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Abstract of Thesis presented by Virginia Fernandez Arguedas to University of
London.

Automatic Object Classification for Surveillance

Videos

The recent popularity of surveillance video systems, specially located in urban

scenarios, demands the development of visual techniques for monitoring purposes.

A primary step towards intelligent surveillance video systems consists on automatic

object classification, which still remains an open research problem and the keystone

for the development of more specific applications.

Typically, object representation is based on the inherent visual features. How-

ever, psychological studies have demonstrated that human beings can routinely cat-

egorise objects according to their behaviour. The existing gap in the understanding

between the features automatically extracted by a computer, such as appearance-

based features, and the concepts unconsciously perceived by human beings but

unattainable for machines, or the behaviour features, is most commonly known

as semantic gap. Consequently, this thesis proposes to narrow the semantic gap

and bring together machine and human understanding towards object classification.

Thus, a Surveillance Media Management is proposed to automatically detect and

classify objects by analysing the physical properties inherent in their appearance

(machine understanding) and the behaviour patterns which require a higher level of

understanding (human understanding). Finally, a probabilistic multimodal fusion

algorithm bridges the gap performing an automatic classification considering both

machine and human understanding.

The performance of the proposed Surveillance Media Management framework

has been thoroughly evaluated on outdoor surveillance datasets. The experiments

conducted demonstrated that the combination of machine and human understanding

substantially enhanced the object classification performance. Finally, the inclusion

of human reasoning and understanding provides the essential information to bridge

the semantic gap towards smart surveillance video systems.
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Chapter 1

Introduction & Motivation

In a world of heightened vandalism and terrorist activity, video surveillance forms

an integral part of ensuring safety and security for citizens. Due to the deployment

of 24/7 video surveillance systems, evidence prior, during and after an incident are

captured and recorded by various surveillance systems, such as traffic control, pub-

lic transportation terminals (e.g. bus terminals, train stations, airports, etc) and

private surveillance systems (e.g. installed in shops, bank ATMs, stadiums, etc). In

many countries, surveillance cameras operate 24/7. For instance, the UK is consid-

ered to be one of the countries with the greatest amount of Closed Circuit Television

surveillance (CCTV). In 2003, Norris and McCahil [140] estimated the UK accom-

modated 4.2 million surveillance cameras. As surveillance systems grow in scale,

heterogeneity and utility, there is an increasingly critical need to provide automated

and smart surveillance solutions, while combining archived (surveillance video) con-

tent from different compression formats, indexing systems and data storage format

sources.

The police have been using such systems dating back from the origins of video

surveillance, in 1950s. In 1960, the London Metropolitan Police erected two pan-

tilt-and-zoom cameras in Trafalgar Square to monitor the crowds [139]. At the

beginning, officers were in charge of controlling surveillance cameras at all times.

However, this method was a time consuming task and had a high impact on re-

sources. At present, CCTV has become ubiquitous and people are being watched

by surveillance cameras almost everywhere. In fact, video surveillance systems are

one of the main sources of information and security due to their wide spread and

increasing presence worldwide.

Due to the extensive usage of surveillance systems, numerous efforts have been

dedicated to develop algorithms and techniques for analysis, classification, indexing

and search in surveillance applications. However, smart surveillance systems remain

a challenging problem for several reasons. First of all, surveillance databases are

1
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usually of enormous sizes and contain a lot of redundancies. Thus, the ability to

efficiently and effectively process large volumes of surveillance datasets is needed,

without requiring too much human involvement. Secondly, surveillance data of-

ten have limited quality because of capturing conditions, compression, data storage

format, etc. The semantic analysis of such videos requires intelligent algorithms

for indexing and classification based on objects, events or other types of semantic

queries. Nowadays, automatic object classification is still an open research problem

in the field, and it is a keystone for the development of more specific surveillance

applications. These challenges motivated our work on studying the state-of-the-art

research and developing new solutions for surveillance video analysis and manage-

ment.

Despite the importance of features related to the objects inherent physical prop-

erties, psychological studies have demonstrated that human beings can routinely

recognise the type of object using motion or behaviour patterns, even with lengthy

viewing distances where scene observation is affected by either poor visibility condi-

tions or in circumstances where other familiarity cues such as appearance are hard

to distinguish [105]. Inspired by these conclusions, our thesis proposes a Surveil-

lance Media Management framework for automatic object classification based

on the analysis of physical and behavioural characteristics. Our approach proposes

to narrow the semantic gap and bring together machine and human understanding

by presenting an automatic object classifier which indexes and classifies semantic

objects by analysing (i) the physical properties inherent to their appearance (ma-

chine understanding) and (ii) the behaviour patterns which require a higher level of

understanding (human understanding). Finally, a probabilistic multimodal fusion

algorithm bridges the gap performing an automatic classification considering both

human and machine understanding.

1.1 Research Objectives

As a means of achieving smarter surveillance systems, there is a need for the

consideration of human understanding as a source of knowledge in order to bridge

the semantic gap and enhance automatic object classifiers with a higher level of un-

derstanding. Addressing this problem, this thesis focuses on the specific objectives:

• To develop an automatic object classifier build upon the idea of combining

machine and human understanding in order to narrow the semantic gap, giving

an step forward towards smart surveillance systems.

• To build an integrated Surveillance Media Management framework for the ex-

traction of semantic media information and unsupervised object classification
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from raw surveillance videos, whilst addressing semantic indexing and classi-

fication for forensic applications.

• To perform a review of the literature regarding the existing object classification

techniques used in surveillance applications, and more specifically, a survey

of the most popular event detection approaches, in an attempt to provide a

substantial background capable to frame the proposed research as well as the

future work.

• To analyse human perception in order to discover behaviour patterns followed

by surveillance semantic moving objects. The representation of semantic ob-

jects using human understanding is the first step to bridge the semantic gap

between machine and human understanding.

• To design a decision-making process which replicates human inference pro-

cedure, to integrate a high flexibility and adaptability in the classification

process as well as enabling the conversion of human language rules into their

mathematical equivalents.

• To exhaustively study the physical properties inherent in surveillance seman-

tic objects in order to provide an optimal representation of semantic moving

objects according to machine understanding.

• To study diverse feature-level fusion methods to optimally combine the visual

features while preserving the visual features properties and nature.

• To develop a multimodal fusion technique which will probabilistically merge

the knowledge provided by machine and human understanding. Considering

both sources of information, this fusion technique would classify semantic ob-

jects automatically based on the premise of bridging the semantic gap.

• To study the performance of automatic object classification in real surveillance

databases, considering their limitations and challenges.

1.2 Contributions of the Thesis

The research outlined in this thesis represents a substantial contribution to the

area of automatic object classification in surveillance videos and forensic applica-

tions. The work has been peer reviewed in the form of ten conference papers, one

book chapter and has contributed towards the submission of one journal paper (refer

to the List of Author Publications in 8.3). The primary technological contributions

of the thesis are:
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• The design and development of the Surveillance Media Management system

to provide semantic object indexing and classification to enhance forensic ap-

plications by providing human-like indexing. Such system will build the basis

for the development of more sophisticated event detection and classification

techniques.

• The integration of an automatic object classification technique within the pro-

posed Surveillance Media Management framework based on the premise that

the combination of machine and human understanding would enable to bridge

the semantic gap towards smart surveillance systems.

• A set of novel behaviour features, extracted based on a set of geometrical

algorithms, to imitate the behaviour patterns followed by human beings to

automatically classify moving objects according to psychological studies.

• A Behavioural Fuzzy Classifier build to replicate human influence procedure

for automatic object classification. The proposed classifier addresses the con-

version of human language rules to their mathematical equivalents by the use

of fuzzy logics.

• An exhaustive study of the most commonly deployed visual features to deter-

mine their viability for surveillance object classification considering the surveil-

lance videos limitations.

• A feature-level multimodal fusion technique to build appearance-based surveil-

lance object representation preserving the non-linearity and nature of the in-

dividual features while increasing its robustness and complexity.

• To exploit the problem solving abilities of biological algorithms in optimisa-

tion techniques to enhance the performance of classifiers providing a closer

approximation to human cognition.

• A probabilistic multimodal fusion technique to integrate several diverse-nature

cues based on Bayesian Networks as the foundation to combine machine and

human understanding, integrating human cognition in the classification pro-

cess.

1.3 Structure of the Thesis

This thesis addresses the critical issue of automatic object classification for

surveillance applications. The central contribution of this thesis resides in the merge
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of machine and human understanding in order to bridge the semantic gap and pro-

vide a higher level of understanding to automatic object classifiers. The extraction,

analysis and classification on the premise of machine and human knowledge are

achieved in the Surveillance Media Management framework (SMM). The proposed

SMM provides automatic object classification and semantic indexing for surveillance

applications not only by analysing the inherent physical properties of the semantic

moving objects appearing within surveillance videos, but also analysing their be-

haviour patterns. In the following, the general structure of the thesis is presented.

• Chapter 2 introduces a literature review of the most prevalent event detection

and their associated object classification techniques to provide a substantial

background capable to frame the proposed research and future work. Fur-

thermore, Chapter 2 outlines the proposed Surveillance Media Management

framework which integrates an automatic classifier based on the knowledge

provided by human and machine understanding. Finally, Chapter 2 addresses

semantic classification and indexing for forensic applications.

• Chapter 3 begins with a review of the most commonly used background

subtraction and object tracking approaches. This is followed by a detailed de-

scription of the Motion Analysis and Object Extraction Component (MAC).

Each stage of the MAC, including the background subtraction, object seg-

mentation and object tracking approaches, is further detailed. Finally, this

Chapter ends with a description of the challenges encountered in the analysis

of surveillance videos.

• Chapter 4 introduces the Appearance-based Object Classifier topology. Dur-

ing this Chapter, an automatic object classifier based on the analysis of the

inherent physical properties of the moving objects is discussed. Previously,

this Chapter outlines a literature review of the most popular visual features

and combination techniques as a foundation to describe the latent challenges

and research objectives to tackle by the Appearance-based Object Classifier.

Consequently, an optimal feature-level multimodal fusion technique and a bi-

ologically inspired classification technique are proposed. This Chapter con-

cludes with the description of the two proposed object classifiers based on

the analysis of visual features and exploiting the benefits of (i) multi-feature

descriptors and (ii) biologically inspired optimisation techniques.

• Chapter 5 outlines the Behaviour-based Object Classifier topology modelling

behaviour features significant to humans in an effort to imitate the human in-

ference procedure towards object classification. During this Chapter, the geo-

metrical algorithms built for the extraction of the behaviour features to depict
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a compact representation of the object’s spatio-temporal evolution are detailed.

This is followed by a theoretical introduction of Fuzzy Logic and their benefits

to handle uncertainty. A hierarchical rule-based fuzzy classifier is presented

to categorise the behaviour patterns into a set of pre-defined semantic classes.

The Chapter ends with a performance evaluation of the proposed behaviour

patterns, the discriminative power of the Behavioural Fuzzy Classifier and the

benefits provided by enlarging the flexibility of the classification framework.

• Chapter 6 presents the central contribution of the thesis, introducing a prob-

abilistic multimodal fusion technique to bring together machine and human

understanding in an attempt to narrow the semantic gap towards smart surveil-

lance systems. This Chapter ends with a performance evaluation of the com-

plete Surveillance Media Management framework and its performance com-

parison with the proposed Appearance and Behaviour-based Object Classifier.

• Chapter 7 discusses the surveillance datasets and the developed ground truth

for the evaluation of each individual component introduced in the Surveillance

Media Management system.

• Chapter 8 presents a conclusion to the thesis where the results and analy-

sis of the Appearance, Behaviour and Bayesian-based Object Classifiers are

summarised and discussed. This Chapter highlights the contributions made

by this research and how they advance the work in this field. Finally, future

research directions are proposed.



Chapter 2

Surveillance Media Management

System (SMM)

The current awareness for public security motivated the exponential expansion

of video surveillance. Consequently, numerous CCTV cameras have been deployed

for different applications from traffic monitoring to detection of abnormal behaviour.

The growth in the surveillance systems, installed not only in public environments

but also in private areas, generated an increase in the recorded surveillance infor-

mation. Real-time surveillance as well as forensic applications demand intelligent

algorithms for semantic object indexing and classification, as a fundamental prior

step to automatic semantic event indexing, in an attempt to address smart surveil-

lance systems. In this Chapter, a Surveillance Media Management framework

for automatic object classification based on the analysis of inherent visual features

and behavioural characteristics is proposed. Our approach provides semantic clas-

sification and indexing of surveillance moving objects based on the consideration of

machine and human understanding in the video analysis, in an attempt to narrow

the semantic gap and providing a solution towards smart surveillance systems.

In this Chapter, a detailed survey of the existing event detection approaches

along with their proposed object classification algorithms is presented in Section

2.1. While in Section 2.2, the proposed Surveillance Media Management framework

is further detailed along with the thesis structure. This Chapter ends, in Section

2.3, with a summary of the proposed automatic object classification framework and

a road map for the thesis.

2.1 Literature Review

Different segmented and tracked moving regions may correspond to different

semantic objects in real scenarios. Typically two scenarios are distinguished in

7
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surveillance videos, indoor and outdoor (refer to Appendix 9.1 for their specific

characteristics and constraints). Indoor surveillance videos detect a short list of

object categories prevailing humans. While, outdoor surveillance videos detect a

wider range of objects, such as cars, buses, bicyclists, pedestrians or animals. Ob-

ject classification can be considered as a standard pattern recognition issue affected

by problems coming from the motion detection stage, including noise, occlusions,

scene illumination variations or waving trees. Object classification aims to cate-

gorise each moving object segmented in the motion detection stage and eliminate

false alarms1. Relevant work in this area includes numerous machine learning algo-

rithms such as boosting [200], decision trees [131], Support Vector Machines (SVMs)

[201], co-trained classifiers [234], biologically inspired classifiers [39] and batch-mode

SVMs [90]. In surveillance scenarios, the most commonly used machine learning

algorithms include Support Vector Machines [155], Naive Bayes Classification [174]

and AdaBoost [210].

In surveillance systems, event and activity recognition can be ambiguous and

highly dependable on the scene context. The same behaviour might have different

meanings depending on the video environment or the task under analysis. In the

remainder of this section, an overview of some prevalent and innovative event classi-

fication techniques is presented in order to determine their specific application and

the applied object classification algorithm. Events are grouped into three categories

depending on the nature of the objects involved: human events, vehicle events and

other events. In Section 2.1.1, a review of some popular human event detectors and

applications like human loitering, people counting or crowd detection, are presented.

Section 2.1.2 describes the different applications and approaches for vehicle event

detection. Finally in Section 2.1.3, a summary of innovative applications of event

detection is presented.

2.1.1 Human events

At an early stage, event detection dealt with single pedestrians or a very lim-

ited number of pedestrians whose main activity consisted on entering, leaving and

passing through, in a word, loitering. In [152], a single person event or two people in-

teractions, such as altering one’s path to meet another or following another person,

were modelled by Hidden Markov Models (HMMs) and Coupled Hidden Markov

Models (CHMMs). In this approach, for each moving object an appearance-based

1Eliminate false alarms consists or categorise certain blobs as noise. Sometimes, the Motion Anal-
ysis Component (refer to Chapter 3) segments certain blobs which do not contain any relevant
information or moving object but present some motion due to the effect in the image of some
external factors such as movement on the camera or shadows in the image
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descriptor was generated and a Kalman filter tracks the object’s location, coarse

shape, colour pattern and velocity. From this temporally ordered stream of data, an

object behavioural description was the input to a stochastic state-based behaviour

models to detect interactions between objects. Both HMMs and CHMMs were used

to classify the modelled behaviours. In [24], outdoor loitering detection was used

as a cue to detect potential drug-dealing operations in bus stations. In this specific

scenario, a suspicious activity was defined as individuals loitering for a longer time

than the maximum waiting time for the bus. In this approach, the authors used a re-

fined Gaussian mixture background subtraction algorithm to detect motion objects

in a calibrated scene. A human versus non-human classification was made based

on size and shape descriptors using an on-line classification technique that clustered

incoming pedestrian images into classes comprised of images of a single pedestrian.

Outdoor videos are mainly recorded in crowded scenarios, like in public trans-

portation or areas with high congestion. Accurate people detection has been ex-

haustively researched because of its many applications. One of the most important

applications is crowd detection. Two main research challenges involved in crowd

detection are crowd counting and crowd behaviour analysis.

Side-view surveillance cameras find difficulties in performing crowd segmentation,

instead aerial cameras base their analysis in head detection and tracking. Since over-

head views are prone to tracking errors across several cameras, counting crowds is

usually performed in side-view multi-cameras systems. In the case of crowd segmen-

tation, solutions based on several appearance-based features, face detection or skin

colour have been proposed. As most of these techniques rely on appearance-based

features, their accuracy depends on the image quality and frame rate. Shape index-

ing and skin colour are considered robust to poor video quality, whereas motion and

face detection are most dependent on video quality [36]. As an example of crowd

counting, in [65], the authors addressed crowd detection and people counting. Frame

differencing was used to spatially segment the moving objects. Crowd segmentation

was considered a shape matching problem and addressed using an example-based

algorithm which mapped directly the global shape feature by Fourier descriptors to

various configurations of humans stored in a look-up table. The authors used Locally

Weighted Regression (LWR) over the candidate parameter sets to quickly estimate

the one that better explained the extracted shape. In this approach, crowd detection

was converted into a shape matching problem and people counting depended on the

shape assigned to the image under analysis.

Crowd behaviour analysis has drawn significant interest as a novel procedure to

efficiently detect and deal with accidents or to control situations that could poten-

tially lead to graver incidents. Recent crowd behaviour analysis methods include
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tracking of moving objects, motion models using optical flow and crowd density

measurement using background reference images. A recent survey [231] focused on

crowd analysis methods. Regarding security, the main application of crowd be-

haviour in surveillance scenarios is identifying individual events in crowded areas.

In [109], the authors used spatio-temporal shapes combined with Shechtman and

Irani’s flow descriptor as moving objects indexing technique. In order to provide

robustness against occlusions and actor variability, events were separated in parts.

Their action templates were divided into parts and the pictorical structures algo-

rithm was extended for recognition. For testing, twenty minutes of video containing

110 events of interest were collected by the authors.

In surveillance applications, multiple-person interaction has gained importance

due to the growing demand for recognising suspicious activities. In fact, projects like

Computer-assisted prescreening of video streams or unusual activities (BEHAVE) 2

and Context aware vision using image-based active recognition (CAVIAR) 3 have

produced several publications focusing on multiple-person interactions. Some out-

standing approaches are presented in [77, 156]. In [77], the behaviour detection

procedure consisted of motion detection and object tracking followed by a semantic

description of suspicious human behaviours based on sets of low-level object events,

i.e., fights were defined as many moving objects moving together. In [156], multiple

free-form moving objects and course models of the human body were used in a two-

person interaction, which used a hierarchical Bayesian network to recognise human

behaviours based on body part segmentation and motion. This work was extended

to track multiple body parts of multiple people in order to detect and distinguish

different human actions such as punching, handshaking, pushing and hugging [157].

2.1.2 Vehicle events

In surveillance scenarios, events involving vehicles are conceived for specific appli-

cations such as control of traffic congestion or control and elimination of dangerous

situations. Consequently, events such as accidents, illegal parking, congestion status

or lane driving are considered. In the literature, several approaches have been pre-

sented to detect the previous events. Most existing automated vehicle surveillance

systems are based on trajectory analysis and are commonly learnt using expectation

maximisation or modelled using semantic rules.

A first group of approaches targeted vehicle recognition, classification of different

types of vehicles or discrimination between vehicles and other semantic objects. In

2BEHAVE project: http://homepages.inf.ed.ac.uk/rbf/BEHAVE/

3CAVIAR project: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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[209], the authors discriminated between pedestrians, bicycles, bus/truck, cars and

motorcycles using a naive Bayesian classifier based on a feature vector composed by

(i) the semantic object-length, (ii) width, (iii) object’s maximum speed (km/h), (iv)

bounding box “filling degree” (distinguishing solid and “open” vehicles) and (v) the

fraction of contour pixels. In [32], vehicle detection and classification was outlined

using 3D wire frame models. Motion silhouettes were extracted and compared to

a projected model silhouette to identify the ground plane position and class of the

vehicle. Other existing approaches are [120, 198].

Vehicle detection and recognition is a fundamental task and the basis for vehi-

cle event detection. Several approaches analyse the vehicles’ trajectory in order to

detect events. In [118], a traffic event detection based on Gaussian Mixture Hid-

den Markov Model (GMHMM) involved a feature vector based on Discrete Cosine

Transform (DCT) coefficients and macro-block motion vectors. Six traffic patterns

were defined: heavy congestion, high density with low speed, high density with high

speed, low density with high speed, low density with low speed and vacancy. Each

traffic pattern was modelled by a separate GMHMM that was trained using the

EM algorithm. In [208], a multiple cue-based approach combined with a switching

Kalman filter for robust estimation of targets was presented. The results of tracking

were analysed in an event detection stage, where a domain rule-based algorithm de-

tected several predefined events, such as turning, lane changes, slow moving, stopped

and speeding vehicles. In [114], the authors performed semantic object classification

using Bayesian Networks. Based on the semantic object classification results, an

event detector extracted some features, such as shape, motion, position and track,

and includes a priori knowledge of the spatial context in order to detect a list of

traffic events, i.e., moving towards the checkpost, stopped in front of the checkpost

and crossing the checkpost.

Significant research has been done in anomaly behaviour detection. Some ex-

amples can be found in [120, 221]. Moreover, a complete review of on-road vehicle

detection systems can be found in [195].

Exhaustive research has been devoted to develop License Plate Recognition (LPR)

algorithms as core modules for intelligent infrastructure systems and freeway man-

aging systems for traffic surveillance. Generally, LPR algorithms consist of three

steps: (i) license plate detection, (ii) segmentation of the characters and (iii) char-

acter recognition. Many methods to locate license plates have been proposed in

recent years, such as edge detection method, line sensitive filters to extract the plate

areas, the window method and morphology methods. Despite their ability to lo-

cate license plates, these algorithms are affected by brightness, processing time or

variable environments. Once, the license plate is located, character segmentation
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algorithms are applied. There have been a large number of character segmentation

techniques reported based on projection, morphology and connected components.

Finally, numerous character recognition techniques have been reported using model

match, Bayes classifier, artificial neural networks or SVMs. Most of the proposed

character segmentation techniques are limited by two constraints, only single-line

characters can be processed and only English and numeric characters can be recog-

nised. Considering these challenges, some recent LPR algorithms proposed: (i) in

[37], licence plate localisation was based on Gabor filters followed by thresholding

and connected components, while for character recognition Self Organising Maps

neural networks were applied, (ii) in [104], authors recognised characters using edge

analysis and feed forward neural networks and (iii) in [214], the authors proposed

an improved Bernsen algorithm for license plate location while for the character

recognition a feature comparison based on SVMs was presented. A complete review

of license plate recognition algorithms can be found in [3].

A summary of the presented systems developed for human and vehicle events

can be found in Table 2.1.

Table 2.1: Summary of event and object detection systems over surveillance videos
Task Classifier Dataset
Human interaction [25] HMMs and CHMMs 20h outdoor videos
Pedestrian loitering [24] On-line cluster classification Outdoor videos
Crowd detection Locally weighted regression outdoor videos
& people counting [65]
Event recognition [109] Pictorical structures algorithm Outdoor/indoor

videos
Event detection [77] Rule-based classifier CAVIAR project

dataset
Human interactions[156, 157] Hierarchical Bayesian network Indoor videos
Semantic object Naive Bayesian classifier Outdoor videos
discrimination [209]
Vehicle classification [32] 3D wire frame models i-LIDS dataset
Traffic event detection [118] GMHMM 12h outdoor videos
Traffic event detection [208] Kalman filters Outdoor videos
Traffic event detection [114] Bayesian networks Outdoor videos
License Plate Recognition [37] Self Organising Maps Outdoor videos

neural networks (parking lots
/highways)

2.1.3 Other events

Due to the wide range of surveillance scenarios, from airports to underground

video surveillance, a broad spectrum of specific situations is analysed and targeted in

dedicated surveillance systems. Among several projects focused on solving specific
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surveillance tasks, PETS 2004 and 2006 targeted the detection of dangerous objects.

In Table 2.2, a summary of some surveillance oriented specific tasks is presented.

Table 2.2: Summary of surveillance oriented specific tasks
Task References

First Author Year Reference
Black 2005 [25]

Intrusion/Trespassing Schwerdt 2005 [178]
Seyve 2005 [182]
Sacchi 2001 [171]

Vandalism Fuentes 2004 [77]
Ghazal 2007 [82]
Black 2005 [25]

Suspicious stationary objects Spagnolo 2006 [189]
Lu 2006 [127]

Toreyin 2005 [202]
Smoke detection Maruta 2010 [138]

Ma 2010 [130]

Every presented event detection technique requires an object classifier. The ac-

curacy and robustness procured by their object classifier directly affect their output

and, therefore, high relevance and great attention should be paid to the selected

object classifier.

2.2 System overview

The recent exponential popularity of surveillance systems, largely attributed to

the increased safety concerns of the public, requires constant supervision. The high

demand of resources required for the analysis of surveillance data, either for real

time applications or for storage and post-processing, pursues solutions for automatic

object detection and classification to facilitate surveillance operators’ tasks, reducing

the use of human resources and providing efficient techniques for surveillance data

storage, indexing and retrieval.

While most of the actual surveillance object classifiers rely on appearance, analysing

low level features and considering only machine understanding ; a new range of op-

portunities opens if human knowledge and reasoning are considered, human under-

standing. This thesis aims to increase the efficiency and accuracy of surveillance

object classification and indexing systems to overcome some existing limitations

such as (i) dependence on a surveillance operator and (ii) limited resources.

Object classifiers, and generally surveillance video applications, can be cate-

gorised according to the level of integration of the surveillance operator into three
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types: operator-controlled video surveillance, basic automated video surveillance

systems or smart video surveillance [180]. While operator-controlled and basic auto-

mated video surveillance systems base their output on the performance of a surveil-

lance operator either in a total or partial degree of supervision; smart video surveil-

lance addresses unsupervised object detection, tracking, classification and behaviour

interpretation of objects of interest in the environment without human intervention.

Gradually, surveillance systems are becoming more independent, upgrading their

level of autonomy and steadily reducing the level of human intervention. In this

thesis, a Surveillance Media Management framework for automatic object clas-

sification from surveillance videos is presented; addressing object detection, tracking,

and classification with independence from any kind of supervision and to contextual

information. Therefore, our approach pursues automatic object classification for any

surveillance scenario.

Despite the huge interest on real-time surveillance applications, there is an

increasing need for accurate indexing and classification towards post-processing

surveillance applications. The development of an automatic object classifier which

indexes surveillance data accordingly, provides a valuable tool for posterior searches

and query analysis. Our approach addresses automatic object classification and in-

dexing using classification results as keywords in order to facilitate the search, query

analysis and retrieval reducing the required processing time and making a better use

of the available resources.

Addressing these challenges, in this thesis, we propose a Surveillance Media Man-

agement framework for automatic object classification. There are two main contribu-

tions introduced by the Surveillance Media Management framework (refer to Figure

2.1). First, the inclusion of cues detected and used by human beings in an object

classification process as key-features for modelling semantic object categories. Our

system proposes not only to consider appearance to classify semantic objects but also

to include human knowledge and reasoning based on behaviour patterns. Despite

the fact that behaviour patterns are easily understood by human beings, they are

unattainable for machines. Such a gap in the understanding between the features

automatically extracted by a computer and the concepts unconsciously perceived

by human beings is most commonly known as semantic gap. Due to such machine

understanding constraints, the second novelty of the proposed object classifier con-

sists on the merge of machine and human understanding in a probabilistic fusion

component, to bridge the semantic gap for surveillance object classification.

In the previous Section, some well-known approaches and algorithms for object

and event classification have been presented (refer to Section 2.1). In the following

paragraphs, the Surveillance Media Management system proposed for automatic
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object classification for surveillance videos will be further explained.

In accordance with the system framework (shown in Figures 2.1 and 2.2)4, the

proposed approach consists of three stages: Motion Analysis and Object Extraction

Component 5, Feature Extraction and Analysis and Probabilistic Fusion Method.

Raw surveillance videos are firstly processed by the Motion Analysis Compo-

nent (refer to Chapter 3), in order to reduce the amount of information to analyse,

facilitating subsequent stages and enabling a faster procedure. Raw surveillance

videos are analysed for the extraction of moving objects6, their physical representa-

tion and the spatio-temporal information associated to them. Consequently, Motion

Analysis Component provides background subtraction, followed by object spatial

segmentation and object tracking.

The Feature Extraction and Analysis component presents two parallel pro-

cesses. On one hand, the appearance of the moving objects is analysed, extracting

a set of low level features, to represent machine understanding; this process is ad-

dressed by the Appearance-based Object Classifier. While, on the other hand, the

moving objects’ behaviour is modelled using the spatio-temporal information pro-

vided by the Motion Analysis Component, to represent human understanding; this

process is addressed by the Behaviour-based Object Classifier.

The Appearance-based Object Classifier (refer to Chapter 4) consists of the ex-

traction of a set of well-known low level features and their optimal combination in

order to obtain a compact, efficient and representative appearance model for each

moving object detected within the surveillance video. Different low level features

were analysed, including global and local descriptors. However, after an exhaustive

analysis only four of them were selected due to their high distinctiveness, compact

representation and significance for human perception. Those features are the follow-

ing MPEG-7 descriptors 7: Colour Layout Descriptor, Edge Histogram Descriptor,

Dominant Colour Descriptor and Colour Structure Descriptor. Each descriptor pro-

vides specific information relative to the appearance of the moving object under

analysis. In an attempt to generate a more robust and complex representation,

different fusion techniques were studied. In our approach, a feature combination

4For the detailed Surveillance Media Management framework refer to Figure 2.1. For clarification
and simplicity, a more schematic framework of the Surveillance Media Management system is
shown in Figure 2.2

5For simplicity and brevity along this thesis the Motion Analysis and Object Extraction Component
will be also referred as Motion Analysis Component (MAC)

6Each moving object detected within a surveillance video is represented by a set of samples called
blobs, which are geometrically defined by their bounding boxes.

7MPEG-7, Multimedia Content Description Interface, is an ISO standard which facilitates image
representation by using some image features such as the image dominant colour or its texture
[185]. Moreover, MPEG-7 provides a simple and efficient numeric method to represent images
through the usage of descriptors.
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Figure 2.1: Surveillance Media Management System
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Figure 2.2: Scheme of the Surveillance Media Management System

technique named Multi-Objective Optimisation Technique is presented to optimally

combine low-level features in order to build a multi-descriptor considering the non-

linearity of the different descriptor spaces (refer to Section 4.2).

The Behaviour-based Object Classifier (refer to Chapter 5) replicates the human

inference procedure generating a behaviour pattern for each moving object detected

in the Motion Analysis Component. Our approach is based on the premise that

psychological studies have shown that human beings can perform object classifica-

tion using behaviour patterns 8, even in large viewing distances or poor visibility

conditions where appearance features tend to disappear [73]. Consequently, four

behaviour features are extracted in order to build behaviour patterns, namely shape

ratio, size ratio, velocity and trajectory. The Behaviour Feature Extraction com-

ponent, presented in Section 5.2.2, details the geometrical algorithms created for

the extraction of the behaviour patterns. Finally, a scalable hierarchical rule-based

fuzzy classifier, namely Behavioural Fuzzy Classifier, is proposed to classify moving

objects according to the human inference procedure and human understanding (refer

to Section 5.2.3).

A Probabilistic Fusion Method (refer to Chapter 6) based on Bayesian Net-

works is proposed to merge the classification results provided by the Appearance-

based and Behaviour-based Classifiers. Combining the classification results provided

by each approach, machine and human understanding are brought together to per-

form automatic object classification for surveillance videos. The fusion of both levels

of understanding provides a unique approach which benefits from the differences be-

tween the knowledge procured by machines and human beings.

Despite the high relevance of each of the stages, the main novelties included in

the Surveillance Media Management framework are located in the Feature Extrac-

tion and Analysis component and in the Probabilistic Fusion Method. The former

8Behaviour pattern is considered as a description of the spatio-temporal evolution of a moving
object. This evolution would not only enumerate the coordinates of the moving object but would

also highlight behaviour details which provide information about the object under analysis
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extracts not only appearance features but also behaviour patterns to perform in-

dividual classifications. While the latter bridges the semantic gap, combining the

knowledge provided by machines and humans in an attempt to increase the object

classification confidence and accuracy on surveillance datasets.

