in tasks such as cost estimation, forecasting, scheduling, and smart decision 
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making. These additional tasks are extra dimensions on top of the data-rich 3D model, “time” 

related tasks such as scheduling and forecasting the end of the project are part of the 4th 

Dimension (4-D) and “cost” related tasks are considered part of the 5th Dimension (5-D), and 

additional type of simulations of tasks can be explored in new dimensions [89]. The 

characteristics of these new dimensions is that it takes advantage of all the information from 

different stakeholders that is centralised in this BIM model, therefore, the systems can find 

conflicts that will take time to find if the information of stakeholders was in separate silos [90]. 

For example, it is possible to identify if there is a clash in the time of the construction of two 

elements, i.e., it is not possible to build the actual structural elements (such as walls, doors, 

windows, columns) in the planned time because the work of one will interfere with the other, 

therefore, a change in schedule must happen. Additionally, the scheduling suggestions are not 

limited to only location and interference between the building work, the decision can also be 

influenced by other factors such as information on estimated construction time, date of arrival 

of materials, dependency on other elements. 

Although the BIM process was born in the construction industry and it was meant to solve most 

of the problems during the construction phase of the project, the BIM models are still beneficial 

for utility companies. For starters, utility companies are meant to be one of the stakeholders 

during the construction phase, ideally, they will participate and contribute to creating the BIM 

model. The difference comes in the later stages of the building lifecycle, once the construction 

project is completed all the construction related stakeholders forget about the building, but 

maintenance and utility companies still need to interact with it for any future maintenance tasks. 

Some of the benefits related to on-site task guidance, updated historical records, and network 

planning [9] are: 

1) Have an updated and accurate record of the assets inside the building. Additionally, if 

the BIM is used for collaboration between stakeholders, the record will also be an 
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updated status of the elements belonging to other organizations, this helps to have an 

accurate visualisation of the building without being there. 

2) Provide on-site guidance for field engineers in their maintenance or repair tasks. Using 

mixed reality technologies, it is possible to extract information from the BIM model 

and display it in the field engineer’s view to help him. For example, some of the assets 

(such as cables, pipes, and telecom switches) might be hidden behind walls, and the 

field engineers need to consult the schematics of the network in the building which are 

normally in a 2D paper-like PDF format, visualising the information through a mixed 

reality headset will facilitate the task. 

3) Another great benefit is the use of BIM for planning and understanding how different 

elements interact with each other. With a BIM model there is a clear picture of what is 

inside a building, and it is possible to connect the assets inside to the network outside, 

creating a fully connected network in a digital environment. Remote planning tasks will 

benefit the most of it, for example, it will be possible to understand what assets and 

how many customers will be affected by a disruption or change in the network since 

everything is not connected.  

 

6.2 Connecting Buildings to the Network Digital Twin 

As mentioned in chapter 4, a Digital Twin consists of three main components: a) the physical 

asset, b) the virtual asset and c) the bi-directional connection for exchanging data between the 

two assets. A BIM model is already a virtual representation of a physical asset, which is the 

actual building with all its elements. The missing component is the bi-directional connection 

between assets, the physical asset will pass information to the virtual asset and update it, while 

the virtual asset processes the information and might trigger an action in the physical asset. A 

BIM model just by itself has no connection to the actual building, considering the levels of 
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digital twin proposed by Kritzinger et al. [49], the BIM model will be considered just a digital 

model. There are four different levels of BIM Maturity (from 0 to 3) according to the UK BIM 

Maturity Model [91], level 3 BIM (highest level) is a fully interoperable model capable of 

working together and exchanging information with other entities, mainly the physical building, 

this level of BIM can be considered a digital twin [50]. The interoperability is key for the BIM 

model to become a digital twin because most of the updates will be gathered from different 

organizations. The different utility companies can provide information about how much 

resources (such as energy, internet, gas, and water) the building is consuming and if advanced 

smart meters are used then this can be known at any point in the day. Essentially, the utility 

companies act as a sensor to monitor the current state of the building, the same way any other 

sensor will monitor other assets. The digital twin can then trigger events like maintenance tasks 

or emergency repairs if it detects anomalies in the information of the physical asset, this will 

result in a change in the physical asset, this way the bi-directional communication between 

both assets is achieved. 

The components seem to be available, and it is only a matter of connecting them for them so 

that the BIM models start cooperating with the network digital twin. However, from the 

perspective of a utility company there are two main challenges: 

1) Creating BIM models is a complex task, it requires 3D modelling for the geometric 

shape and the combination of multiple sources of information. The cost of creating them 

is high, which might be the main reason why the adoption of BIM outside the 

construction industry is low [92].  

2) BIM is a process developed in recent years, which means that most of the existing 

buildings were not designed using BIM. Utility companies still need to work and 

interact with existing buildings that are connected to their network. This means that 

utility companies need to work with two different sources of information (existing 
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buildings and new buildings with BIM). The integration of information is key for 

progressing and improving the processes, it is not only important to have the data [90], 

but being able to standardised all information from the building to a single format and 

integrated with the network data is essential for utility companies to start thinking of 

using BIM.  

Both challenges are connected and are mainly related to the information on existing buildings 

and how to integrate them into the network digital twin that utility companies seek to create. 

New buildings will have their BIM model created by the construction companies, and then 

reused and maintained by stakeholders of later stages in the building lifecycle. 

An automatic data processing pipeline is proposed to address the challenges mentioned above 

and help utility companies use BIM in combination with the existing information of their 

network assets. The idea of the pipeline is to use 2D images of the floor plan of the building to 

generate a 3D digital representation of the building. The 3D digital representation of the 

building will be in a standardised open-source format for BIM. This output BIM model will 

not automatically be a digital twin of the building, it will be a digital model (a low-level digital 

twin). However, this is the first step towards a digital twin, and it is the step with the highest 

cost [92], once the structure and 3D model of the building is created then it is possible to start 

connecting everything. 

 

Figure 6.1. Proposed processing pipeline for converting 2D floor plan images to standardised BIM models. 
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The data processing pipeline is shown in Fig. 6.1, this was initially presented in [9], [42]. The 

goal is to transform 2D floor plan images into standardised BIM models. BIM models are very 

detailed 3D models and not all the information that you will normally find in a BIM model can 

be extracted from an image. However, it is believed that at least the basic structure of the 

building floor can be extracted and create a Digital Model of the building. This process is 

divided into the following four main stages: 

1) Digitalisation of Existing Documentation 

a. The first stage in the processing pipeline and the goal is to prepare the input 

data, and make sure the format of the data is adequate for the next steps. The 

idea of the complete process is to use 2D data of existing buildings to 

generate the 3D structure of it. However, the proposed process does not 

work with any 2D data, it requires 2D images as input format and some of 

the available information will not be in this format, e.g., architectural paper 

drawings detailing the walls and dimensions, or PDF format files with the 

floor drawings. Hence, the need for this pre-processing step to standardise 

the input data to be in any of the common digital image formats (such as 

PNG or JPG). It is important to mention that this is not a fully automated 

step, in some cases it will require manual work from a human, e.g., if the 

available information of a building is only architectural paper floor plans, 

then a human is required to scan these paper floor plans.  

