
 Coventry University

MASTER OF SCIENCE BY RESEARCH

No fire without smoke: smoke rendering and light interaction for real-time computer
graphics

Bass, Christopher

Award date:
2010

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/429951404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pureportal.coventry.ac.uk/en/studentthesis/no-fire-without-smoke-smoke-rendering-and-light-interaction-for-realtime-computer-graphics(df7651c1-304f-4b3e-8d20-23188634701b).html

No Fire Without Smoke;

Smoke Rendering and Light Interaction

for Real-Time Computer Graphics

Christopher J. Bass

A thesis submitted in partial fulfilment of the requirements

of Coventry University for the degree of

MSc by Research

Submitted: November 2010

p. 1 of 79

Copyright notice:

This thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its

author and due acknowledgement must always be made of the use

of any material contained in, or derived from, this thesis.

p. 2 of 79

No Fire Without Smoke;

Smoke Rendering and Light Interaction for

Real-Time Computer Graphics

Christopher J. Bass

Abstract

Realism in computer graphics depends upon digitally representing what we see in the

world with careful attention to detail, which usually requires a high degree of complexity

in modelling the scene. With some computer graphics applications developers have to

limit the complexity of the scene to allow the application to run in real-time on modern

consumer grade graphics hardware. This trade-off between realism and performance

means that new techniques are continually being developed, the aim of which is to

improve the realism of a scene without compromising the real-time performance.

Shadows provide an important visual clue to where objects are positioned in a computer-

generated scene, because without shadowing objects can look like they are floating above

the ground. Rendering shadows becomes even more important when translucent media,

such as smoke, is rendered. Without shadowing smoke can look like it is not part of a

scene and without position or shape, appearing as unrealistic.

This thesis charts our investigation of methods for modelling computer generated smoke,

techniques for global lighting, and the shadowing of solid objects. We examine the

rendering of smoke, its interaction with lighting, and how visually plausible shadows can

be added to smoke.

We describe and discuss a novel method for casting shadows through a GPU-based

particle system from an opaque solid object. We also describe a new approach for

ambient lighting, which we refer to as Surface-Curvature Ambient Occlusion (SCAO),

taking advantage of the geometry shader in the Direct3D 10 programmable graphics

pipeline.