2.3 Summary

During this Chapter, the Surveillance Media Management framework was in-

troduced to further describe the proposed automatic object classification technique

built to provide semantic classification and indexing for forensic applications. The

proposed SMM addresses automatic object classification as a fundamental prior

step to build the foundation for semantic event detection, classification and index-

ing. Furthermore, the SMM intends to increase the robustness and accuracy in the

decision-making process by probabilistically combining inherent visual features and

behaviour patterns of the detected moving objects. Consequently, the main objective

of the SMM is to narrow the semantic gap, bringing together machine and human

understanding, in an attempt to give an step forward towards smart surveillance

systems.

In the following chapters, each of the stages mentioned in the previous Section

are further described. Each module will be explained in an independent chapter,

following the structure revealed in Figure 2.2. Each individual chapter presents a

more specific literature review, a detailed description of the proposed technique,

an evaluation of the conducted experiments, a set of extracted conclusions and a

summary of the proposed techniques within the chapter. Moreover, the datasets

and ground truth selected for the evaluation of each module is further described in

Chapter 7.

In the next Chapter, the Motion Analysis and Object Extraction component

is addressed (refer to Figure 2.3). More specifically, the proposed techniques for

the detection, segmentation and tracking of the relevant moving objects appearing

in raw surveillance videos are further detailed. The objective of this chapter is to

reduce the amount of information to process focusing the analysis in the relevant

information.
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Figure 2.3: Motion Analysis and Object Extraction component in the Surveillance
Media Management framework



Chapter 3

Motion Analysis and Object

Extraction

Surveillance cameras have become pervasive in various spaces, prominently pub-

lic spaces, recording 24/7. A large amount of information is captured daily and

must be processed. However, information can be efficiently analysed only if the

relevant information is isolated and extracted. Motion Analysis techniques address

the segmentation of relevant objects included in surveillance videos based on their

motion. However, moving objects include spatio-temporal information. In order to

enhance the performance of any surveillance system, temporal information should be

considered. Object tracking is performed to extract the spatio-temporal information

of each individual moving object.

In this chapter, a detailed survey of the existing Motion Analysis and Object

Tracking Techniques is presented (refer to Section 3.1). In Section 3.2, the presented

Motion Analysis and Object Tracking techniques used in the Surveillance Media

Management System are detailed; introducing the techniques applied to isolate and

spatially segment moving objects and also to extract valuable spatio-temporal infor-

mation of the detected moving objects for the posterior stages. This Chapter ends

with a summary of the presented techniques and the information extracted for the

subsequent stages (refer to Section 3.3).

3.1 Literature Review

In this section, a list of techniques commonly encountered in visual surveillance

systems is presented. In general these techniques can be categorised into Motion

Analysis and Object tracking. The former describes the existing motion detection

and spatial segmentation techniques to reduce the amount of information to analyse,

reducing the complexity of the posterior steps and procuring a set of blobs considered

20
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relevant due to their motion within the video (refer to Section 3.1.1). While the latter

presents recent object tracking techniques to study the temporal evolution of the

relevant blobs in order to provide spatio-temporal information to subsequent stages

(refer to Section 3.1.2).

In order to facilitate the understanding of this review, several concepts must be

clarified. First, all the relevant objects for surveillance analysis which include spatio-

temporal information are defined as moving objects. Each moving object appears

in several temporally consecutive frames, each representation of the moving object

is denominated as blob and its geometrical representation is called bounding box.

Finally, when the moving object has been indexed and classified it is defined as a

semantic object.

3.1.1 Motion Analysis

Visual surveillance systems use fixed cameras providing videos with static back-

ground. Each surveillance video contains an enormous amount of data, requiring

exhaustive analysis. To reduce the analysis complexity, the motion detection stage

consists of spatially segmenting the moving objects which contain relevant informa-

tion from the rest of the frame. To facilitate subsequent steps, background-related

information removal is required, relieving difficulties in the posterior analysis stage.

In the literature, motion detection algorithms are commonly categorised into envi-

ronmental modelling and motion segmentation. Candamo et. al [36] proposed a

motion detection classification which grouped algorithms in three categories, back-

ground subtraction, temporal differencing and optical flow.

Background subtraction is the dominant object spatial segmentation strategy.

Background subtraction techniques generate a pixel-wise mathematical model to

represent the background. Each frame of the video is compared with the simu-

lated mathematical model so the foreground can be extracted. Consequently, the

extracted foreground is composed of all the pixels or group of pixels with significant

differences between the modelled background and the current image, considering

them as moving blobs. Several challenges must be faced by background subtraction

algorithms to protect the accuracy of the subsequent steps, for instance, changes

in illumination, waving trees, camouflage, bootstrapping, sleep/walking person or

shadows [204] (for further details related to background subtraction challenges refer

to Appendix 9.2). The most well-known background subtraction algorithms include

methods by (i) Heikka and Silven [88] where the background model was updated

using a recursive filter and monitored the changes in activity during a few consec-

utive frames to eliminate pixels with random performance. The use of a recursive
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filter enabled the adaptation to slow changes in the lighting whilst monitoring each

pixel performance provided robustness against waving trees effects. (ii) Stauffer and

Grimson [191] proposed modelling each pixel as a mixture of Gaussians and using

an on-line K-means approximation to update the model. Each pixel was classified

based on whether its Gaussian distribution suited the background model most ef-

fectively or not. Such estimation was robust against changes in illumination, slight

sensor movements, noise and long-term scene changes. (iii) Halevy and Weinshall

[86] linearly subtracted the temporal average of the previous frames from the new

frame adjusting the model to slow changes in the image. (iv) Cutler and Davis [58]

calculated a background model based on each pixel 1-D temporal median over N

frames. (v) Toyama et al. [204] segmented foreground objects applying pixel-level

Wiener filtering to make probabilistic prediction about the expected background,

a frame-level component ensured its accurate performance against global changes

and swaps in the image. (vi) Cheung and Kamath [54] presented a slow adapting

Kalman filter in conjunction with statistics based on an elliptical moving object mo-

del to model the background over time. A detailed review of background subtraction

techniques can be found in [158].

Temporal differencing is based on temporally local events. The procedure consists

of establishing a sampling period to separate video frames and calculate pixel-wise

differences between consecutive sampled frames to locate changed regions. Temporal

differencing algorithms adapt to dynamic environments but cannot extract all the

relevant pixels [93]. Due to such a disadvantage, few approaches performed motion

detection based on temporal differencing [119, 126], instead hybrid approaches based

on a combination of temporal differencing and background subtraction have been

presented providing more robust segmentation techniques [56].

Optical flow estimates motion in video by matching points on objects over time

to detect moving regions in an image sequence. Optical flow based methods provide

invariance to camera motion and robustness against simultaneous objects and cam-

era movement, enabling the analysis of crowds and dense motion situations [126].

However, most optical flow calculation methods are computationally complex and

sensitive to noise. A detailed list of commonly used optical flow-based techniques is

presented in [36].

3.1.2 Object tracking

Once spatial segmentation has occurred and several moving blobs per frame have

been detected, surveillance video systems require a further step, object tracking, to
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establish the segmented blobs temporal evolution and to focus the subsequent analy-

sis on the essential information. Tracking blobs over time consists of matching such

blobs in consecutive frames using representative features such as points, lines or

blobs [227]. Object tracking algorithms can be classified depending on the features

used to match the blobs within a video sequence. In the following paragraphs, a

classification of the different existing tracking algorithms based on their moving ob-

ject representation is presented. A detailed survey on this topic can be found in [226].

Tracking algorithms based on point detection focus the matching on informa-

tion related to the blob position and movement. In general, point representation for

tracking is suitable for objects that occupy small regions in an image. Occlusions,

misdetections, entries and exits of objects affect point correspondence hindering ob-

ject tracking. Numerous approaches use point representation, categorised into two

strategies, deterministic and statistical. The former uses qualitative motion heuris-

tics to reduce the correspondence constraints [183]. While the latter, considers object

measurements such as position, velocity or acceleration rate to create a statistical

model. The most well-known model prediction techniques are based on (i) Kalman

filters [168], (ii) particles filters [132], (iii) joint probabilistic data association filters

[165] and (iv) multiple hypothesis tracking [97].

Kernel-based tracking techniques associate different blobs calculating the kernel

movement over the frames of the video. Kernel-based techniques are typically classi-

fied into model-based and multiview. The former, model-based techniques, achieves

blob matching by performing an exhaustive search of a template over a whole frame

[177] or modelling the blobs appearance within the frame [57]. Ease of implementa-

tion and low computational cost have enhanced these techniques proliferation. The

latter, multiview techniques, trains algorithms with different views of a blob to dif-

ferentiate them. The most well-known approach applied support vector machines to

distinguish and track an object [14].

Object trackers based on silhouette represent blobs using models of the shape

and density of their appearance. The existing techniques are classified into two types

depending on their matching algorithm, silhouettes matching and outline evolution.

The former, Silhouette matching techniques, compares all existing shapes in a frame

with the query’s shape. Silhouettes are rigid features, however, an objects silhouette

evolves over time. In order to facilitate the matching, silhouettes are recalculated

at particular time periods. Some examples of these techniques are the algorithms

presented by Huttenlocher [98] and Haritaoglu [87]. The latter, Outline evolution
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Figure 3.1: Framework of the Motion Analysis and Object Extraction Component

techniques, represents each blob by their outline. Unlike silhouettes matching, out-

lines are dynamic and evolve according to the blob’s energy to a range of possible

states. Some examples of these techniques are the algorithms suggested by Chen

[50], Bertalmio [22] and Yilmaz & Shah [227].

3.2 Motion Analysis and Object Extraction Com-

ponent

Surveillance videos contain an enormous amount of redundant information, as the

scene background remains constant or quasi constant in time. Due to the static back-

ground information present in the videos, practical analysis of surveillance videos

includes the elimination of background and the extraction of the foreground objects.

In order to select the relevant information contained in surveillance videos, our ap-

proach removes the irrelevant information belonging to the background, segments

the foreground and tracks the moving objects appearing within the surveillance

videos following the procedure shown in Figure 3.1.

In the following sections, each stage involved in the Motion Analysis and Ob-

ject Extraction Component will be explained in further detail, starting with the

generation of an adaptive background model. However, as shown in Figure 3.1, a

pre-processing step, prior to the background modelling, resizes the surveillance raw

video to normalise the video analysis.

3.2.1 Background modelling

Stauffer and Grimson [190] presented a segmentation scheme which separates

the foreground from the background of an image by modelling the background as a

mixture of Gaussians. In fact, this process considers as foreground all the moving

objects, while all the stationary objects belong to the background.

Stauffer and Grimson [191] calculated the pixel probability to belong to the

foreground or the background, according to the intensity and colour distribution of

a pixel in an image. Such a decision was taken due to the direct relation between

pixel intensity and colour distribution and the lighting and reflectance properties of

the pixels’ object.
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Our aim within this stage consists of the calculation of a mathematical back-

ground model, based on the Stauffer and Grimson approach [190], in order to pro-

vide an adaptive background subtraction technique which provides the necessary

robustness against external factors, such as changes in illumination, camouflage or

other problems which directly affect to background subtraction techniques (refer to

Appendix 9.2). Moreover, modelling each pixel as a mixture of Gaussians is an ef-

fective approach to separate the background and foreground which can be used for

real-time tracking, providing an enormous advantage for surveillance applications.

Each pixel of the background model is patterned as a weighted mixture of Gaus-

sians. Moreover, each pixel is classified into foreground or background, according to

the persistence and variance of each of the Gaussians of the mixture. Thus, pixel

values that do not fit the background distributions are considered part of foreground.

In fact, the recent history of each pixel, Xt is modelled as a mixture ofK Gaussian

distributions, and the probability of observing the current pixels value is:

P (Xt) =
K∑
i=1

ωi,t ·η(Xt, µi,t , εi,t ) (3.1)

where K is the number of distributions that models each pixel value; ωi,t is an

estimate of the weight that i Gaussian distribution has in the mixture at time t

(these values adjust over time); µi,t is the mean value of the i Gaussian in the

mixture at time t and εi,t is the covariance matrix of the i Gaussian in the mixture

at time t. Finally, η is a Gaussian probability density function.

When a new pixel sample is obtained, firstly, the pixel classification procedure

searches for the Gaussian mixture distribution that explains its value with the higher

accuracy. Subsequently, the Gaussian distribution is compared (and later thresh-

olded) against all the existing Gaussian distributions that model the background

pixels, until a match is found. In this process, a match is defined as a pixel value

within 2.5 standard deviations of the checked distribution1. However, if none of the

available Gaussian distributions match the current pixel value, the model is adapted

and the least probable distribution of the model is replaced with the distribution

that best explains the current pixel value2.

Once the pixel has been classified as part of the foreground or background, its

12.5 standard deviations was a measure calculated by Stauffer and Grimson in [190]. Moreover,
such a measure directly affects background subtraction. Reducing that measure would make the
system less robust against noise, while increasing it could cause some object loss, since they would
be considered as noise

2Such distribution replacement consists of substituting mean values, initial high variances and low
prior weights
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model needs to be adjusted as well as all the Gaussian distributions which com-

pose its model. In fact, such adjustment would be applied only over the weights

that accompany each Gaussian distribution, and depends on the result of the pixel

classification:

ωk,t = (1− α) · ωk,t−1 +α(Mk,t ) (3.2)

where α is the learning rate and Mk,t is the result of the pixel classification. For

instance, Mk,t is 1 when the model is matched and 0 otherwise.

During the model adaptation stage, each Gaussian’s average and variance must

be also adjusted. In fact, those parameters remain the same when the distribution

is not matched, but when it is matched, the new observation must be considered

within their values.

The main advantage of adaptive background modelling is the improvement in

the background modelling robustness against external changes. Consequently, the

method addresses the inclusion in the background model of new static objects as

well as dealing with sleeping/waking objects (refer to Appendix 9.2).

3.2.2 Object detection

Once the pixels have been distinguished as belonging to either background and

foreground, another step must be provided in order to segment objects. This step

consists of grouping foreground pixels using a technique named connected compo-

nents.

Each pixel of every frame has a label assigned. The label is zero when the pixel

has been classified as background, and an integer otherwise. Connected components

consists of scanning an image’s labels and grouping its pixels into components based

on pixel connectivity. Regarding the presented approach, a two-pass connected

component analysis algorithm is applied assuming an 8-neighbour connection. In

fact, the connected components labelling operator scans the image by moving along a

row until it comes to a point where the pixel has been classified as foreground by the

adaptive background subtraction (refer to Section 3.2.1). Then, its four neighbours

that have been already scanned are examined, and two difference circumstances may

take place:

• All the previously scanned neighbour’s label is zero, and therefore, belong to

the background. In such case, a new label must be assigned to the current

pixel.

• At least one of the neighbours belongs to the foreground, then its same label

is assigned to the current pixel.
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Figure 3.2: Performance example of the proposed object segmentation and tracking
technique on surveillance videos

Finally, in order to ensure a more robust object segmentation, the background

/ foreground mask is scanned a second time. Each label has an equivalent class,

an assigned unique identification number. This number replaces its equivalent label

during the second scan. As a result, foreground objects are segmented as shown

in Figure 3.2, where the image on the right represents the background/foreground

classification of all the pixels of the image while the image on the left shows the

resulting object segmentation.

3.2.3 Object tracking

Once objects have been spatially segmented, temporal segmentation must be

addressed. In our approach, establishing correspondence of the spatially segmented

objects between consecutive frames is accomplished using a linearly predictive mul-

tiple hypothesis tracking algorithm based on a set of Kalman filters.

Object tracking involves two consecutive actions. On one hand, the prediction

of the tracks related to each frame (refer to Track Calculation Technique) and, on

the other, the assignment between the available tracks and the blobs detected in the

frame (refer to Track Assignment Algorithm).

Track Calculation Technique

Each analysed frame has associated with it an available pool of tracks, imple-

mented using Kalman filters, therefore, an available pool of Kalman models. Within

that group, two different kinds of tracks can be distinguished, active tracks and ini-

tial tracks. The former considers all the established long trajectories. While, the

latter includes all the temporary and short trajectories. These categories are not

rigid allowing a certain track to evolve over time and change to a different category.
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In fact, an initial track can evolve and become an active track if a set of rules is

satisfied (for example, if the trajectory is long enough); otherwise, the track can

remain as an initial track or it can even be deleted. Moreover, initial tracks can

also be seen as a new available pool of connected components, for instance, new

measures to explain the tracks.

The track calculation technique consists on a three-stage procedure. First, if

there are confirmed tracks, the current measurements are associated to these tracks

using a 2D assignment algorithm (explained in Track assignment algorithm). Sec-

ond, if there are still measurements left, they are associated to initial tracks using

a two-point initialisation. Finally, if there are still measurements left, new initial

tracks will be created using those measures.

The association of current measurements to confirmed tracks involves compar-

ing each existing measurement in the current frame against the available pool of

confirmed tracks. Several situations might take place:

• If a match takes place, it is used to update the model (measurements). When

a model (measurement) is matched its likeliness to be used in the following

frame increases.

• If no match is found for that model, the model still propagates, but its likeliness

to be used later decreases. Moreover, if the object reappears in a predictable

region of uncertainty shortly after being lost, the model will regain the object.

The last step of the Track Calculation Algorithm consists of the generation of new

tracks from the current frame’s unmatched models. The unmatched models from the

current frame and the previous two frames are used to hypothesise new models. In

fact, a new model is hypothesised using pairs of unmatched connected components

from the previous two frames. If the current frame contains a match with enough

likeliness, the updated model is added to the existing models. Moreover, in order to

avoid an exponential increase of existing models in noisy situations, the maximum

number of existing models is limited and the list of existing models is refreshed by

removing the least probable models when excessive models exist. In fact, in noisy

situations or situations with low-light conditions, short tracks are removed to avoid

an exponential increase. However, it may result in random correspondences.

Kalman filters for tracking An active track has its state and observation pro-

cesses modelled as a Kalman filter, where Xt is the state variable at time t and Zt is

the measurement or observation of the variable at time t for a Kalman filter where

Xt represents the x and y coordinates of the foreground blob at time t. Moreover,

to calculate the coordinates prediction for time t + 1, the coordinates in time t are
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affected not only by the applied Kalman filter equations to estimate the motion,

but also by the process and measurement noise (represented by independent normal

probability distributions).

The Kalman filter estimates the tracks, calculating the process state at some time

and then the noisy measurements which provide some feedback about the process

state. Furthermore, the Kalman filter uses two kinds of equations, time update and

measurement update. The former, time update equations are responsible of projecting

forward in time the current state and error covariance in order to obtain the a-priory

results for the next time step. While, the latter, measurements update equations, are

responsible for incorporating the new measurement into the a-priory estimation in

order to obtain an improved a-posteriori estimated measure. To sum up, the time

update equations can be explained as predictor equations, while the measurement

update equations can be considered as corrector equations3.

Track Assignment Algorithm

The association between measurements (blobs detected in the current frame)

and the tracks explained formerly is a one-to-one matching problem. The aim is to

maximise the corresponding total matching benefit. The assignment uses an auction

algorithm based on the Naive auction algorithm [23].

The auction algorithm’s aim is to find equilibrium between the assignment and

the total benefit of the matching. The algorithm iteratively proceeds, generating a

sequence of assignments and therefore price vectors (benefits vectors). Moreover, the

algorithm terminates when all the measurements are matched, and the statement

is checked at the beginning of each iteration. Otherwise, another iteration of the

algorithm is performed.

Each iteration of the auction algorithm performs two phases, bidding phase and

assignment phase. During the bidding phase, each measurement is matched with

all the available tracks and its price vector is calculated. In fact, each comparison

between the measurement and each available track generates a price vector. Finally,

the tracks associated to the best and second best price vectors are stored as well

as the difference between them, named bidding value. Subsequently, the assign-

ment phase is performed, assigning the track with the best bidding value to the

measurement.

The algorithm continues performing iterations until all blobs (measurements)

have a track assigned.

3Intel Corporation, Open source computer vision library reference manual, 2001
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3.2.4 Motion Analysis and Object Extraction Representa-

tion

Finally, to efficiently store the detected moving objects, only their spatio-temporal

information is considered, ignoring their appearance, in an effort to provide a com-

pact and efficient representation. Thus, each moving object appearing in the video,

B, is represented by a set of bounding boxes whose appearance vary depending on

the object progression and trajectory over time, B = {b1, b2, ..., bk}. Several mea-

surements are considered in the Motion Analysis and Object Extraction Component

for the definiton of each sample/blob, bk: (i) temporal information, {tbk}, (ii) spatial

information represented by the sample’s centroid coordinates, {xbk , ybk}, and (iii) the

bounding box dimensions (width,w, and height, h) in order to study the physical

evolution of the object, {widthbk , heightbk}. Consequently, each blob is defined as:

bk = {tk, {xk, yk}, {wk, hk}}, (3.3)

which creates a spatio-temporal map for each detected object represented as a feature

matrix: 
t1 x1 y1 w1 h1

t2 x2 y2 w2 h2

...
...

...
...

...

tk xk yk wk hk

 (3.4)

where k ∈ Z represents the amount of samples, blobs, defining each detected moving

object.

3.2.5 Motion Analysis and Object Extraction Challenges

Despite many advantages exhibited by the Motion Analysis and Object Extrac-

tion Component and the benefits provided with regard to processing time and analy-

sis complexity by offering a real-time method; this component is affected by several

external factors (refer to Appendix 9.2) and its benefits are restricted due to the

limitations inherent in surveillance videos (refer to Appendix 9.1). The most impor-

tant challenges faced by this component are (i) low quality of the image, (ii) lack of

contrast, (iii) image blurring due to camera motion and (iv) external factors due to

an open environment (refer to Figure 3.3). As a result, some of the detected and

segmented moving objects are false alarms.
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Figure 3.3: Motion analysis and object extraction challenges. Background subtrac-
tion and spatial segmentation techniques results can be observed for four different
problematic situations as low quality image (top-left), videos with inaccurate back-
ground subtraction (top-right), videos with camera movement (bottom-left) and
objects merged due to noise and shadows (bottom-right). These situations gen-
erated false segmented objects, containing only noise (false alarms) or a merge of
information.

3.3 Summary

The Motion Analysis and Object Extraction Component is at the heart of the

Surveillance Media Management System. This component provides posterior stages

of spatio-temporal information about the detected, segmented and tracked mov-

ing objects, as well as, for each detected moving object, B, a set of samples,

B = {b1, b2, ..., bK}. Consequently, to posterior stages, information about the motion

and appearance of each detected moving object is provided. As previously stated,

the Motion Analysis and Object Extraction Component consists of (i) background

modelling and subtraction to remove surveillance video redundant information, con-

sisting mainly of the scene background; (ii) object segmentation through the use of

connected components analysis to group the previously detected foreground pixels;

and (iii) object tracking based on Kalman filtering to predict the tracks related to

each frame as well as the assignment between the available tracks and the detected
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Figure 3.4: Appearance-based Object Classifier in the Surveillance Media Manage-
ment system

blobs in the current frame.

In the next chapter, the core of the Feature Extraction and Analysis Component

is addressed (refer to Figure 3.4). More specifically, the Appearance-based Object

Classifier presents an automatic object classifier built over a combination of low-

level features displaying the inherent visual appearance of the blobs extracted in

the Motion Analysis and Object Extraction Component in an attempt to obtain a

representation of the blob’s based on the machine understanding.



Chapter 4

Appearance-based Object Analysis

Visual appearance-based classification, indexing and retrieval has gained much

popularity. To this end, the range of visual features used for object classification

from surveillance videos has broadened including from colour histograms from dif-

ferent colour spaces to Gabor filters. Besides, MPEG-7 descriptors based on colour,

texture and shape have been largely investigated for multimedia classification, in-

dexing and retrieval [185]. More recently, descriptors combining visual features have

been proposed and used in different visual applications [44, 45, 75]. In this chapter,

an automatic object classifier based on the visual properties inherent in semantic

objects, namely Appearance-based Object Classifier, is presented. The proposed clas-

sifier is based on the idea that building a multi-feature descriptor as a combination

of several complementary individual visual descriptors would enhance its robustness

and expressiveness, enhancing the semantic object classification. Consequently, the

proposed Appearance-based Object Classifier extracts a set of low-level features and

combines them preserving the non-linearity of their descriptor spaces, their different

nature and metrics using the Multi-Objective Optimisation Technique. Moreover,

during this chapter, the benefits provided by biologically inspired optimisation al-

gorithms for object classification at the cognitive stage versus standard classifiers

are studied. Finally, considering the conclusions extracted by the study of different

visual features and classification techniques, two object classifiers based on the ob-

ject’s inherent visual appearance are proposed. Their aim is to provide a semantic

representation for each individual moving object procured by the Motion Analysis

and Object Extraction Component, coupled with a classification confidence degree.

In this chapter, a detailed survey of the existing object classifiers, visual fea-

tures and feature combination techniques relevant for the description of the pro-

posed Appearance-based Object Classifiers is presented in Section 4.1. In Section

4.2, an exhaustive description of relevant visual features is presented along with the

novel techniques proposed for feature fusion and pattern classification. In addition,

33
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their individual performance is evaluated in Section 4.3. Finally, the two proposed

Appearance-based Object Classifiers are detailed in Section 4.4. An exhaustive de-

scription of the experiments performed to evaluate the proposed Appearance-based

Object Classifiers is presented in Section 4.5, followed by a discussion in Section 4.6

drawn from the detailed evaluation experiments. This Chapter ends, in Section 4.7,

with a summary of the proposed techniques and the extracted conclusions.

4.1 Literature Review

This section presents a survey of the appearance-based object classifiers existent

in the literature. Two aspects of interest are clearly differentiated within the survey

due to their importance for the creation of an object classifier based on visual cues.

First, a list of visual features commonly encountered in image classifiers and more

specifically used in surveillance applications is detailed, categorising them into global

and local features (refer to Section 4.1.1). Second, the combination of individual

features to enhance the classification results and provide higher robustness to the

decisions is analysed in Section 4.1.2, where an exhaustive discussion of the existing

feature fusion techniques is presented. This review describes the relevant existing

features and combination techniques in order to provide a consistent background for

the proposed Appearance-based Object Classifier.

4.1.1 Visual Analysis

Following the extraction of moving objects, the next step involves recognising

semantic objects considering their visual appearance. In order to facilitate semantic

classification of objects, feature extraction is an important step. The extracted fea-

tures should provide two advantages, compactness and being computationally not

exhaustive. Two different applications are often considered in surveillance video

systems, (i) real-time surveillance video processing and real-time detection of events

and (ii) archiving surveillance moving objects and events for their posterior anal-

ysis or for future use. Each application have different crucial requirements, real

time applications require a high computational efficiency and this advantage is not

fundamental for archiving purposes. Whilst archiving surveillance applications re-

quire a greater compression and compactness of the data to store and the processing

time is an optional advantage. In surveillance, other desired characteristics include

invariance to external factors in order to enhance the robustness of the system.

Over past several decades, many different approaches have been proposed to au-

tomatically represent moving objects in videos based on their visual appearance.

However, surveillance videos characteristics set several limitations related to exter-
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nal factors and the low quality of the monitoring equipment (refer to Appendix 9.1).

Considering such constraints several features have been popularly used in surveil-

lance video applications, distinguishing two categories global and local features. The

global features exploit temporal information and are a compact spatially segmented

moving object representation whose performance is computationally less expensive

to the local features when an object is well segmented [121]. However, global fea-

tures require an exhaustive segmentation and are sensitive to occlusion and clutter.

Unlike global features, local features do not require segmentation and are robust

against occlusions, however, they are affected by object pose variety and require

exhaustive object matching algorithms. These constraints show generally that no

feature would describe perfectly every moving object in every scenario, instead the

feature selection should be performed after a study of the scenario and its specific

requirements. In the following paragraphs the most prevalent visual features in

surveillance applications, both global and local, are described. Due to the extensive

amount of developed global features, in the following paragraphs a descriptive study

is presented. However, local features are more concrete, therefore, our study focuses

on the description of the most well-known local features, Scale Invariant Feature

Transform (SIFT) and Speeded Up Robust Features (SURF).

Global Features

Before analysing some commonly used global features, two approaches on how

to calculate global features must be distinguished. In literature, there are two levels

where to calculate global features, from whole frames or from segmented moving

objects. In our case, the global features are calculated from the segmented mov-

ing objects, which samples/blobs are provided by the Motion Analysis and Object

Extraction Component (refer to Section 3.2).

Visual features typically applied on surveillance video applications can be clas-

sified into three classes: colour, texture and shape. MPEG-7 standard provides

several global descriptors related to these features, highlighting the need of accu-

rate compact representation [185]. The use of MPEG-7 to describe semantic objects

produced in surveillance scenarios was first introduced in the IEEE Symposium on

Intelligent Distributed Surveillance Systems in 2003 [21, 83].

Among various types of visual descriptions, colour is one of the most researched.

In the literature, many methods to classify moving objects based on colour similarity

have been proposed [173, 176, 26]. These methods are mostly derived from the basic

idea of colour histogram, which shows the proportion of pixels in each segment of a

colour spectrum within the image, and use histogram intersection for matching [196].

Following this approach, several improved versions have been proposed. Cumulative
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colour histograms and colour moments were introduced with the motivation that

most of the information in a histogram could be summarised using low-order mo-

ments [192]. A different approach was proposed for image indexing, based on the

extraction of average colour vectors of some perceptually prominent colour areas

using a recursive HSV-space segmentation technique [5]. Finally, another pioneer

approach was presented in [81], where the developed colour models were invariant

to the viewpoint, geometry of the object and illumination. In surveillance scenar-

ios, numerous approaches based on colour analysis have been presented. MPEG-7

colour descriptors are quite popular and several approaches performed object clas-

sification, indexing and retrieval extracting features like Colour Layout Descriptor

(CLD), Dominant Colour Descriptor (DCD) or Scalable Colour Descriptor (SCD)

[7, 74]. However, other colour descriptors have been used in the literature. For

instance, in [31], authors presented a retrieval algorithm based on object cumula-

tive colour histogram in bi-conic HSL-space. While in [218], objects were classified

into one of eleven “culture” colours using a colour-drift table, which estimated the

distance between individual colours, to train a support vector classifier operating on

pixel, frame and sequence level.

Apart from colour features, texture is a key component of human visual percep-

tion and it is one of the most commonly used characteristics in object classification,

indexing and retrieval systems. Texture recognition is an easy task for human be-

ings; however, it is difficult to define. Unlike colour features, texture features occur

over a region rather than at a point. To make it orthogonal to colour, textures are

usually defined purely by grey levels. In the literature, a variety of texture descrip-

tors has been proposed. In [197], six texture features, named coarseness, contrast,

directionality, regularity, line-likeness and roughness, were devised corresponding to

human visual perception. In [122], images were decomposed into three mutually

orthogonal components, periodicity, directionality and randomness, which were con-

sidered the most perceptually important texture properties. An extended alternative

to the previously mentioned texture features was the multi-resolution representation

based on Gabor filters, which considered the mean and standard deviation of the

Gabor transform coefficients to extract texture information as features [135, 136].

In surveillance scenarios, the variety of approaches is smaller compared to general

videos, mainly due to the surveillance videos specific constraints. A numerous group

of approaches use MPEG-7 texture features [7, 228, 117, 74]. Another extended tex-

ture feature for surveillance scenarios is the Gabor texture descriptor. In VISOR

[84], authors used Gabor texture filters in conjunction with colour features to per-

form pedestrian recognition. In SUNAR [55], a set of global and local features were

used to perform object recognition. The texture descriptor proposed in SUNAR
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was based on extraction of energy from the frequency domain bands defined by a

bank of Gabor filters. Other texture features have been proposed in surveillance

applications. For instance, in [60], authors addressed human detection using a set of

texture-based features such as histograms of oriented gradients. In fact, they com-

puted high dimensional features based on edges and use Support Vector Machines

to detect human regions.

Apart from colour and texture, the geometry of the segmented moving objects has

been investigated to classify objects in surveillance videos. Shape-based classification

exploits features like size, compactness, aspect ratio and simple shape descriptors

from the segmented objects [47]. In general scenarios, different shape descriptors

have been presented. Zernike Moments [144] were presented as a suitable method to

provide invariance to scale, translation and rotation and a good representation for

more complex shape objects due to their independence to the boundary information.