2) Semantic Segmentation of the Digital 2D Images 

a. This is the main stage of the complete pipeline, the other 3 stages are there 

to help with data preparation, data cleaning, and standard format tasks; 

however, identifying elements of interest is the main goal of this step. The 

structure of a building floor is composed of all the wall elements in the 
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image, the walls define the boundaries of the floor and the space distribution 

inside it. Every wall element in a 2D image is a collection of one or more 

pixels; depending on the resolution of the image, and the size of the wall 

how many pixels belong to the same wall. This means that a semantic 

segmentation process is required to correctly identify which pixels are part 

of a “wall element” and which ones are either “image background” or “other 

element”. In previous the chapter an explainable semantic segmentation 

approach using a FRBS was presented where a similar approach is used 

here. However, using only pixel value information, as previously presented, 

represents a challenge with floor plan images since different elements tend 

to share colour features. Therefore, an improved FRBS for semantic 

segmentation is presented in this chapter, this new approach seeks to use 

context information to differentiate between elements of interest and other 

elements that share colour (or pixel-level) features.  

3) Noise Removal Process 

a. The process from stage 2 is not a 100% accurate process and incorrect pixel 

classifications are expected to happen. However, there are some post-

processing image techniques to remove some of the noise generated in the 

predictions. The “salt look” is one of the most expected effects when 

working with this pixel classification tasks, this happens when some isolated 

pixels are incorrectly labelled as being part of one of the objects of interest, 

this isolated wrong label will look in the output as a white dot surrounded 

of black background, hence the name of “salt look”. All these pixels are 

removed by using median, erosion, and dilation filters on top of the output 

image. However, this step works only for high resolution images where 
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there are no “wall elements” represented by a single or a very small set of 

pixels, if that is the case, this automated noise removal step will think those 

isolated pixels are noise and change them to be part of the background.  

4) Converting Segmented Output Image to BIM file 

a. This last stage is about pixel grouping and tagging stage. During this stage, 

the goal is to group and separate the different clusters of wall element pixels 

in the segmented image. As mentioned earlier, BIM models have the 

distinctive characteristic of having each of the different elements separated, 

therefore, it is important to create a 3D geometric shape for each wall instead 

of single 3D shape for the complete floor. The segmented image is divided 

into segments of straight lines using image processing Sobel filters, with the 

assumption that all “wall elements” are represented in the floor plan by 

straight lines, and there will be no circular or curve “walls”. Once all the 

straight lines are separated, the pixels belonging to those lines are clustered, 

and the contour of those clusters is found, all of this with the help of the 

python image processing library called OpenCV. Finally, using the 

extracted information of those clusters of pixels an Industry Foundation 

Classes (IFC) tag is created for each “wall element”. IFC is a global open 

standard for data exchange, and it is used to describe and share construction 

and facilities management information, it is also considered to be the open-

source format for BIM models [92].   

 

6.3 Extracting the Wall Elements from 2D Floor Plan Images 

In a floor plan image, it is possible to find non-structural building elements (such as kitchen 

elements, furniture, and background) and there are structural building elements (such as doors, 
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windows, and walls). Every pixel in the image belongs to an element, or the background. The 

objective of the process is to find all the “wall elements” so that a 3D BIM model of the building 

floor structure can be constructed. Therefore, the approach for finding the elements is to do a 

semantic segmentation, where essentially, as described in chapter 5, each pixel is classified and 

assigned a label. As mentioned in section 6.2, using the same approach as in chapter 5 will not 

be possible because of the similarity in pixel colour between different elements, and due to the 

lack of context information it is not possible to distinguish between those pixels. Fig. 6.2 shows 

an example of the input image and the expected output, this is the kind of output the process is 

trying to achieve; every white pixel represents a part of a wall element. In this section, the 

approach to how to use patches of images for contextual information is described.  

 

Figure 6.2. These are: a) an example input image that is going to be converted to 3D BIM model and b) the expected output for the 

segmentation stage. 

 

6.3.1 Visual Words Dictionary 

The concept of visual words dictionary (or Bag-of-Visual-Words) was inspired by the Bag-of-

Words concept in the Natural Language research field, and it was adapted to work with images 

instead of text. The idea is that you have a representation of a small image patch (normally in 

a numeric vector format) that represent an element in the images. These representations of 

image patches are pre-computed and saved to calculate the similarity of input patches with 

well-known patches. Similarity is computed using Euclidean distance between vector 

representation of patches, a low distance value means high similarity to the known patch.  
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This idea of using image patches for semantic segmentation was first introduced by [93], [94], 

they combined the information from patches with a Markov Random Field model. The 

approach was later extended by [95], [96], where the authors trained a Support Vector Machine 

(SVM) model to segment floor plans using only patch-based input features, the input pixel to 

be labelled gets assigned a class probability based on its distance to different patches. This is 

an interesting idea because instead of using pixel-level characteristics, they use only context 

information (represented by the patches) to classify a single pixel. The floor segmentation 

process to create 3D BIM models was presented in [9], and it was based on the initial research 

of building a type-1 FRBS using patches as contextual information [43] and the continuation 

of that research using an interval type-2 FRBS [42].  

The necessary first stage is to pre-compute a list of patches (visual words dictionary) that is 

going to be used as the knowledge base of our system. The number of visual words is a 

hyperparameter of the proposed approach and it needs to be modified according to the task, in 

[9] numbers between 50 and 300 visual words. Create the visual words dictionary using the 

training dataset of images in the following two steps described by [9]: 

1) Divide the training image into patches. The image is divided into sections by using a 

grid. An overlapping grid is used to avoid the location dependency of the object in the 

image [96]. After extracting the patches, they are transformed into a numeric vector 

representation following a row-wise approach and then Principal Component Analysis 

(PCA) feature selection is applied to it. Two main parameters can be changed in this 

step: the overlapping value in the grid, i.e., how many pixels overlap between patches), 

and the size of the image patches extracted. [9] 

2) Cluster the extracted patches using the k-means algorithm. The centroid of the 

computed clusters is the numeric vector used as a visual word. There is a visual word 

for each cluster; therefore, the number of visual words determines the value of k in the 
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clustering algorithm. As mentioned before, this k is a hyperparameter of the model, and 

it can be optimised. It is essential to consider that the higher the value of k, the smaller 

the clusters and the more specific to a training set the model becomes, it can be seen as 

overfitting of the model. On the other hand, the smaller the value of k the larger the 

clusters and therefore the most likely to have different patches clusters together, this 

will be the equivalent of underfitting. Additionally, when increasing the k value, the 

number of possible rules will also increase. [9] 

 

6.3.2 Rule Extraction and FRBS Optimisation 

The goal of this approach is to find a way of combining individual pixel-level information and 

context information of the surrounding of the pixel of interest, and by doing so, be able to 

distinguish between pixels with similar individual characteristics (such as colour).  