p. 3 of 79

Table of Contents
Chapter 1 Introduction..9

1.1 Aims...10

1.2 Contribution...10

1.3 Thesis Overview..11

Chapter 2 Programmable Graphics Pipeline..12

2.1 Direct3D 10 Programmable Graphics Pipeline...13

2.2 Input Assembler...14

2.3 Vertex Shaders...15

2.4 Geometry Shaders..16

2.5 Stream Out...16

2.6 Rasteriser...16

2.7 Pixel Shader...17

2.8 Output Merger...17

2.9 Multiple Render Targets..19

Chapter 3 Opaque Solid Model Effects..20

3.1 Bi-directional Reflectance Distribution Function and the Rendering Equation......20

3.2 Lighting Models..20

3.2.1 Lambert..21

3.2.2 Phong and Blinn-Phong...21

3.2.3 Cook-Torrance...21

3.2.4 Oren-Nayar..22

3.2.5 Strauss..22

3.2.6 Ward...23

3.2.7 Ashikhmin-Shirley...23

3.3 Ambient Occlusion..23

3.4 Surface-Curvature Ambient Occlusion...24

3.5 Fresnel Highlighting Effect...28

3.6 Shadow Volumes...30

3.7 Shadow Maps..33

3.8 Smoothies and Penumbra Wedges..38

Chapter 4 Making Smoke...40

p. 4 of 79

4.1 Simulation..40

4.1.1 Grid-Based Eulerian Approach..40

4.1.2 Particle System-Based Lagrangian Approach...41

4.1.3 Smoothed Particle Hydrodynamics..42

4.1.4 Hybrid Methods...43

4.2 Rendering...44

4.2.1 Volume Rendering...44

4.2.2 Particle System Rendering...44

4.2.3 Particle Blending and Sorting..45

4.2.4 Overdraw in Particle System Rendering..46

4.2.5 Soft Particles..47

4.2.6 SPH Rendering...49

Chapter 5 Homemade Smoke and Shadows...51

5.1 Particle System Development..51

5.2 Adding Shadows..56

5.3 Improving our Method by Incorporating Existing Techniques...............................62

Chapter 6 Final Conclusions..66

6.1 Summary of Contributions..66

6.1.1 External Shadowing of Particle Systems...66

6.1.2 Surface-Curvature Ambient Occlusion..66

6.2 Discussion..66

6.3 Future Work...67

6.3.1 External Shadowing of Particle Systems...67

6.3.2 Surface-Curvature Ambient Occlusion..68

 Appendix A...69

 Glossary...72

 References...74

p. 5 of 79

List of Figures

Figure 2.1.a: Paths through the Direct3D pipeline...13

Figure 2.2.a: Input assembler primitive topologies..14

Figure 2.3.a: 3D coordinate transformations..15

Figure 3.4.a: Ambient estimate comparison...26

Figure 3.4.b: Flowchart detailing the SCAO..27

Figure 3.5.a: The Fresnel effect..28

Figure 3.5.b: The vectors used in the Fresnel highlight effect...29

Figure 3.5.c: The Fresnel highlight effect in different highlight colours...........................30

Figure 3.6.a: Flowchart detailing GPU shadow volumes in Direct3D 10..........................31

Figure 3.7.a: Shadow mapping...33

Figure 3.7.b: A basic shadow map with jagged edge aliasing artefacts.............................34

Figure 3.7.c: Penumbra illustration..36

Figure 4.2.5.a: The soft particles technique...48

Figure 4.2.5.b: The soft volumetric particles technique...49

Figure 5.1.a: Particle system with particles following splines to form a sphere................53

Figure 5.1.b: Particle systems forming smoke plume shapes...54

Figure 5.1.c: Particle systems forming smoke plume shapes with texture.........................54

Figure 5.2.a: Opacity shadow maps and deep opacity shadow maps.................................57

Figure 5.2.b: GPU particle system without external shadowing effect..............................58

Figure 5.2.c: GPU particle system with external shadowing effect...................................59

Figure 5.2.d: Different view showing our external shadow implementation.....................60

Figure 5.2.e: Flowchart of the processes in rendering a frame of our model.....................61

Figure 5.3.a: Soft particles for our technique...63

Figure 5.3.b: Our soft particles...64

p. 6 of 79

List of Equations

Equation 2.8.a: The customisable blending equation...18

Equation 2.8.b: Additive blending...18

Equation 2.8.c: Additive alpha blending..18

Equation 2.8.d: Alpha blending..19

Equation 3.5.a: Fresnel highlight...30

p. 7 of 79

p. 8 of 79

Chapter 1 Introduction

Chapter 1 Introduction

A successful modern computer game depends on captivating the user in a convincing and

challenging virtual world. Accurate lighting is essential for creating convincing 3D

virtual worlds that immerse the user. Real-time speeds are also essential so that the

player can interact with the game without any delays, which would break the player’s

immersion. There are a variety of well-known existing lighting algorithms that are

capable of attaining real-time speeds. Many are designed for the lighting of opaque solid

objects, but when we want to render matter such as smoke, which is translucent, these

lighting models become inadequate. Special effects such as particle systems are often

used to create a representation for these substances.

Realistic rendering of natural phenomena such as smoke can help to create a rich virtual

world to immerse the user. With the rendering of smoke and translucent gases there are a

range of new problems to tackle that do not occur (or are negligible) when rendering solid

models. When light interacts with a volume of smoke particles it might pass through, be

absorbed or scattered. This means that the rendering of smoke should be dealt with in a

different way to rendering solid models to give a realistic output. A significant issue with

getting a realistic looking output from a smoke model is the shadowing. There has

already been research in this area that focuses on internal shadows and self-shadowing

where the smoke casts shadows onto itself and solid objects in the environment. There is

not, however, any research that we are aware of looking at external shadows cast onto a

volume of smoke particles, which is where this work finds an original topic to investigate.

Developments in computer graphics hardware and 3D graphics APIs (application

programming interfaces) have freed software developers from using the fixed function

graphics pipeline. With the arrival of the programmable pipeline, developers can utilise

the GPU in new ways, allowing new effects to be created to improve the graphics in

applications such as computer games.

Adding to the graphical realism in games and virtual worlds adds to the immersion of the

user and the overall experience. New and more accurate lighting models than previously

possible can be implemented through shaders and used for virtual environments.

For real-time applications such as computer games there is always a trade-off between

rendering quality and performance. Rendering smoke with accurate lighting, including

scattering and shadowing is a challenge. A sizeable body of research exists which

p. 9 of 79

Chapter 1 Introduction

provides solutions for related topics in this area. Some of these solutions operate at real-

time speeds and some are offline techniques. Our work looks at producing a real-time

solution, which could be implemented within current computer games and therefore most

referenced literature will discuss real-time solutions. Existing solutions in the literature

will be discussed in more detail throughout this thesis.