An object classification approach based on grid descriptors was presented in [125],

where the object’s shape was projected onto a grid of fixed size and depending on

if the cells of the grid were partially or wholly covered by the shape or not, 1 or

0 was respectively assigned. In surveillance scenarios, shape features present two

disadvantages, (i) high sensitivity to the presence of shadows and occlusions, as the

object shape is altered; and (ii) low discriminant power between semantic categories

with similar shape, i.e. the shape presented by a vehicle and a group of people is

similar and can be classified into the same semantic category. Lipton and Fujiyoshi

[119] classified objects into human, vehicles and clutter describing moving objects by

their dispersedness and area. To improve the precision results, temporal consistency

constraints were applied. Collins and Lipton [56] extracted several shape-based fea-

tures, such as moving object dispersedness, area and bounding box apparent aspect

ratio, to perform object classification using neural networks classifier and consid-

ering four semantic classes, human, vehicle, group of people and clutter. Finally,

object classification based on the statistically calculated human height/width ratio

from the data provided by the National Center for Statistics was presented in [24].

Local Features

In recent years, local features have become popular due to the procured robust-

ness against small viewpoint changes and partial occlusion. Moreover, local feature

matching can recognise objects anywhere in an image rotated or/and with arbitrary

size, without need of a segmentation stage [176]. The most predominant and recent

local features are Scale Invariant Feature Transform (SIFT) and Speeded Up Robust

Features (SURF).
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Scale Invariant Feature Transform (SIFT) [124] appeared as a semantic object

representation based on the object’s appearance and the location of its keypoints.

SIFT addresses object recognition detecting and extracting local feature descriptors

which present some invariance to image noise, change of illumination, uniform scal-

ing, rotation and minor changes in viewing direction. The local keypoints detection

consists of a four-stage filtering approach:

1. Scale-space extrema detection stage pre-selects candidate keypoints using a

cascade filtering approach. The identified candidates are relative locations in-

dependent to a change of scale. The candidates are detected searching for

stable features across all possible scales, σ, using the Gaussian function. The

scale space of an image, L(x, y, σ), is defined as the convolution of a variable-

scale Gaussian, G(x, y, σ), with an input image, I(x, y) (see Equation 4.1). In

order to efficiently detect stable keypoint locations in the scale-space, Lowe

proposed calculating scale-space extrema, D(x, y, σ), as a difference of Gaus-

sian functions convolved with the image (see Equation 4.2). The calculation of

the maxima and minima of the scale space extrema consists of comparing each

pixel of the pyramid with its neighbouring scales. The current pixel is then

compared with its 8 neighbours in the same scale, then with its 9 neighbours

from the inferior scale and, finally, with its 9 neighbours from the superior

scale. This process stops whenever the pixel is not detected as maximum or

minimum, discarding the candidate pixel.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.1)

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ))∗I(x, y) = L(x, y, kσ)−L(x, y, σ) (4.2)

2. Accurate keypoint localisation stage provides the location of each candidate

keypoint, named x̂ (see Equation 4.3). The location is calculated setting

D(x, y, σ) derivate to zero (considering x = (x, y, σ)T in Equation 4.3). The

extrema location can be interpolated adding the calculated offset, x̂, and the

location of its sample point. In addition to the calculation of the keypoint lo-

cation, an accurate candidate keypoint filtering is procured, rejecting unstable

extrema with low contrast or located on a frame border.

x̂ = −∂
2D−1

∂x2

∂D

∂x
(4.3)
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3. Orientation assignment stage provides invariance to image rotation by repre-

senting the candidate keypoints relative to their orientation. To calculate the

orientation of each candidate keypoint, the gradient magnitude, m(x, y), and

orientation, θ(x, y), are computed using pixel differences (refer to Equations

4.4 and 4.5, respectively). A 36-bin orientation histogram is formed from the

gradient orientation. The histogram peaks, which correspond to the domi-

nant direction of the local gradients, are detected. Thresholding is applied to

the peak’s magnitude, resulting in the storage of the keypoints coupled with

their orientation. Finally, an interpolation of the gradient magnitude of the

three closest peaks is calculated and assigned to the keypoint to achieve higher

accuracy.

m(x, y) = ((L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2)
1
2 (4.4)

θ(x, y) = tan−1

(
(L(x, y + 1)− L(x, y − 1))

((L(x+ 1, y)− L(x− 1, y))

)
(4.5)

4. Local image descriptor calculation stage consists of computing a highly distinc-

tive descriptor for the local image region, invariant to changes in illumination

and 3D viewpoint. To calculate the keypoint descriptor, a 6-step process is

applied to every candidate keypoint:

(a) The gradients’ magnitude and orientation are sampled around the key-

point location.

(b) A Gaussian weighted function is applied to all the gradient magnitudes

and orientations corresponding to the defined local area, to emphasize

the gradients close to the centre of the descriptor.

(c) An 8-bin orientation histogram is calculated in the local area.

(d) In order to avoid all boundary effects where the descriptor abruptly

changes, trilinear interpolation is applied to distribute the value of each

gradient sample into adjacent histogram bins.

(e) The 128-descriptor is formed from a vector containing the values of all

the orientation histogram entries.

(f) In order to reduce the effects of illumination changes and illumination

changes over 3D surfaces, the vector is normalised to the unit length and

all the gradient magnitudes overpassing a fixed threshold are removed.
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Originally, SIFT appeared as an object recognition technique where no segmen-

tation technique was required. However, in [71], the authors proposed a semantic

object-based retrieval approach for surveillance videos. The proposed approach ben-

efited from background subtraction and spatial segmentation to determine the areas

of interest in each frame. The SIFT descriptor was only calculated over these areas,

in order to accelerate the process by reducing the amount of information to analyse.

By removing the background of each frame, the amount of keypoints extracted by

the SIFT feature extractor was reduced by over 95%, accelerating the process and

reducing the matching complexity and calculation time.

Speeded Up Robust Features (SURF) [20] is a robust point descriptor partially

inspired by SIFT. Their main difference lies in the candidate keypoint detection.

While SIFT uses a cascade Gaussian filtering approach, SURF is based on a Hessian

matrix approximation. SURF is based on the same principles as SIFT, using rela-

tive strengths and the orientations of gradients to reduce the effect of illumination

changes. However, in SURF, complexity is reduced.

The SURF descriptor is extracted in a three-stage process. Firstly, the key-

point candidates are located using a Fast-Hessian Detector. Then, the keypoint

Orientation Assignment fixes a reproducible orientation based on information from

a circular region around the candidate keypoint. Finally, a square region aligned to

the selected orientation is built to extract the SURF descriptor.

1. Fast-Hessian Detector: SURF presents a detector based on the determinant

of the Hessian matrix to calculate location and scale, providing a good perfor-

mance in computation time and accuracy. Considering that the SIFT descrip-

tor substituted the use of Gaussian filters with a Laplacian of Gaussians ap-

proximation, SURF proposes an approximation based on box filters. Such fil-

ters approximate the second order Gaussian derivatives, namely Dxx, Dyy, Dxy,

achieving fast evaluation of images. The proposed approximation allows a fast

approximate calculation of the determinant of the Hessian matrix for the es-

timation of the location and scale of the candidate keypoint (see Equation

4.6).

det(Happroximation) = DxxDyy − (0.9Dxy)
2 (4.6)

Scale spaces are typically implemented as image pyramids. However, the use of

box filters and integral images, avoids the iterative application of the same filter

to the output image. Consequently, SURF applies box filters with different

sizes in parallel thereby accelerating the calculation process. Hence, the filter
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size is doubled between consecutive filter sizes, as the sampling intervals for the

extraction of candidate keypoints. In order to localise interest keypoints in the

image and over scales, a non-maximum suppression in a 3x3x3 neighbourhood

is applied. Finally, the maxima of the Hessian matrix are interpolated in scale

and image space, as an approximation to the difference between the scales

computed in SIFT.

2. Orientations Assignment: invariance to rotation is provided by calculating the

orientation of the candidate keypoints. Orientation assignment is addressed

in a three-stage process. First, Haar-wavelet responses are computed in x and

y directions and weighted with a Gaussian centred at the candidate keypoint.

Then, the responses are represented as vectors in a 2D space, locating the

horizontal responses on the abscissa and the vertical responses on the ordinate.

These responses are used to calculate the dominant orientation as a sum of all

the responses within one sliding orientation window covering an angle of π/3.

Finally, the horizontal and vertical responses obtained in the sliding window

are summed yielding a new vector which defines the orientation of the keypoint

candidate.

3. SURF Descriptor extraction is a process based on Haar wavelets. Once the

keypoint orientation is computed, a square region centred in the keypoint and

oriented according to its orientation is constructed. This region is divided into

4x4 sub-regions. For each sub-region, the Haar wavelet response in horizontal

and vertical direction (dx and dy, respectively) is calculated in a subsampled

space. Four measures are computed to form the feature vector, V , of each sub-

region: (i) the sum of the Haar wavelet responses in the horizontal direction,∑
dx; (ii) the sum of the Haar wavelet responses in the vertical direction,∑
dy; (iii) the sum of the dx absolute values,

∑
|dx|, and (iv) the sum of the

dy absolute values,
∑
|dy|. Finally, a four-dimensional descriptor vector is

provided to define each sub-region, V = {
∑
dy,
∑
dx,
∑
|dx| ,

∑
|dy|}, along

with invariance to changes in scale, orientation and illumination.

An upright version of the SURF descriptor, U-SURF, was also proposed in [20],

procuring a non-invariant descriptor to image rotation but computationally faster

and more suitable for applications where the camera remains horizontal.

Several approaches and visual features have been presented for semantic object

classification in surveillance scenarios. Each feature presents advantages that must

be considered before building an appearance-based model. Consequently, a prese-

lected set of features is detailed in Section 4.2. Whilst, a study of a preselected set

of features is detailed in Section 4.3.1 for its performance evaluation and discussion.
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4.1.2 Combination of Visual Descriptors

In the literature, a large number of visual features is described. Each descriptor

procures several advantages and disadvantages that differ depending on the feature,

semantic object and scenario under analysis. Despite individual features can provide

accurate representation, the possibility of benefiting from descriptors with comple-

mentary information appears as a suitable solution to achieve more robust and

complete object representation. The idea of combining descriptors and their metrics

to represent semantic objects has been largely addressed in pattern recognition.

Recently, feature fusion has been addressed for different purposes. Several ap-

proaches have been proposed for feature fusion in the field of object classification. In

[169, 150], multiple low level descriptors are linearly combined. While in [169], the

weights applied to the linear combination were heuristically calculated from a stan-

dard deviation of a range of relevant examples; in [150], the weights were updated

and modified using relevance feedback. A similar approach was provided by [188]

suggesting a linear combination of MPEG-7 visual descriptors where a multi-feature

cascaded combination was proposed.

However, in [64], the authors established that “different low-level descriptors and

similarity measures are not designed to be naturally and straightforwardly combined

in a meaningful manner”. Therefore, the authors proposed for their semantic based

image annotation approach a multiple descriptor modelled in a structured way, ex-

ploiting online learning from the user interactions and SVMs to build the structured

multi-feature space. In [79], several models were studied to calculate the weighting

for combining features. The methods under study included Multiple Kernel Learn-

ing (MKL) 1, MKL variant named or Semi-infinite Linear Program (SILP) [235] and

several Boosting approaches.

In spite of the numerous existing approaches, a method respecting the features’

non-linearity, nature, metrics and feature spaces is still needed. Zhang and Izquierdo

[233] presented, in 2007, an approach for semantic inference in image retrieval. The

proposed fusion method proposed by Zhang and Izquierdo established the need for

considering each feature space individually and the impossibility of combining fea-

tures “while they still live in different feature spaces”. Consequently, a feature fusion

establishing a common ground where features with different natures could be equally

combined was presented. In Section 4.2.3, we propose a feature fusion approach for

surveillance object classification based on visual cues which adapts the methodology

proposed by Zhang and Izquierdo to the challenge under analysis.

1Multiple Kernel Learning (MKL) was originally proposed in [115]
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4.2 Appearance-based Analysis

The proposed Appearance-based Object Classifier addresses surveillance semantic

object classification based on the appearance, physical and visual properties inherent

in the samples/blobs defining each semantic object2.

Several challenges were faced in an attempt to build a more sophisticated and

robust Appearance-based Object Classifier. First, visual features have an important

role whenever an object classifier is built. Each visual feature presents a set of ad-

vantages and disadvantages depending on the objects or scenarios under analysis.

Therefore, their discriminace is compromised and directly affects the classification

results. In order to determine the most adequate visual features to describe seman-

tic concepts existent in surveillance taxonomies, an exhaustive study is presented in

Section 4.2.1, followed by its performance analysis (refer to Section 4.3.2). Second,

considering that machine learning algorithms affect object classifiers performance

in equal manner to the selected visual features, different techniques have been ad-

dressed and evaluated (refer to Section 4.3.1). Moreover, benefits provided by the

problem solving abilities of biological structures for semantic object classification at

the cognitive stage is presented by the Particle Swarm Classifier, which is further

detailed in Section 4.2.23. Third, the robustness and representability of single de-

scriptors is limited due to their area of analysis. In an attempt to generate a more

robust and complex representation, single descriptors are combined in order to build

multi-feature descriptors. In Section 4.2.3, an optimal multi-feature fusion technique

based on the non-linearity of the different descriptor spaces, named Multi-Objective

Optimisation technique, is presented.

The remainder of this Section details each of the techniques used within the pro-

posed Appearance-based Object Classifier (refer to Section 4.4) and it is organised

as follows. In Section 4.2.1, a study of the most significant visual features for hu-

man perception is presented. In order to study the benefits introduced by biological

organisms for object classification, the proposed Particle Swarm Classifier is further

detailed in Section 4.2.2. While in Section 4.2.3, the proposed multi-feature fusion

technique is further explained.

2Each semantic object detected by the Motion Analysis and Object Extraction Component (MAC),
B, is defined by a set of blobs, B = {b1, b2, ..., Bk}. Each sample/blob belonging to the semantic
object, bk, is defined by a set of measurements extracted by the MAC, including: (i) temporal
information, tbk

; (ii) spatial information represented by the blob’s centroid coordinates, {xbk
, ybk
};

and (iii) the bounding box dimensions in order to study the physical evolution of the object,
{wbk

, hbk
}. Consequently, each blob is defined as bk = {tk, {xk, yk}, {wk, hk}}.

3For the performance evaluation conducted to study the benefits proposed by PSC towards surveil-
lance object classification refer to Section 4.3.2.
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4.2.1 Visual Feature Analysis

As often noted in the literature, the performance of the classification framework

is not only dependent on the machine learning algorithm but also on the visual

features used to represent objects. A good descriptor should fulfil several criteria.

For example, it should be equally discriminant for any type of media (equal variance

for different media parameters), the descriptor extraction process should be robust

against different levels of quality and detail, it should produce an equally distributed

“net” of measurements over a well-defined media collection, etc [69].

In this section, a set of global appearance-based features are exhaustively eval-

uated. The selected features focus on the representation of two characteristics

highly related to human visual perception, colour and texture. The descriptors used

to extract the colour characteristics are Colour Layout Descriptor (CLD), Colour

Structure Descriptor (CSD), Dominant Colour Descriptor (DCD) and Auto Colour

Correlogram (ACC). Whilst texture is represented by Edge Histogram Descriptor

(EHD), Gabor texture filters and Tamura descriptors. Two other features have been

selected for this study, Colour and Edge Directivity Descriptor (CEDD) and Fuzzy

Colour and Texture Histogram (FCTH), because they provide a combined represen-

tation of colour and texture characteristics. Among these features, CLD, CSD, DCD

and EHD, belong to the family of MPEG-7 standard, which has been extensively

studied for other applications and hence briefly discussed here (for a more detailed

description refer to Appendix 9.3). As the remaining features are quite recent, a

more extended analysis is presented for completeness.

MPEG-7 DESCRIPTORS

Colour Layout Descriptor (CLD) is a very compact and resolution-invariant

representation of the spatial distribution of colour in an arbitrarily-shaped region

[185]. Its representation is based on coefficients of the Discrete Cosine Transform

(DCT) assuring its compactness.

Colour Structure Descriptor (CSD) describes the spatial distribution of colour

in an image. Unlike colour histograms, CSD encodes not only information about

the frequency of occurrence of colours in an image but also their spatial layout,

providing CSD with a sensitivity to features that cannot be captured by a colour

histogram.

Dominant Colour Descriptor (DCD) describes global as well as local spatial

colour distribution in images for fast search and retrieval. For DCD extraction, the

representative colours (dominant colours) are computed from each image instead of
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being fixed in the colour space, allowing the feature representation to be accurate

as well as compact.

Edge Histogram Descriptor (EHD) provides a description for non-homogeneous

texture images and captures the spatial distribution of edges whilst providing ease of

extraction, scale invariance and support for rotation-sensitive and rotation-invariant

matching.

BEYOND MPEG-7 DESCRIPTORS

Auto Colour Correlogram (ACC) extracts the spatial correlation of pairs of

colour changes with distance, while the colour histogram captures only the colour

distribution without contributing with any spatial correlation information [95]. As

the autocorrelogram, α
(k)
c (see Equation 4.7), shows a subset of the information

provided by a correlogram, γ
(k)
c,c , it is computationally efficient for large databases.

α(k)
c (I) = γkc,c(I) (4.7)

The ACC similarity measure is L1 (or Manhattan distance metric) [112]. This

similarity measure was chosen for its simplicity and robustness [95].

Colour and Edge Directivity Descriptor (CEDD) incorporates colour and

texture information in a histogram, its extraction is a block-based three stage pro-

cedure [44]. Firstly, colour information is extracted using a fuzzy-linking histogram

[43]. Secondly, texture information is extracted using five digital filters. Finally,

a quantisation functionality to reduce the resulting 144-byte vector into a 432-bits

descriptor is performed.

CEDD uses the Tanimoto coefficient (see Equation 4.8) as similarity measure

Tij =
xTi xj

xTi xi + xTj xj − xTi xj
(4.8)

where x represents each descriptor and xT is the transpose vector of x.

CEDD procures a compact low-level feature which combines colour and texture

information in one histogram. Its limited size (maximum of 54 bytes) makes it

suitable for large image databases. However, its main advantage is the low com-

putational power needed for its extraction versus MPEG-7 features requirements

[215].

Fuzzy Colour and Texture Histogram (FCTH) was presented as a new low-

level feature, combining colour and texture information within one quantised his-
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togram [45]. FCTH extraction process comprises three fuzzy units. Firstly, a set of

20 fuzzy rules are applied over each channel of the HSV colour space to generate

a 10-bin histogram. Secondly, an expanded fuzzy system is applied to convert the

10-bin histogram into a 24-bin in order to include information related to the hue

of each colour. Finally, a third fuzzy system converts the 24-bin histogram into a

192-bin to insert the Haar Wavelet of each block of the image and a set of texture

elements.

FCTH is a 72-bytes descriptor which includes quantised histogram colour and

texture information and results from the combination of three fuzzy systems. FCTH

is an accurate descriptor valid even in appearance of distortion and deformations

such as noise and smoothing [45]. Similarly to CEDD, Tanimoto coefficient is applied

as a similarity measure (refer to Equation 4.8) .

Gabor filters have been used since 1960 to model receptive fields in the retina and

primary visual cortex [181]. In computer vision, Gabor filters (or Gabor wavelet)

have been used for edge detection, and consequently, to extract texture features from

images for indexing, classification and retrieval [203, 232, 148]. The Gabor texture

features extraction procedure consists of a pyramid structured wavelet transforms

which captures the energy at a specific frequency and direction [135]. Discrete Gabor

wavelet transform, Gm,n(x, y) (refer to Equation 4.9), is calculated by a convolution

between the image and the complex conjugate, ψm,n(s, t) (refer to Equation 4.10).

The texture representation using Gabor filters consists of applying Gabor filters on

an image with different orientation and scales, m and n, respectively. Afterwards,

the mean and standard deviation of the magnitude of the transformed coefficients

are computed in the search for regions with homogeneous texture.

Gmn =
∑
s

∑
t

I(x− s, y − t)ψ∗mn(s, t) (4.9)

ψ(x, y) =
1

2πσxσy
exp

[
−1

2
(
x2

σ2
x

+
y2

σ2
y

+)

]
exp(j2πWx) (4.10)

From the extracted texture features, similarity is calculated as follows:

D(Q, T ) =
∑
m

∑
n

dmn(Q, T ) =
∑
m

∑
n

√
(µQmn − µTmn)2 + (σQmn − σTmn)2 (4.11)

Tamura texture descriptor is composed of six textural features relevant to hu-

man visual perception, namely coarseness, contrast, directionality, line-likeness, reg-

ularity and roughness [197].
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Coarseness (Fcrs) is calculated from a large size blob because basic patterns making

up the texture are large. Consequently, such a texture tends to possess a high level

of local uniformity in intensity [2]. Unlike microtexture, coarseness cannot be deter-

mined in small blobs. First, an average over the gray levels in the neighbourhood of

size 2kx2k is calculated. Second, for each point, differences between pairs of averages

corresponding to pairs of non-overlapping neighbourhoods on opposite sides of the

point in both horizontal and vertical orientations is calculated. Third, at each point,

the best size, which gives the highest output value, is selected using Sbest(x, y) = 2k,

where k maximises the differences calculated previously in either direction. Fourth,

the average of Sbest over the picture is calculated to obtain the coarseness measure

Fcrs:

Fcrs =
1

m · n

m∑
i

n∑
j

Sbest(i, j) (4.12)

Contrast (Fcon) considers two different characteristics of the images: (i) its dynamic

range of grey-levels and (ii) the polarisation of the distribution of black and white

areas. Tamura calculates the variance, σ2, or the standard deviation, σ, of the image

to take into consideration the dynamic range of grey-levels of an image. After, the

polarisation of the distribution of black and white areas in the image is calculated

using the kurtosis α4,

α4 =
µ4

σ4
(4.13)

where µ4 is the fourth moment about the mean and σ2 is the variance. Finally,

the measure is normalised. For the contrast measure calculation, Fcontrast, both the

kurtosis and the variance are considered:

Fcon =
σ

(α4)n
(4.14)

where n is a positive number.

Directionality (Fdir) is calculated using a histogram of local edge probabilities against

their directional angle, which detects long lines and simple curves. The desired

histogram, HD, is based on the gradient calculation:
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|∆G| = (|∆H |+ |∆V |)/2θ (4.15)

= tan−1(∆V /∆H) +
π

2
HD(k) (4.16)

= N∆(k)/
n−1∑
i=0

N∆(i); k = 0, 1, ..., n− 1 (4.17)

where |∆G| is the gradient magnitude, θ = tan−1(∆V /∆H) + π
2

is the local edge

direction, N∆(k) is the number of points at which (2k − 1)π/2n ≤ θ < (2k + 1)/2n

and the magnitude of the gradient is greater than 1, |∆G| ≥ t.

A way of measuring the directionality quantitatively from HD is to compute the

sharpness of the peaks. The approach adopted by Tamura [197] is to sum the second

moments around each peak from valley to valley, if multiple peaks are determined

to exist. The directionality measure, Fdir is calculated as follows:

Fdir = 1− r · np ·
np∑
p

∑
φ∈wp

(φ− φp)2 ·HD(φ) (4.18)

where np is the number of peaks, φp is the pth peak position of HD and wp is the

range of the pth peak between valleys.

Line-likeness (Flin) is measured counting the co-occurrences in the same direction

weighted by +1 and those in the perpendicular direction by −1:

Flin =

∑n
i

∑n
j PDd(i, j)cos

∣∣(i− j)2π
n

∣∣∑n
i

∑n
j PDd(i, j)

(4.19)

where PDd is the nxn local direction co-occurrence matrix of points at distance.

Regularity (Freg) is considered when any feature of a texture varies over the whole

image. In partitioned subimages, the variation of each feature is considered. As a

regularity measure, the sum of the variation for each of the features is:

Freg = 1− r(σcrs + σcon + σdir + σlin) (4.20)

where r is a normalizing factor and each σ is the standard deviation of each of the

textural features above-mentioned.

Roughness (Frgh) is a measure to emphasise the effects of coarseness and contrast:

Frgh = Fcrs + Fcon (4.21)
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Tamura Similarity Measure consists of an Euclidean distance function. In ad-

dition, different combinations of the proposed textural features were attempted to

describe similarity of texture pattern [197].

4.2.2 Particle Swarm Classifier (PSC)

Addressing the problem of the “Semantic Gap” which is succinctly defined as the

gap between low-level features and high-level semantic features, or the gap between

features that can be extracted automatically by a machine (i.e. colour or texture)

and the characteristics that only can be perceived by human beings (i.e. behaviour),

a number of classification, indexing and retrieval algorithms have been reported in

the literature. Although the performance of the machine learning techniques has

largely been improved, the results are still far away from results generated by human

cognition. Addressing this problem, recent developments in optimisation techniques

have been inspired by the problem solving abilities of biological organisms such as

bird flocking and fish schooling. One of such techniques, developed by Eberhart and

Kennedy, is called Particle Swarm Optimisation (PSO).

In an effort to achieve a closer approximation to the performance obtained by hu-

man cognition, the benefits provided by biologically inspired optimisation techniques

are considered to create a biologically inspired surveillance object classifier, namely

Particle Swarm Classifier (PSC), based on the image classifier presented in [40].

PSC proposes to exploit the benefits provided by PSO to enhance the performance

of classifiers based on competitive neural networks. The main idea underlying PSC

consists of building an object classifier based on Self Organising Maps (SOM), where

each training sample is represented by a neuron. The objective of SOMs is to repre-

sent high-dimensional input patterns with prototype vectors that can be visualised

in a two-dimensional structure. In PSC, the in-built training algorithm typically

presented by SOMs is substituted by a training technique inspired by PSO, for the

inclusion of evolutionary computation advantages towards object classification.

Henderson and Hollingworth [89] categorized human vision research into three

areas of investigation including low-level or early vision, intermediate-level vision

and high-level vision. While the first area is concerned with the extraction of the

visual properties, the last area investigates the mapping from visual representations

to meaning including “the study of processes and representations related to the

interaction of cognition and perception”. Considering such a categorization, the

proposed biologically inspired object classifier does not address the low-level percep-

tive stage of human vision, but tackles object classification at a high-level cognitive

stage, optimizing the mapping between the low-level visual features and the semantic

concepts.
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In the following paragraphs, each of the algorithms associated with PSC are

detailed as introduction to the proposed classifier.

Particle Swarm Optimisation Technique (PSO)

In the PSO algorithm [68], the birds in a flock are symbolically represented as

particles. These particles are considered to be “flying” through the problem space

searching for the optimal solution [167]. A particle’s location in the multidimen-

sional problem space produces one solution for the problem. When a particle moves

to a new location, a different solution to the problem is generated. This solution is

evaluated by a fitness function that provides a quantitative value of the solution’s

utility. The velocity and position of each particle moving along each dimension of

the problem space will be altered with each generation of movement. The parti-

cles at each time step are considered to be moving towards particle’s personal best

(pbest) and swarm’s global best (gbest). The motion is attributed to the velocity

and position of each particle. Velocity is weighted with individual parameters c1 and

c2. The equations governing the velocity and position of each particle are presented

in Equations 4.22 and 4.23, respectively:

vid(t+ 1) = vid(t) + c1(pbesti(t)− xid(t)) + c2(gbestd(t)− xid(t)) (4.22)

xid(t+ 1) = xid(t) + vid(t+ 1) (4.23)

where vid(t) represents the velocity of particle i in d− dimension at time t; pbesti(t)

represents the personal best solution of particle i at time t; gbestd(t) represents the

global best solution for d− dimension at time t; xid(t) represents the position of the

particle i in d− dimension at time t and c1, c2 are constant parameters.

The trajectory of each individual particle in the search space is adjusted by

dynamically altering the velocity of each particle; according to the particle’s own

problem solving experience and the problem solving experience of other particles in

the search space. The first part of Equation 4.22 represents the velocity at time t,

which provides the necessary momentum for particles to move in the search space.

During the initialization process, the term is set to ‘0’ to symbolize that the particles

begin the search process from rest. The second part is known as the “cognitive com-

ponent” and represents the personal memory of the individual particle and depends

on the personal best solution for the particle. The third term in the equation is

the “social component” of the swarm, which represents the collaborative effort of
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the particles in achieving the globally best solution. The social component always

clusters the particles towards the global best solution determined at time t.

Self Organising Maps (SOMs)

The network architectures and signal processes used to model nervous systems

can be categorised as feedforward, feedback and competitive. Feedforward networks

[170] transform a set of input signals into a set of output signals. The desired input-

output transformation is usually determined by external, supervised adjustment of

the system parameters. In feedback networks [91], the input information defines

the initial activity state of the feedback system, and after state transitions, the

asymptotic final state is identified as the outcome of the computation. In competitive

learning networks, neighbouring cells in a neural network compete in their activities

by means of mutual lateral interactions and develop adaptively into specific detectors

of different signal patterns.

The basic idea underlying “competitive learning” is briefly presented here. As-

sume a sequence of statistical samples of a vectorial observable x = s(t) and a set

of variable reference vectors mi(t) : mi, i = 1, 2, ..., k, where t is the time coor-

dinate. Assume that the mi(0) have been initialised in some proper way such as

random initialization. If x(t) can be simultaneously compared with each mi(t) at

each successive instant of time, considering t as an integer t = 1, 2, 3..., then the

best matching mi(t) is to be updated to match even more closely the current x(t).

If the comparison is based on some distance measure, d(x,mi), altering mi must be

such that if i = c is the index of the best-matching reference vector, then d(x,mc)

is decreased, and all the other reference vectors mi with i 6= c are left intact. In this

way, the different reference vectors tend to become specifically “tuned” to different

domains of the input variable x.

In competitive neural networks, active neurons reinforce their neighbourhood

within certain regions, while suppressing the activities of other neurons [223]. This

is called on-centre/off-surround competition. The objective of SOMs is to represent

high-dimensional input patterns with prototype vectors that can be visualized in a

usually two-dimensional lattice structure [111]. Each unit in the lattice is called a

neuron, and adjacent neurons are connected to each other which results in a clear

topology of how the network fits itself to the input space. Input patterns are fully

connected to all neurons via adaptable weights, and during the training process,

neighbouring input patterns are projected into the lattice, corresponding to the

adjacent neurons. SOMs enjoy the merit of input space density approximation and

independence of the order of input patterns.

In the basic SOM training algorithm the input training vectors are trained fol-
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lowing:

mn(t+ 1) = mn(t) + gcn(t)[x−mn(t)] (4.24)

where m is the weight of the neurons in the SOM network and gcn(t) is the neigh-

bourhood function that is defined as:

gcn(t) = α(t)exp

(
||rc − ri||2

2α2(t)

)
(4.25)

where α(t) is the monotonically decreasing learning rate and r represents the posi-

tion of the corresponding neuron.

Particle Swarm Classifier (PSC)

The main objective of the PSC is to improve the performance of the SOM clas-

sifier by optimising the weight of the neurons md with PSO (refer to Figure 4.1).

The optimisation is achieved by evaluating the L1 norm between the input feature

vector and the feature vector of the winning node. The global best solution obtained

after the termination of the PSO algorithm is assigned as the feature vector of the

winner node. The training process is repeated until all the input training patterns

are exhausted. In the testing phase, the distance between the input feature vector

is compared against the trained nodes of the network. The label associated with the

most similar node is assigned to the input feature vector.

With PSC training, as in the PSO, the birds in the real world are symbolically

represented as particles, which fly through the problem space searching for answers.

A five-step process is proposed to solve any complex multi-dimensional problem.

1. Particles are randomly initialised.

2. The velocity and position of each individal particle is calculated as a potential

solution for the problem under analysis.

3. Each particle searches within the swarm for its closest particle or personal best.

However, in PSO and PSC, particles work as a team in order to localise the

best solution for the swarm or global best. Consequently, once all the personal

best and global best have been evaluated, the most suitable solution for the

swarm is identified and selected as the leader particle.

4. Once the leader has been identified, all the particles of the swarm move towards

it, updating their velocity and position.
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Figure 4.1: PSC framework. PSC is built upon a SOM classifier structure, where
each neuron is trained and optimised benefiting from biologically inspired algorithms,
and more concretely, using PSO.

5. The algorithm is refined by evaluating if the process should be repeated or

not. The repetition of the process is determined by thresholding the distance

between the leader and the input vector.

In the PSC, the velocity and position of the particles is controlled by their self-

knowledge and the knowledge of the group, providing a balanced solution. With

total dependence of the self-knowledge, the particle swarms could not converge to

a solution. Whilst considering only the group knowledge, the solution could get

caught in a local minima.

Finally, PSC particles have embedded memory to ensure an efficient return to

the best obtained solution if the problem space is considered to be exhausted. Con-

sequently, particles store their personal best, global best and position of the best

solution obtained, in order to return to their best solution if an update of their

velocity and position provides a larger distance to the leader particle.