 

Figure 6.3. An example of a rule used in the FRBS model. The two types of information (pixel-level and contextual) are highlighted in the 

image. 

The intention is to have rules as the one shown in Fig. 6.3, two antecedents, one for each type 

of information: pixel-level features and context features. The pixel-level features (or local 

information) are the characteristics of the pixels, in this case, the colour is used, similarly to 

what was done in chapter 5. On the other hand, context features are the similarity of the patch 

where the pixel of interest is located, it provides information about the surrounding of the pixel 

and helps to differentiate from pixels with similar colour that belong to a different element. 
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The use of this context information is the main improvement from the FRBS used in chapter 5 

to the ones used in here.  

 

Figure 6.4. Combining the different antecedents to create the initial set of rules. 

Fig. 6.4, shows how to generate all the possible rules for the system, it is important the 

constraints used in this process. The first constraint is that the rules will only have two 

antecedents, the second constraint is that the first antecedent is the pixel-level information, and 

the second antecedent is the context information. For “Pixel Level Information”, since the 

images are grayscale images, only two linguistic values were defined, one for dark colour pixel 

and one for light colour pixel. The number of linguistic labels in context information is defined 

by the number of visual words in our approach. In the work presented in [9], different values 

were tested but the best performance metric was achieved with 100 visual words. The similarity 

with each visual word is described with 3 linguistic values (low similarity, some similarity and 

high similarity). This means that for context information there will be 300 possible antecedent 

values. In a FRBS model with 100 visual words, the initial total number of rules will be 600, 

the similarity to each visual word is described with three linguistic labels (similar, somehow 

similar, not similar), and the pixel intensity value is described by two linguistic labels (dark 

and white). When extracting the consequence of the data, we make use of all the rules. In a 

later stage this rule base can be optimised using the BB-BC process described in chapter 3 of 

this thesis. 
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The previous is the process for creating all possible rules, but the consequence label still needs 

to be assigned to each of those rules. For the rule modelling phase, the process described in [9] 

is followed. Each of the 𝑀 rows will be a training pattern called 𝑡(𝑚), 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1,2, … , 𝑀 

that consist of a vector 𝑥(𝑚) and a class 𝑐(𝑚). The vector 𝑥(𝑚) has all the needed information 

related to the pixel, and this includes the pixel intensity value and the similarity of the image 

patch centred at the pixel to the patches in the visual words dictionary. For example, if the 

model uses a dictionary of 100 visual words, the vector 𝑥(𝑚) will contain the numeric value 

of the pixel intensity and 100 numeric values. Additionally, 𝑟(𝑚) will also have the linguistic 

value 𝑐(𝑚), which is the expected class for the pixel information 𝑥(𝑚). Rules without a 

consequence will be removed from the rule base and conflicts between rules will be solved by 

using the rule modelling process described in chapter 2.  

It is important to mention that this is a computational expensive process, because the fuzzy sets 

are being optimised at the same time. This means that for every candidate solution in the BB-

BC algorithm process described in chapter 3, there is a need to extract the rules when using 

those fuzzy sets. This happens because the rule modelling process is dependent on the fuzzy 

sets to calculate firing strength of the training data. However, at the beginning the optimal fuzzy 

sets have not been found. The rule modelling steps will be part of the BB-BC algorithm when 

an encoded candidate solution is converted to an actual FRBS. The candidate solution is 

evaluated, and the best solution will use the optimal configuration of membership functions 

decided by the BB-BC and the rule base extracted by the rule modelling process using those 

membership functions. Fig. 6.5 shows the optimal fuzzy sets after the BB-BC optimisation 

experiments done by [42]. 
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Figure 6.5. Optimal fuzzy sets according to the BB-BC optimisation process applied on the data, these results were presented in [42]. 

6.3.3 Experiments and Results 

This section discusses the experiments and results from [9], [42], [43] and how these results 

and process can be used to create the expected 3D building object from the 2D images. The 

type of images segmented by the different models tested is shown in Fig. 6.6. The dataset for 

training consisted only of 168 images like the one shown in Fig. 6.6. A visual comparison with 

the images used for the experiments in [97], [98] can conclude that the images used in this 

experiment are easier to handle for the models since there is much less noise (elements that are 

not part of a wall). However, there are still three challenges that the models need to overcome 

with those type of images: 1) identify the difference between text and wall, 2) furniture or 

decorative elements such as kitchen and bathroom elements, 3) remove structural elements that 

are not wall, like doors and windows.  
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Figure 6.6. Example image in the training and testing dataset. a) shows the actual input and b) shows the expected segmented output for the 

image if it was processed by a perfect model. 

The results shown in this section are the results of a neural network U-Net architecture [99], 

which is a convolution-based type of network considered part of the state-of-the-art for 

semantic segmentation tasks. The training dataset is too small to train a network from scratch 

but a pre-trained model can be used as the encoder part of the U-Net [99], in this experiments, 

pre-trained layers from the VGG-16 network are copied and used, this is known as transfer 

learning [100] and it is a common practice to avoid training a network from scratch when the 

computational resources or large numbers of data are not available. A visual representation of 

the architecture that was created for [9] is shown in Fig. 6.7 below.  
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Figure 6.7. CNN architecture built in [9] for the segmentation task. It uses pre-trained layers from the VGG-16 network as the encoder. 

Like chapter 5, the Intersection over Union (IoU) is used as the performance metric during the 

evaluation process. The optimised interval type-2 FRBS achieved a 97.5% IoU metric value, 

on the other hand, the U-Net deep learning approach achieved 99.3% IoU metric value. The 

visual results are shown in Fig. 8 for the proposed explainable approach using an interval type-

2 FRBS and the visual results for the deep learning solution using a U-Net with VGG16 

architecture is shown in Fig. 6.7.  

 

Figure 6.8. Segmentation results of the optimised type-2 FRBS. a) shows the result of the segmentation process and b) shows the result after 

the noise removal process. 
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Figure 6.9. Results of the U-Net deep learning approach for the segmentation process. a) shows the segmentation result and b) shows the 

result after the noise removal process. 