1.1 Aims

The primary aim of this research was to develop a real-time model that improves upon the

realism of smoke rendering under different lighting conditions. Through a detailed

exploration of the subject area we identified a gap in the existing research, being the

casting of external shadows onto a virtual dynamic smoke model. This became the focus

of our work from which we developed an original solution.

Branching off from the primary aim, other objectives included exploring into related

rendering effects that could be implemented through the programmable graphics pipeline

via shaders. This led us into exploring the capabilities of the pipeline and development of

a novel ambient lighting estimate for opaque solid models.

1.2 Contribution

The main contribution of this thesis is a method for casting external shadows onto a

volume of smoke particles. The smoke particles are simulated using a GPU-based

particle system and rendering is via a typical billboard (a camera aligned rectangular

primitive with an attached texture) approach.

Another novel contribution of this thesis is the Surface-Curvature Ambient Occlusion

(SCAO) technique, an ambient lighting estimate for opaque solid models. This provides

a beneficial improvement over using a constant term for ambient lighting. It can easily be

implemented on top of another lighting model, which could handle the diffuse and

specular terms providing a complete lighting model for opaque solid objects.

Most of the explored techniques and all of the developments are for real-time applications

and could be easily used in graphics applications such as computer games with little

detriment in performance.

p. 10 of 79

Chapter 1 Introduction

1.3 Thesis Overview

This thesis is divided into 6 chapters, which break down as follows:

Following on from this introduction (Chapter 1), Chapter 2 details the graphics API that

we used during development along with the programmable graphics pipeline discussing

the programmable parts of the pipeline and its capabilities. Chapter 3 examines existing

lighting techniques and effects, which can be implemented on opaque solid models. This

chapter also covers our innovative ambient lighting model; SCAO. In Chapter 4 we

discuss existing techniques for simulating and rendering smoke in virtual worlds.

Chapter 5 discusses our novel approach to adding shadows that can dynamically interact

with a particle system. In Chapter 6 we make a final conclusion and discuss areas for

possible extended research and new ideas. Appendix A includes a copy of our earlier

Eurographics poster publication [Bass and Anderson 2010] which discussed our external

shadowing technique for particle systems.

p. 11 of 79

Chapter 2 Programmable Graphics Pipeline

Chapter 2 Programmable Graphics Pipeline

In recent years developments in graphics-hardware have been replacing sections of the

fixed function pipeline to be programmable via so-called shaders. As more of the

pipeline is becoming programmable developers have more freedom to harness the power

of the GPU for a mixture of applications.

Applications that use accelerated graphics usually make use of an API, the two most

popular being either Direct3D [Microsoft 2010] or OpenGL (open graphics library)

[Khronos Group 2006]. These API’s provide a large set of commands and instructions,

giving a basic foundation, which graphics applications can build on.

Direct3D is a platform-dependent graphics API, part of DirectX [Microsoft 2010],

requiring a Microsoft Windows operating system. At the beginning of this research

project Direct3D version 10 [Blythe 2006] was the most recent available version exposing

more programmable parts of the graphics pipeline (geometry shaders) and providing more

freedom with development.

OpenGL [Khronos Group 2006] is an open standard cross-platform graphics API, which

exists on many different platforms. At the beginning of this project OpenGL version 2.1

was the most recent available version, which does not provide as many programmable

parts of the pipeline as the Direct3D version at that time.

The reason for choosing Direct3D was that at the start of this project it allowed more of

the pipeline to be programmable. At the time of completing our research project and the

writing of this thesis new API versions have been released.

This chapter discusses the Direct3D 10 pipeline.

p. 12 of 79

Chapter 2 Programmable Graphics Pipeline

2.1 Direct3D 10 Programmable Graphics Pipeline

The Direct3D 10 pipeline adds programmable geometry shaders to the already existing

vertex and pixel shaders. This allows for a range of new effects and developments to be

built on this technology.

The Direct3D 10 pipeline can be traversed in a few different ways. The new geometry

shader and the stream out stages give 4 possible paths through the Direct3D 10 pipeline

as illustrated in Figure 2.1.a. Note that the stream out stage can only be used if the

geometry shader is used. Also note that there is the option of passing data to the rasteriser

even if the stream out stage is in use. The smooth cornered boxes in Figure 2.1.a identify

the programmable stages. All of the stages are discussed in the following sections of this

thesis.

p. 13 of 79

Figure 2.1.a: Paths through the Direct3D pipeline

Geometry Shader

Vertex Shader

Input Assembler

Stream Out

Rasteriser

Output Merger

Pixel Shader

Chapter 2 Programmable Graphics Pipeline

2.2 Input Assembler

The purpose of the input assembler is to transfer raw data from memory to the vertex

shader. Direct3D 10 provides 9 different topologies for defining the structure that the

data is organised in.

