2,189 research outputs found

    Smoke and Shadows: Rendering and Light Interaction of Smoke in Real-Time Rendered Virtual Environments

    Get PDF
    Realism in computer graphics depends upon digitally representing what we see in the world with careful attention to detail, which usually requires a high degree of complexity in modelling the scene. The inevitable trade-off between realism and performance means that new techniques that aim to improve the visual fidelity of a scene must do so without compromising the real-time rendering performance. We describe and discuss a simple method for realistically casting shadows from an opaque solid object through a GPU (graphics processing unit) based particle system representing natural phenomena, such as smoke

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    Efficient shadow algorithms on graphics hardware

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2005.Includes bibliographical references (p. 85-92).Shadows are important to computer graphics because they add realism and help the viewer identify spatial relationships. Shadows are also useful story-telling devices. For instance, artists carefully choose the shape, softness, and placement of shadows to establish mood or character. Many shadow generation techniques developed over the years have been used successfully in offline movie production. It is still challenging, however, to compute high-quality shadows in real-time for dynamic scenes. This thesis presents two efficient shadow algorithms. Although these algorithms are designed to run in real-time on graphics hardware, they are also well-suited to offline rendering systems. First, we describe a hybrid algorithm for rendering hard shadows accurately and efficiently. Our method combines the strengths of two existing techniques, shadow maps and shadow volumes. We first use a shadow map to identify the pixels in the image that lie near shadow discontinuities. Then, we perform the shadow-volume computation only at these pixels to ensure accurate shadow edges. This approach simultaneously avoids the edge aliasing artifacts of standard shadow maps and avoids the high fillrate consumption of standard shadow volumes. The algorithm relies on a hardware mechanism that we call a computation mask for rapidly rejecting non-silhouette pixels during rasterization. Second, we present a method for the real-time rendering of soft shadows. Our approach builds on the shadow map algorithm by attaching geometric primitives that we call smoothies to the objects' silhouettes. The smoothies give rise to fake shadows that appear qualitatively like soft shadows, without the cost of densely sampling an area light source.(cont.) In particular, the softness of the shadow edges depends on the ratio of distances between the light source, the blockers, and the receivers. The soft shadow edges hide objectionable aliasing artifacts that are noticeable with ordinary shadow maps. Our algorithm computes shadows efficiently in image space and maps well to programmable graphics hardware.by Eric Chan.S.M

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Boundary Correct Real-Time Soft Shadows

    Get PDF

    Interactive real-time three-dimensional visualisation of virtual textiles

    Get PDF
    Virtual textile databases provide a cost-efficient alternative to the use of existing hardcover sample catalogues. By taking advantage of the high performance features offered by the latest generation of programmable graphics accelerator boards, it is possible to combine photometric stereo methods with 3D visualisation methods to implement a virtual textile database. In this thesis, we investigate and combine rotation invariant texture retrieval with interactive visualisation techniques. We use a 3D surface representation that is a generic data representation that allows us to combine real-time interactive 3D visualisation methods with present day texture retrieval methods. We begin by investigating the most suitable data format for the 3D surface representation and identify relief-mapping combined with Bézier surfaces as the most suitable 3D surface representations for our needs, and go on to describe how these representation can be combined for real-time rendering. We then investigate ten different methods of implementing rotation invariant texture retrieval using feature vectors. These results show that first order statistics in the form of histogram data are very effective for discriminating colour albedo information, while rotation invariant gradient maps are effective for distinguishing between different types of micro-geometry using either first or second order statistics.Engineering and physical Sciences Research (EPSRC

    Real-time Global Illumination by Simulating Photon Mapping

    Get PDF

    Shadows generation using geometry shaders

    Get PDF
    Algorithms for simulating shadows are considered. A shadow volume method using geometry shaders is proposed
    corecore