Although in the metric values the difference between the interval type-2 FRBS and the deep 

learning approach is not big, it is possible to see in Fig. 6.8 and 6.9 the better performance of 

the deep learning solution. The interval type-2 FRBS struggles to differentiate between the 

straight-line walls of the building floor structure and the straight-lines of the text in the floor 

plan drawings.  

Our main conclusion from these visible results is that our proposed FRBS rules are still 

substantially based on colour, even though we included patch similarity information. This 

explains most of the visual errors of the FRBS in Fig. 6.9. However, CNNs are black box 

models that are not interpretable or augmentable, i.e., a human end-user will not understand 

the system ’s decision process and will not be able to modify it [26]. Additionally, these models 

need large numbers of training data patterns to perform well. Obtaining data is costly, 

especially for semantic segmentation where the label needs to be pixel by pixel [79], [80]. On 

the other hand, the FRBS model has the advantage that a human end-user will be able to trace 

and understand the decision process and will also be able to modify the model by changing, 

adding, or removing antecedents in the rules (or even modifying complete rules) of the model. 

This allows the model to be improved by using expert knowledge without training (or 
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optimising) it from scratch [26]. The interpretable and augmentable characteristics of the 

interval type-2 FRBS are not enough to choose that model over CNNs. However, it is a different 

approach that might be necessary due to internal or external policies related to the 

accountability of decisions and companies should be aware and choose the model that better 

fits their needs. An example scenario where an augmentable and interpretable model might be 

preferred over the higher performance of the CNNs is when there is a conflict between network 

assets and the BIM model created. An engineer will need to solve the conflicts, understanding 

why the model is built that way will help fix it, and it might also help the engineer improve the 

model by modifying the rules that were fired. However, a company might prefer to have the 

model with the highest possible performance deployed in a remote server and let the model do 

all the work. In this case, the CNN becomes a better option [9]. 

 

6.4 Creating a BIM Digital Model from Segmented Image Results 

Once the segmentation process is completed and a segmented result mask (like the one shown 

in Fig. 6.8a and 6.9a) is obtained, it is now time to automatically create a BIM digital model 

for each of the wall elements detected. The first step is to process the output with some median 

blur, dilation, and erosion filters to remove isolated wrong predictions. The output of the noise 

removal filters can be seen in Fig. 6.8b and 6.9b, they visually look cleaner because the noise 

removal process works under the assumption that there are no single pixels that can be a wall, 

so this kind of pixels are removed, and the “salt and pepper” look is removed. This process was 

previously used in chapter 5 of this thesis.  

The next step is to find the clusters of pixels that make up a wall element. The steps from 

chapter 5 when finding the clusters of tree pixels are repeated here but with a small difference. 

The assumption is that there are no curve walls in the floor plans that are being processed by 

the models so first the segmented output is separated into straight vertical and horizontal lines 
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using Sobel filters. Now,  it is possible to find the contours of the walls. Using a python library 

called IfcOpenShell [101], a standardised IFC tag is created for each element and all of the tags 

are compiled in a single file to create a BIM model of the floor. Information on additional floors 

in the same building can be added to the same BIM model file.  

 

Figure 6.10. Visualisation of BIM models created from the floor plans. Left side image is a First-person view of the BIM using the Oculus 

Quest headset. Right-side image is a top view of the model in the same virtual environment. 

In Fig. 6.10 the result of the created BIM models is shown, this is how they look from different 

perspectives in a virtual environment. Two important things to highlight as part of the 

conclusion of the process: 

1) The height information of the walls and the material information cannot be extracted 

from floor plans, so it is not part of the BIM model, but it is possible to add the 

information. Every wall has its own IFC tag and a relationship between the wall tag and 

the material property type can be made. The BIM models are still not as data-rich as it 

would be if it was manually constructed but the structure is in a standard format and 

information can be added with other processes. 

2) The BIM model as of now is Digital Model of a building floor in the levels of Digital 

Twin maturity level [49], i.e., it is just a virtual representation of the actual building, it 

still doesn’t have automated communication with the physical entity, so according to 

these levels of maturity from Kritzinger [49], it is still not a digital twin but it is the 

right first step to build a digital twin from 2D images. 
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Future work will explore how to improve the final 3D model output by including other sources 

of information and how to establish a communication link between the digital model and 

physical building.  

 

6.5 Discussion 

In this chapter, the concept of BIM was introduced, a process for different stakeholders to 

cooperate in a centralised model during the different stages of the building’s lifecycle. The 

output of this process is a data-rich 3D model file known as a BIM model that contains the 

historical and current information of every single element in the building. The amount of 

information and relationships available in the model allow us to do smart and advanced tasks 

such as cost forecasting, maintenance prediction and construction scheduling. Utility 

companies such as British Telecom can benefit from using BIM models to understand the 

location and surroundings of their network assets within a building.  

A BIM model is considered, at most a digital shadow of the actual building, it doesn’t reach 

the digital twin level due to the lack of by-directional connection. However, the model can be 

placed in a virtual environment and can be connected to other digital twins and serve as 

contextual information for other objects.  

In the previous chapter 5, the goal was to improve the network digital twin by adding context 

information about natural objects such as trees. To understand the surroundings of the outside 

network. In this chapter the goal is to understand the surroundings of network assets inside a 

customer premise by using BIM models. Since BIM has become a standard in the construction 

industry, it is expected that new buildings will have a BIM model associated with them. 

However, the information from existing buildings consists mostly of paper-based 

documentation or information from different locations. This represents a challenge for the 
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utility companies that seek to connect all customer premises to their network detailed twin and 

create a fully connected network that contains both the outside and the in-building assets.  

This chapter presented a process about how to transform the information of 2D floor plan 

images to an open-source standard format BIM file. The main stage of the process is the 

semantic segmentation of the floor plan images to automatically identify the pixels belonging 

to wall elements, the information on the identified pixels will then be used to create the BIM 

model. This chapter proposes the use of an interval type-2 FRBS as an explainable AI approach 

for the segmentation process and presents a comparison of this approach with a deep learning 

black box model. The results of the experiments can be summarised as follows: 

• The interval type-2 FRBS outperforms the type-1 FRBS even after adding a noise 

removal stage in the process. 

• The deep learning approach has the highest performance value. However, it is possible 

to remove most of the incorrect classifications from the interval type-2 FRBS around 

the text of the floor plan using the noise removal stage of the process. Thus, ending 

with a similar result as the black box alternative. 

This chapter improved the interval type-2 FRBS for semantic segmentation presented in 

previous chapter 5. The proposed FRBS in this chapter includes the use of context information, 

which allows the FRBS to distinguish between pixels that have similar characteristics but 

belong to different objects, e.g., for example in the floor plans analysed wall and door elements 

are black colour, so distinguish between these two elements it is important to understand how 

the surrounding pixels are located. As this described in this chapter, it is achieved by using pre-

labelled image patches and calculating the similarity between the input patch of pixels 

surrounding the pixel of interest and the pre-labelled list of patches.  