4.2.3 Fusion of the Appearance Descriptor Space

Among the different approaches proposed in the literature for automatic object

classification, visual appearance-based classification has gained much popularity.

Several techniques have been proposed for multimedia indexing, classification and

retrieval exploiting the benefits of different low-level features. In many of these
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approaches, authors consider a single low-level descriptor to provide a high-level

degree of distinguishability among objects. However, even if a single low-level de-

scriptor provides robust information, its scope can be enlarged combining different

complementary low-level descriptors [27]. Even when considering multiple low-level

descriptors, authors often neglect the non-linearity of the descriptor space and com-

bine these features in a linear manner. The need for multi-feature descriptors is

motivated by the attempt of generating more robust and complex representations.

For this purpose, a large number of different features are used to represent objects

obtained from surveillance videos [143]. The combination of low-level features to

obtain higher order representations have been addressed over the years in pattern

recognition. For instance, in [233, 188] authors proposed approaches that used com-

bination of multiple low-level features to index media items. However, to the best of

our knowledge, such feature fusion approaches have not yet been applied to object

classification from surveillance video datasets.

In this section, a fusion technique of multiple visual descriptors called Multi-

objective optimisation technique is presented. Its aim is to learn associations be-

tween complex combinations of low-level visual descriptors and the semantic con-

cepts under study. As a result, the visual descriptors’ association is expected to

complement each other by improving their individual performance and overcoming

their individual flaws. Multi-objective optimisation technique (MOO) aims to reduce

the influence of noise coming from the background and identify an optimal mixture

of visual descriptors to describe each semantic concept. In fact, the descriptors are

combined according to a concept-specific metric, acquired during a training/learning

stage from a set of representative blobs.

Since single low-level feature descriptors are not capable of interpreting human

understanding, a joined combination of different low level feature descriptors is pro-

vided. However, their different nature, different metrics and non-linear behaviours

increase the difficulty for their combination. The challenge in MOO is to find an

optimal metric combining several low-level features and the suitable weights for such

a combination. The MOO technique is a four-step process [233]. First, a distance

matrix between each blob and feature is calculated. Second, a global multi-feature

weighted metric is formulated as an objective function for each training blob. Third,

the contradictory nature of the low-level feature descriptors may display different

interests in objective functions. To obtain a balanced and compromised general

solution which considers all the conditions, Pareto-optimal solutions are calculated

from the set of objective functions of the training blobs. Finally, a unique solution

is calculated applying several constraints. In the following paragraphs, each stage

of the process is detailed further.
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Distance matrix calculation

MOO provides a scalable fusion method to enhance the performance of the ob-

ject classifier by combining different and complementary low-level features. Let

B = {bk|k = 1, ..., K} be the training set of the blobs provided by the Motion Anal-

ysis and Object Extraction component, where K is the number of moving objects

included in the training dataset. Consequently, K =
∑L

i=0Ki denotes the total

number of training samples included in the training dataset, where L is the number

of semantic classes/concepts under analysis and Ki∀i ∈ Z denotes the number of

training samples for each semantic class. For each new semantic concept a new train-

ing set needs to be selected by an expert user or annotator. While for each low-level

descriptor, a centroid is calculated in B by finding the blob with the minimal sum

of distances to all other blobs in B. As a result, V̄ = {v̄1, ..., v̄L} denotes a virtual

centroid, assuming v̄i denotes the centroid across different low-level features for a

particular semantic class. Considering V̄ as the virtual centroid across features and

semantic classes, the following distances are estimated:

dkl = d(v̄l, v
k
l ), k = 1, ..., K, l = 1, ..., L (4.26)

where vkl denotes the lth low-level feature vector of the kth blob included in the

training dataset and dkl is the similarity measure for the lth low-level feature. The

calculation of the distance matrix (refer to Equation 4.27) provides a more visual

representation, where rows contain distances of different low-level features for each

blob from the training dataset and columns present distances of a particular low-level

feature for different blobs. The distance matrix is the basis to build the objective

functions. 
d1

1 d1
2 · · · d1

L

d2
1 d2

2 · · · d2
L

...
. . .

...

dK1 dK2 · · · dKL

 (4.27)

Objective functions formulation

In order to calculate an appropriate combined metric, a weighted linear combina-

tion of the feature descriptor distances (also called objective function) is proposed:

D(k)(V (k), V̄ , A) =
L∑
l=1

αld
(k)
l (v̄l, v

(k)
l ), (4.28)

where, d
(k)
1 is the distance between the blob’s low-level-feature descriptors and the
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centroids and A = {α1, α2, ..., αL} is the set of weighting coefficients to optimise.

Objective functions are extrapolated from Equation 4.27, where each row is re-

formed into an objective function. Consequently, the fusion problem consists of

optimising the weighting factors A = {α1, α2, ..., αL}.

Multi-objective optimisation and Pareto optimum

The challenge consists of optimising the set of formulated objective functions

and therefore, optimising αl, in order to represent every semantic object with a

suitable mixture of low-level feature descriptors. The optimisation problem can

be mathematically stated as finding a particular vector of decision variables A∗ =

{α∗1, α∗2, ..., α∗L}. However, two aspects need to be taken into consideration: (i) single

optimisation of each object function may lead to biased results and (ii) the contradic-

tory nature of low-level feature descriptors should be considered in the optimisation

process.

Multi-objective optimisation is defined as the problem of finding a vector of de-

cision variables which satisfies given constraints and optimises a set of objective

functions [233]. The existence of several objective functions ensures better discrim-

ination power compared to using a single objective function. Consequently, a set of

compromised solutions, known as Pareto-optimal solutions are generated using the

multi-objective optimisation strategy that relies on a local search algorithm. More-

over, pareto optimal solutions ensure that no other set of weights, A, would provide

a more suitable compromised solution:

Dk(A) ≤ DK(A∗),∀k = 1, ..., K ∈ Z. (4.29)

Individual Pareto-optimal solutions cannot be considered better than the others

without further consideration. Therefore, a set of conditions are allocated to choose

the most suitable Pareto-optimal solution:

• To minimise the overall sum of the distances between all positive examples

and the centroid,(a)

• To maximise the overall sum of the distances between all negative examples

and the centroid, (b)

• The sum of the elements of A∗ must fulfil
∑K

l=1 α
∗
l = 1

Once the requirements have been set, a decision making step must take place,

to find a unique solution which minimises the ratio between (a) and (b):

min

∑K
k=1 D

(k)
+ (V (k), V̄ , As)∑K

k=1 D
(k)
− (V (k), V̄ , As)

, s = 1, 2, ..., S (4.30)
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where D
(k)
− and D

(k)
+ are the distances over positive and negative training samples

respectively, while, As is the sth in the set of Pareto-optimal solutions, and S is the

number of available Pareto-optimal solutions.

Similarity matching function

For each particular semantic class, an optimal combination of low-level features

is obtained from the previous optimisation, associating a set of optimal solutions,

A, to each semantic class. Using this set of combination factors, the optimised

multi-feature matching function for any blob example is calculated by:

DMOO(V, V̄ , A) =
L∑
l=1

α∗l dl(vl, v̄l). (4.31)

where A∗ = {α∗1, α∗2, ..., α∗L} represent the weights calculated to optimise the linear

combination for each semantic class.

The resulting values DMOO(V, V̄ , A) represent the likelihood of a blob to contain a

certain semantic concept.

4.3 Performance of the Appearance-based Anal-

ysis Techniques

During this Section, the proposed algorithms developed to build a robust Appearance-

based Object Classifier are exhaustively evaluated. First, the study of the perfor-

mance of the visual features detailed in Section 4.2.1 is presented in Section 4.3.1.

Then, the proposed PSC is evaluated against the state-of-the-art SVMs in an indi-

vidual descriptor space in Section 4.3.2. Finally, the performance of the proposed

MOO technique is studied in Section 4.3.3.

4.3.1 Visual Analysis

In this section the following will be presented:

1. A study of the performance of some appearance-based global features over raw

surveillance videos.

2. An evaluation framework for studying the performance of multiple visual de-

scriptor spaces (refer to Figure 4.2).

3. A binary object classification framework to study the performance of visual

features.
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Figure 4.2: Evaluation framework for studying the performance of multiple visual
descriptor spaces

For the semantic class model generation, semantic objects are only labelled as

{+1,−1} 4. The object classification is performed with non-linear SVMs with a

radial kernel (refer to Section 9.4). An implementation of Vapnik’s SVM [207] for

the problem of pattern recognition is applied 5.

In addition to the classical features, the framework also includes an extensive

analysis of MPEG-7 and beyond MPEG-7 features 6. A description of each descriptor

was detailed in Section 4.2.1.

Finally, in the remainder of the section, an extensive evaluation of different fea-

tures of outdoor surveillance videos with static and dynamic backgrounds is pre-

sented. Two datasets were used for this evaluation, i-LIDS and CamVid datasets

(refer to Section 7.1). Both datasets contain videos from outdoor surveillance sys-

tems which have been deployed for different applications, i.e. i-LIDS has a static

background while CamVid has a dynamic background.

i-LIDS Dataset Results

The i-LIDS Dataset consists of outdoor surveillance videos recording urban scenes

from an angled top-down viewpoint (refer to Section 7.2). This dataset has videos

with different levels of difficulty depending on the number of events detected and

the environmental conditions. Moreover, the dataset has been widely used in the

4Each semantic class is labelled either as Vehicle or as Person (refer to Section 7.1 for more
information regarding the developed ground truth). Two values are used to label the segmented
moving objects, {+1,−1}, depending on which semantic class is considered as a possitive or
negative example.

5The module used to compute the SVM is based on Cornell University’s module,
www.cs.cornell.edu/People/tj/svm light.

6These features are published subsequent to the publication of MPEG-7 and are shown to be
robust.
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research community for the purposes of object tracking, detection, etc 7.

The results obtained from the object classifier evaluation framework, proposed

to study the performance of different visual features, over the i-LIDS Dataset are

presented in Figure 4.3. The i-LIDS dataset was composed of two semantic concepts,

Vehicle and Person. The performance of the semantic concept Vehicle shows a high

performance of each individual feature. However, among the nine features used in

the evaluation, two features namely ACC and EHD, outperformed the rest of the

features by achieving more than 80% precision up to 30% recall. In contrast, Gabor

filters and CSD features resulted in 50% precision with 10% recall when further

decreased.

On the other hand, the feature performance for the concept Person, which has in

general been quite positive with five features out of nine, resulted in 100% precision

up to 45% recall. However, the performance of FCTH, Gabor filters and CSD have

stagnated with approximately 10% precision throughout all recalls. In general, from

the analysis of the features from the i-LIDS Dataset, among the nine features studied

except for CSD and Gabor filters, other features have shown positive results when

classified with SVMs. Therefore, it is worth noting that the low-performance of

CSD and Gabor filters could be largely attributed to the low ability to discriminate

between the spatial distribution of colour and the energy extracted when the size of

the image (blob) under analysis is too small (refer to the examples provided for this

dataset in Section 7.4 in Figure 7.5).

Finally, the average performance of all features across all the semantic concepts

included in the i-LIDS dataset is presented in Figure 4.4.

CamVid Dataset Results

The CamVid Dataset presents a driving automobile perspective increasing the

number and heterogeneity of the observed semantic objects (refer to Section 7.3).

The performance evaluation of seven semantic object categories, observed within the

video footage, over the proposed nine features is presented individually in Figures

4.5, 4.6, 4.7 and 4.8. Due to the unbalanced nature of the semantic concept dis-

tribution (ranging from 30% to 0.78%), five different classification runs have been

performed. The performance of the presented features over each individual semantic

concept shown in Figures 4.5, 4.6, 4.7 and 4.8, represents an average precision at

different recalls, 10%, 20%, 30%, etc.

The CamVid dataset provides an ideal scenario for evaluating the performance

of the different features, due to its completeness presenting seven semantic concepts

7For instance, in 2007, i-LIDS Abandoned Baggage and Parked Vehicle datasets were
used for a bag and vehicle detection challenge (refer to the challenge website at

www.eecs.qmul.ac.uk/andrea/avss2007d.html)
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(a) Vehicle

(b) Person

Figure 4.3: Analysis of the proposed features performance over the individual se-
mantic concepts considered in i-LIDS Dataset
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Figure 4.4: Average precision-recall across all semantic concepts for i-LIDS Dataset

related to moving objects in outdoor surveillance videos. Generally, features beyond

MPEG-7 standard provide a better performance. Moreover, three features, namely

CEDD, FCTH and ACC, outperformed the rest in almost all semantic concepts. For

instance, for the concept SUV Pickup Truck, these three features exceeded the others

achieving above a 90% precision up to 20% recall and showing a smooth evolution

while the performance of the other features drops drastically as the recall increases.

However, one MPEG-7 standard descriptor, CLD, provides similar performance or

even outperforms the previous features. For instance, the CLD feature presents

high performance in highly representative semantic concepts such as Vehicle/Car,

where it achieves over 90% precision under 60% recall. Moreover, in another highly

documented concept, Person, CLD obtains above 90% precision under 50% recall.

Before it was stated that non-MPEG-7 descriptors outperformed MPEG-7 de-

scriptors, however, such generalisation has two exceptions, these being Gabor filters

and Tamura texture features. The former, shows a low performance in almost all

semantic concepts, not overcoming 35% precision at any recall, for instance, in con-

cepts like Animal, Bicyclist, SUV Pickup truck and Truck/Bus. However, such

concepts are not the most documented, in concepts like Vehicle/Car or Pedestrian,

Gabor filters presents a fair performance, achieving over 60% precision under 70%

recall. While the latter, Tamura, obtains a precision over 80% for the concept Bi-

cyclist, however, its performance is lower in concepts such as Vehicle/Car, Other

moving, Pedestrian or SUV Pickup truck.
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The semantic concept Animal has not been considered in the previous analysis

due to their exceptional results. For this concept, MPEG-7 descriptors achieve a

100% precision across all recall as well as Tamura texture features. The remaining

non-MPEG-7 features, except Gabor filters which achieves precision under 20 % at

all recalls, obtain also a high performance, (i) FCTH achieves 100% precision under

60% recall, (ii) CEDD presents over 90% precision under 30% recall and (iii) ACC

obtains over 70% precision under 30% recall. However, an exhaustive study of the

CamVid dataset reveals a plausible reason for such an outstanding performance, the

small set presents repeated examples for this concept in the dataset which could

have partially biased the classification results. Finally, the average performance of

all features on the seven semantic concepts is presented in Figure 4.9.

Discussion

In recent times, the number of research methodologies developed towards auto-

matic surveillance systems has suffered an exponential increase. However, each of the

developed methodologies is affected for the visual features used within the system as

well as the feature fusion technique. In this Section, we presented an extensive study

of a set of selected visual features over surveillance datasets. The studied visual fea-

tures were classified into two categories, MPEG-7 and beyond MPEG-7 descriptors.

The feature selection depended on their performance and benefits, such as their

compactness and perceptual representation. The selection went beyond MPEG-7

standard to substantiate the existence of more suitable visual features for object

representation even in particular scenarios with special constraints like surveillance

scenarios, and more specifically, outdoor surveillance.

From our analysis, four low-level features were selected to be used in the proposed

Appearance-based Object Classifier, namely CLD, CSD, DCD and EHD. Apart from

the well-known benefits procured widely by MPEG-7 features, such as their robust-

ness, compact representation and significance for human perception; each individual

descriptor was selected for their advantages towards a higher classification accuracy.

CLD and EHD were selected because of their outstanding performance within the

i-LIDS and CamVid datasets with respect to the other low-level features. Despite

the fact that DCD and CSD’s performance did not exceed all the other descriptors

for every semantic concept, these features provided several benefits enhancing the

classification accuracy for specific semantic concepts. Considering the low percent-

age of the semantic concept Person within the i-LIDS dataset, a highly distinctive

descriptor for this semantic concept was required. Coupled together with CLD and

EHD, DCD was the third most representative descriptor to classify human beings,

procuring 100% precision under 40% recall. DCD smoothly decreases the precision
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with the recall growth, i.e. obtaining a 70% precision for 50% recall, and offering a

high intra-variance for the semantic concept Person. Finally, the same analysis was

followed for the CamVid dataset. This particular dataset procures a higher number

of semantic concepts enlarging the surveillance taxonomy. Person and Vehicle have

been studied and represented by the i-LIDS dataset, the analysis of the CamVid

dataset attempts to detect more patterns which distinguish the semantic concepts

with less representation. CSD excelled for its individual performance in semantic

concepts such as Truck, Animal or Bicycle, maintaining its precision above 80% for

all recalls.

In the proposed methods (refer to Section 4.4), the four selected features com-

prise the Appearance Feature Extraction Module, highlighting the significance of

the presented study.

4.3.2 Evaluation of the Particle Swarm Classifier (PSC)

In this section, the Particle Swarm Classifier (PSC), presented in Section 4.2.2,

is evaluated against state-of-the-art machine learning techniques. During this Sec-

tion, the benefits addressed by the evolutionary computation algorithms inspired on

biological organisms are further studied and contrasted with the results obtained by

SVM for individual descriptors. The i-LIDS dataset was selected for the evaluation

of both techniques on the semantic concepts Person and Vehicle/Car.

The implemented PSO model is a combination of cognitive and social behaviour.

The structure of PSO is fully connected whereby a change in a particle affects the

velocity and position of other particles in the group as opposed to partial connec-

tivity, where a change in a particle affects the limited number of neighbourhoods in

the group. Each dimension of the feature set is optimised with 50 particles.

On the other hand, the size of the SOMs, used as the foundation of the PSC, is

pre-fixed with the maximum number of training samples to be used in the network.

The stopping criteria threshold is experimentally determined for different individual

feature spaces. The value of the threshold indicated the closeness in solving the L1

optimization problem between the neuron weights and input features.

In Section 4.2.2, the PSC was presented as a technique to exploit the social and

cognitive advantages of biological organisms towards object classification. In Figures

4.10, 4.11, 4.12 and 4.13, the PSC performance is evaluated against three different

kernels, namely polynomial, radial basis and sigmoid function, for SVM in each of

the individual feature spaces. The evaluation was based on a retrieval framework to

facilitate the comparison.

As it is noted from the results, the performance of the classifier varies according

to the feature space. This could be largely attributed to the extraction procedure
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of different features and the matching functions involved in these distinct feature

spaces. From the results, we can note the average retrieval performance for the

concept Vehicle/Car across all feature space is 50% at recall 1, while for the con-

cept Person, the average performance of all classifiers drops significantly at recall

0.5. More concretely, for the semantic concept Vehicle/Car, the PSC outperforms

standard machine learning algorithms for the CLD, CSD and EHD features, main-

taining an average precision between 60-80%. While for DCD its performance is

generally exceeded by a SVM, achieving a 50% average precision. For the semantic

concept Person, the CLD and EHD features present 100% precision until 0.5 re-

call, where their performance drops. Besides, for CLD and EHD, PSC outperforms

SVM with radial and sigmoid kernels with over 80% between recall 1 and 0.4, but

presents similar precision recall to SVMs with polynomial kernel. CSD outperforms

the SVM classifier in over 30% achieving a 40% precision until 0.4 recall. Finally

DCD generally presents low results, achieving an 8% average precision across all

recall, except for SVM with a polynomial kernel. The results obtained for the se-

mantic concept Person are affected by the scarcity of the concept within the dataset

and the unbalanced proportion between the semantic concepts.

Discussion

Despite the benefits exhibited by the problem solving abilities of biological struc-

tures [72, 40], the performance of the PSC was affected by the different nature of

each individual appearance descriptor. This performance indicator motivates the

necessity of an optimal combination of multi-descriptor feature space. In Section

4.2.3, an optimal multi-feature fusion technique named Multi-Objective Optimisa-

tion Technique was further explained. Such a technique is based on preserving the

non-linearity of the different descriptor spaces whilst reinforcing the properties of

each complementary feature; its performance is analysed in the following section.

4.3.3 Evaluation of the Multi-Objective Optimisation Tech-

nique

The selected MPEG-7 features were computed to classify and index the extracted

objects from the surveillance videos. Our objective was to provide an optimal com-

bination of the low-level-feature descriptors which considered their different nature,

behaviour and metric. In order to study its efficiency, a retrieval process was applied

using the low-level-feature combination descriptor as an index.

The presented multi-feature fusion technique for surveillance object classification

has been tested on the i-LIDS dataset (refer to Section 7.2). Besides, the ground
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truth was built by selecting a relatively small sized set of blobs extracted from this

dataset and manually annotated with two predefined semantic concepts, Person and

Vehicle/Car. The ground truth was partially selected to build the training dataset

to train the Multi-Objective Optimisation technique. Less than 6% of the ground

truth was selected for the training dataset, where 90% of the objects were annotated

as Vehicle/Car against the 10% for Person (for a detailed description of the ground

truth and the training dataset refer to Section 7.4).

The obtained results are shown in Figure 4.14. For the semantic concept Ve-

hicle/Car, a 72% precision has been obtained, while for Person concept, a 43%

precision has been achieved, at a 10% recall. Afterwards, the precision for both

semantic concepts decreases smoothly , reaching their minimum precision at recall

100% of 47% and 3% for the semantic concepts, Vehicle/Car and Person, respec-

tively. The lower results obtained for Person must be contextualised by considering

the sparseness of this concept within the ground truth.

Discussion

The presented multi-feature fusion technique was proposed to build more sophis-

ticated and robust descriptors. The objective was to benefit by different descriptors

containing complementary information to procure higher inter-variance to each se-

mantic concept in order to enlarge the differences among them. In this Section, an

evaluation of the presented method is provided. However, a more exhaustive and

comparative evaluation needs to be conducted in order to compare the proposed

method and its effects on real surveillance systems against the state-of-the-art. Such

comparison is procured in Section 4.5.1, where the multi-feature fusion technique is

part of the Appearance-based Object Classifier.

4.4 Appearance-based Object Classification

After analysing all the challenges latent in an appearance-based object classifi-

cation procedure, two techniques were proposed to tackle the existing flaws, (i) the

optimal multi-features fusion algorithm and (ii) the biologically inspired classifier

(refer to Sections 4.2.2 and 4.2.3, respectively). As a result, two appearance-based

object classification approaches (AOC) are presented (i) Multi-Feature Appearance-

based Object Classifier and (ii) Biologically inspired Appearance-based Object Clas-

sifier. The former, Multi-Feature Appearance-based Object Classifier (refer to Sec-

tion 4.4.1), analyses the benefits of constructing multi-feature descriptors preserving

the non-linearity of their different feature spaces to represent semantic objects exis-

tent in surveillance scenarios. While the combined visual models are created using
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the Multi-Objective Optimisation technique, the classification is based on SVM.

The latter, Biologically inspired Appearance-based Object Classifier (refer to Sec-

tion 4.4.2), studies the advantages offered by biologically inspired optimisation tech-

niques in order to classify objects based on multi-feature visual models and neural

structures provided by SOMs.

The remainder of this Section presents the two proposed Appearance-based Ob-

ject Classifiers.

4.4.1 Multi-Feature Appearance-based Object Classifier

(Multi-Feature AOC)

Typically, appearance has been studied analysing individual features/descriptors,

their advantages and disadvantages and their performance under different circum-

stances and scenarios. The proposed approach is built upon the idea that multi-

feature descriptors covering different and complementary visual properties provide

more sophisticated and robust object representation. Despite authors often neglect

the non-linearity of different descriptor spaces and often combine features in a linear

manner; our approach builds object visual models by fusing multiple appearance

descriptors, which exhibit non-linear behaviour and typically consist of different

similarity metrics. The proposed Multi-Feature Appearance-based Object Classifier

determines an optimal metric for fusing appearance features extracted in different

feature spaces, considering their non-linearity and studying their influence towards

the object classification.

The Multi-Feature Appearance-based Object Classifier consists of two stages

namely online classification and offline training mode (refer to Figure 4.15). More-

over, it is based on the assumption that, as input, this approach receives the blobs

extracted from the Motion Analysis and Object Extraction Component presented

in Section 3.2.

The offline training mode is a component built upon the Multi-Objective Op-

timisation technique, discussed in Section 4.2.3. Its aim is to train the system

according to the surveillance object taxonomy, composed of two semantic concepts:

Vehicle and Person8, and the four selected appearance features. Considering the

features different behaviour, metrics and nature, a weighted linear combination of

the feature descriptor distances is proposed, resulting in the distance matrix and

8The proposed surveillance taxonomy is built upon two semantic concepts, Vehicle and Person.
For further information refer to 7.1
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objective functions:

DistanceMatrix =

(
d1

1 d1
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3 d1
4

d2
1 d2

2 d2
3 d2

4

)
(4.32)

D(k)(V (k), V̄ , A) =
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l=1

αld
(k)
l (v̄l, v

(k)
l ), (4.33)

where d
(k)
l (v̄l, v

(k)
l ) is the distance between the blob’s low-level-feature descriptors

and the semantic class centroid and A = {α1, α2, ..., αL} is the set of weighting

coefficients to optimise.

Consequently, the weights, αl, related to the objective functions must be op-

timised in order to obtain a “trade-off solution” for the multi-feature descriptor.

Such optimisation consists of the analysis of a set of compromised solutions, Pareto-

optimal solutions, as explained in Section 4.2.3. Finally, the offline training stage

procures a set of visual models for each semantic concept included in the surveillance

taxonomy using the training dataset.

The online classification stage builds each blob’s visual model as an appearance

multi-feature descriptor. Each appearance descriptor is composed by the combina-

tion of four appearance features: DCD, CLD, CSD and EHD. These features were

selected based on the results obtained in Section 4.3.1, and due to their robustness,

compact representation and significance for human perception. In order to preserve

the non-linearity of each individual appearance feature, their fusion is achieved lin-

early combining their distance against each semantic object’s visual models, and

therefore, respecting the feature spaces. However, such a combination is optimised

by applying different weights, α = {α∗1, α∗2, α∗3, α∗4}, to each member of the equation

depending on their significance to the scenario under analysis, in our case, surveil-

lance scenarios. Finally, the appearance multi-feature descriptors are built on the

Optimised Object Classifier where the difference between each appearance feature

computed for a blob and the visual models computed in the offline training stage are

calculated and adapted applying the optimised weights obtained using the Multi-

Objective Optimisation Technique (refer to Figure 4.15). Finally, the Optimised

Object Classifier performs categorisation using SVMs.

4.4.2 Biologically inspired Appearance-based Object Clas-

sifier (Biologically inspired AOC)

The Biologically inspired Appearance-based Object Classifier focuses on two ob-

jectives. First, achieving an optimal combination of appearance features suitable for
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surveillance object classification and, as well as the previous approach, built on the

premise that multi-feature descriptors enable a more complex and robust representa-

tion procuring a higher level of distinguishability while preserving the non-linearity

attached to each feature space. Also, to study the recent developments in optimisa-

tion techniques based on the problem solving abilities of biological organisms, such

as bird flocks or fish schools, for surveillance object classification.

The Biologically inspired Appearance-based Object Classifier, presented in Fig-

ure 4.16, classifies the blobs provided by the Motion Analysis and Object Extrac-

tion component, which extracted the moving objects included within the surveillance

videos under analysis (refer to Section 3.2). The proposed approach consists of three

stages namely Training Phase, Appearance Feature Extraction and Multi-Feature

Particle Swarm Classifier.

The Training phase is based on the MOO technique (refer to Section 4.2.3) and

faces the challenge of the optimal appearance features combination preserving their

individual properties and non-linearity. The training stage procures a set of visual

models for each semantic concept included in the surveillance taxonomy using the

training dataset. The visual models are calculated by applying MOO, which pro-

poses to linearly combine the distance between the visual descriptors defining the

object to classify and the visual models built during the training phase. Consider-

ing that the surveillance taxonomy includes two semantic objects, Vehicle/Car and

Person, the objective functions calculated in the MOO are defined as:

D(k)(V (k), V̄ , A) =
2∑
l=1

αld
(k)
l (v̄l, v

(k)
l ), (4.34)

where k indicates the blob under analysis, d(k) is the distance between the blob’s low-

level feature descriptor and the centroids, V̄ = {v̄1, v̄2, v̄3, v̄4} andA = {α1, α2, ..., αL}
is the set of weighting coefficients to optimise. A set of compromised solutions,

known as Pareto optimal solutions, are generated to calculate the weights that op-

timise the linear combination of appearance features, A∗ = {α∗1, α∗2, α∗3, α∗4}.
The Appearance feature extraction, based on the experimental results obtained in

the visual analysis study presented in Section 4.3.1, extracts a set of appearance fea-

tures, composed of DCD, CLD, CSD and EHD, to build visual models based on the

optimal combination of appearance features. In order to preserve the non-linearity

of each individual appearance feature, their fusion is achieved by linearly combining

them. However, such a combination is optimised by applying different weights, pre-

viously calculated in the training phase, A∗ = {α∗1, α∗2, α∗3, α∗4}, to each member of

the equation depending on their significance to the scenario under analysis, in our

case, surveillance scenarios.
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Finally, the Multi-Feature Particle Swarm Classifier is based on evolutionary

computation models, mimicking the effects of either fish schooling or bird flocks.

This stage is built upon the Particle Swarm Classifier (refer to Section 4.2.2). The

proposed classifier is implemented for a multi-descriptor space whose performance is

influenced by the weights derived for non-linear optimal combination of appearance

feature spaces. The proposed classifier exploits SOM neural structures to represent

high dimensional patterns and the abilities of biological algorithms to optimise the

classification performance.

4.5 Performance Evaluation of Fused Descriptor

Space

During this Section, a set of experiments is presented for the exhaustive evalua-

tion of the two proposed appearance-based object classification approaches (AOC)

(i) Multi-Feature Appearance-based Object Classifier and (ii) Biologically inspired

Appearance-based Object Classifier.

4.5.1 Evaluation of the Multi-Feature Appearance-based Ob-

ject Classifier

In this section, the proposed Multi-Feature Appearance-based Object Classi-

fier (refer to Section 4.4.1) is evaluated against state-of-the-art machine learning

techniques, for individual descriptors as well as for linearly combined multi-feature

descriptors. The selected low-level features were computed to represent and classify

all the detected moving objects within the surveillance video datasets under study

according to their appearance. The Multi-objective Optimisation Technique was

applied in order to provide an optimal weighted linear combination for the low level

feature descriptors while considering that each feature has a different feature space.

The benefits addressed by the Multi-Objective Optimisation technique towards

automatic object classification in surveillance scenarios are further studied and con-

trasted with the results obtained by SVMs. The proposed appearance-based classi-

fier is evaluated against SVM in individual feature spaces as well as in multi-feature

descriptor spaces built by concatenating the appearance descriptors. The objective

of this comparison was two-folded. First, to demonstrate the benefits of multi-feature

descriptors versus individual descriptors. Second, to establish the need to preserve

each individual feature space while combining low-level features. The obtained re-

sults are shown in Table 4.3, where six results are presented. First, each single

appearance feature performance is analysed (see Table 4.1). Second, a linear con-
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Semantic Concepts F-measure (%)
CLD EHD CSD DCD

PERSON 4.47 19.14 7.76 63.82
VEHICLE 5.92 68.48 65.38 7.27

Table 4.1: Performance comparison of the four selected MPEG-7 features

Semantic Concepts F-measure (%)
CLD EHD CSD DCD SVM

PERSON 4.47 19.14 7.76 63.82 7.92
VEHICLE 5.92 68.48 65.38 7.27 45.69

Table 4.2: Performance comparison between the individual descriptors and the
multi-feature descriptor built as a concatenation of features (SVM). The presented
multi-feature descriptor linearly combines the single descriptors neglecting the non-
linearity of their descriptor spaces.

catenation of the four selected appearance descriptors is used to build a multi-feature

descriptor (named as SVM in Table 4.2). The objective is to compare the proposed

optimal multi-feature fusion with a descriptor neglecting the non-linearity of each in-

dividual descriptor spaces. Finally, the proposed Multi-Feature Appearance-based

Object Classifier performance is presented in Table 4.3 (named as Multi-Feature

AOC).

Table 4.1 presents the individual performance of each descriptor. While one

descriptor enhances the classification of vehicles, its performance for the seman-

tic concept person is insufficient, such as CSD, or viceversa, DCD. The variability

exhibited by the individual descriptors establishes the need for a more sophisti-

cated representation. Addressing higher representability, multi-feature descriptors

were proposed. As previously mentioned, a multi-feature descriptor based on the

concatenation of individual features was created neglecting the non-linearity of the

feature spaces (refer to Table 4.2). Results provided by SVMs reveal a consider-

able F-measure for the semantic concept Vehicle, however, its performance for the

semantic concept Person is insufficient.