Figure 2.2.a shows the different topologies available for defining the data structure in

Direct3D 10. The point list is a typical choice for particle systems that store single

p. 14 of 79

Figure 2.2.a: Input assembler primitive topologies

0Point List 1 2 3 4 5 6 7

0Line List 1 2 3 4 5 6 7

0Line List &
Adjacency 1 2 3 4 5 6 7

0Line Strip 1 2 3 4 5 6 7

0Line Strip &
Adjacency 1 2 3 4 5 6 7

Triangle
List

0

1

2 3

4

5 6

7

8

0 10
Triangle
List &

Adjacency
4

5

21 3 7

11

9

6

8

Triangle
Strip

0

1

2

3

4

5

6

7

8

Triangle
Strip &

Adjacency 0

1 2

3

4

5

6

7

8

9

Chapter 2 Programmable Graphics Pipeline

particle data in each input vertex. It can also be used for drawing single points on the

screen. The line list and line strip are for drawing straight lines on the screen with the list

used for individual lines and the strip for drawing a joined line. The triangle list and

triangle strip are for drawing triangles, the list is for individual triangles and the strip for a

joined up strip of triangles. The main difference over the older Direct3D 9 graphics

pipeline is the addition of adjacency information, which can be accessed in the geometry

shader stage of the pipeline.

2.3 Vertex Shaders

Vertex shaders are the first programmable stage in the graphics pipeline and operate once

per incoming vertex, allowing for the vertices to be manipulated in 3D space.

A common task for the vertex shader for rendering 3D meshes from a virtual 3D

environment is to convert each vertex from model space to clip space. This is achieved

simply by multiplying each vertex by the ‘WorldViewProjection’ matrix.

p. 15 of 79

Figure 2.3.a: 3D coordinate transformations

Projection Space

Clip Space

Homogeneous Screen Space

Screen Space

View Space

World Space

Model Space

Multiply by World Matrix

Multiply by View Matrix

Multiply by Projection Matrix

Multiply by Clip Matrix

Optional Clipping

Viewport Scale Matrix

Divide by W

Chapter 2 Programmable Graphics Pipeline

2.4 Geometry Shaders

Geometry shaders are a new addition to the Direct3D programmable graphics pipeline

introduced with the arrival of Direct3D 10. They are an optional programmable

component, which if selected by the developer make up the second programmable stage.

Geometry shaders have similar functionality to vertex shaders but operate on individual

3D primitives instead of individual vertices like the vertex shader does. They also have

some other differences to vertex shaders such as access to data from adjacent vertices and

the ability to add new primitives or delete existing primitives. These features allow the

geometry shader to provide new effects such as the birth and death of particles and

creating billboards on the fly from point data. There are other effects that can be created

with geometry shaders and there are plenty of examples available in the DirectX SDK

[Microsoft 2010], which discuss their capabilities.

Geometry shaders can generate new geometry on the fly by creating and appending new

primitives to the output stream. The output stream can be set to a few different

topologies, these being a point stream, a line stream, and a triangle stream.

The input and output stream are not required to have the same topology, so for example

the input stream could be a point list and the output stream could be a triangle stream, and

the geometry shader itself could be turning a single input point into billboards.

2.5 Stream Out

After the geometry shader stage there is the optional stream out function in the Direct3D

10 graphics pipeline, which allows for primitives to be streamed out by writing them back

to memory instead of, or as well as, passing them on to the rasteriser. This new operation

allows for particle systems to be entirely simulated on the GPU and individual particles

can be stored as vertices instead of pixels in a texture.

2.6 Rasteriser

The rasteriser generates the pixels from the incoming vertices, depending on the primitive

type. The incoming vertices must have been converted to screen space coordinates by

this point; the screen space conversion is usually done inside the vertex or geometry

shader. The rasteriser generates pixels depending on the primitive type, so rasterisation

of 3 vertices will yield different results depending on the incoming primitive types. The

p. 16 of 79

Chapter 2 Programmable Graphics Pipeline

primitive type triangle strip would produce a filled triangle from 3 vertices, whereas the

type line strip would produce an unfilled triangle, and point list would produce 3 separate

points. The rasteriser also allows for some geometry to be culled before converting to

pixels and passing to the pixel shader.