The work presented in this chapter contributes to the idea of creating a network digital twin 

consisting of different levels of digital twins. Even though BIM models might not be considered 
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complete digital twins, they can still be placed in a virtual environment and used as digital 

models that provide context information of a physical location. This chapter concludes the 

work related to the use of explainable AI alternatives for processing data to create digital 

models or digital shadows that will help improve the network digital twin.  

The work in next chapter will focus on how to combine different sources of information in a 

mixed reality environment to understand what the user is doing and provide feedback on it. 

The mixed reality environment is a combination of the virtual world where the network digital 

twin exists and the real-world view of the user. This and previous chapters have discussed 

explainable AI alternatives to process data for creating digital twins, next chapter will focus on 

discussing an explainable AI alternative to process data for interacting with digital twins and 

real-world information. 
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Chapter 7. Fuzzy Rule-based Systems for Task Guidance in 

Mixed Reality Applications 

 

7.1 An Overview of the Architecture of the System 

In the previous chapters the focus has been on using interval type-2 FRBS to process real-world 

objects data to create digital representations of those objects in the virtual environments. In this 

chapter the focus is to apply a FRBS to process in real-time the data that is being captured by 

the mixed reality application. Mixed reality (MR) is the combination (it can be in different 

degrees) of both the real and the virtual world, the concept of augmented reality (AR) is part 

of MR and it is a view of the real world with a low number of virtual objects [51].  

The proposed system is designed to work for an application used in human-centred AR 

assistance that provides field engineers with on-site support [102]. The system identifies all 

useful sources of information in the field engineers’ view, combines them through an inference 

process and provides the field engineer with some guidance (or warning) while working on 

their task. From a utility company point of view, this will help reduce costs in training and 

revisits to on-site tasks, i.e., sending a second field engineer to complete the job because the 

first one could not or because it was not completed correctly. From a field engineer point of 

view this will help improve the quality of the work, reduce the time spent per task, and complete 

the task in a safe way since the system can alert of any potential hazard. 

The use of a FRBS can handle the uncertainty in some of the input values, e.g., it is a complex 

task to define the limits of a target area in the 3D world, because different engineers will draw 

different area boundaries. However, a central target in the area can be specified and a fuzzy 

membership function can determine the degree of membership of a given location to that 

centroid, the higher the membership value, the higher the confidence of the field engineer’s 

hand being the expected area. The handling of the uncertainty is a great advantage of using a 
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FRBS to combine the input information, however, the most important advantage of the FRBS 

is that it uses an interpretable inference engine for the decision making, which can be; 1) 

understood by the users creating the different use cases and 2) easily modified if needed by 

expert engineers. 

 

 

Figure 7.1. Architecture of the system using two fuzzy rule-based systems to support field engineers on the job. 

Fig. 7.1 shows the proposed architecture of the complete system, the two main things to notice 

in this figure are: 1) there are two fuzzy rule-based systems and 2) the starting point of the 

decision process is the mixed reality headset which triggers the request for guidance and sends 

the sensors information to the different processing components. The mixed reality headset will 

trigger the following 3 actions: 

1) Send to the first FRBS the available hand tracking information to recognise the field 

engineer’s current hand gesture. 

2) Send an image of the field engineer’s current view to a cloud web service that detects 

the boundary of the equipment the engineer is working on. The cloud service is 

expected to return the coordinates of the bounding box, the label of the detected object 

and the confidence of the detection. These are inputs for the FRBS that makes the 

classification on whether the user is doing the right thing or not. It is important to notice 
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that if the headset device has the capability to run the object detection model, then there 

is no need to send the information to a cloud service.  

3) Get the type of task that the field engineer is expected to do which should be registered 

in a system inside a company database. The headset can use the information of the user 

that is logged in to the device to create the query to the database. 

The objective of the previous 3 actions is to get the input values for the FRBS to decide on 

whether the field engineer needs help or not. These inputs come from different sources, and 

they need to be pre-processed, the four inputs to be used are: 

1) Label the detected hand gesture by one (or both) of the user’s hand. Instead of the input 

being a crisp numeric value, it is just a linguistic label that comes from the output of a 

FRBS, therefore, this input is not fuzzified or mapped to another linguistic label. The 

main reason for having a separate FRBS for hand gesture recognition is to maintain the 

complete system explainable to the human user. This is further explained in the next 

section where a detailed description of the FRBS for hand gesture recognition is 

provided.  

2) The image of the field engineer’s view is analysed by an object detection model to find 

the location of the bounding box that surrounds the object of interest, i.e., the network 

asset where the field engineer is performing some actions. In a similar way to the first 

input, this is just a label that guarantees that the rules related to this object will only get 

activated when the object is in the engineer’s view and the message will not get 

displayed under other circumstances.  

3) The distance to the target is the only crisp numeric input that will get mapped to 

linguistic labels by the FRBS. It relates to the position of the user’s hand with respect 

to a target area in equipment. Every action the field engineer needs to do in the 

equipment, must be completed in a specific area, e.g., put a screw in the top left corner 
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of the box, the top left corner becomes the target area, that is where the user’s hands 

are expected to be. Section 3 of this chapter includes a further detailed description of 

how this input is calculated and used alongside the other inputs. 

4) The last input of the FRBS is a linguistic label that specifies the type of task the field 

engineer is meant to be doing. On-site tasks are assigned to all engineers before the day 

starts through some digital system, the idea is for the system to use this available 

information to know the type of task. The reason is that it is possible to have rules that 

seem to be conflicting because they share the other 3 input antecedents, however, they 

do not conflict with each other because the expected task is different.  

This is an overview of the system architecture and how the inputs are obtained after processing 

some of the different sources of information. The following sections discuss in detail the two 

FRBS used in the system. Section 7.2 describes how a FRBS is used to build an explainable 

and augmentable hand gesture recognition model. Section 7.3 discusses how all the inputs are 

combined and how the target area is used to capture the business knowledge on where the field 

engineer's hands are expected to be for each task. Finally, the last section of the chapter shows 

an example use case and some of the results of the system. 

 

7.2 An Explainable AI Approach for Hand Gesture Recognition in Mixed 

Reality Environments 

7.2.1 Overview of the Hand Recognition Systems in MR and VR Headsets 

Mixed reality and virtual reality hardware (such as Microsoft HoloLens 2 and Oculus Quest 2) 

and applications have considerably progressed in recent years, and a broader audience is 

acquiring and interacting with these devices [103]. One of the key elements when interacting 

with these applications is the communication between the user and the extended reality 

displayed in the user’s view. An important aspect for the user to be fully immersed in the mixed 
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reality environment, is the interaction with the virtual objects, it must feel natural. To achieve 

a natural interaction between hardware and user, the headsets seek to use a combination of 

voice commands recognition and hand gestures recognition. However, the hand gesture 

recognition systems currently used are not flexible enough [104] to be adapted to new gestures, 

therefore, the users are limited to the gestures the system is trained to recognise.  