The proposed Multi-Feature AOC applied an optimal multi-feature fusion tech-

nique to consider the different feature spaces of the extracted low-level features. Its

Semantic Concepts F-measure (%)
CLD EHD CSD DCD SVM Multi-Feature AOC

PERSON 4.47 19.14 7.76 63.82 7.92 25.35
VEHICLE 5.92 68.48 65.38 7.27 45.69 64.43

Table 4.3: Performance comparison of the four selected MPEG-7 features, the lin-
early combined multi-feature descriptor and the proposed optimal multi-feature de-
scriptor
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results show a reasonable improvement for the semantic concepts Vehicle and Person

(refer to Table 4.3). The proposed multi-feature object representation outperformed

the linearly combined multi-feature descriptor (SVM) by 18%, demonstrating the

necessity to consider each feature individually respecting its nature, behaviour and

specific metrics. One reason for the Person results can be related to the sparseness

of the concept within the ground truth (refer to Section 7.4).

Discussion

A multi-feature classifier respecting the different nature exhibited by the individ-

ual descriptors was presented. The performance evaluation study conducted against

SVMs indicates severe improvements against individual descriptors and an 18% im-

provement against SVM classification based on multi-feature descriptors. Despite

the multi-feature fusion technique generates an improvement in the semantic ob-

ject classification, it is based on SVMs for classifying the optimised descriptors. In

4.2.2, the Biologically inspired AOC exploiting the benefits provided by the problem

solving abilities of biological structures was presented. This technique is considered

in the following paragraphs, where the proposed approach classifies by considering

the benefits provided by the problem solving abilities of biological organisms over

optimised multi-feature descriptors.

4.5.2 Biologically inspired Appearance-based Object Clas-

sifier

The proposed Biologically inspired Appearance-based Object classifier (Biologi-

cally inspired AOC) exploits SOMs to represent high dimensional patterns. Addi-

tionally, sophisticated visual models are created to represent the detected semantic

objects based on the premise that individual descriptors live in different feature

spaces and, consequently, their non-linearity, different nature and metrics should

be preserved. Thus, PSC is applied over optimal multi-feature descriptors built us-

ing the MOO technique. The evaluation of both techniques, PSC and MOO, were

individually addressed in Sections 4.3.2 and 4.3.3, respectively, extracting several

conclusions: (i) the social and cognitive knowledge of particles in PSC procures a

closer approximation to human cognition and outperforms machine learning algo-

rithms, (ii) PSC performance was affected by the different nature of each individual

visual descriptor and (iii) multi-feature descriptors provide higher robustness and

inter-variance to each semantic concept enlarging the differences among them. The

biologically inspired AOC was proposed to benefit from the advantages exhibited by

PSC and MOO individually, while overcoming the challenge of individual features’
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variability.

In order to evaluate the optimal combination of low-level features proposed within

this classifier, we constructed a primitive multi-descriptor space by concatenating

feature vectors from individual visual descriptors. Such a descriptor is not ideal

since it combines different visual descriptors existing in a different “universe” due to

their independent similarity metric. However, as PSC is able to optimise individual

features vector dimension without falling into a local minima, the performance of

this approach has yielded comparable results to other machine learning algorithms

[41]. In Figure 4.17, a precision-recall curve for the semantic concept Vehicle is

presented with a performance comparison of the PSC algorithm with optimal and

primitive low-level feature fusion technique9. As it can be seen, the primitive com-

bination of the feature vectors drops in retrieval performance at lower recall, but

remains competitive over mid-range recall values. On the other hand, the optimal

combination achieves improved retrieval performance for lower recall values. How-

ever, the retrieval performance drops over mid-range recall and for 0.83 recall both

techniques achieve the same precision.

Interestingly, from the study of results for the semantic concept Person, it can be

easily noted that, the performance of optimal combination of feature vectors is much

better compared to its primitive counter-part (refer to Figure 4.18). The improved

performance of the optimal combination of low-level features could be attributed to

the fact that, the optimisation technique determines appropriate weights for all con-

cepts in the multi-descriptor space, achieving an overall balanced solution. With the

aim of obtaining global performance, we clearly note that the optimal combination

of low-level feature space performs better compared to the primitive combination

as highlighted in Figure 4.19. The average performance obtained over two concepts

for optimal combination is nearly 40% more than the primitive combination up to

10% recall. However, from 50% recall both techniques provide similar results with

respect to average precision-recall.

Discussion

In this Section, a biologically inspired appearance object classifier based on op-

timal appearance-based multi-feature descriptors was evaluated against a primitive

linearly combined multi-feature descriptor. The proposed object classifier achieves

40% improvement over the primitive combination and more importantly consistent

performance is obtained across different concepts. The achieved improvements are

9Primitive multifeature descriptor is built concatenating the individual descriptors, while the op-
timal descriptor uses MOO technique to compute the optimal weights to linearly combine the

different individual features.
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mainly obtained for the semantic concept Person, which was characterised by a low

performance with recall not exceeding 10%.

4.6 Appearance-based Object Classifier Conclu-

sions

During this Section, three different challenges for a visual-based object classifi-

cation scheme were tackled in order to provide an Appearance-based Object Clas-

sifier which would contribute to the Surveillance Media Management framework,

by procuring classification results related to the inherent physical properties of the

moving objects extracted by the Motion Analysis and Object Extraction Compo-

nent.

First, a detailed study of several visual features was presented in Section 4.2.1.

The analysed features included MPEG-7 features and more recent descriptors be-

yond MPEG-7 standard. However, every feature was related to either colour or

texture, aspects highly significant for human perception. Despite the study revealed

an acceptable performance in novel features such as CEDD or FCTH, their perfor-

mance overcame MPEG-7 features depending only on the semantic concept under

analysis. Finally, after an exhaustive evaluation of the obtained results, four visual

descriptors were selected namely CLD, CSD, DCD and EHD (refer to Section 4.3.1).

Second, the benefits addressed by the evolutionary computation algorithms in-

spired by biological organisms, which exploits the particle’s social and cognitive

knowledge to provide a closer approximation to human cognition, were analysed for

classification based on individual descriptors in Section 4.3.2 and for optimal multi-

feature descriptors in Section 4.5.2. The performance of the proposed classifier was

affected by the different nature of each individual appearance descriptor motivating

the study of its performance on optimal multi-feature descriptors, to overcome the

challenge of individual features’ variability.

Third, the performance evaluation of the proposed optimal multi-feature fu-

sion for object classification was tackled in Section 4.3.3. The proposed technique

achieved a 72% and 43% precision for the semantic concept Vehicle/Car and Person,

respectively, at 10% recall, which contrasted with the performance of the individual

descriptors, providing a more robust and distinctive representation to the semantic

objects under analysis.

Finally, once the techniques developed for the construction of the proposed AOC

were evaluated, two approaches were presented namely Multi-Feature AOC and

Biologically inspired AOC (refer to Section 4.4). The former benefited from the

advantages procured by the optimisation of the multi-feature descriptors. Whilst,
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the latter not only based its approach on optimal multi-feature descriptors but also

considered the benefits provided by the PSC to propose a combined approach.

The proposed Biologically inspired and Multi-feature AOC demonstrated the

benefits of combining feature descriptors by preserving their non-linearity behaviour,

as opposed to their linearly combination without further consideration. Regarding

the advantages provided by the biologically inspired optimisation algorithms, the

retrieval results obtained by the PSC enhanced greatly the AOC performance for

Person semantic concent, however, the improvement was smaller for the semantic

concept Vehicle. Considering that PSC development is in a preliminary stage and its

performance is conditioned to several parameters, its optimisation will be considered

in future work to improve the Appearance-based Object Classifier.

4.7 Summary

Appearance-based Object Classification is one of the two parallel processes in-

cluded in the Feature Extraction and Analysis component. This Chapter described

the techniques developed to build more robust and distinctive appearance descrip-

tors as well as the techniques presented to improve the classification performance.

In this Chapter, two appearance-based object classifiers were proposed, and finally,

the Multi-Feature AOC was selected. This component provides to the Probabilistic

Fusion Method component of a classification label and a certainty degree for each

classified moving object, {li, µi}.
Despite the Biologically inspired AOC exhibited enhanced results, its develop-

ment is in a preliminary stage and its performance is conditioned to several parame-

ters. Their optimisation as well as its development will be considered in future work

to improve the Appearance-based Object Classifier.

In the next chapter, the core of the Feature Extraction and Analysis Component

is addressed (refer to Figure 4.20). More specifically, the Behaviour-based Object

Classifier presents an automatic object classifier based on the spatio-temporal evo-

lution of the blobs extracted in the Motion Analysis and Object Extraction Com-

ponent in an attempt to obtain a representation of the blob’s based on the human

understanding.
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(a) Animal

(b) Bicyclist

Figure 4.5: Analysis of the features performance over CamVid dataset for several
semantic concepts: Animal and Bicyclist
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(c) Car

(d) Other moving

Figure 4.6: Analysis of the features performance over CamVid dataset for several
semantic concepts: Car and Other moving
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(e) Pedestrian

(f) SUV

Figure 4.7: Analysis of the features performance over CamVid dataset for the se-
mantic concepts: Pedestrian and SUV Pickup Truck
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(g) Truck

Figure 4.8: Analysis of the features performance over CamVid dataset for the se-
mantic concept Truck

Figure 4.9: Average precision-recall across all semantic concepts for the CamVid
dataset
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Figure 4.10: Performance of Particle Swarm and Kernel Machines in CLD Individual
Feature Space for Concepts ’Vehicle’ and ’Person’

Figure 4.11: Performance of Particle Swarm and Kernel Machines in CSD Individual
Feature Space for Concepts ’Vehicle’ and ’Person’

Figure 4.12: Performance of Particle Swarm and Kernel Machines in DCD Individual
Feature Space for Concepts ’Vehicle’ and ’Person’
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Figure 4.13: Performance of Particle Swarm and Kernel Machines in EHD Individual
Feature Space for Concepts ’Vehicle’ and ’Person’
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Figure 4.14: Average precision-recall curves obtained for the semantic concepts Per-
son and Vehicle/Car exploiting the proposed multi-feature fusion for surveillance
object classification. In the figures, the red line presents the precision-recall val-
ues obtained for the objects annotated as Person and Vehicle/Car included in the
ground truth, respectively. While the blue line shows the percentage of objects an-
notated as each semantic concept within the ground truth. The sparseness of the
Person semantic concept must be considered in the results
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Figure 4.15: Multi-Feature Appearance-based Object Classifier framework

Figure 4.16: Biologically inspired Appearance-based Object Classifier framework
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Figure 4.17: Precision-Recall curve for the Biologically inspired AOC using opti-
mal combination and primitive combination for concept Car/Vehicle. The optimal
combination (named “MOO combination”) benefits from the advantages procured
by MOO and PSC, while the primitive combination (named “PSO combination”)
presents a linearly combined multi-feature descriptor classified using the PSC algo-
rithm

Figure 4.18: Precision-Recall curve for the Biologically inspired AOC using optimal
combination and primitive combination for concept Person. The optimal combina-
tion (named “MOO combination”) benefits from the advantages procured by MOO
and PSC, while the primitive combination (named “PSO combination”) presents a
linearly combined multi-feature descriptor classified using PSC algorithm
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Figure 4.19: Average Precision-Recall curve for the Biologically inspired AOC us-
ing optimal combination and primitive combination across both semantic concepts,
Car/Vehicle and Person

Figure 4.20: Behaviour-based Object Classifier in the Surveillance Media Manage-
ment framework



Chapter 5

Behaviour-based Object Classifier

In recent years, the popularity of surveillance systems has grown exponentially.

Public agencies as well as private companies are focusing their research in the de-

velopment of new and improved methodologies towards video surveillance, in an at-

tempt to detect and recognise suspicious activities, accidents, terrorism and vandal-

ism. Typically, video surveillance monitors urban scenes; however, the all-pervasive

presence of CCTV cameras generates a large amount of video data everyday. As

the volume of video data rises, most surveillance video systems provide the infras-

tructure to capture and store the information, leaving its analysis and supervision

to human operators [36]. There are several limitations of human supervision, (i)

high cost of human labour, (ii) manual analysis of information is prone to errors and

(iii) the severe limitations in the ability of human beings to monitor simultaneous

signals as demonstrated by psychophysical research [76, 162, 179, 194, 212]. In an

effort to mitigate the dependency of human constant supervision, video analytics

investigate automatic techniques to detect and understand the events occurring in

scenarios monitored by surveillance video cameras. Despite the challenges of human

supervision, human operators provide an inestimable source of information based on

human and scene understanding.

A fundamental step prior to event detection is object classification. Human un-

derstanding procures invaluable information for the development of an object clas-

sification technique based on high-level concepts, which can be easily understood

by human cognition but its processing is unattainable for machines. Psychological

studies have shown that human beings can perform object classification using be-

haviour patterns, even with lengthy viewing distances or poor visibility conditions

where appearance features tend to disappear [105]. Inspired by these positive con-

clusions the Behaviour-based Object Classifier addresses object representation and

classification based on behavioural patterns rather than visual cues, in an attempt

to replicate the humans’ inference procedure.

84
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In this chapter, an automatic object classifier based on the semantic objects’

spatio-temporal properties, namely Behaviour-based Object Classifier, is presented.

The proposed classifier facilitates semantic representation according to the behavioural

patterns exhibited by the semantic objects. A set of geometrical algorithms is pro-

posed for the extraction of the behaviour patterns from the stream of spatio-temporal

information. The proposed behaviour patterns attempt to replicate human under-

standing, extracting high level concepts which include meaningful data for human

beings, due to their ability to contextualise information. Due to the fuzzy nature

of the behaviour patterns, a higher level of adaptability should be provided in the

classification stage to enhance the performance of the Behaviour-based Object Clas-

sifier. Consequently, a hierarchical fuzzy classifier built on cascade is proposed. The

inclusion of fuzzy logic into the classification process provides the flexibility nec-

essary to convert human language rules into their mathematical equivalents [134].

Inspired by humans’ inference of information, the Behaviour-based Object Classifier

models semantic objects according to their spatio-temporal evolution, facilitating

a semantic representation and a classification confidence degree for each individual

moving object detected by the Motion Analysis and Object Extraction component.

Also in this chapter, a detailed survey presents the techniques existing within the

literature related to motion features, either for object classification or generally for

surveillance purposes, as well as a review of the methods capable to deal with uncer-

tainty and their connexion with human reasoning (refer to Section 5.1). In Section

5.2, the proposed Behaviour-based Object Classifier is further detailed. Experimen-

tal results and the performance evaluation of the proposed Behaviour-based Object

Classifier against state-of-the art object classifiers are discussed in Section 5.3. Fol-

lowed by a set of conclusions, in Section 5.4, drawn from the detailed evaluation

experiments. This Chapter ends, in Section 5.5, with a summary of the proposed

techniques and the extracted conclusions.

5.1 Literature Review

A great number of general-purpose object recognition and classification algo-

rithms are present in the literature [70, 80, 42, 51]. However, these approaches focus

on high-resolution images from general databases like Flicker1 or ImageCLEF 2. In

contrast, surveillance video systems deal with low camera resolution, poor quality

video data and dependence to external conditions (refer to Appendix 9.1). Conse-

1http://www.flickr.com/

2http://www.imageclef.org/
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quently, a limited amount of visual detail can be detected of the objects recorded.

Addressing object classification, the existent broad literature can be categorised ac-

cording to two factors, the features extracted and the classification techniques used

to categorise the detected object [33].

In recent years, visual features have gained great popularity among the object

representation and classification approaches (refer to Section 4.1.1). However, stud-

ies conducted on psychology discovered that human beings refer to spatio-temporal

information to routinely recognise the type of object that is monitored, even in large

viewing distances where the scene of observation is affected by either poor visibility

conditions or in circumstances where other familiarity cues such as appearance are

hard to distinguish [105].

The literature reveals a different type of features used mainly in event detec-

tion and object tracking: motion features. Most of the existing approaches that

use motion as a feature, target event detection and identification rather than the

classification of an object according to its performance or behaviour within the

video. Despite the difference in the application domain, many researchers have

tried to model motion and more specifically trajectories with reduced dimension-

ality for its representation and modelling. Two groups can categorise the existent

trajectory representation approaches, namely supervised and unsupervised. While

supervised trajectory representations require a training stage, unsupervised tech-

niques do not rely on training samples. Among the supervised methods, approaches

mainly based on Hidden Markov Models (HMMs) [160] and probabilistic models

excel [78]. Whilst, unsupervised methods use techniques such as Self-Organising

Maps (SOMs) [149], spatio-temporal function approximations [94], Principal Com-

ponents Analysis (PCA) [17, 18, 19] or Independent Components Analysis (ICA)

[8]. Among the literature, approaches dedicated to several surveillance applica-

tions such as the identification of abnormal behaviours, pedestrian counting, vehicle

tracking or gesture recognition use the afore-mentioned techniques for modelling

trajectories. Bashir et al. [17] modelled trajectories by calculating their PCA, for

global and segmented trajectory representation. Antonini and Thiran [8] modelled

trajectories using ICA in a multilayer clustering approach for pedestrian counting.

Prati et al. modelled the objects’ trajectories by computing their shape as a se-

quence of angles using Mixture of Von Mises (MoVM) distribution [161]. Maximum

a-posteriori followed the shape calculation to encode the trajectory as a sequence

of symbols corresponding to the MoVM components. Afterwards, k-medoids clus-

tering was performed to classify the people’s trajectories into normal or abnormal.

Furthermore, several different approaches addressed trajectory representation, from

either real or synthetic trajectories. Hsieh et al. proposed a motion-based video
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retrieval system which could retrieve desired video clips from video databases using

their trajectories [92]. Two methods were presented, string-based and sketch-based.

The string-based method converted a trajectory into a string and matches it us-

ing its syntactic meanings. While, the sketch-based method proposed a segmented

curve fitting scheme for representing a trajectory more accurately and tackling the

problem of partial matching. In 2009, Pioto et al. presented a trajectory descrip-

tion and matching approach for classification and recognition purposes inspired by

the alignment procedure adopted in bio-informatics to match genomic sequences or

inexact/approximate matching [159]. Besides, an adaptive matching method was

proposed to accept the possible inaccuracies in the trajectories due to environmen-

tal noise, segmentation errors or occlusions, versus hard matching techniques such

as Dynamic Time Warping (DTW).

Many researchers have focused their efforts into the development of innovative

techniques to cluster trajectories, as one of the main applications in the search

of normal and abnormal behaviours. Despite the main dependence on the trajec-

tory, its computation and storage, some authors consecutively processed additional

motion features. Calderara and Prati proposed to encode the direction and ve-

locity of pedestrians’ movement to perform trajectory clustering in the search for

abnormal trajectories [35]. The trajectories were extracted from the scene using a

multi-camera system called Homography and Epipolar-based Consistent Labelling

(HECOL) which provided robust pedestrian tracking and solved occlusions. The

sequence of symbols representing the trajectories were classified based on pairwise

sequence alignment or inexact matching and clustered using the k-medoids algo-

rithm. Anjum and Cavallaro presented a multifeature object trajectory clustering

algorithm to detect behaviour outliers [6]. Among the features selected to model

the object trajectory, Anjun and Cavallaro proposed average target velocity, direc-

tional distance, target trajectory mean, acceleration and the PCA of the trajectory

points. Ivanov et al. addressed generic detection of unusual events, modelling each

trajectory as a vector of high-level features, such as velocity and acceleration, whose

calculation was based on the first and second order derivatives [99].

Several approaches based their classification on the idea that object motion char-

acteristics and patterns are unique enough to distinguish between objects [36]. Hu-

mans have been shown to have distinct types of motion that can be used to recognise

different human movements such as walking, running or fighting. In 1995, one of the

earliest approaches in motion-based classification used trajectory representation for

video retrieval [63]. Their approach involved constructing hierarchical motion de-

scriptions from MPEG video data. Several approaches were proposed for compact

motion representation exploiting wavelet or Fourier transforms [59, 172]. However,
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these approaches presented a loss of valuable information. Bashir et al. [17] pro-

posed a global trajectory representation consisting of PCA coefficients whose results

provided superior precision-recall ratios than non-PCA based approaches. However,

global trajectory representation was unable to handle partial trajectory matching,

which was overcome by segmented trajectory representation [17]. Different algo-

rithms have been presented for segmented trajectory representation, some based on

MPEG-7 motion descriptors [46, 48] and others based on curve fitting and string

matching for segmented trajectory representation and retrieval [184, 19, 116]. In

[67], the authors presented a detailed review of motion-based object classifiers. Un-

like in general videos, in surveillance scenarios, trajectory, velocity or, in general,

motion features have not been exploited for object classification [73].

Classifiers map a new detected object with its extracted feature vector to a known

semantic class defined within a taxonomy. Different techniques have been proposed

in recent years to perform this mapping. Recent surveillance object classifiers were

based on binary decisions. For instance, in [60], authors computed high dimen-

sional features based on edges and use Support Vector Machines (SVM) to detect

human regions. While, Paisitkriangkrai et al. [154] proposed a pedestrian detec-

tion algorithm based on local feature extraction and SVM classifiers. Within binary

classification, several vehicle classification techniques used SVM to map the detected

objects into different categories [49, 199]. The former [49] proposed a vehicle classi-

fier where the features to model each object were extracted using ICA while SVM

was used to categorise each vehicle into a semantic class. While the latter [199]

classified vehicles in night time traffic using SVMs over their eigenspaces. Other

approaches used the Nearest Neighbour Classifier to map the distance between an

object feature vector and every vector of the training dataset [146, 147]. Finally, sev-

eral approaches proposed object classification using a probabilistic framework based

on Bayesian Networks, Neural Networks or HMMs [213, 107, 18]. In [85], authors

presented an empirical performance comparison between several classifiers, such as

SVM, Bayesian Network Classifiers or Decision Trees, based on a feature vector

built with smoothed Discrete Cosine Transform (DCT) features, 2D moment-based

features, horizontal and vertical projection and morphological features, to classify

objects in real-world video surveillance scenes. The study concluded that for the

majority of the analysed features, SVM achieved the highest accuracies, while ANN

excelled SVM for classification based on central moments.

Despite the variety of classification techniques, several numerical and symbolic

methods have been proposed to handle uncertain information, such as (i) Bayesian

probability theory, (ii) Dempster-shafer theory of evidence and (iii) fuzzy set the-

ory. It is often assumed that problems are well structured, complete information
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is always available and the information processing procedures are clearly defined.

In many real-world decision-making problems, such a hypothesis is too optimistic

and decision-making may be associated with uncertainty [225]. Different causes can

generate uncertainty as information is not clearly described; partial or imprecise

evidence is due to poorly-defined concepts in observations; inaccuracies and poor

reliability of instruments used to make observations or the use of qualitative infor-

mation. Human reasoning and classification is based on causal relationships, where

rules describe causal relationships between evidence/attribute and some associated

consequent/solution, also called evidential reasoning. Considering causal systems,

uncertainties can affect in three different ways, (i) non-existence of a precise correla-

tion between evidence and a conclusion, (ii) ignorance or lack of partial evidence and

(iii) fuzziness. Each of the numerical and symbolic methods previously mentioned

deals with one of these uncertainties. Bayesian probability theory handles situa-

tions when an expert is unable to establish a precise correlation between evidence

and conclusion but only with degrees of belief or credibility [62]. The Dempster-

Shafer theory of evidence is capable of modelling subjective credibility induced by

partial evidence or ignorance [224]. Finally, fuzzy set theory is well suited to deal

with approximate reasoning [225].

Human reasoning and its automation is an open and active research field. Yang

et al. [225] established that human judgements and domain knowledge could be

represented in forms of if-then rules, which are normally based on linguistic variables

because they are more natural and expressive than numerical numbers. Human

evidential reasoning can be represented using a belief structure. However, qualitative

information must be processed using linguistic approaches. Fuzzy logic enables

the conversion of human language rules or linguistic rules into their mathematical

equivalents.

Fuzzy logics appeared in image processing due to the need for expressing the un-

certainty of the classifier, producing a higher degree of freedom whenever a decision

was undertaken. Several approaches in image processing were based on the use of

fuzzy logic [38, 1, 103]. However, its use for surveillance object classification remains

largely an open issue.

5.2 Behaviour-based Object Classifier

The proposed Behaviour-based Object Classifier addresses surveillance semantic

object classification based on the behaviour of the detected moving objects, consider-

ing their spatio-temporal evolution as the main source of information. The proposed

approach integrates two intermediate modules for the automatic classification of se-
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mantic objects analysing the stream of spatio-temporal information provided by

the Motion Analysis and Object Extraction Component: (i) Behaviour-based Object

Representation and (ii) Behavioural Fuzzy Classifier (refer to Figure 5.1).

Figure 5.1: Behaviour-based Object Classifier framework

Psychological studies determined the importance of motion as a fundamental

cue for humans in order to classify objects [105]. Inspired by this conclusion, an

object representation technique which considers behaviour as the main source of

information is presented. The Behaviour-based Object Representation component

aims to replicate the human inference procedure, generating a behaviour pattern for

each detected moving object. Section 5.2.2 details the geometrical algorithms built

for the behaviour patterns extraction from the stream of spatio-temporal information

procured by the Motion Analysis and Object Extraction component.

The behaviour exhibited by semantic objects cannot be processed without fur-

ther consideration. Each of the proposed behaviour patterns represents a high level

concept. Human understanding is capable of managing high level concepts due to

its ability to contextualise information; however, machines need further instructions.

The fuzzy nature of the behaviour patterns requires a higher level of adaptability

in the classification stage. Fuzzy logic provides the flexibility necessary to convert

human language rules into their mathematical equivalents [134]. The proposed Be-

havioural Fuzzy Classifier (BFC) hierarchically classifies moving objects into seman-

tic categories depending on their behaviour patterns. The proposed BFC includes

fuzzy logic to enable matching between human language rules and the proposed

behaviour patterns, facilitating the replication of the human inference procedure.

Section 5.2.3 details the structure of the BFC as well as its two implementations,

using Type-1 and Type-2 fuzzy logic, in an effort to study their different natures,

benefits and the impact of considering different degrees of uncertainty for surveil-

lance object classification.

The remainder of the Section details each of the techniques used within the pro-

posed Behaviour-based Object Classifier and it is organised as follows. Prior to the

extraction of the behaviour patterns, in Section 5.2.1,the stream of spatio-temporal

information conveyed by the Motion Analysis and Object Extraction component is
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further processed to lessen the effect of the external factors on the classification pro-

cess. In Section 5.2.2, the proposed behaviour patterns are presented along with the

study conducted for their selection. Additionally, the geometrical algorithms for the

construction of the moving objects’ representation based on their behaviour are fur-

ther detailed. While in Section 5.2.3, the proposed BFC is presented along with its

two implementations based on different degrees of freedom within the classification

procedure.

5.2.1 Extraction & Analysis of Object Trajectories

The typical output expected from the Motion Analysis and Object Extraction

Component is a stream of spatio-temporal information corresponding to the evolv-

ing trajectory of the detected moving objects. Depending on the complexity and

accuracy of the tracking process, the obtained spatio-temporal information might

include artefacts due to several external factors affecting outdoor surveillance videos.

In the proposed method, each original trajectory is defined as a feature matrix

that includes spatio-temporal attributes. Thus, each moving object appearing in the

video, B, is represented by a set of bounding boxes whose appearances vary depend-

ing on the object progression and trajectory over time, B = {b1, b2, ..., bk}. Several

measurements are considered in the Motion Analysis and Object Extraction Com-

ponent for the definition of each sample/blob, bk: (i) temporal information, {tbk},
(ii) spatial information represented by the sample’s centroid coordinates, {xbk , ybk},
and (iii) the bounding box dimensions (width, w, and height, h) in order to study

the physical evolution of the object, {widthbk , heightbk}. Thus, each blob is defined

as bk = {tbk , {xbk , ybk}, {wbk , hbk}}, creating a spatio-temporal map for each detected

object represented as a feature matrix:
tb1 xb1 yb1 wb1 hb1

tb2 xb2 yb2 wb2 hb2
...

...
...

...
...

tbk xbk ybk wbk hbk

 (5.1)

where k ∈ Z represents the amount of samples/blobs, defining each detected moving

object.

Due to the evolutionary nature of an object trajectory and the object position de-

pendency of the behaviour features, prior to the extraction of the behaviour features,

the trajectory must be processed to reduce the amount of artefacts and inaccura-

cies. Each object trajectory is composed of a series of consecutive small direction

variations over time. Considering the trajectory-dependent nature of the behaviour

features, an object trajectory is separated into tracklets presenting different orienta-
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tions. The composed-trajectories division algorithm searches orientation deviations

in the trajectories or breakpoints. The objective is to identify the set of breakpoints

so as to minimise the number of tracklets and at the same time produce the most

accurate representation. Two types of breakpoints can be distinguished, spatial and

temporal.

A temporal breakpoint is considered when an object after a long period of inac-

tivity restarts its movement. After a temporal breakpoint an object is more likely

to change its trajectory, generating a change in its behaviour features. Therefore,

considering B = {b1, b2, ..., bk} as a detected moving object, a temporal breakpoint

is defined as ∆t = (tk − tk−1) ≥ β, where β is the temporal threshold used to detect

temporal breakpoints.

A spatial breakpoint is a strong diversion in an object trajectory angle, calculated

following a geometrical procedure (refer to Equation 5.2). Two types of spatial

breakpoints can be detected, short-term and long-term (refer to Figure 5.2). The

former presents a fast diversion in the trajectory (i.e. sharp angles) (refer to Equation

5.3). Whilst the latter is defined as a smooth diversion in the trajectory caused by

a cumulative sum of direction variations over time (refer to Equations 5.4 and 5.5).

α = atan
∆y

∆x
= atan

|yk − yk−1|
|xk − xk−1|

(5.2)

∆αS = |αk − αk−1| ≥ γS (5.3)

∆αL = |αk − αREF | = |
k∑
i=0

αi − αREF | (5.4)

∆αL = |αk − αREF | ≥ γL (5.5)

Any of these breakpoints show a change in the trajectory, hence, a change in

the object geometrical features or behaviour features. Whenever a breakpoint is

detected, the moving object is separated into two independent objects represented

with different tracklets. Moreover, the thresholds imposed in the breakpoint detec-

tion, {β, γS, γL}, have been statistically calculated after an exhaustive analysis of

the surveillance scenarios under study.

5.2.2 Definition of Behaviour based Descriptor Space

After the composed-trajectories division algorithm, each newly detected object

creates a new instance, B, and it is represented by its samples/blobs over time,

B = {b1, b2, ..., bN}, where N is the number of blobs/samples per each moving object
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(a) (b)

Figure 5.2: Examples of evolving trajectories and their trajectory angles. Figure (a)
shows a long-term breakpoint defined as a smooth diversion of the trajectory, while
Figure (b) represents a sharp angle corresponding to a short-term breakpoint

and varies depending on how long the object stays in the video. Each object’s

set of blobs maintains the same physical properties, however, its spatio-temporal

information evolves over time. To consider all the object samples for the calculation

of each behaviour feature, several statistical measurements are computed as part

as the behaviour pattern, including maximum, minimum, average and standard

deviation.

An exhaustive analysis of surveillance scenarios was performed to determine the

most suitable object behaviour attributes. Two requirements were demanded, (i) a

low intra-object variance and (ii) a high inter-object variance. Extrapolation from

realistic scenarios and further analysis of the surveillance dataset has led to the

selection of a set of geometrical features whose patterns satisfy these constraints:

trajectory, shape pattern and velocity.

Each behaviour feature is computed in a projected 2D space, neglecting the

depth in the video perceived by human beings. Generally, in urban scenarios, the

surveillance cameras are mounted on poles above roads recording scenes from an

angled viewpoint. The omission of the depth in the projection facilitates the cal-

culation of the behaviour features and their mathematical models. However, its

importance should be considered by the object classifier (refer to Section 5.2.3).

Consequently, each behaviour feature is computed in the 2D-projected space but

considered trajectory-dependant towards classification.