2.7 Pixel Shader

Pixel shaders are the final programmable stage of the Direct3D 10 graphics pipeline.

They operate on each pixel and are often the most performance sapping part of the

pipeline due to the large number of pixels passed from the rasteriser, which results in a

high number of calculations. Operating on individual pixels means that pixel shaders can

produce detailed effects such as per pixel lighting, as opposed to per vertex lighting. Per

vertex data such as a normal vector or a colour value are interpolated for pixels depending

on the distance from the vertices, so a pixel in-between two vertices would take a

weighted average proportion from the normal data and colour data from each. When the

lighting calculations are performed in the pixel shader using the interpolated data, the

surface appears smooth.

2.8 Output Merger

The final stage of the graphics pipeline is the output merger, which handles the render

target and depth stencil buffer. Once a pixel has been shaded the pixel must be compared

to what may already be in the render target and then a decision how to overwrite it needs

to be made. If depth testing is enabled then a customisable test is performed between the

pixel depth and the depth stored in the depth buffer. The result from the depth test can

then be used to make a decision on how the pixel should be blended to the render target.

For opaque objects it is common to perform a depth test and then overwrite without any

blending so that near objects appear in front of objects in the background without any

form of blending. Translucent objects require some sort of blending to achieve the

desired result. In Direct3D 10 a 'Blend State' is used to determine how pixels are blended

when rendering. If left to default the new pixel will overwrite the old pixel (useful for

opaque objects).

Porter and Duff [Porter and Duff 1984] discuss the composition of digital images and

how the alpha channel can be used to store the opacity of a colour, which can then be

used when blending pixels. In the Direct3D 10 programmable graphics pipeline there is

p. 17 of 79

Chapter 2 Programmable Graphics Pipeline

the option of configuring how a new pixel is blended to the render target. The blending

equation determines this and it can be customised using Direct3D output merger

commands or from HLSL code inside the shader.

Equation 2.8.a shows the typical format of the blending equation performed in the output

merger stage. It can be customised using the available commands. Firstly to use the

blending equation blending must be enabled otherwise the output from the pixel shader is

used without any blending. With blending enabled the input RGB data sources 1 and 2

(SrcBlend and DestBlend respectively) need to be chosen along with an optional pre-

blend operation. The input alpha data sources 1 and 2 (SrcBlendAlpha and

DestBlendAlpha respectively) also have options and the optional pre-blend operation is

also available. Finally the blending operation (BlendOp) needs to be selected which

determines how channel 1 and 2 are combined.

The most commonly used configurations for the blending equation are additive blending,

alpha additive blending, and alpha blending.

Additive blending is particularly useful for creating transparent objects without an alpha

channel. New object colours are added to the existing scene colour. Black (being R=0,

G=0, B=0) will act as a transparent colour adding nothing to the scene. Also because

addition can be performed in any order, the order of drawing is not important, therefore

additive blending is useful for unsorted data.

p. 18 of 79

Equation 2.8.a: The customisable blending equation

Final Colour = (SrcBlend * SrcBlendAlpha) BlendOp
(DestBlend * DestBlendAlpha)

Equation 2.8.b: Additive blending

Final Colour = (SrcColour * One) + (DestColour * One)

Equation 2.8.c: Additive alpha blending

Final Colour = (SrcColour * SrcAlpha) + (DestColour * One)

Chapter 2 Programmable Graphics Pipeline

Additive alpha blending is similar to additive blending, but the additional alpha channel

on the source allows for any source colour coming from the pixel shader to be made

transparent via this alpha value. Note that the colour black will still add nothing to the

scene hence will also act as a transparent colour.

Alpha blending is different to additive alpha blending by multiplying the destination

colour by the inverse of the source alpha value. This operation means opaque source

colours (with an alpha value of 1) will overwrite the destination colour instead of just

adding to it as in both additive blending and alpha additive blending. This operation also

means that the order of drawing the objects becomes important for correct opacity,

therefore objects drawn with alpha blending need to be sorted by depth so that the objects

in the distance can be drawn first and the objects nearer to the camera drawn last resulting

in correct blending.