 

Figure 7.2 Diagram to show the process of capturing data from the hand using the HoloLens 2 to then output a gesture label using a FRBS. 

Our work presented in [105], proposed a FRBS for detecting the user’s hand gesture in 

extended reality environments that use the Microsoft HoloLens 2 or the Oculus Quest 2. The 

main advantage of the proposed method is the high degree of interpretability in the inference 

engine. The user can add, remove, or modify existing rules to change which hand gestures are 

detected. This way the new system provides the necessary flexibility for any company or user 

to adapt the inference engine and detect the needed hand gestures for their processes, instead 

of adapting the user’s behaviour to fit with the available hand gestures. Fig. 7.2. shows how 

the information flows from the start, when position of the hand joints is captured by the 

HoloLens 2 and distances between them are calculated, until a hand gesture is predicted for 

that given point in time. The process to build the FRBS and how it is used in the headsets is 

described in the following sub sections 7.2.2 and 7.2.3.  
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7.2.2 Selected Features and Data 

The Microsoft HoloLens 2 and the Oculus Quest 2 devices include a powerful hand-tracking 

system that provides information on the position of the hand joints, fingertips, and centre of 

the palm. Fig. 7.2, shows the different points that are tracked by the camera of the headsets. 

 

Figure 7.3. The red dots highlight the points from each hand, as recorded by the hand tracking system in the Microsoft HoloLens 2 and 

Oculus Quest 2. The image is captured using Oculus Quest 2. Image from [106]. 

The idea of the hand gesture recognition FRBS is to take advantage of the available hand 

tracking system instead of extracting the hand information from scratch using the camera 

sensor. There is no need to duplicate work when the existing hand tracking systems are highly 

accurate. The FRBS seeks to create a flexible system that works on the already existing 

information instead of replacing the highly accurate systems. 

Hand gestures are categorised as static or dynamic [107]. Static gestures are those in which the 

position of the hand remains the same (or very similar) over time. On the other hand, dynamic 

gestures are when some parts or all the hand changes over time, but the different positions of 

the hand are a single gesture, e.g., waving, the position of the hand changes over time, but the 

gesture is still waving. The scope and goal of this chapter are limited to detecting static gestures.  

The FRBS uses the distance between the fingertips and the centre of the palm as the input 

features. This means that there are 5 inputs (one for each finger), and therefore, 5 antecedents 

in each rule. Fig. 7.3 shows an example rule of the FRBS, in this rule, if the 5 fingertips are 

close to the centre of the palm, then the gesture is a “Fist”.  
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Figure 7.4. Example of a rule in the FRBS. 

Given that no public fingertips position datasets were found to train and evaluate different AI 

approaches, an application to capture data points [106] (i.e., the fingertips’ position and palm’s 

centre for both hands) was built using Unity3D. The application was executed in Oculus Quest 

2 (virtual reality headset) to generate the training data for optimising the different approaches. 

However, the same application can be executed in the HoloLens 2 (mixed reality headset) since 

it is built in Unity 3D, which compiles for different devices. In this application, the user is 

requested to gesture with both hands whilst the data points are recorded in a CSV file. A data 

set of 10,000 training patterns was created with the application. The possible hand gestures in 

the data set are shown in Fig. 7.4. This file was used for optimising the type-1 FRBS and 

interval type-2 FRBS using the BB-BC algorithm described in chapter 3, and KNN algorithm. 

This data set was divided into 8,000 rows for training and 2,000 for validation. After 

completing the training, the three models were evaluated using a different data set created in 

the same way but with 3,000 input patterns. The reported accuracy values come from the 

predictions on this second dataset. 

 

Figure 7.5. These are the available hand gestures in the dataset. The labels for the gestures are: a) shaka, b) fist, c) three, d) flower, e) four, f) 

horns, g) palm, h) two, i) point, j) ok, k) pinch. 
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7.2.3 Experiments and Results 

As mentioned in previous section, the different models were evaluated using a testing dataset. 

However, the interval type-2 was also implemented in the HoloLens to evaluate the results 

visually, these results can be seen in Fig. 7.5.  

 

Figure 7.6. Real-time prediction of the interval type-2 FRBS in the Microsoft HoloLens 2 device. Predictions: a) fist, b) pinch, c) palm 

facing user, and d) palm not facing user. 

In the evaluation process of the models, the KNN (black box solution) showed an accuracy of 

98.9%, the type-1 FRBS had a 94.6% accuracy and the type-2 FRBS had a 96.4% accuracy. 

The difference between the black box solution and the proposed type-2 FRBS is 2.5% accuracy 

and in practice both have great accuracy as seen in Fig. 7.5, the difference comes in how both 

models handle the moments of transition between gesture, e.g., going from an open palm to a 

completely closed fist, the KNN did better at predicting the arbitrary moment in the dataset 

were it was no longer labelled as “palm” and it became “fist”. In a similar way to why the type-

2 FRBS seemed to do better than the type-1 FRBS, by using type-2 membership functions to 

handle the changes in distance between fingertip and centre of palm. 

The biggest value of the proposed system is not on its accuracy, it is a combination of a good 

accuracy and the interpretability of the inference engine that allows the human user to augment 

the rule base system. This way, the proposed system is highly flexible and can be adapted to 
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predict any needed gesture if it can be described using the distance of the fingertips to the centre 

of the palm.  

The disadvantage of the proposed approach is that it relies on the hand tracking information of 

the headset, so if the accuracy of the hand tracking is affected the prediction of the hand gesture 

might also get affected. From another perspective, this can also be an advantage because the 

FRBS utilizes the available information, and it is not using computing power to calculate the 

same information that the hand tracking system already provides.  

Some other deep learning systems like a YOLOv3 network achieved a 97.68% accuracy [108], 

which is slightly worse than the KNN but still better than the type-2 FRBS. However, these 

deep learning solutions have additional disadvantages like the need for large volumes of 

training data, which tend to consume considerable computing power.  

 

7.3 Proposed Fuzzy Rule-based System for Task Guidance using Mixed 

Reality Headsets 

Digital twins are not meant to be just a centralised database of the physical object. The real 

benefits of a digital twin can be seen when the user interacts with and uses it to understand how 

to interact with the physical twin. Using mixed reality headsets users can interact with known 

physical objects and their digital twin to get valuable insight. The user will be capable of 

interacting with the digital model and getting the same feedback as if it was the physical object. 