Trajectory is the main geometrical feature. Its calculation is directly related
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to the composed-trajectories division algorithm, due to its relation to the trajectory

angle (refer to Equation 5.2). It is the foundation of the BFC, due to behaviour

features trajectory-dependence, which is further reflected in the trajectory-oriented

membership functions developed in the BFC (refer to Section 5.2.3). An object

trajectory is composed of a set of cumulative trajectory variations. Despite the

complexity reduction provided by the division of the trajectory into tracklets, each

tracklet provides a large amount of spatio-temporal information. To efficiently rep-

resent an object trajectory, several measurements are computed. First, trajectory

angle, α, is computed per blob, α = {α1, α2, ..., αN}, where N represents the num-

ber of blobs/samples per each moving object detected within the video and varies

depending on the object under analysis. The trajectory angle is the basis for the

extraction of more compact trajectory measures. Second, the global trajectory angle

describes the overall trajectory variation of the object over time, θ = |αN − α1|. It

presents a relative value dependant on the trajectory orientation. Third, the quad-

rant is a condense depiction of the general orientation of the object. Its calculation

consists on computing the angle, ϕ, existing between the vector depicting the over-

all trajectory variation of the object over time and the vertical line considered as a

reference point. This value shows the object’s movement angle in the 2D-projected

space. For a compact and efficient representation, ϕ, is classified into four categories

or quadrants, {Q1, Q2, Q3, Q4}, such as:
ϕ ≡ Q1,∀ϕ ∈ {0 ≤ ϕ < π

2
}

ϕ ≡ Q2,∀ϕ ∈ {π2 ≤ ϕ < π}
ϕ ≡ Q3,∀ϕ ∈ {π ≤ ϕ < 3π

2
}

ϕ ≡ Q4,∀ϕ ∈ {3π
2
≤ ϕ < 2π}

(5.6)

Finally, the vertical/horizontal object directionality depicts whether the object moves

vertically/horizontally based on ϕ.

Shape pattern studies the evolutionary nature of the detected objects. The

evolution of each object dimensions is represented by two compact measures, size

ratio and shape ratio. The former depicts the object general size and is determined

by the number of pixels composing its bounding box. While the latter depicts its

shape proportions and is pictured as the bounding box dimensions ratio.

Velocity supplies valuable information about the object semantic class, provid-

ing a high ability to distinguish among semantic categories in certain situations, e.g.

the real-world physical constraints placed on the semantic concept Person favour the

classification of the semantic concept Vehicle whenever the object’s velocity over-

passes realistic thresholds. However, there are ranges of values where the semantic

categories are not so easily distinguishable, i.e. roads with speed limitation or roads
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Figure 5.3: Velocity calculation scheme based on a 2D-projected space

affected by congestion. Due to these constraints related to the scenario under analy-

sis, the velocity feature is used to discard in case of any ambiguity between semantic

concepts. A geometrical method is applied to calculate the velocity feature on the

2D-projected space (refer to Figure 5.3). Velocity computation is based on (i) the

visual distance between consecutive blobs on the 2D-projected space and (ii) tempo-

ral distance between blobs. This information is extracted from the spatio-temporal

data provided by the MAC.

5.2.3 Behavioural Fuzzy Classifier

The fuzzy nature of the behaviour features reflects the need for a high level of

adaptability in the classification stage. The high correlation between the proposed

behaviour features and human understanding requires flexible techniques to bridge

human concepts with mathematical models. Fuzzy systems convert human language

rules into their mathematical equivalents, procuring an adaptive model able to rep-

resent real world situations [134]. Exploiting the advantages of fuzzy logics, the

proposed BFC consists of a hierarchical rule-based fuzzy classifier built on cascade.

Two types of Fuzzy Logic, type-1 and type-2, are considered in this Section to study

the benefits and impact of the inclusion of different degrees of uncertainty in the

classification process. Consequently, two implementations of the BFC are presented.

In the remainder of this section, an introduction to fuzzy logic is presented followed

by a detailed explanation of the proposed BFC and its implementations.
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Fuzzy Logic

The appearance of fuzzy logic in image processing was due to the need for ex-

pressing uncertainty, producing a higher degree of freedom whenever a decision was

made. Type-1 fuzzy set theory was introduced by Zadeh [229], introducing a level of

uncertainty in any decision-making process. However, in [230], Zadeh established the

limitations of modelling and minimising the effects of uncertainties of type-1 fuzzy

sets, as its membership functions assign crisp values, generating the need for repre-

senting knowledge by means of some generalisation of fuzzy sets. Zadeh introduced

type-2 fuzzy set theory as a generalisation of an ordinary fuzzy set [230]. Type-

2 fuzzy sets are characterised by a fuzzy membership function, so, each element’s

membership value is a fuzzy set between [0,1].

The basic structure of a Type-1 Fuzzy System (T1FS) consists of three compo-

nents, (i) the selection of fuzzy rules, (ii) the membership functions and (iii) the

reasoning mechanism to perform the inference procedure upon the rules and derive

an output. In general, a T1FS implements a non-linear mapping from its input space

to output space. This mapping is accomplished by a number of fuzzy if-then rules

that describe the local behaviour of the mapping. Considering a set of semantic

objects denoted as X as possible outputs of the fuzzy system, X = {x1, x2, ..., xn},
a T1FS defines a fuzzy set, A, as:

A = {(x, µA(x))|x ∈ X} (5.7)

where µA(x) is the membership function (MF) for the fuzzy set A and a certain

output x. The MF is intended to map each semantic object included in X to a

membership value between 0 and 1 which expresses the uncertainty of the classifier

when the assignment occurred.

Type-2 Fuzzy Systems (T2FS) follow the same structure as T1FS where the MFs

are Type-2 Fuzzy Sets. A Type-2 Fuzzy Set inserts a second grade of uncertainty

in the classification, considering the uncertainty about the MF. Such sets are fuzzy

sets whose membership values are Type-1 Fuzzy Sets, therefore, Type-2 MFs assign

to each output a membership interval instead of a membership value. This increase

in the uncertainty allows a higher degree of approximation in modelling real world

problems. Considering X = {x1, x2, ..., xn} as possible outputs of the fuzzy system,

T2FS define a fuzzy set, A, as:

A = {(x, u, µA(x))|x ∈ X, u ∈ [0, 1]} (5.8)

where u ∈ [0, 1] is the primary membership degree if x and µA(x) is the secondary

membership level, specific for a certain pair (x, u).
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Behavioural Fuzzy Classifier (BFC)

The proposed BFC categorises each detected moving object according to a set

of behaviour features rather than using standard appearance features. In Sec-

tion 5.2.2, a set of geometrical algorithms were detailed to extract behaviour fea-

tures and build a behaviour pattern for each detected moving object. As a result,

a vector of the proposed behaviour features (shape ratio (SR), size ratio(S), ve-

locity (V) and trajectory (T)) namely behaviour pattern was extracted, such as

BehaviourPattern = {SR, S, V, T}, where each individual behaviour feature de-

scribes a particular attribute of a moving object with unique requirements and char-

acteristics.

To evaluate the performance improvement in the behaviour object classification

when a more adaptive system is applied, two implementations of the proposed BFC

are provided using Type-1 and Type-2 Fuzzy Logic, or considering one and two

levels of uncertainty. Figure 5.4 presents an example of the MFs used in Type-1 and

Type-2 BFCs.

The proposed BFC consists of a hierarchical rule-based fuzzy classifier built

on cascade. The hierarchical classification has two levels (refer to Figure 5.5).

The first level depicts the classification of each moving object according to ev-

ery individual behaviour feature. This level is built with a set of nested rule-

based fuzzy classifiers. The MFs for each behaviour feature are extrapolated from

the marginal training samples and created from the manually annotated dataset.

Each rule-based fuzzy classifier receives a vector representing the behaviour feature,

BehaviourFeature(BF ) = {m1,m2, ...,mX}, where X is the number of measures

composing the behaviour feature and varies depending on the feature under analy-

sis. For each behaviour feature, a set of fuzzy membership rules are generated. The

membership rules generated for Type-1 Fuzzy Classifiers follow the expression:

Mx : IF{BFj} ∈ Condition(Cx )

THEN {BFj} ∈ CxwithCF = µjx
(5.9)

where Mx is the label which indicates if certain behaviour feature; BFj, fulfills the

condition attached to the semantic class, Cx; and CF is the membership degree

assigned by each classifier. CF = µjx represents the membership degree of the

behaviour feature under analysis to belong to the semantic class Cx. As a result, the

information that passes to the second level of the BFC is a vector for each semantic

class, V ectorCx = {{MBF1,Cx , µBF1,Cx}, ..., {{MBFN ,Cx , µBFN ,Cx}}, where, N is the

amount of behaviour features considered in the analysis, M describes whether each

behaviour feature belongs to the semantic class or not and its membership degree, µ.

However, for Type-2 Fuzzy Classifiers, MFs do not assign crisp membership values,
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(a) Type-1 BFC membership function

(b) Type-2 BFC membership function

Figure 5.4: General representation of the membership functions used in Type-1 and
Type-2 BFC
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Figure 5.5: Behavioural Fuzzy Classifier framework

instead, an interval of uncertainty is assigned following the expression:

Mx : IF{BFj} ∈ Condition(Cx )

THEN {BFj} ∈ CxwithCF = (µjx,min, µjx,max)
(5.10)

where CF = (µjx,min, µjx,max) is also referred to as CF = (MF (j, x),MF (j, x)),

where j refers to a specific behaviour feature and Cx to the condition for belonging

to a semantic class. MF (j, x) and MF (j, x) are the lower and the upper MFs,

respectively. These functions bound the T2FS defining the area between them,

the footprint of uncertainty (FOU), of each semantic class. In our approach, two

semantic classes are considered, Vehicle and Person, each semantic class has assigned

two MFs determined by MF (j, x) and MF (j, x), and named [X,X] for Vehicle and

[Y , Y ] for Person (refer to Figure 5.4).

The second level of the BFC considers the membership degrees/intervals and

individual decisions undertaken by each individual fuzzy classifier in the first level

to combine them and extract a final decision based on the objects behaviour rather

than appearance. The combination of the individual classification results is achieved

through a set of high-level fuzzy rules based on the equations 5.9 and 5.10, for the

Type-1 and Type-2 BFCs, respectively.

Finally, considering the evolutionary nature of the spatio-temporal information

of each detected moving object and the trajectory dependency of the behaviour fea-
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tures 3, the mathematical condition determined in the fuzzy membership rules of the

first level (refer to equations 5.9 and 5.10) vary according to the object directionality.

This attribute is depicted in the system by the quadrant measure (refer to Section

5.2.2). However, the objective of the fuzzy membership rules applied in the second

level are used to disambiguate contradictory decisions and to recalculate the relia-

bility degree of the classification providing a final decision, {Mdecision, µdecision}. Due

to their analysis of each behaviour feature membership degree and label provided

by the first level, the second level fuzzy membership rules acquired independence on

the object directionality.

In this chapter, a specific case of behaviour-based object classifier for surveil-

lance videos is presented substantiating the performance of behaviour patterns. A

surveillance taxonomy defines our problem, composed by two semantic classes, Ve-

hicle and Person, and four behaviour attributes, Shape Ratio, Size Ratio, Velocity

and Trajectory (refer to Section 5.2.2).

Several advantages were considered within the BFC. First, rule-based fuzzy clas-

sifiers were applied to enable the mathematical modelling of the humans’ inference

procedure. A set of rules understandable to humans and based on the behaviour

patterns were proposed using fuzzy logic and, therefore, favouring the computation

of their mathematical model. Second, the application of fuzzy logic into the BFC

tackled adaptability. Third, the classification through a nested structure provided

robustness against outliers as well as a scalable algorithm able to enlarge the num-

ber of behaviour patterns and semantic classes under study, for the analysis of more

sophisticated scenarios.

5.3 Performance Evaluation of Behaviour-based

Object Classifier

This section evaluates the performance of the proposed Behaviour-based Object

Classifier in outdoor surveillance videos. An outline of the experimental methodol-

ogy adopted to evaluate the performance of the proposed behaviour patterns and

the BFC is detailed. During the following section, the benefits and adaptability

given by the inclusion of different degrees of freedom in the classification process

is studied in the quantitative evaluation of the experimental results. Besides, in an

effort to evaluate the performance of the proposed behaviour patterns, a comparison

between the proposed Behaviour-based Object Classifier and a classifier relying on

3Individual behaviour features were trajectory dependent due to their calculation within a 2D-
projected space, omitting their dependence on the depth in the image within the object represen-

tation vector.
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appearance features is presented.

5.3.1 Quantitative Performance Evaluation

In this chapter, the Behaviour-based Object Classifier is proposed for automatic

object classification for outdoor surveillance videos. The stream of spatio-temporal

information conveyed by the Motion Analysis and Object Extraction Component

is exhaustively analysed to generate a set of behavioural patterns which enable

modelling semantic objects according to their behaviour as seen by humans. The

framework includes the analysis of the moving objects’ temporal evolution to allevi-

ate the external factor effects over the objects’ spatio-temporal information, object

representation based on behaviour models and automatic object classification based

on fuzzy logic. The use of fuzzy logic in the BFC presents an advantage against state

of the art binary classifiers, due to the inclusion of the uncertainty of the classifier in

the decision-making process. Different degrees of uncertainty were considered, pro-

viding two implementations of the BFC using Type-1 and Type-2 Fuzzy Logic (refer

to Section 5.2.3). Fuzzy classifiers provide not only a membership label for each

detected moving object but also a membership degree/interval exhibiting the relia-

bility on the membership label. Table 5.1 shows the classification results obtained

considering uniquely the membership label procured by the BFC and omitting the

uncertainty degree.

Table 5.1: Performance of the proposed BFC according to the membership labels
uniquely

Behavioural Semantic True True False False
Fuzzy Classifier Class Positive Negative Positive Negative

(FC) (%) (%) (%) (%)
Type-1 BFC VEHICLE 36.63 93.62 6.38 63.36

PERSON 93.62 36.63 63.36 6.38
Type-2 BFC VEHICLE 79.40 51.06 48.94 20.60

PERSON 51.06 79.40 20.60 48.94

Type-1 and Type-2 Fuzzy Classifiers (T1FC and T2FC, respectively) represent

the uncertainty of the classification with either a membership value (in the case of

T1FC) or a membership interval (for T2FC). In Table 5.1, the flexibility provided

by fuzzy logic is omitted to study the performance obtained by sharp binary classi-

fiers in a behaviour-based object classifier. In order to evaluate the approximation

provided by the different levels of uncertainty included in the BFCs, a retrieval sys-

tem has been applied. Figure 5.6 reveals an improvement of the retrieval results

when using T2FC. For the semantic concept Person, Figure 5.6 show on average

35% precision for the T2FC, which outperforms by 10% the results obtained by
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Figure 5.6: Retrieval performance based on the membership degree, µdecision, ob-
tained from the BFC

the T1FC. Whilst, for the semantic concept Vehicle, T2FC achieves 100% precision

under 30% recall, its precision decreases with the recall, obtaining a 45% precision

at 50% recall. Moreover, T1FC achieves 100% precision under 10% recall, while its

average performance for the semantic concept Vehicle is 55%. In conclusion, T2FC

generally outperforms T1FC for both concepts.

The appearance of fuzzy logic was due to the need for expressing uncertainty,

allowing a higher degree of freedom in decision-making processes. Consequently,

fuzzy classifiers address more adaptive and robust techniques to represent real world

scenarios with a higher accuracy, compared with the binary classifiers used in the

state of the art. In the proposed approach, objects are represented by behaviour

features. These attributes can be easily understood by humans, but lack meaning

for an automatic classifier. The use of fuzzy logic in the BFC was motivated by the

need for a flexible approach which enabled the modelling of human inference rules

and the estimation of their mathematical equivalents. In Figure 5.7, the proposed

Type-1 and Type-2 BFCs are evaluated against a binary classifier based on SVMs.

As noted from the results, the classifiers based on fuzzy logic outperform the binary

classifier by 40% for the semantic concept Vehicle and 20% for the semantic concept
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Figure 5.7: Performance comparison between binary and fuzzy classifiers based on
behaviour patterns

Person, proving a more adaptive approach.

5.3.2 Comparison between behaviour and appearance-based

object classifiers

Psychological studies demonstrated that the human inference procedure for clas-

sification relies on motion and behaviour patterns rather than on appearance fea-

tures. An exhaustive evaluation of appearance-based features was presented in [74].

In order to evaluate the performance of the behaviour features presented in Section

5.2.2, a comparison between the proposed Appearance-based Object Classifier (refer

to Chapter 4) and the proposed BFC is shown in Figure 5.8. The presented results

show an average 55% precision for the semantic concept Vehicle for the T1FC which

outperforms on average the appearance-based object classifier by 10%. While, T2FC

outperforms the appearance-based classifier and the T1FC by over 30% with 30%

recall. For the semantic concept Person, T2FC exceeds the other approaches with

an average of 20%.

Generally, the results obtained for Person can be related to the sparseness of this
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Figure 5.8: Performance comparison between the proposed behavioural classifier and
a classifier based on appearance features
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semantic class within the ground truth, generating a less accurate model. On the

other hand, the results obtained by the BFC for the semantic concept Vehicle are

limited due to the speed-restricted road appearing in the surveillance video dataset,

reducing the discriminative effect of the velocity feature.

5.4 Behaviour-based Object Classifier Conclusions

In this Chapter, an automatic object classifier for outdoor surveillance videos

is presented. The proposed classifier is based on the analysis of behaviour features

significant to humans in an attempt to imitate the human inference procedure. To

calculate the selected behaviour features a set of novel geometrical extraction algo-

rithms is presented. Such behaviour features provide robust behaviour models en-

abling the classification of objects when their appearance is not clear. Furthermore,

a novel BFC for classifying behaviour patterns into pre-defined semantic categories

is presented. This classifier is implemented using Type-1 and Type-2 Fuzzy Logic,

in an effort to study the benefits procured by different levels of uncertainty included

in the classifier and the advantages of higher levels of adaptability to represent

realistic scenarios. Finally, the Behaviour-based Object Classifier performance is

evaluated and compared against SVMs and the proposed Appearance-based Object

Classifier. The BFCs performance is compared against binary classifiers, while the

behaviour features performance is evaluated against appearance features. The hier-

archical structure of the fuzzy classifier shows robustness against behaviour outliers

and the consideration of the uncertainty of the classifier provides significant im-

provement against binary classifiers. Besides, the usage of Type-1 Fuzzy Logics for

object classification provides a high adaptation to the problem, outperforming the

appearance-based object classifier. However, the insertion of a higher level of uncer-

tainty within the individual classifiers demonstrated to be a more suitable solution,

providing a more flexible and adaptable approach.

5.5 Summary

Behaviour-based Object Classification is the second parallel process included

within the Feature Extraction and Analysis component. This Chapter described

the features, algorithms and techniques built to provide (i) adaptable behaviour

modelling features and (ii) flexible classifiers enabling the matching between hu-

man language rules and their mathematical equivalents. Two behaviour-based ob-

ject classifiers were proposed to study the impact of including different degrees of

freedom in the classification process or the effect of enlarging the flexibility of the
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Figure 5.9: Bayesian-based Object Classifier in the Surveillance Media Management
framework

classifier. As shown in the results, increasing the flexibility of the classifiers provides

a more adaptable approach and a closer approximation to human inference proce-

dure. Consequently, the BFC using Type-2 Fuzzy Logics is selected to provide to the

Probabilistic Fusion Method component with a classification label and a certainty

degree for each classified moving object, {li, µi}.
In the next chapter, the Bayesian-based Object Classifier is addressed (refer to

Figure 5.9). More specifically, the Bayesian-based Object Classifier presents a proba-

bilistic fusion method to merge the classification results provided by the Appearance

and Behaviour-based Object Classifiers, in an attempt to narrow the semantic gap,

bringing together machine and human understanding.



Chapter 6

Surveillance Centric Object

Classification based on Bayesian

Networks

The recent outbreak of vandalism, accidents and criminal activities, has affected

the general public’s concern about security. Higher safety levels and new secu-

rity measures are demanded. Monitoring private areas (i.e. shopping malls) and

public environments prone to vandalism (i.e. bus stations) has become a crucial

task generating a greater growth of deployed surveillance systems. The enormous

amount of information recorded daily for monitoring purposes is typically controlled

by surveillance operators and removed some time later due to storage space limita-

tions. Besides, the lack of preprocessing of the video data increases the difficulties

with forensic searches and the evolution towards autonomous surveillance systems.

The limitations of real surveillance video systems increase the demand for the de-

velopment of automatic and smart surveillance solutions to detect and index events

and objects.

The proposed Surveillance Media Management framework addresses the auto-

matic detection and classification of moving objects in surveillance videos according

to their inherent visual features and behaviour patterns. Typically, object detection

and classification techniques are built based on the appearance of the objects or their

visual properties. Visual attributes, such as colour or texture, represent what ma-

chines can understand. On the contrary, the object’s behaviour or spatio-temporal

evolution reflects the ability of human understanding. Their independent contribu-

tion provides complementary invaluable information. Combining the classification

results achieved by appearance and behaviour-based object classifiers brings together

machine and human understanding, taking a step forward to bridge the semantic

gap. In this chapter, a probabilistic fusion method based on Bayesian Networks is

107
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presented to merge machine and human knowledge leading towards the development

of more independent object classification and forensic search techniques.

In this chapter, a detailed survey of the existing multi-modal fusion techniques

focused on surveillance applications is presented in Section 6.1. The probabilis-

tic multimodal fusion technique together with the proposed Bayesian-based Object

Classifier are further explained in Section 6.2. An exhaustive description of the

experiments conducted to evaluate the proposed fusion technique is presented in

Section 6.3. Followed by a set of conclusions and a summary of the proposed tech-

niques in Section 6.5.

6.1 Bayesian-based Network Classifier

Multimedia analysis and more specifically surveillance systems benefit from dif-

ferent inputs. Such inputs can be captured by different media or present a different

type of information. The variety in the available media and the different nature of

information has motivated multimodal fusion research. Formally, the integration of

multiple media, their associated features or the intermediate decision to perform an

analysis task is referred to as multimodal fusion [12].

Over the past several decades, many different approaches have been proposed to

automatically represent objects or concepts in videos. Numerous features analysing

visual appearance, motion, shape or temporal evolution have been proposed and se-

lected depending on their performance for different applications [75]. Single features

or inputs are capable of obtaining high accuracy results and tackle specific problems,

i.e. object detection. However, the use of complementary information enhances the

possibilities and capabilities of different systems to perform more sophisticated tasks,

i.e. object classification, speaker identification, etc, and increases the accuracy of

the overall decision-making process. Consequently, multimodal fusion has gained

much attention in different research areas such as machine learning, data mining,

information retrieval, pattern recognition and multimedia analysis.

The variety of media, features or partial decisions provide a wide range of op-

tions to address specific tasks. However, the different characteristics of the involved

modalities hinder the combination for several reasons including (i) the particular for-

mat acquisition of different media, (ii) the confidence level associated to each data

depending on the task under analysis, (iii) the independent protection of each type

of data and (iv) the different processing times related to the different type of media

streams. Due to the existing challenges in multimodal fusion and the range of appli-

cation tasks, the multimodal fusion techniques in the literature can be categorised

according to the level of fusion or the nature of the methods.
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Multimodal fusion can be performed at different levels, distinguishing mainly

two, feature and decision level [12]. The former category includes all the approaches

which combine the available input data before performing the objective task. In

this case, the number of features extracted from different modalities must be com-

bined in a unique vector (output) which will be considered as a unique input by

the objective task 1. Amongst the advantages of the feature level multimodal fusion

techniques, the need for a unique learning phase on the combined feature vector

and the possibility to take advantage of the correlation between multiple features

from different modalities excel [187]. Despite the advantages, feature level mul-

timodal fusion present several disadvantages including (i) the difficulty to learn

cross-correlation amongst features increases with the number of different media con-

sidered, (ii) before combining features, their format should be the same and (iii) the

synchronisation between features is more complex due to their different modalities

[220]. While the latter proposes to analyse each input individually, providing local

decisions. Those decisions are then combined using a decision fusion unit to make

a fused decision vector that is analysed to obtain a final decision, considering it as

the output of the fusion technique. Unlike feature level fusion techniques, decision

level multimodal fusion techniques benefit from unique representations despite the

multiple media modalities easing their fusion, the scalability of the system and en-

abling the use of different and most suitable techniques to obtain partial solutions.

However, the acquisition of partial solutions prevents consideration of the features

correlation and is affected by the individual learning process associated to each fea-

ture. In order to exploit the advantages of both fusion levels, hybrid systems have

been proposed. For further information on the state-of-the-art, refer to [12, 186].

Considering the nature of the fusion methods, a classification is proposed includ-

ing the categories: rule-based methods, classification methods and estimation-based

methods. Such classification associates the methods to the problems or applications

to tackle. Thus, Rule-based Fusion Methods include a variety of basic rules to com-

bine the multimodal inputs, providing adaptable approaches based on application-

oriented rules. The Classification-based Fusion Methods categorise the multimodal

observations into one of the pre-defined semantic classes. Whilst the Estimation-

based Fusion Methods are used to estimate the state of moving objects based on the

multimodal input data. Considering that our fusion goal is to provide automatic

object classification from videos for surveillance applications, in the remainder of

this section, the literature review focuses on classification fusion methods. For a

broader view of the existing fusion techniques and some surveillance applications

refer to [100, 108, 219].

1This type of fusion was addressed in Section 4.2, where the need to preserve the different nature
of the inputs was demonstrated.
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6.1.1 Classification-based Fusion Methods

Considering the exponential growth of the types and amount of media, the new

object classification approaches try to convey information captured by different

means in order to achieve a higher robustness and accuracy in the classification pro-

cess. Several classification-based multimodal fusion methods have been proposed

in the literature in an attempt to categorise the multimodal input data into one of

the pre-defined classes associated to the application under analysis, however, the

most popular multimodal fusion techniques are: (i) Support Vector Machines, (ii)

Bayesian Inference, (iii) Dempster-Shafer Theory, (iv) Dynamic Bayesian Networks,

(v) Neural Networks and (vi) Maximum Entropy Model. Each technique provides a

set of advantages and disadvantages preselecting its suitable specific applications and

scenarios. In the remainder of this section, each technique is detailed and described

along with some highlighted approaches and surveillance applications.

Support Vector Machines (SVMs)

SVMs acquired great popularity for data classification, especially, in the domain

of multimedia, where different approaches have used this technique for different ap-

plications such as face detection, object classification, modality fusion, etc. SVM is

a supervised learning method, which assuming a set of input data vectors, provides

an optimal binary classification, partitioning the input data into the two training

classes. Typically, SVMs are used for multimodal fusion, assuming the set of in-

puts represents the scores given by individual classifiers. Multimodal fusion and

classification using SVMs partitions the input data, applying different kernel func-

tions which allow non-linear classification. SVM formulation is further detailed in

Appendix 9.4.

Many existing literature approaches use the SVM-based fusion scheme. Nirmala

et al. [151] proposed a multimodal image fusion technique using Shift Invariant

Discrete Wavelet Transform (SIDWT) for surveillance applications. This approach

addressed the fusion of visual and infrared images, extracting their SIDWT and

using SVM to fuse the transforms at feature-level. The proposed multimodal im-

age fusion technique combined two information sources, but enabled its extension

providing a scalable approach. To compute the SIDWT, images were divided into

non-overlapping blocks of fixed size and three features including energy, entropy and

standard deviation, were computed for each block. The SVM was trained based on

the extracted features for each block and determined whether the wavelet coefficient

block from the visual or infrared image was to be used. Finally, the fused image

was obtained by performing inverse SIDWT on the selected coefficients. Arsic et al.

[10] targeted the automatic detection of certain passenger’s behaviour in an airplane
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situation, i.e. aggressive, nervous, tired, etc, using an SVM during the classification

stage. A set of low-level features based on difference imaging were extracted from

different parts of the image such as skin colour regions, face or the entire image.

The proposed low-level features were based on the global motion, representing its

movement or mean deviation. Finally, a vector containing all features was created

and classified using a SVM based on the polynomial kernel.

Bayesian inference

Bayesian inference combines multimodal information by applying rules of pro-

bability theory [128]. Multimodal information sources provide either features or

decisions from individual classifiers which are combined to derive the inference of

the joint probability of an observation or decision [164]. Bayesian networks allow the

use of prior knowledge about the likelihood of the hypothesis to be utilized in the

inference process. New observations or decisions can be used to update the a-priori

probability in order to compute the posterior probability of the hypothesis. Finally,

the Bayesian inference fusion method allows for uncertainty modelling.

The Bayesian inference method has been used in the literature to combine mul-

timodal information due to its possibility to adapt as the information evolves as well

as its capability to apply subjective or estimated probabilities when empirical data

is absent. Due to these advantages, Bayesian inference has been used for different

tasks, such as speech recognition or video analysis. In surveillance, Bayesian in-

ference has been applied for combining classification results for various applications

[16, 15]. Atrey et al. [13] fused multimodal information using the Bayesian inference

fusion approach for event detection in surveillance scenarios, such as standing and

talking, running and shouting, walking or standing and door knocking. Meuter et

al. addressed vision-based traffic sign recognition in a hybrid classification method

based on a decision tree and a Bayesian fusion algorithm [142]. The fusion module

combined the classification results of the different classifiers over time and fused

similar signs on both sides of the road, taking advantage of the redundancy existent

in German roads, where identical signs are mounted on both sides of the road.

Dempster-Shafer Theory

The Dempster-Shafer evidence theory allows the inclusion of belief and plausibil-

ity values to represent evidences and their corresponding uncertainty in the fusion

process, rather than representing the evidence using only uncertainty values [11].

According to the Dempster-Shafer theory, an hypothesis is characterised by belief

and plausibility. Whilst the degree of belief implies a lower bound of the confidence,

the plausibility represents the upper bound, delimiting the confidence interval or
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the possibility of the hypothesis to be true [12]. After the assignment of a proba-

bility to every hypothesis, the decision regarding the hypothesis is measured by a

confidence interval. Multimodal fusion using the Dempster-Shafer theory applies

evidence combination rules to fuse multimodal information.

Multimodal fusion techniques have acquired great relevance in recent years, the

inclusion of higher levels of freedom within the fusion process has been used in dif-

ferent applications. For instance, vehicle classification based on Dempster-Shafer

theory was addressed by Klausner et al. [110]. The proposed approach fused single-

source classifier’s results into a matrix of uncertainty intervals. The authors applied

the SVM distance mass function and the Dempster-Shafer belief function to classify

objects into three categories, including large trucks, small trucks and cars accord-

ing to a set of visual and acoustic features. Moreover, Dempster-Shafer theory of

evidence was applied on other surveillance applications such as gender profiling.

In [129], authors proposed a multimodal fusion technique based on the Dempster-

Shafer theory to combine the partial decisions provided by different gender profiling

techniques to overcome existing limitations such as the face occlusion or body shape

alteration. The provided experiments exhibited an improvement versus single pro-

filing or classic fusion results.

Dynamic Bayesian Networks (DBNs)

Multimodal fusion considering the temporal axis requires specific models to de-

scribe the evolution of the observed data. For the analysis and fusion of this type

of information, Bayesian inference fusion methods can be extended to Dynamic

Bayesian Networks (DBN), also called probabilistic generative model or a graphical

model [12]. DBNs have been applied in a diverse range of multimedia applications

where the time-series data affected the analysis due to its two main advantages,

(i) its ability to model multi-node dependency and (ii) to integrate the temporal

dependency of the multimodal data. Despite, the variety of DBN systems proposed,

the most popular and simplest form of a DBN is the Hidden Markov Model (HMM).

HMMs have been used for diverse applications from recognising tennis strokes

to gait-based human identification. Additionally, their ability to exploit the spatio-

temporal patterns has driven human activity recognition research. A comprehensive

review of modelling, recognition and analysis of human activities and interactions

was presented by Turaga et al. [205]. Amongst the existing human activity recog-

nition techniques based on DBNs, techniques could be categorised according to the

number of agents involved in the activity and/or the amount of information sources.

Oliver et al. [152] proposed a system for detection of two person interactions using

coupled hidden Markov models (CHMMs). The CHMMs was a variant of HMMs
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which integrated two or more sources of information to model and recognise human

behaviour. Liu and Chua [123] proposed a technique to classify three agent activi-

ties, including groups approaching, walking together or meeting and turning back,

applying Observation Decomposed Hidden Markov Model (ODHMM). While, Due

et al. [66] proposed to decompose an interaction into multiple interacting stochastic

processes and proposed a coupled hierarchical durational-state dynamic Bayesian

Network. Suk et al. [193] analysed human interactions based on their moving tra-

jectories. Each human interaction was decomposed into elementary components or

sub-interactions, which were modelled individually using HMMs, and finally assem-

bled using a directed graph.

Despite DBNs great development in human activity recognition, multimodal fu-

sion using DBNs was also applied in other surveillance applications such as vision-

based traffic monitoring [96, 34], vehicle detection [52], scene description [106, 166]

or action recognition based on contextual information [145].

Neural Networks

Neural Networks (NN) are another approach for multimodal fusion, providing a

non-linear mapping between the input information sources and the output decisions.

The NN method consists of a network including input, hidden and output nodes.