Additionally, the user can interact with the physical object and get feedback through the digital 

model, e.g., the correct target area for the task is highlighted in the digital model.  
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Figure 7.7. Flow chart to visualise to show the sources of information, the different processing steps and how all converges to the final 

FRBS (represented by the dashed line box) to output a positive or negative feedback that can guide the user. 

Fig. 7.7 shows a detailed overview of what happens in each processing step from the start of 

the task until a feedback message is sent to the user. The previous section described how the 

FRBS hand gesture recognition system works, the output from that FRBS is used as an input 

for the second FRBS as it is shown in Fig. 7.7. This section will be focused on describing 

how the FRBS makes the final decision on whether the feedback should be positive or 

negative works.  

 

7.3.1 Input Features and Rules 

The antecedents of the rule are defined by the inputs the system uses. In section 7.1 of this 

chapter the overall architecture and inputs are described. The important new input feature is 

the distance to the target area. 
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Figure 7.8. Describing the calculation of the distance to target input feature. The grey rectangle represents the bounding box of the object of 

interest, the red arrows represent the distance that need to be calculated. There are four distances. 

The “distance to target area” input feature it is actually represented by 4 antecedents because 

the following 4 distance values are used: 1) distance from the hand to the top part of the 

bounding box of the object of interest, 2) distance from the hand to the left side of the bounding 

box, 3) distance of hand to the lower part of the bounding box, and 4) distance from hand to 

the right part of the bounding box. These 4 distances are represented in Fig. 7.6 by the 4 red 

arrows drawn in the four directions. With these 4 inputs it is possible to build the following 

type of rules. 

Example rule 1) 

• IF hand is close to bottom boundary  

o AND hand is close to right boundary  

o AND hand is far from left boundary  

o AND hand is far from top boundary  

• THEN hand is close to the right corner of the equipment.  

Using that kind of rules, the FRBS can understand the position of the hand within the 

boundaries of the object of interest. There is no available data for this kind of application, so 

the experiments for this section 7.3 assumes that the rules are defined by an expert field 
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engineer that knows where the hands must be placed at any point during different tasks. It is 

important to clarify that for the presented experiments the fingertip from the index finger is 

used as the global position of the hand. A different point can be used as the location and the 

FRBS will still work, however, the index fingertip was preferred for the experiments because 

when reaching out to the object this point is one of the first ones to reach the object of interest, 

this helps calculate the distances more accurately.  

To those 4 antecedents the other three labels are added as antecedents to have a final version 

of the rule as follows: 

Example rule (2) 

• IF hand is medium distance to bottom boundary,  

o AND hand is medium distance to right boundary,  

o AND hand is medium distance from left boundary,  

o AND hand is medium distance from top boundary,  

o AND equipment is a CSP box, 

o AND task is placing the entry cable, 

o AND hand action is grab/fist, 

• THEN Error, hand is in the centre of the boundaries, and it is expected to be in the 

middle-bottom part. 

7.3.2 Use Case - Customer Splicing Point Box Installation  

To test this FRBS a proof of concept is developed for the use case of the customer splicing 

point (CSP) box equipment installation, a use case for British Telecom company. The CSP box 

is a piece of equipment installed outside a premise that is going to be supplied with fibre cable. 

The fibre from inside the premise goes through the wall and then inside the box through one of 

the entry ports, the outside fibre cable also goes inside the CSP box. Both parts of fibre cable 
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are connected and inside the CSP box, this way the CSP box acts as the entry point from the 

outside network to the inside of the premise.  

After mounting the CSP box to the wall outside the premise, the first task that needs to be done 

is to remove the rubber grommet from the second (from left to right) entry port, pass the fibre 

cable through it carefully, and then put the rubber grommet with the fibre cable back in the 

entry port. Some field engineers try to first grab the wheel in the centre of the CSP and place 

the fibre cable around it before passing it through the rubber grommet and entry port.  

 

Figure 7.7. A proof of concept of the CSP task guidance process using a FRBS. The user is wearing a headset, and this is his view through 

the headset. 

 

Figure 7.8. Visual example of what happens when one of the rules is triggered. 
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Fig. 7.7 shows the view of the user through the Microsoft HoloLens 2 just before any of the 

rules are triggered. Fig. 7.8 shows what happens when one of the rules is triggered. A detailed 

step by step description is provided below: 

1) The task of the user is to pass the fibre cable through the entry port cable.  

2) Through the Microsoft HoloLens 2 view the user can see a digital model of the CSP, 

object on the right side of Fig. 7.7 and Fig. 7.8. The digital model used for this proof of 

concept is not a detailed, it can be something to improve in future work.  

3) Fig. 7.7 shows the moment just before example Rule 2) in previous section 7.3.1 is 

triggered and the warning boxes in Fig. 7.8 are shown.  

4) The user is about to commit the common mistake between engineers, which is to skip 

step 1 and go straight to step 2 which is to place the fibre cable around the circle tray.  

5) The example Rule 2) from previous section 7.3.1 is triggered. Two alert bounding boxes 

are placed in the user’s view.  

6) The red one on top of the fingertips is to indicate to stop the movement of the hand.  

7) The green bounding box on top of the digital model indicates the target area where the 

engineer is expected to be working or performing an action.  

This is an example proof of concept on how an explainable FRBS can be used to combine 

different sources of information to provide some guidance or advice to a field engineer during 

a task. The reason why not to include the antecedents of the hand gesture recognition in the 

rules of this second FRBS is to keep the model explainable by having fewer antecedents per 

rule, just one hand gesture antecedent instead of the 5 antecedents from the other FRBS.  
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7.4 Discussion 

This chapter presented the use of two FRBS for combining the information from different 

sources to understand what the user is doing and what kind of feedback to provide. The idea is 

that field engineers can access the information stored in the network digital twin, e.g., location 

of an asset, the status of the asset, or area of interest according to task. In field service 

operations the preferred device for displaying virtual information to the user is mixed reality 

headsets because they allow the user to have their hands free to do any other action. Therefore, 

the focus of this chapter is to propose an explainable AI approach for handling the information 

coming from the sensors of a mixed reality headset when the user is performing an on-site task. 

The information needed to be processed is the user’s view and the expected task, which means 

that the two sources of information are the headset’s camera and the company’s database 

containing the information of the assigned task. However, as pointed out in section 7.2 of this 

chapter, the raw frames of the camera are not used, instead these frames are processed by 

different systems and the FRBS then uses the output of those systems. The idea of this chapter 

is not to substitute all the image analysis with an explainable FRBS, instead the goal is to 

present how the business logic of the field engineer’s task can be captured by a FRBS and 

display a message based on the scene from the user’s view. 