The input nodes accept information from the different sources while the output nodes

provide the results of combining the input information or decisions. The mapping

between the input and output nodes, using the hidden nodes, defines the network

architecture and therefore its behaviour. The architecture and the weights defining

its topology can be adjusted during the training phase to obtain the optimal fusion

results [28].

In recent years, multiple applications have used NNs as a multimodal fusion

technique. In general scenarios, applications such as speaker tracking [236] or struc-

tural damage detection [102] applied NNs to combine different information sources.

In surveillance scenarios, NNs have been widely used in traffic control [153]. For

example, in [141], traffic magnetic sensors captured the information to detect traffic

incidents using NNs. Traffic flow prediction was tackled using a radial basis function

neural network [222] or genetic-based NNs [211]. Furthermore, NNs and SVMs were

compared for the prediction of traffic speed in [206]. Authors determined that SVM

was a viable alternative to NNs for short-term prediction due to the high dependence

of NNs performance to the training stage.

Despite NNs are suitable for high-dimensional problem spaces and generating

high-order nonlinear mapping, NNs present several challenges, including (i) slow

training and (ii) complexity to select an appropriate network architecture according
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to the application under analysis. These challenges limited NNs impact on the

multimedia analysis compared to other fusion methods [12].

Maximum Entropy Model

The maximum entropy model presents a statistical classifier which provides a

probability of an observation belonging to a particular class based on the input

information. The maximum entropy model is used in multimodal fusion, classifying

fused multimedia observations, coming from different acquisition sources, into a set

of predefined concepts. The maximum entropy model-based fusion method learns

possible correlations between the extracted features and the selected concepts to

build statistical models. Assuming a classification problem, where Oi and Oj are

two different types of input observations/features and X is the concept to classify,

maximum entropy models calculate the probability of the observations belonging to

the class X using an exponential function:

P (X|Oi, Oj) =
1

n
eF (Oi,Oj) (6.1)

where n is the normalisation factor and F (Oi, Oj) is the combined observation vector.

The maximum entropy model has been applied for semantic multimedia indexing

and annotation. In [133], text and image features were combined to index and

retrieve images using the Maximum Entropy Model. The proposed approach was

evaluated against the Naives Bayes classifier using the Reuters-21578, Corel Images

and TRECVID 2005 datasets, exhibiting a precision improvement of, between a 5

- 25% achieved by the Maximum Entropy Model approach. In [9], a multimedia-

content automatic annotation approach based on maximum entropy models was

presented. Statistical models were calculated extracting colour, texture and shape

features to represent each classifying concept. For each concept to be predicted, the

set of relevant models were extracted to estimate the probability of the observation

to be a particular concept.

6.2 Fusion of Appearance and Behaviour-based

Descriptor Spaces

Real surveillance video systems restrictions coupled together with the demand

for security by the general public establish the need for tackling video surveillance

limitations and working towards smart surveillance solutions. The inherent rela-

tionship between events and objects ascertains the importance of the development

of automatic object classification, as a fundamental prior step for event detection,
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classification and indexing. Even though various object classifiers have been devel-

oped in recent times, their reliance is based on visual appearance, considering the

machine understanding in the classification. However, human cognition classifies

moving objects with a radically different viewpoint based on their spatio-temporal

evolution. The independent and complementary nature of the visual and behaviour-

based classifiers provide a unique scenario to narrow the semantic gap, combining

human and machine understanding to perform automatic object classification for

surveillance applications.

In the previous chapters, two different automatic object classifiers were presented.

On one hand, the Appearance-based Object Classifier (refer to Chapter 4) exploited

the inherent visual appearance of the moving objects to create a unique and optimal

representation vector, exhibiting the machine understanding. On the other hand,

the Behaviour-based Object Classifier (refer to Chapter 5) proposed a framework

based on the extraction of high level concepts which exhibited the spatio-temporal

evolution of the moving objects, in an attempt to represent human understanding.

Both independent classifiers supply a semantic classification along with a certainty

value on the classification. In this chapter, a probabilistic approach for multimodal

fusion at the decision-level of the presented independent object classifiers is proposed

to bring together machine and human understanding, in an attempt to bridge the

semantic gap and to extend the state-of-the-art towards smart surveillance systems.

The remainder of this Section is organised as follows. In Section 6.2.1, the prob-

abilistic theory developed for the multimodal combination of the results provided

by the Appearance and Behaviour-based Object Classifiers is detailed. While in

Section 6.2.2, the proposed Bayesian-based Object classifier is further explained.

6.2.1 Bayesian-based multimodal fusion

The all-pervasive presence of CCTV cameras, their location in public uncon-

trolled areas and the strict relationship with safety and security demand a high

reliability and continuous working of any surveillance application despite the ab-

sence of information. Consequently, in this section, a Bayesian-based multimodal

fusion technique is proposed to probabilistically combine diverse-nature cues while

addressing the absence of information and the presence of uncertainty by the means

of inferring information from previously acquired knowledge.

Bayesian Networks enable the robust integration and combination of multiple

diverse-nature sources of information applying rules of probability theory. Fusion

techniques based on Bayesian Networks benefit from three fundamental advantages.

First, the Bayesian inference method allows the combination of multimodal infor-

mation due to its possibility of adaptation as the information evolves as well as
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its capability to apply subjective or estimated probabilities when empirical data is

absent [12]. Secondly, the hierarchical structure provides flexibility and scalability,

facilitating not only the inclusion of additional information, but also enabling the

degradation of the a-posteriori probability in case of the absence of a certain cue/s.

Finally, Bayesian networks allow domain knowledge to be embedded in the structure

and parameters of the networks, allowing the adjustment of the fusion technique to

the domain and scenario’s requirements.

The proposed Bayesian-based multimodal fusion technique provides a probabilis-

tic framework capable of combining multimodal cues at the decision-level, unifying

the output of several modules to provide a unique output in the decision-making pro-

cess. In addition to the advantages provided by Bayesian Networks, the proposed

multimodal fusion technique benefits from (i) the normalised and unique represen-

tation of the information despite the multiple media modalities considered within

the analysis and (ii) the combination of different nature features considering their

own feature space and unique metrics.

The topology applied in the proposed Bayesian-based multimodal fusion tech-

nique is shown in Figure 6.2. The multimodal cues to combine are independent and

can be derived from different inputs, i.e. video or metadata, or from different mod-

ules. Considering the decision-level fusion as a classification problem, the Bayesian

inference scheme can be formulated using the maximum a-posteriori criterion:

D = argmax
i
{P (Ci|F1, F2, ..., FL)} =

= argmax
i
{
L∏
j=1

P (Fj|Ci)P (Ci)} =

= argmax
i


∏L

j=1 P (Fj|C1)P (C1)∏L
j=1 P (Fj|C2)P (C2)

...∏L
j=1 P (Fj|CN)P (CN)


(6.2)

where P (Ci|F1, F2, ..., FL) defines the probability of a concept Ci to be the final

decision undertaken by the classifier, D, considering all the individual partial deci-

sions provided by individual classifiers; Fj are the individual classifiers that provide

partial decisions to the Bayesian inference scheme; P (Ci) represent the a-priori pro-

bability of the concept Ci; L defines the amount of partial decisions incorporated

in the multimodal fusion and N represents the number of concepts involved in the

classification problem.

Regarding the conditional probability matrices connecting each partial decision

to the network, shown in Figure 6.2, Bayesian Networks allow specification according
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to the scenario and application. Consequently, relationships among the analysed

cues can be set manually or learned from training data.

Figure 6.1: General framework of the proposed Bayesian-based multimodal fusion
technique for classify purposes

6.2.2 Bayesian-based Object Classifier

During Chapters 4 and 5, two independent automatic object classifiers proposed

uncorrelated semantic classification of moving objects, relying their analysis either

on inherent physical features or on spatio-temporal evolution properties, respectively.

In previous section, a decision-level multimodal fusion technique was developed for

the combination of various complementary cues in a high-fusion level for (i) prevent-

ing the multiple challenges derived from the merge of different features with different

natures, metrics and “living in different feature spaces”, (ii) providing independence

to the various cues enabling semantic classification despite the cues’ origin and (iii)

enabling scalability. The application of the proposed Bayesian-based Multimodal

Fusion technique, and therefore the Bayesian inference scheme, established a prob-

abilistic approach to combine the semantic classification results obtained by the

Appearance and Behaviour-based Object Classifiers, respectively, bringing together

machine and human understanding in an attempt to bridge the semantic gap and

move a step forward towards smart surveillance systems.
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In this Section, the Bayesian-based Object Classifier benefiting from the scal-

able hierarchical structure of the Bayesian-based Multimodal Fusion technique is

presented. The proposed approach allows the incorporation of various classifiers,

enabling a high level of flexibility and adaptation to the scenario under analysis in

the form of a-priori probabilities. Two baseline classifiers provide partial decisions

to the proposed decision-level multimodal fusion for the classification of moving ob-

jects detected in outdoor surveillance videos monitoring urban scenarios (refer to

i-LIDS dataset in Section 7.1). Firstly, in the Appearance-based Object Classifier,

a set of visual features are extracted and combined using a feature-level multimodal

fusion technique which preserves the non-linearity of the different feature spaces, as

detailed in Section 4.4.1. Secondly, in the Behaviour-based Object Classifier, a set

of features describing the object’s temporal evolution and behaviour are extracted

and combined using a behavioural fuzzy classifier, as detailed in Section 5.2. Each of

the partial decisions corresponds to an input to the Bayesian inference scheme and

represents a semantic classification decision accompanied by a certainty value on the

classification (as shown in image 6.2). The Bayesian inference scheme is employed

to combine the partial decisions considering also the knowledge acquired from the

scenario under analysis.

Each individual classifier provides a partial decision coupled together with a

conditional probability matrix describing the probability of a detected moving ob-

ject, or observation Ok , to belong to each of the semantic concepts, Ci, i = 1, ..., N ,

considered within the classification scenario:
P (C1|F1) P (C1|F2)

P (C2|F1) P (C2|F2)

· · · · · ·
P (CN |F1) P (CN |F2)

 (6.3)

where Fj represents each of the individual classifiers whose decisions are fused ap-

plying Bayes’ probabilistic rules. Each partial decision could perform automatic

object classification. However, the integration of several features, derived from dif-

ferent and uncorrelated modules, addresses higher robustness, stability, flexibility

and adaptation towards the scenario under analysis.

For the proposed classification scenario, the Bayesian inference scheme developed

in Section 6.2.1 can be formulated using the maximum a-posteriori criterion as shown

in Equation 6.4, where P (Ci|F1, F2) defines the probability of a concept Ci to be

the final decision undertaken by the classifier, D, considering all the individual

partial decisions provided by individual classifiers; F1 and F2 are the individual

classifiers that provide partial decisions to the Bayesian inference scheme, in this
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Figure 6.2: Proposed Bayesian-based Object Classifier framework

specific scenario two individual classifiers are considered, Appearance and Behaviour-

based Object Classifiers, corresponding to F1 and F2, respectively; P (Ci) represent

the a-priori probability of the concept i and N represents the number of concepts

involved in the classification problem, which in the scenario under analysis is two,

Person and Vehicle (for more information about the ground truth refer to 7.1).

D = argmax
i
{P (Ci|F1, F2)} =

= argmax
i
{

2∏
j=1

P (Fj|Ci)P (Ci)} =

= argmax
i

(∏2
j=1 P (Fj|C1)P (C1)∏2
j=1 P (Fj|C2)P (C2)

) (6.4)

Bayesian networks enable the continuous work of the multimodal classifier due

to their reliability in the presence of missing evidence, either partially or completely.

The Bayesian inference scheme allows the system to classify any observation despite

the lack of partial decisions, but rigorously decreases the certainty on the classifica-

tion accordingly.

The proposed Bayesian-based object classifier presents a semantic classification

technique based on the fusion of diverse-nature cues providing semantic indexing

of previously detected moving objects. The semantic object classification provides

several advantages to future applications including (i) to enhance forensic appli-
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cations enabling the hyper-connexion between the automatic classification and the

queries and concepts meaningful for human operators and (ii) for the detection of

surveillance events in urban environments, the use of human understanding in the

decision-making process enables the capability to establish human related rules to

infer object-oriented events.

6.3 Performance Evaluation of the Bayesian Clas-

sifier

This section evaluates the performance of the proposed Bayesian-based Object

Classifier in outdoor surveillance videos. It includes an evaluation of the benefits

exhibited by the proposed decision-level multimodal fusion technique built over two

baseline classifiers (detailed in Chapters 4 and 5, respectively). The robustness

and discriminative power given by proposed Bayesian inference scheme is studied

in the quantitative evaluation of the experimental results. Besides, a comparative

evaluation between the proposed Bayesian-based Object Classifier and the individual

Appearance and Behaviour-based Object Classifiers is detailed.

6.3.1 Quantitative performance evaluation

In this Section, the Bayesian-based Object Classifier is proposed to narrow the

semantic gap, presenting an approach that classifies detected moving objects accord-

ing to their inherent visual properties as well as its spatio-temporal evolution. The

combination of machine and human understanding in a decision-level multimodal

fusion technique based on Bayesian Networks enables the working continuity of the

Surveillance Media Management system despite the absence of information and the

presence of uncertainty.

To evaluate the performance of the proposed Bayesian-based Object Classifier

and, ultimately, the performance of the Bayesian-based Multimodal Fusion tech-

nique, a conditional probability matrix is calculated by each of the individual clas-

sifiers, acting as inputs to the Bayesian Network (refer to Figure 6.2), and passed to

the Bayesian inference scheme. The Bayesian-based Multimodal Fusion technique

combines the different partial decisions to achieve a unique classification consider-

ing diverse-nature cues while preserving their individual feature spaces and metrics.

The obtained results are shown in Table 6.1.

Typically, in surveillance applications, there are two fundamental objectives: (i)

to achieve a high true positive rate balanced with a low false negative rate which

reveals the capability of the classifier to detect the desired concepts and (ii) to main-
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Concepts True True False False
Positive Negative Positive Negative

Vehicle (%) 97 66 34 3
Person (%) 66 97 3 34

Table 6.1: Performance evaluation of the Bayesian-based Object Classifier

tain a low false positive rate in order to avoid false alarms within the surveillance

application. The results provided by the Bayesian-based object classifier (refer to

Table 6.1) reveal, for the semantic concept Vehicle, a high rate of true positive de-

tections coupled with a low false negative rate, 97% and 3%, respectively, while

maintaining a moderate rate of false positive detection, 34%. The semantic concept

Person presents lower true positive and false negative rates, 66% and 34%, respec-

tively, while scoring a remarkable false positive rate, 3%. The results, both the false

positive rates for vehicles and the true positive rate for person, are directly affected

by the sparseness of the concept person within the ground truth.

6.3.2 Comparative evaluation of the Bayesian-based Object

Classifier

The objective of this section was two-folded. The first objective was to present a

multimodal fusion technique which would allow the integration of various different-

nature features independently of which media were they derived from, to benefit

from (i) the representability provided by each feature, (ii) their un-correlation in

order to cover a bigger spectrum, and (iii) the robustness acquired by the system

due to the consideration of multiple partial decisions rather than relying on a single

decision. While the second and most fundamental objective was to demonstrate

the improvement provided by joining together human and machine understanding

for classification purposes in surveillance scenarios. In order to demonstrate such

an improvement on the performance, the proposed Bayesian-based Object Classifier

is compared with the individual classifiers which provided the partial decisions as

inputs to the Bayesian inference scheme (refer to Table 6.2).

According to the comparative results shown in Table 6.2, the proposed Bayesian-

based object classifier outperforms both individual classifiers. While independent

classifiers, based on visual and spatio-temporal features, achieve a true positive rate

of 77% and 79%, respectively. This is exceeded by the Bayesian object classifier,

which achieves a 97% positive rate for the semantic concept Vehicle, in a 20% in-

crease. However, the improvement undertaken by the proposed fusion approach is

smaller for the semantic concept Person, increasing the true positive rate by 2% and
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Concepts True True False False
Positive Negative Positive Negative

Vehicle Visual Features(%) 77 64 36 23
Spatio-temporal Features (%) 79 57 43 21

Bayesian (%) 97 66 34 3
Person Visual Features (%) 64 77 23 36

Spatio-temporal Features (%) 57 79 21 43
Bayesian (%) 66 97 3 34

Table 6.2: Performance comparison between the proposed classifier and the two in-
termediate object classifiers, namely Appearance and Behaviour-based Object Clas-
sifiers, which are further explained in Chapters 4 and 5, respectively

9% for the visual and spatio-temporal features classifiers. A reason for the reduced

improvement and generally the lower true positive rates provided by the proposed

fusion technique is the sparseness of the semantic concept Person in the ground truth

and the dataset (for further information refer to Section 7.4). Similarly, the other

rates (true negative, false positive and false negative) present improvements when-

ever the Bayesian-based object classifier is applied compared to the results provided

by the independent classifiers. Finally, detailed analysis reveals that the proposed

multimodal fusion enhances the object classification procedure, increasing positive

detection while reducing false alarms.

6.4 Bayesian-based Object Classifier Conclusions

In this Section, a probabilistic multimodal fusion theory was proposed to inte-

grate diverse-nature cues in surveillance applications. The objective was to propose

a probabilistic fusion which would enable the fusion of the partial decisions provided

by the Appearance and Behaviour-based Object Classifiers. Despite each individual

classifier being capable of automatically categorising moving objects into semantic

concepts with a high rate of true positive detections and low false alarms, the pro-

posed approach was based on the premise that the higher amount of complementary

information would provide higher robustness and accuracy in the decision-making

process. Furthermore, the proposed Bayesian inference scheme addressed the partial

or total absence of information, by degrading the classification results accordingly.

The proposed object classifier combined the decisions provided by the afore men-

tioned individual classifiers in a probabilistic framework which also considered the

scenario a-priori knowledge. The proposed approach outperformed both individual

classifiers, demonstrating the benefits of combining complementary features to im-

prove the classification results and to enhance the robustness of the classification
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framework. In a more specific analysis, the proposed approach combined machine

and human understanding for automatic object classification, narrowing the seman-

tic gap and enhancing the classification performance towards smart surveillance

systems.

6.5 Summary

Bayesian-based Object Classifier is the final stage of the Surveillance Media Man-

agement system, providing semantic classification for each moving object extracted

in the Motion Analysis and Object Extraction component, which is further stored

in the semantic metadata repository. This semantic object classification is pro-

posed to facilitate forensic applications, enabling the use of common language in the

queries while broadening the search spectrum. This Chapter described the multi-

modal fusion technique to probabilistically combine the partial decisions undertaken

by the Appearance and Behaviour-based Object Classifiers, in an attempt to build

a more robust representation based on human and machine understanding. The

combination of visual features and behaviour patterns, providing complementary

information, enhanced the classification performance and narrowed the semantic

gap considering human cognition in the decision-making process.

In the next chapter, the datasets and ground truth selected for the evaluation of

each module of the Surveillance Media Management framework is further described.



Chapter 7

Performance Evaluation and

Cross-Validation of the

Surveillance Media Management

System

In previous chapters, the Surveillance Media Management system as well as each

of its individual modules were detailed. An individual evaluation of each module

was conducted in each chapter, providing the partial results for each decision-making

process. Finally, in the Surveillance Centric Object Classification based on Bayesian

Networks (refer to Chapter 6), the complete Surveillance Media Management system

was evaluated and compared with the proposed Appearance and Behaviour-based

Object Classifiers. In this Chapter, the selected surveillance datasets and the ground

truth created for evaluation purposes are further explained.

7.1 Surveillance Datasets

This Thesis presents an approach to automatically classify objects considering

not only their visual appearance but also their behaviour within the video under

analysis. Our study focuses on outdoor video surveillance, in perspective for its

development and usage within event detection systems such as detection of suspi-

ciously parked vehicles in urban scenarios or monitoring of doorways. The analysis

of outdoor surveillance scenarios introduces unique challenges compromising the per-

formance of any approach and requiring of specific solutions (refer to Appendix 9.1).

In an attempt to evaluate the proposed approach within realistic video footage, two

surveillance video datasets were selected, Imagery Library for Intelligent Detection

Systems (i-LIDS) and Cambridge-driving Labeled Video Database (CamVid). The

124
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former includes a variety of videos and scenarios broadening the spectrum to anal-

yse and providing of a set of general outdoor surveillance videos where surveillance

object classifiers can be evaluated. While, the latter presents a set of videos, not

specifically surveillance videos, which recorded outdoors scenes including a great va-

riety of objects. Both datasets contain videos from outdoor surveillance systems but

deployed for different applications, i.e. i-LIDS has static background while CamVid

has dynamic background.

In the remainder of the section, the two evaluation datasets are further detailed

in Sections 7.2 and 7.3, respectively. While the ground truth developed specifically

for the evaluation of the proposed automatic object classifier is detailed in Section

7.4.

7.2 Imagery Library for Intelligent Detection Sys-

tems (i-LIDS)

Imagery Library for Intelligent Detection Systems (i-LIDS)1 is an initiative of the

United Kingdom government to provide a benchmark for video analytics systems.

The i-LIDS video library is produced by the United Kingdom Home Office Scientific

Development Branch (CAST) in partnership with the Centre for the Protection of

National Infrastructure (CPNI). i-LIDS comprises a library of CCTV video footage

produced mainly for event detection and object tracking testing purposes and based

on six scenarios following the government’s requirements, namely:

• Abandoned baggage detection

• Parked vehicle detection

• Doorway surveillance

• Sterile zone monitoring

• Multiple-camera tracking

• New technologies2.

i-LIDS dataset contains static background videos due to the use of fixed-position

CCTV-style cameras mounted in poles, providing angle top-down viewpoint. The

footage accurately represents real operating conditions and potential threats in ur-

ban scenarios.

1http://www.homeoffice.gov.uk/science-research/hosdb/i-lids/
2New technologies scenario provides thermal imaging and infrared illumination for different pur-
poses such as the detection of pedestrian attacks over large areas or water based attacks
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Figure 7.1: The three types of surveillance videos enclosed in the Parked Vehicle
Detection Dataset. The procured videos present an angled top-down viewpoint
facing a road. Each video category exhibit a different orientation towards the road,
revealing a specific need of orientation invariant approaches for their analysis

Despite the variety of available scenarios, our study concentrates on the analysis

of general outdoor surveillance scenarios. Parked vehicle detection scenario presents

all the general challenges and situations recorded by CCTV cameras and, conse-

quently, it was selected for the performance evaluation of the proposed approach.

Parked vehicle detection scenario was originally designed for testing approaches

for the detection of vehicles parked in no-parking areas. The provided video footage

encloses videos recording a road from an angled top-down viewpoint (as shown in

Figure 7.1). Three types of videos compose the Parked Vehicle Detection dataset,

each type presents a different orientation towards the road, procuring a broader

evaluation dataset. This characteristic ensures the need of a viewpoint invariant

approach to procure unsupervised object classification.

Within the semantic objects observed in the video footage our study will focus on

human beings and vehicles, as they represent mostly the whole percentage of moving

objects detected in the videos, and therefore, the remaining semantic objects such

as birds or dogs, represent a negligible percentage.

Further to a careful observation, a subset of the dataset has been chosen un-

der varying lighting conditions. Also, the chosen dataset show videos with different

levels of difficulty depending on the number of events to detect and the environmen-

tal conditions (refer to Figure 7.1). As illustrated in Appendix 9.1, external noisy

environmental conditions severely affect the analysis of the chosen dataset. To in-

vestigate the perfomance of our automatic surveillance object classifier, the ground

truth annotations were manaully assigned to all the detected moving objects ex-

tracted from the described dataset, considering that the surveillance taxonomy is

built upon two predefined semantic concepts, Vehicle and Person.

The presented dataset was selected for the evaluation of every stage of the pro-

posed automatic surveillance object classification approach (refer to Chapters 3, 4, 5

and 6) as well as to investigate the performance of the overall approach. Therefore,



CHAPTER 7. PERFORMANCE EVALUATION OF THE SMM 127

the constructed ground truth used for testing and evaluation was based on Parked

Vehicle Detection Dataset (refer to Section 7.4).

7.3 Cambridge-driving Labeled Video Database

The second dataset used in the evaluation of the proposed Automatic Surveillance

Object Classifier is CamVid3 [30, 29]. As opposed to i-LIDS dataset which contains

static background, CamVid dataset has not been filmed with fixed-position CCTV-

style cameras. CamVid was captured from the perspective of a driving automobile.

The driving scenario increases the number and heterogeneity of the observed objects.

The dataset is composed of five sequences with over 18000 frames in total.

CamVid Dataset was selected to broaden the heterogeneity of the surveillance

taxonomy, procuring new semantic categories. Due to the captured perspective

and the non-static background, CamVid Dataset cannot provide spatio-temporal

information for the detected objects. Therefore, CamVid dataset was only used

for the evaluation of the Appearance-based Object Classifier (refer to Chapter 4),

procuring a greater variety of semantic concepts for the visual analysis.

CamVid dataset provides a manual pixel-level segmentation of over 700 images.

Moreover, the high quality and colour resolution of videos provide a valuable footage

for analysis and is immune to external factors such as camera movement. A set of

32 semantic concepts grouped into four different categories namely moving objects,

road, ceiling and fixed objects, are available in the dataset. Of the 32 concepts,

eleven semantic classes correspond to the moving objects, namely animal, pedestrian,

child, rolling cart, bicyclist, motorcycle, car, SUV/pickup truck, truck/bus, train and

miscellaneous. For our study, we selected only a representative subset of moving

objects from the dataset extracting a total of 3702 blobs. In Figure 7.2, an example

of a frame and its corresponding ground truth is presented. The concept distribution

in the dataset is represented with a pie chart in Figure 7.3.

7.4 Ground Truth

In order to investigate the performance of the proposed Surveillance Media Man-

agement Component and each of its enclosed modules, a ground truth was de-

manded. Two datasets with specific properties have been introduced i-LIDS and

CamVid (refer to Sections 7.2 and 7.3, respectively). Whilst, CamVid was proposed

for a more detailed visual analysis procuring a wider range of semantic concepts

3http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Figure 7.2: Example of the surveillance scenarios studied in CamVid dataset and
the manual pixel-based annotation provided for evaluation purposes

Figure 7.3: Concept distribution of the moving objects included in the CamVid
dataset

achieved due to the heterogeneity of the driving scenario. i-LIDS Dataset was se-

lected for the evaluation of the proposed object classifier, providing a large amount

of outdoor surveillance videos.

The ground truth annotations were manually assigned to all the moving objects

extracted from the selected videos from i-LIDS dataset. Two were the predefined

semantic concepts, Vehicle and Person (see Figure 7.5). A total of 1377 objects were

included and annotated in the ground truth. Besides, the ground truth was partially

selected to form the training dataset, used by the Multi-Objective Optimisation

technique (refer to Section 4.2.3) to construct the training models later required to

build optimal appearance multi-feature descriptors. Less than a 6% of the ground

truth was selected for the training dataset, where 50% of the objects were annotated

as Car/Vehicle against the 30% as Person. The remaining 20% of the objects

were annotated as Unknown. Largely, these unknown blobs are composed of noise

and those blobs which could not be assigned to either one of the above concepts

(refer to Figure 7.4). Instead of ignoring the blobs labelled as “Unknown”, our

dataset included these blobs to explicitly study the effect of noise on the performance

of the classification models. An overview of the dataset used for the evaluation

of the proposed framework is presented in Figure 7.5. Each of these blobs are

represented along with the resolution as extracted from the Motion Analysis and

Object Extraction Component. As it can be noted, the blobs vary in the resolution
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Figure 7.4: Several were the reasons included in the interannotator agreement to
label a blob as Unknown: (a) coexistence of several semantic objects within a blob,
(b) appearance of less than a 50% of a semantic object and (c) appearance of blobs
without relevant information. The Motion Analysis and Object Extraction Com-
ponent presented several challenges generating some of the blobs later labelled as
unknown

Figure 7.5: Examples of the segmented moving objects provided by i-LIDS Dataset.
Each blob is represented along with the resolution (measured in pixels) as extracted
from the Motion Analysis and Object Extraction Component. As shown in the
Figure, the blobs vary in resolution and often contains visual disturbance hindering
human annotators to assign concept labels

and often contains visual disturbance which are often found to be difficult for human

annotators to assign concept labels.

The manual annotation was accomplished by several annotators following the

interannotator agreement in an attempt to standardise the annotations. Moving

objects were labelled as Unknown whenever their appearance was not clear and

whenever a set of situations were revealed including: (i) coexistence of several se-

mantic objects within a blob, (ii) appearance of less than 50% of a semantic object

within the bounding box and (iii) blobs containing non-relevant information such

as noise. Several examples of blobs containing these exceptions are shown in Figure

7.4.



Chapter 8

Conclusions & Future Work

Smart surveillance systems remain a challenging problem despite the numerous

efforts invested towards their development. The surveillance systems great depen-

dence on human supervision limiting their autonomy and efficiency, coupled together

with the existence of the semantic gap between what a machine can automatically

extract and analyse and how human cognition perceives reality, limits the expansion

and development of new more human-like surveillance systems. Our approach, the

proposed Surveillance Media Management system, addresses the narrowing

of the semantic gap, by bringing together machine and human understanding, to

provide automatic classification of objects as a keystone to build the foundation for

event detection techniques towards smart surveillance systems.

The fundamental aim of the research presented in this thesis focuses on pro-

gressing towards smart surveillance systems, by the means of proposing an auto-

matic object classifier to build the foundation for the analysis of more sophisticated

challenges unattainable for machines but easily understood by human cognition, i.e.

event detection. Despite the main objective is to automatically classify objects in a

combined machine-human understanding framework, several sub-objectives were es-

tablished, focusing on overcoming two limitations existing within the state-of-the-art

object classifiers in order to increase their efficiency and accuracy. First, to upgrade

the level of autonomy of the system to provide an unsupervised object classifier.

The independence from human intervention is counteracted by the consideration of

the human cognition in the analysis by the means of the study of objects behaviour

(refer to Chapter 5). Second, to reduce the required resources to monitor the raw

surveillance videos and to facilitate the forensic search by processing the videos and

addressing semantic indexing and classification of the detected moving objects.

The proposed automatic object classifier was fully discussed in Chapter 2, where

the Surveillance Media Management system proposed a parallel analysis of

machine and human-based features residing in the moving objects detected within
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surveillance videos. Thus, on one hand, the SMM analysed the physical properties

inherent in the objects appearance to provide a representation of machine under-

standing. While, on the other hand, the moving objects’ behaviour was modelled

based on their spatio temporal evolution, to represent the objects’ behaviour pat-

terns which are easily understood by human beings but unattainable for machines,

providing an insight of human understanding. The semantic gap in the understand-

ing between the features automatically extracted by a computer and the concepts un-

consciously perceived by human beings was narrowed by combining both approaches

in a probabilistic multimodal fusion framework. The proposed Bayesian-based Ob-

ject Classifier tackled real surveillance system challenges, dealing with absence of

information and uncertainty by degrading gracefully the classification confidence in

case of abnormal streaming of information.

Thus, SMM addressed automatic semantic object classification as a fundamental

prior step to build the foundation for semantic event detection, classification and

indexing in an unsupervised automatic approach alleviating surveillance systems and

tackling human operators’ challenges (refer to Chapter 5). However, surveillance

operators and generally human beings provide an inestimable source of information

due to their ability to contextualise information. Smart surveillance systems tend

to detach surveillance from human interaction. During this thesis, an automatic

object classifier was proposed to postpone human interaction for high-level stages of

supervision where human inference, reasoning and contextualising abilities become

a challenging modelling task.

This chapter presents a brief summary of the thesis, and ends with new research

directions that have been identified as potential areas for further performance im-

provements and interesting new functionalities.

8.1 Concluding Summary

The main conclusions of each chapter are summarised as follows:

Chapter 2 presented a review of the literature discussing the existing object clas-

sification techniques used in surveillance applications and, more specifically, a survey

of the most popular event detection approaches, in an attempt to provide a substan-

tial background capable to frame the proposed research as well as the proposed

future work. Furthermore, in Chapter 2, the proposed Surveillance Media Manage-

ment framework was further described, presenting an automatic object classification

technique built to provide semantic classification and indexing for forensic applica-

tions. The main objective of the SMM was to narrow the semantic gap, bringing

together machine and human understanding, by probabilistically combining inherent
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visual features and behaviour patterns of the detected moving objects.