The first FRBS presented in this chapter is used for classifying the current hand gesture of the 

user using the distance between the fingertip and the centre of the palm. As mentioned before, 

the idea of this chapter is to use existing systems to process the user’s view and then use a 

FRBS on top of those results. In this case, headsets such as the Microsoft HoloLens 2 and the 

Oculus Quest 2, already have a hand tracking system, the proposed FRBS and the KNN model 

used the information from these systems to compute the distance and then decide on the gesture. 

The results of the experiments showed that the KNN achieved a 98.9% accuracy (highest 

performance), the type-1 FRBS achieved 94.6% accuracy, and the interval type-2 FRBS 
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achieved 96.4% accuracy. Although the KNN achieved the highest performance, the advantage 

of the explainable AI approach is that the inference engine can be easily modified by a user to 

accept new gestures or remove existing gestures. Therefore, it becomes a highly flexible system 

that can be adapted to different companies.  

The second FRBS presented in this chapter is used for combining the different sources of 

information to decide if the user’s current action is expected and if any feedback is needed. The 

main reason for two separate FRBS was: 

• Maintain the interpretability of the system high. The hand gesture recognition uses 5 

antecedents, this second FRBS uses 7 antecedents (including 1 for the output label of 

the first FRBS), if both rules are combined then there will be a total of 11 antecedents, 

and it will be more difficult for the user to read what is happening and to modify it, 

rules should be kept simple for interpretability purposes [26].  

This shows how an ensemble of two FRBS can be used to keep the interpretability level of both 

high and achieve the same performance.  

Additionally, the main goal of the second FRBS is to capture the business logic and provide 

feedback to the user based on their current view. This business logic can change and using an 

explainable AI model to combine the different sources of information has the advantage that it 

can be easily modified. There was no real-world data available for the second FRBS since there 

is not a known system that does a similar thing. Therefore, the system could not be compared 

and evaluated using a performance metric such as accuracy, but it was tested with a use case 

described in section 7.3.2. Fig. 7.7 shows how a digital model of the object of interest is 

displayed next to the physical object and Fig. 7.8 shows how feedback is provided through a 

bounding box on the fingertips and one on the digital model. 
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Chapter 8. Conclusions and Future Work 

8.1 Conclusions 

In this thesis, different fuzzy rule-based systems were proposed as an explainable AI model 

alternative for different applications related to the automated creation of 3D objects in virtual 

environments. The idea was to understand if these explainable AI approaches can compete 

against the highly complex black box solutions.  

The following points summarise some of the advantages of choosing an explainable AI solution 

instead of a black box model.  

• An explainable AI model has an inference process that can be understood and modified 

by a human user. Therefore, the main advantage is the flexibility of the model to change 

according to what the human expert is saying. It is now possible to capture the expertise 

of engineers with years of knowledge and put it in an AI model that combines the 

expertise with the available data.  

• Additionally, explainable AI models tend to require lower volumes of data than deep 

learning solutions, mainly because the gaps in the data can be covered by the human 

expert knowledge.  

• Explainable AI models provide accountability and a reason why a decision is being 

taken, which helps the user understand how the model works, when it is better to use 

the model, and when it is better to use human knowledge. 

On the other hand, the black box models have the following advantages: 

• Black box models are robust and complex models capable of handling high dimensional 

data and extracting complex features that help the model always have a high 

performance (or a low error).  

On one side there is a black box model with the highest possible performance and on the other 

side there is a transparent model that a user understands, and the user can identify in which 



125 
 

cases human intervention is needed. Which option will depend entirely on the needs of the 

company looking to integrate one of these models into their processes. If they want no human 

intervention a black box model is a better alternative, they want to use an explainable AI model 

as a tool to help users, then a model they can understand is likely a better option.  

Chapters 5 and 6 presented an FRBS solution to process image data and generate 3D 

representations of the extracted information. The models were found to have worse 

performance than the black box model, 3% worse in accuracy for satellite image processing 

and 2.5% worse for floor plan processing. However, both have considerable good results and 

are a viable option as an alternative model.  

Chapter 7 presented two FRBS, one used for hand gesture recognition and the second one used 

for combining different input sources to provide feedback to a user in a mixed reality 

environment. Both models showed the flexibility that an explainable AI model can have and 

how this flexibility can be used to build fuzzy logic systems that go on top of other systems to 

combine the different sources of information in an explainable way. For example, the hand 

gesture recognition interval type-2 FRBS using the hand tracking system of the mixed reality 

headsets achieved an accuracy of 96.4% accuracy, 1.5% accuracy lower than the opaque model. 

However, the FRBS rules can be easily modified by the engineer while other opaque models 

using the hand tracking system or deep learning hand gesture recognition models cannot.  

 

8.2 Future Work 

This section discusses the potential research routes that can be explore in the future to address 

the limitations that were encountered during this research work.  

In relation to the segmentation of 2D images there are a couple of research routes that can be 

explored to expand the work presented in this thesis. First, is the implementation of a FRBS 

that uses context information for the segmentation of 2D coloured images. Chapter 5 presented 
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the segmentation of coloured images using FRBS, and chapter 6 described how context 

information can be added to the FRBS when same colour information can mean two different 

things. However, images from chapter 6 were black and white, and just to complete the work, 

the same FRBS can be applied to coloured images and evaluate the performance of using visual 

word dictionary on this type of input data. Additionally, in both datasets (satellite and floor 

plan images) the resulting mask had a noise that was removed in a post-processing step. 

However, this noise removal step is not consistent across use cases, i.e., it needed to be adapted 

depending on the images and performance of the FRBS. A new research route that can be 

explored is the use of a second FRBS that handles the noise removal process, expanding on the 

existing solution and removing some of the limitations by using a hierarchical approach of two 

FRBS. 

Furthermore, chapter 7 presented the use of a FRBS for guiding users during their assigned 

task in mixed reality applications, the FRBS used the sensors input data to identify hand actions 

at a given point in time and determine if it is an expected action or not. The limitation of this 

approach is that it only works with static hand actions or gestures, i.e., it doesn’t consider the 

information across time. This is a possible future research work that can expand on the 

presented FRBS by using the information on how the input data changes over time, this way it 

will be possible to identify dynamic hand gestures instead of static. 

Finally, the implementation and evaluation of the FRBS can also be further explored. In this 

thesis it was presented an approach for rule inference using the class dominance and crisp 

numeric values as inputs. A future research work that was not explored in this thesis, because 

it was out of scope, is to use intervals as inputs and different rule inference methods (e.g., by 

using descent method) and compare the performance against this work. Additionally, in this 

thesis the FRBS were used as an explainable AI approach, a future research work could be to 
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evaluate the accountability, bias, and trustworthiness of these explainable AI solutions against 

their black box model counterpart.  

These future work suggestions might inspire further exploration and improvement of fuzzy 

rule-based systems as an explainable AI solution. 
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