Chapter 3 outlined the different computational techniques which were required

for the extraction of the spatio-temporal evolution of the surveillance moving ob-

jects. The Motion Analysis and Object Extraction Component consisted of (i) back-

ground modelling and subtraction technique based on GMMs to remove surveillance

video redundant information, consisting mainly of the scene background; (ii) object

segmentation through the use of connected components analysis to group the previ-

ously detected foreground pixels; and (iii) object tracking based on Kalman filtering

to predict the tracks related to each frame as well as the assignment between the

available tracks and the detected blobs in the current frame. The objective of this

component was two-folded, on one hand, the reduction of the volume of information

to process; whilst, on the other hand, it facilitated information about the motion

and appearance of the moving objects to the subsequent stages.

Chapter 4 introduced the Appearance-based Object Classifier topology devel-

oped for processing the inherent physical properties of the moving objects extracted

by the Motion Analysis and Object Extraction Component. During this Chapter,

three objectives were tackled to provide automatic object classification based on

appearance. First, a detailed study of the most popular and well-known visual

features was presented, focusing the study on features related to either colour or

texture due to their high significance for human perception. After an exhaustive

evaluation, four visual descriptors were selected to model the detected moving ob-

jects, namely Colour Layout Descriptor, Colour Structure Descriptor, Dominant

Colour Descriptor and Edge Histogram Descriptor. Second, the exploitation of the

social and cognitive advantages of biological organisms was proposed towards ob-

ject classification in an attempt to provide a closer approximation. However, the

performance of the proposed classifier was affected by the different nature of each

individual appearance descriptor motivating the study of its performance on opti-

mal multi-feature descriptors. Finally, to enlarge the robustness and representabil-

ity of the appearance-based object classifier, a multi-feature fusion technique was

proposed to combine several complementary individual visual descriptors. The pro-

posed multi-feature fusion technique provided independence for each visual descrip-

tor, considering that each descriptor lives in a different feature space, and therefore,

preserving its non-linearity. The proposed technique achieved a 72% and 43% pre-

cision for the semantic concept Vehicle/Car and Person, respectively, at 10% recall,

which contrasted with the performance of the individual descriptors, providing a

more robust and distinctive representation to the semantic objects under analysis.

Each proposed technique addressed an independent challenge for the development

of a robust and efficient appearance-based object representation. Consequently, in
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Chapter 4, two automatic object classification approaches were presented namely

Multi-Feature AOC and Biologically inspired AOC (refer to Section 4.4). The for-

mer benefited from the advantages procured by the optimisation of the multi-feature

descriptors. Whilst, the latter not only based its approach on optimal multi-feature

descriptors but also considered the benefits provided by the PSC to propose a com-

bined approach. Finally, the Multi-Feature AOC was selected to provide robust and

complex appearance representation to the probabilistic multimodal fusion technique.

Chapter 5 introduced the Behaviour-based Object Classifier topology for mod-

elling behaviour features significant to humans in an attempt to imitate the human

inference procedure towards object classification. During this Chapter, a set of novel

geometrical extraction algorithms was presented for the calculation and modelling

of the proposed behaviour features. Such features provided robust behaviour models

enabling the classification of objects when their appearance was not clear. Further-

more, behaviour patterns were defined to describe human knowledge and reasoning.

Fuzzy logic was proposed to be used in the decision making-process due to its flexi-

bility, which enables the conversion of human language rules into their mathematical

equivalents. Consequently, a novel BFC for classifying behaviour patterns into pre-

defined semantic categories was presented. This classifier was implemented using

Type-1 and Type-2 Fuzzy Logic, in an effort to study the benefits provided by differ-

ent levels of uncertainty included in the classifier and the advantages of higher levels

of adaptability to represent realistic scenarios. Finally, the proposed Behaviour-

based Object Classifier performance was evaluated and compared against (i) binary

classifiers to analyse the benefits of increasing the adaptability of the decision-making

process and (ii) appearance features in order to study the performance of considering

human understanding for the classification. The hierarchical structure of the fuzzy

classifier showed robustness against behaviour outliers, whilst the consideration of

the uncertainty of the classifier provided significant improvement against binary clas-

sifiers. Besides, the replication of human perception patterns demonstrated higher

adaptation to the problem, outperforming the Appearance-based Object Classifier.

Finally, the analysis of different levels of freedom within the decision-making process

demonstrated that higher levels of uncertainty within the individual classifier were

a more suitable solution and a more adaptable approach.

The purpose of Chapter 6 was to propose a probabilistic multimodal fusion the-

ory to integrate diverse-nature cues in surveillance applications. Considering the

individual semantic classification provided by the Appearance and Behaviour-based

Object Classifiers as partial decisions, the proposed fusion technique combined them,

enhancing the classifiers performance by bringing together machine and human un-

derstanding, narrowing the semantic gap towards automatic classification and smart



CHAPTER 8. CONCLUSIONS & FUTURE WORK 134

surveillance systems. Moreover, the proposed Bayesian-based Object Classifier ad-

dressed the absence of partial or total information affecting real surveillance cameras

typically located in public environments by decreasing gracefully the certainty in the

classification label. Despite each individual classifier capability to categorise moving

objects into semantic concepts with a high rate of true positive detections and low

false alarms, our probabilistic multimodal fusion approach was based on the premise

that the higher amount of complementary information would provide higher robust-

ness and accuracy in the decision-making process. The results demonstrated a clear

improvement in the classification results achieving a higher true positive rate while

reducing the false alarms.

Finally, Chapter 7 presented the datasets used for the evaluation of the pro-

posed techniques and algorithms along with the developed ground truth. During

this Chapter, the challenges introduced by real surveillance video systems regarding

image quality and video reliability were further discussed.

It is difficult to make direct comparison between the results achieved in this re-

search and the work outlined by other researchers. This is due to the many different

methods that are used for automatic object classification as well as the variety of the

features introduced in their analysis. In this thesis, each chapter, presented together

with the proposed approaches, a related survey of the existing techniques and a

comparison of each technique with relevant state-of-the-art approaches. Finally, in

Chapter 6, the complete Surveillance Media Management framework (also named as

Bayesian-based Object Classifier) was evaluated and compared to the partial deci-

sions obtained in the appearance and behaviour-based classifiers. The experiments

conducted to bring together machine and human understanding, enhanced the se-

mantic object classification performance, increasing the true positive rate between

2 and 20% (depending on the semantic concept under analysis), while reducing the

false alarms. This discussion compares and contrasts the work presented in this

thesis to the most closely related work in the literature. This comparison highlights

the significant contributions made by this research and how they advance the work

in this field.

8.2 Contributions of the Thesis

The primary contributions of the thesis are:

In this thesis, the Surveillance Media Management framework presented an au-

tomatic object classifier built upon the idea of bridging the semantic gap to give

a step forward towards smart surveillance systems. Considering that the semantic

gap is the distance between what machines can compute versus human reasoning, in
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this thesis, machine and human understanding are combined narrowing the semantic

gap. The proposed semantic object classifier combined both machine and human

understanding to benefit from the complementary information and to provide auto-

matic object classification. The replication of human reasoning towards surveillance

object classification limits the human operator’s dependence of the surveillance sys-

tems while increasing their autonomy.

The first step to bridge the semantic gap between machine and human under-

standing consisted of detecting the behaviour patterns that replicated the cues used

by human beings to categorise moving objects. Hence, in this thesis, a set of ge-

ometrical algorithms were proposed to extract a set of behaviour features selected

based on conclusions extracted in psychological studies, which ascertained that hu-

man beings can routinely recognise the type of object using motion or behaviour

patterns, even with lengthy viewing distances where scene observation is affected by

either poor visibility conditions or in circumstances where other cues are hard to

distinguish [105].

The human-like representation of the behaviour patterns required a high flexibil-

ity and adaptability in the classification process. Thus, fuzzy logic was proposed to

build the behaviour-based classifier enabling the conversion of human language rules

into their mathematical equivalents. As a result, a Behavioural Fuzzy Classifier was

proposed in an effort to replicate human inference procedure.

A feature-level fusion technique was proposed in the Appearance-based Object

Classifier to build multi-feature descriptors in an attempt to increase the robustness

and complexity of the visual representation. The proposed technique preserved the

non-linearity of the individual descriptors while complementing each other improving

their individual performance and overcoming their individual flaws.

The benefits provided by the biological organisms for optimisation inspired the

development of a surveillance object classifier. In order to achieve a closer approx-

imation, the Particle Swarm Classifier was proposed. PSC exploited the problem

solving abilities of biological algorithms in optimisation techniques to enhance the

performance of classifiers based on competitive neural networks. Consequently, a

classification technique based on evolutionary computation was presented for object

classification, enabling the representability of high-dimensional input patterns.

A probabilistic multimodal fusion technique was proposed to integrate several

diverse-nature cues, and more specifically to combine machine and human under-

standing, as the fundamental module to insert human cognition into the classification

process. The proposed multimodal fusion technique provided a scalable and flexible

approach capable to integrate the domain knowledge increasing the adaptation of

the system to the problem and scenario under analysis. In real surveillance scenarios,
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video cameras are located in public locations, where external factors not only affect

to the quality of the data but also its availability. The proposed Bayesian-based fu-

sion approach responded to partial or total absence of information, by normalising

the classification results accordingly.

The accuracy and classification confidence achieved by the proposed Surveillance

Media Management was directly affected by the quality of the video frames. The

challenges implicit in urban surveillance videos directly affect the quality of the video

frames 1. Despite the fact that the proposed classification approach does not rely

uniquely on appearance, the quality of the video frames directly relates to the success

of object detection and tracking (refer to Section 3.2.5), where the quality impact on

the images, including noise, shadows or geometrical disturbances, becomes a major

challenge to the effectual development of smart surveillance systems.

Finally, the proposed automatic object classifier performed semantic indexing

and classification enhancing forensic applications by providing compact and human-

like indexing and storage of information and building the foundation for the devel-

opment of more sophisticated event detection and classification techniques.

8.3 Future Work

While this research has produced many different techniques, and answered some

questions, there are still many areas for improvement. These include:

• Object classification was proposed as the foundation for event detection and

classification techniques. While appearance and visual features typically rep-

resent moving objects, in this thesis, a behaviour-based representation was

proposed. Behaviour patterns provide an insight of human understanding to-

wards object classification. Considering that humans can categorise objects

according to their behaviour, this additional information related to the ob-

jects spatio-temporal evolution could also be taken into account to establish

the relationships between different moving objects for the detection of events.

• Regarding event detection, the development of an ontology will be proposed

for the definition of the taxonomy of the surveillance scenario under analysis

as well as the relationships between semantic objects and the properties inher-

ent in each semantic class. Ontologies could provide automatic reasoning for

surveillance event detection, increasing the sophistication of the surveillance

system.

1For more information related to the existing limitations in urban surveillance videos refer to
Section 7.4 and more specifically to Figure 7.5
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• The development of the Bayesian-based Multimodal Fusion technique enabled

our classifier to combine appearance and behaviour features to perform se-

mantic object classification. Considering the different surveillance scenarios,

in future work, the proposed multimodal fusion technique will be enlarged to

integrate cues extracted from different media, such as sound or sensors, in an

attempt to detect events analysing all the available information and not only

based on video data.

• In this thesis, an automatic object classifier was proposed based on the com-

bination of human and machine understanding, as a result, semantic indexing

and classification of moving objects was provided. The proposed classification

provided compact and human-like indexing and storage of information. In

future work, the development of forensic search techniques based on human-

language queries and human reasoning will be addressed.

• Regarding the surveillance dataset, the analysed datasets supplied outdoor

surveillance videos affected by several external factors, however, specific il-

lumination problems such as surveillance videos recorded during night time

or the impact of the changes in illumination have not been addressed in this

framework. Future work will focus on the study of these scenarios and their

challenges.

• For event detection in forensic applications, the classification and identification

of a wide variety of objects enlarge the possibilities and applications of surveil-

lance systems. Our analysis focused on the automatic classification of the

most common objects appearing in surveillance datasets, vehicles and pedes-

trians. However, there are other categories that can be frequently encountered

in real world situations such as motorcycles, cyclists or animals. The correct

identification of such semantic concepts would realise the facing of specific situ-

ations, for instance, the identification of animals such as dogs accompanied by

a pedestrian would differentiate the case between a pedestrian walking a dog

and a pedestrian carrying wheeled luggage. Regarding urban scenarios, besides

enlarging the types of objects under analysis, a specification of different sub-

categories of the proposed semantic concepts would enhance the sophistication

of the surveillance systems, enabling the adaptation to more specific scenarios,

i.e. distinguishing between cars and buses would allow traffic systems to detect

illegal use of bus lanes. Future work will focus on broadening the surveillance

dataset, enlarging the amount of semantic objects and, hence, increasing the

complexity and sophistication of the surveillance object classification.
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• Object representation typically faces two challenges, dimensionality and effi-

ciency. “The curse of dimensionality” is defined as the increase in time re-

quirements in parallel to the increase in the number of features selected for

the task [113]. The dimensionality is exacerbated by the fact that many fea-

tures may be irrelevant or redundant; however, the selection of features to

build a descriptor is usually suboptimal, due to the exclusion of information

that can be relevant. Thus, during the development of the Appearance and

Behaviour-based Object Classifiers, exhaustive studies considering the existing

features and/or their ability to represent the concepts under analysis and the

targeted scenario were detailed. The analysis focused on determining the fea-

tures’ discriminative power, by enhancing the semantic objects’ inter-variance,

and their ability to represent, by preserving their intra-variance. According to

the results obtained and the system needs, a sub-set of features was selected.

During this thesis two semantic concepts were evaluated for their automatic

classification, vehicles and pedestrians, their impact and presence on surveil-

lance videos justified the focus of this analysis. However, the extension of

the taxonomy under analysis (as previously stated) would imply an increase

not only on the semantic concepts but also on the features and characteristics

necessary to represent categories as well as to distinguish amongst them. In

the Appearance-based Object Classifier (refer to Chapter 4), the visual fea-

tures are combined in an optimised weighted linear fusion approach, in which

an increase in the amount of features would require a new training stage. In

the Behaviour-based Object Classifier (refer to Chapter 5), classification is

based on a behaviour-based hierarchical fuzzy classifier, where the member-

ship rules are specifically designed for the selected set of features and semantic

concepts. Consequently, an increment in the amount of features would require

the design of new membership rules and their impact in the second level of

the Behavioural Fuzzy Classifier (BFC). In future work, despite the existing

challenges of increasing the representative features, a new set of features re-

lated to the behaviour representation would be investigated. The extension

of the taxonomy requires a higher ability to represent each semantic concept

and distinguish amongst them. Thus, features able to disambiguate between

semantic classes or sub-categories will be studied, i.e. acceleration, silhouette

or presence of articulation.

• During this thesis, shape was defined as a geometrical feature determined by

the ratio between the blob’s height and width. However, the inclusion of new

semantic concepts in the surveillance taxonomy can prove this definition to be

insufficient. For instance, in some cases a pedestrian and a van can share a si-



CHAPTER 8. CONCLUSIONS & FUTURE WORK 139

Figure 8.1: Examples of detected blobs sharing similar shape due to their orientation
to the surveillance camera

milar shape ratio (refer to Figure 8.1). Consequently, new definitions of shape

and more specifically more geometrical features will be investigated differen-

tiating between articulated (i.e. pedestrians, animals, etc) and rigid objects

(i.e. cars, buses, etc). For the analysis of rigid objects, our investigation will

focus on new geometrical metrics based on the idea that different vehicles

present specific characteristics. For example, Buch, Orwell and Velastin pro-

posed to recognise four different vehicles by applying wire frame models [32].

While, for the analysis of articulated objects, our investigation will focus on

parts-based approaches. Regarding parts-based pedestrian detection, Wu and

Nevatia [217] proposed to divide human models into four parts (body, head,

torso and legs) and represent them using edge features, while Andriluka, Roth

and Schiele [4] proposed to use pictorial structures and strong part detectors

to tackle people detection and pose estimation.

• In surveillance applications, numerous motion analysis approaches have been

proposed to detect movement in the foreground of an image (for more details

refer to Section 3.1.1). However, generally, specific scenarios present “hot” ar-

eas where high activity and movement can be detected, i.e. entries or corridors

in indoor scenarios and bus stops or building entrances in outdoor scenarios,

these areas are commonly named zones of interest. Considering the benefits

of reducing the area of analysis for motion detection in terms of processing

time and noise reduction, in future work, the proposed Motion Analysis Com-

ponent will be enlarged to integrate an automatic zone of interest detector, in

an attempt to optimise the object detection procedure and reduce the noise

and disturbances affecting the system performance.

• In this thesis, an automatic object classifier which addressed the narrowing

of the semantic gap providing a step forward to smart surveillance systems

was presented in the domain of urban security. An extension of the semantic

concepts under analysis is foreseen; such an extension is also dependant on

the scenario under study and thus on the targeted domain. Typically, object
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classifiers regarding surveillance applications focus on urban environments due

to the vast amount of surveillance cameras allocated in cities or urban scenes,

however, other domains beyond urban spaces are commonly invigilated provid-

ing new domains, scopes and applications. Thus, new domains of application

for the proposed techniques can include maritime security, remote surveillance

of human activities in social events (i.e. football matches), remote surveillance

in military applications, border control, supervision of biological species in

remote locations, aerial security, or quality control in industrial applications.

The previously enumerated challenges will be the subject of studies in the near

future. In particular, we expect to continue the work focusing on the development

of specific surveillance use cases in an attempt to develop a scalable event detection

system based on the extraction of multiple diverse-nature cues and the use of human

reasoning to ascertain the relationships between the semantic objects.
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Chapter 9

Appendix

9.1 Surveillance Videos Characteristics

CCTV video systems are limited due to their installation set-up and their high

dependence on environmental factors. As a consequence, videos with low resolu-

tion and quality are provided, making CCTV data analysis a challenging research

problem. Moreover, two different cases must be considered. First, the CCTV videos

used by surveillance operators are generally good quality since they are directly con-

nected to the control room and are therefore, live surveillance video footage. And

second, surveillance videos that are stored onto a digital video recorder are exces-

sively compressed to reserve disk space or to facilitate its transmission. There are a

large number of installation variables that affect the end quality of the surveillance

video, for instance, excessive digital video compression, incorrect configuration, low

quality recording equipment, cameras’ position or even their location. Due to such

installation constraints, the general characteristics of surveillance videos include (i)

low resolution of the videos, (ii) lack of contrast, (iii) different types of noise or

disturbances, (iv) blurring caused by motion or lack of focus (v) object occlusions

and (vi) geometric distortions [101].

Generally, two different types of surveillance videos can be distinguished, indoor

and outdoor videos, each kind presents different characteristics and constraints. On

one hand, indoor surveillance videos are affected by changes in the illumination of

the room (switching the lights on and off), light perturbation introduced by noise in

CCD cameras, reflections in windows or external changes in illumination are some

examples. While on the other hand, outdoor videos are affected by many other

external conditions such as the various levels of illumination at different times of the

day, adverse weather condition (fog, rain, snow) or static objects that move due to

the weather conditions, i.e. moving trees due to the wind.
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9.2 Background Subtraction Challenges

Background subtraction techniques consist of generating a pixel-wise mathemat-

ical model to represent the background. As a result, each frame of the video is

compared with the simulated mathematical model so the foreground can be ex-

tracted. In fact, the extracted foreground is composed of all the pixels or group of

pixels with significant differences between the modelled background and the current

image, considering them as moving blobs (moving information).

There are several problems that a good background subtraction algorithm must

solve. Some of them are common to all surveillance videos such as shadows, objects

that first belong to the foreground and then become part of the background, etc.

Other problems directly depend on the type of surveillance video being analysed:

• Indoor videos involve changes in the illumination of the room (switching the

lights on and off), reflections in windows or external changes in illumination

are some examples.

• Outdoor videos are more complex to analyse since many other external con-

ditions must be considered. For instance, the various levels of illumination at

different times of the day, adverse weather conditions (fog, rain, snow), static

objects that move due to the weather conditions such as moving trees due to

the wind, etc.

In the following paragraphs, the most well-known problems which directly affect

background subtraction techniques will be further explained [204]:

• Time of the day: gradual changes in ambient illumination or in the exposure

settings of the camera will alter the appearance of the background.

• Light switch: sudden changes in illumination alter the appearance of the back-

ground, such changes are mainly due to sudden light switching in indoor videos

and due to fast moving clouds in outdoor videos.

• Waving trees: sometimes the video background may be in constant motion

mainly due to wind. For instance, waving trees or movement of light objects

which belong to the background. Such situations generate many problems in

distinguishing background from foreground.

• Camouflage: some foreground objects may have similar appearance to the

background, but still they must be segmented and classiffied as part of the

foreground.
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• Bootstrapping: due to the fact that some background subtraction modules

typically require a training period in order to generate the background model,

all the systems should provide a video absent of foreground objects to calculate

the most accurate background model. However, sometimes such training video

is not available or provided and generating a background model influenced by

some foreground information.

• Moved objects: sometimes different background objects move within a video

causing several problems to the background subtraction technique. For in-

stance, waving trees is a speciffic case of the moved objects problem.

• Sleeping/waking person: adaptive background subtraction techniques found

some situations hard to classify. For instance when a foreground object remain

completely motionless, depending on the background refreshing period, such

an object might be classiffied as part of the background. Another example

is when parts of a waking person do not exhibit any visible change, such an

object should be considered as part of the foreground.

• Shadows: foreground objects often cast shadows. Due to their different ap-

pearance compared to the background model, they might be classiffied as part

of the foreground. However, cast shadows should be ignored and therefore

classiffied as part of the background.

However, the most important problem to consider is how to accommodate the

real-time needs of many applications. As a consequence, background subtraction

algorithms must be computationally inexpensive and have low memory requirements,

while still being able to accurately identify moving objects in the video [53].

9.3 Appearance-based Image Features

9.3.1 MPEG-7 Visual Descriptors

The growth of digital content has reached exponential folds in the last decade

due to the availability of capturing devices such as digital cameras, camcorders or

surveillance cameras. With the increase in the multimedia content, the development

of tools for browsing and searching within the digital content became essential. To

facilitate the multimedia content description an ISO standard was developed by

MPEG, MPEG-7 Multimedia Content Description Interface. MPEG-7 standardised

the visual content as colour descriptor, textual descriptor, shape descriptor, motion

descriptor and face descriptor [137].
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Colour and texture are the dominant parameters for human perception. The

compact representation and low complexity associated to the colour descriptors en-

hance their use for applications like image retrieval and image annotation [136].

Image texture has emerged as an important visual primitive for searching and brows-

ing through large collections of similar looking patterns. The texture descriptors in

MPEG - 7 facilitate browsing and similarity retrieval in image and video databases

[135].

In the remainder of the Appendix, the colour and texture descriptors selected for

the Appearance-based Object Classifier (refer to Section 4.4) are further detailed.

Colour Layout Descriptor (CLD)

Colour Layout Descriptor (CLD) is a very compact and resolution-invariant rep-

resentation of the spatial distribution of colour in an arbitrarily-shaped region [185].

Its representation is based on coefficients of the Discrete Cosine Transform (DCT)

assuring its compactness. Other advantages like its independence to different reso-

lutions or image/video format, its support to scalable feature representation or its

consideration of human perceptual sensitivity using frequency domain in its repre-

sentation have favoured it to be used within the system.

CLD Extraction: CLD is obtained by applying a 4-step process [137]. First, the

image is partitioned into 8x8 blocks. Second, a representative colour in YCbCr

colour space is chosen for each block by averaging the values of all the pixels in the

blob. Third, the DCT transform is applied. Fourth, the obtained DCT coefficients

are read in zigzag and afterwards non-linearly quantised, resulting in a descriptor

formed by coefficients from the Y-DCT-matrix and from each DCT matrix of the

chrominance components, Cr and Cb.

CLD Similarity Measure: CLD uses a weighted euclidean distance function,

DCLD =

√∑
i

ωyi ∗ (Yi − Y
′
i )2+

√∑
i

ωCbi ∗ (Cbi − Cb
′
i)

2+

√∑
i

ωCri ∗ (Cri − Cr
′
i)

2,

(9.1)

where Y, Cb and Cr are the DCT coefficients of luminance and the respective

chrominances; and ωY
i , ωCb

i and ωCr
i are the chosen weights assigned to each colour

component to reflect the perceptual importance of the coefficients, giving usually

larger weights to the lower frequency components [137].



CHAPTER 9. APPENDIX 169

Colour Structure Descriptor (CSD)

Colour Structure Descriptor (CSD) describes spatial distribution of colour in

an image, but unlike colour histograms, CSD also describes local colour spatial

distribution. Besides, CSD encodes not only information about the frequency of

occurrence of colours in an image but also their spatial layout, providing CSD with

a sensitivity to features that cannot be captured by a colour histogram.

CSD is typically used for image matching but it can also be extracted from

arbitrarily shaped and disconnected regions [137].

CSD Extraction: CSD scans a colour quantised image with structure window sized

8x8 and generates a colour histogram in HMMD colour space with a predefined

number of bins. Finally, the amplitude of each bin of the CS histogram is non-

linearly quantised [137]. CSD is a 32-coefficient colour distribution representation

suitable for fast searching of databases due to its compactness.

CSD Similarity Measure: The CSD matching function is an euclidean distance

function where its 32 coefficients have the same relevance.

Dominant Colour Descriptor (DCD)

Dominant Colour Descriptor (DCD) aims to describe global as well as local

spatial colour distribution in images for fast search and retrieval. DCD provides a

description on the distribution of the colour within an analysed image by storing

only the a small number of representative colours or dominant colours.Compared to

the approaches that use colour histograms, this descriptor presents a more compact

representation at the cost of lower performance. The difference between the DCD

and the colour histograms is that the representative colours are computed from each

image instead of being fixed in the colour space, allowing the feature representation

to be accurate as well as compact.

DCD Extraction procedure is a three-step process [137]. First, all the colours in an

image region are clustered into a small number of representative or dominant colours.

The number varies from image to image, but a maximum of eight dominant colours

can be used to represent a region. Second, statistical values such as percentages and

variances of the dominant colours are computed. Third, the spatial coherency, which

represents the overall spatial homogeneity of the dominant colours in the image, is

calculated. At the end of the process a compact, effective and intuitive representation

of the colours of the analysed image is procured. The resulting descriptor has the

following form:

DCD = {{ci, pi, vi}, s}, (i = 1, 2, ..., N), (9.2)
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where ci is the ith dominant colour, pi the ith percentage value, vi the ith colour

variance, s the spatial coherence and N the number of dominant colours.

DCD Similarity Measure: Considering the composition of the DCD (see Equa-

tion 9.2), an euclidean distance cannot be applied. Therefore, the following distance

measure was applied [137]:

DDCD(F1, F2) =

N1∑
i=1

p2
1i +

N2∑
i=1

p2
2j −

N1∑
i=1

N2∑
i=1

2a1i,2jp1ip2j (9.3)

where the subscripts 1 and 2 in all variables stand for the first and second descrip-

tors that are being compared, F1 and F2, respectively, and a1i,2j is the similarity

coefficient between two colours 1i and 2j:

a1i,2j = {1− d1i,2j/dmax, d1i,2j ≤ Td} ; {0, otherwise} (9.4)

where d1i,2j is the euclidean distance between two colours, c1i and c2j, and Td is the

maximum distance between two colours to be considered similar.

Edge Histogram Descriptor (EHD)

An edge histogram in the image space represents the frequency and the direc-

tionality of the brightness changes in the image. Edge Histogram Descriptor (EHD)

provides a description for non-homogeneous texture images and captures spatial dis-

tribution of edges whilst providing ease of extraction, scale invariance and support

for rotation-sensitive and rotation-invariant matching.

EHD Extraction is a 4-step process [137]. First, the image is partitioned into 4x4

subimages, which are subdivided into non-overlapping square blocks. Second, in

each block, an edge histogram is computed categorising each image-block into one of

the edge types (vertical, horizontal, 45◦ diagonal, 135◦ diagonal and non directional

edge). Third, each bin value is normalised and later non-linearly quantised. The

resulting descriptor is composed of 80 coefficients, a histogram per subimage and

one coefficient per bin of the histogram.

EHD Similarity Measure: EHD matching function is an euclidean distance func-

tion and its 80 coefficients are considered to have the same relevance. However, for

similarity matching purposes, local, semi-global and global edge histograms are also

considered:

DEHD =
79∑
i=0

|h1i − h2i|+
4∑
i=0

|hg1i − h
g
2i|+

64∑
i=0

|hs1i − hs2i|. (9.5)
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9.4 Support Vector Machines

Subsequent to the extraction of the foreground moving objects, the next step in-

volves the indexing process. In general such indexing schemes involve the extraction

of visual features and classifying these features into a set of predefined object cate-

gories. To this end, Support Vector Machine (SVM) algorithm has been popularly

chosen among many researchers as they are based on the Structural Risk Minimi-

sation principle [64]. In the simplest form, SVMs provide a binary classification

method which generates a hyperplane or decision surface for class-separation, max-

imising the distance between features from different classes. The goal is to discover

the inherent most representative characteristics of each class, which at the same

time maximises the inter-class dissimilarity, by analysing the training dataset. As a

result, a set of labelled patterns representing each class is generated. SVM aims to

discover the mapping able to predict the label of any unseen pattern based on the

analysis and comparison of each new query to the previously calculated model.

Given the labelled binary dataset (X, Y ) = {(xi, yi)|i=1,...,N , yi ∈ {−1,+1}}, the

Linear SVM (LSVM) classifier recovers an optimal separating hyperplane wTx+b =

0, which maximises the margin of the classifier. This can be formulated as the

following constrained optimisation problem [175]:

min
w

||w||2

2
+ C

∑
i

l(w;xi, yi) (9.6)

The first term on the right-hand side is the regularisation term on the classifier

weights, which is related to the classifier margin through the inverse distance between

the marginal hyperplanes wTx = 1 and wTx = −1. The second term on the right-

hand side is related to the classification error, where l(w;xi, yi) = max(1−yiwTxi, 0)

is the Hinge loss that upper bounds on the empirical error of the classifier. The

parameter C controls the relative importance of the regularisation term and the

error term. SVMs can also be trained by solving the Lagrangian dual shown in

Equation 9.6, which results in

max
α

∑
i

αi −
1

2

∑
i,j

yiαix
T
i xiyiαi (9.7)

where the following conditions must be fulfilled, 0 ≤ α ≤ C and
∑

i yiαi = 0.

The classifier for LSVM is then represented by

f(x) = wTx+ b =
∑
αi>0

αiyiK(xi, x) + b (9.8)

where w is the classifier weight vector defined by the dual variables. The weight
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vector can be computed explicitly by w =
∑

αi>0 αiyixi and used for prediction.

The advantage of solving the dual form is that only inner products between data

points are needed. Consequently, we can derive the nonlinear SVM by implicitly

mapping the input data x into the feature space and training the SVM for the

mapped features φ(x). This is achieved by the Kernel trick, where the implicit

feature space is induced by the kernel function governed by the inner product for

feature space maps K(xi, xj) = φ(xi)
Tφ(xj). Nonlinear SVMs can then be trained by

replacing the inner products in Equation 9.7 with the corresponding kernel K(xi, xj).

The resulting classifier for the nonlinear SVM is then represented by

f(x) =
∑
αi>0

αiyiK(xi, x) + b (9.9)

where the α’s are the Lagrangian multipliers. Conceptually, the only difference be-

tween the nonlinear SVM and their linear counterparts is in the use of kernel function

instead of the inner product in Equation 9.8. Computationally, LSVMs can be di-

rectly evaluated by using Equation 9.8, which is much more efficient than nonlinear

SVMs for purposes of prediction. Note that only those instances with positive value

of αi’s, called support vectors, will contribute to classification. Geometrically, these

correspond to the points lying on or outside the marginal hyperplanes which incur

nonzero hinge losses, i.e., yif(xi) < 1. Different kernels can be used for nonlinear

SVMs. The most common ones include the radial basis function, polynomial and

the sigmoidal kernels.

SVMs can operate either explicitly in the input space leading to the linear SVM

(LSVM), or implicitly in the feature space via the kernel mapping giving rise to the

kernel SVM. LSVMs are computationally simple to train and use, as they involve

only inner product operations with the input data. However, they can be quite

restricted in discriminative power and cannot be applied to nonlinear data. This

limits their application to many real-world problems where the data distributions are

inherently nonlinear. The nonlinear SVM, on the other hand, can handle linearly

inseparable data but is not as efficient as the linear classifier. Its complexity is

multiplied with the number of support vectors. This is unfavourable for prediction

tasks on large-scale datasets.

Among the different algorithms proposed in the literature review (refer to Section

4.1), such as boosting, decision trees or biologically inspired classifiers. SVMs have

exhibited great performance against different feature spaces [61, 163, 99, 216]. These

characteristics could be largely attributed to the risk minimisation principle and the

kernel trick, as previously mentioned.
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