2.9 Multiple Render Targets

Multiple render targets (MRTs) allow for the pipeline to output data to different render

targets on the same pass. This is a particularly useful tool for outputting additional data

as well as colour, such as normals and depth. For example the first pass could render

objects in the scene as well as storing additional information in a separate render target,

which can then be used in the second pass to create post processing effects or particular

lighting effects. An example is the setup described by Fillion and McNaughton [Fillion

and McNaughton 2008] who use a setup using 4 MRTs to store information allowing for

a range of lighting and special effects to be used in a modern game.

p. 19 of 79

Equation 2.8.d: Alpha blending

Final Colour = (SrcColour * SrcAlpha) + (DestColour * (1-SrcAlpha))

Chapter 3 Opaque Solid Model Effects

Chapter 3 Opaque Solid Model Effects

With the programmable graphics pipeline there are a range of new special effects that can

be used in real-time computer graphics applications such as games. This chapter covers

the effects related to opaque solid models including lighting models and shadowing

techniques that can be implemented in the Direct3D 10 graphics pipeline. We also lead on

to discuss SCAO – our innovative method for improving the ambient lighting term

common in some lighting models.

3.1 Bi-directional Reflectance Distribution Function and the
Rendering Equation

Bi-directional reflectance distribution function (BRDF) is a function which describes how

light is reflected off opaque model surfaces at different incoming and outgoing angles

with respect to the surface normal. The Rendering equation is a fundamental concept in

the rendering and lighting of many computer generated scenes. It states that the outgoing

light leaving a point on a surface is approximately equal to the sum of the emitted light

plus the reflected light. This can be written as a function for incoming light and a BRDF.

The following Lighting models provide solutions to the rendering equation by assuming a

function for incoming light and how the surface reflects light. They can be used to give a

reasonably accurate representation for rendering and lighting computer generated scenes.

3.2 Lighting Models

This section discusses the existing lighting models that can be used to shade opaque solid

models under direct illumination from a light source. In these models lights are usually

modelled either as a directional light or as a point light. Directional lights have direction

and colour and can be effective in modelling distant light sources in computer generated

scenes. Point lights have a position and colour and can be effective in modelling nearby

light sources emitting from a single point. Many of these lighting models are built from

separate different forms of lighting, which are calculated as separate terms before being

added together as in the Phong and Blinn-Phong lighting models.

p. 20 of 79

Chapter 3 Opaque Solid Model Effects

3.2.1 Lambert

Lambert reflectance states that the light reflected off a surface will be the same regardless

of the viewing angle. This type of reflectance is particularly effective in modelling rough

surfaces as it gives objects a matt look. Lambert reflectance is sometimes used for

modelling the diffuse reflection term found in some of the following lighting models (see

3.2.2).

3.2.2 Phong and Blinn-Phong

The Phong [Phong 1973] and Blinn-Phong [Blinn 1977] lighting models break down

shading into three different elements, these being ambient, diffuse, and specular, which

when added together give the complete lighting model.

The ambient component is usually just a constant RGB colour value, which allows the

objects in the scene to be visible even if there are no other lights.

The diffuse component is dependent on the angle at which light hits a surface; it is

calculated by finding the dot product between the direction of the light source and the

direction of the surface normal the diffuse term exhibits Lambert reflectance.

The specular component is dependent on the angle at which light hits a surface and the

position of the viewer. It is calculated in slightly different ways by the Phong and Blinn-

Phong models. The Phong model finds the dot product between the reflection vector and

the viewer. The Blinn-Phong model simplifies the calculation for directional lights by

first calculating the half-vector between the light and the viewer direction vectors and

then finding the dot product between the half-vector and the surface normal.

3.2.3 Cook-Torrance

The Cook-Torrance lighting model [Cook and Torrance 1982] allows for more accurate

modelling of rough surfaces, which is something the Blinn-Phong model does not

consider. It is particularly effective for modelling rough metals. Like the Blinn-Phong

model, the Cook-Torrance model breaks down into the three lighting elements, ambient,

diffuse, and specular, with the main difference being the calculation of the specular term.

The surface roughness is modelled based on the micro-facets method, where a rough

surface is assumed to have evenly spaced (smaller than per-pixel) facets cut into the

surface, which change the specular reflection properties of the modelled surface.

p. 21 of 79

Chapter 3 Opaque Solid Model Effects

Comparing the Blinn-Phong model to the Cook-Torrance model for the calculation of the

specular component, there are three new elements introduced into the equation, these

being Fresnel, roughness, and geometric.

The Fresnel term improves the specular reflections by making the intensity of the

specular highlight stronger at shallower angles. This occurs in nature due to more light

being reflected at shallow angles instead of being non-view-dependent as is the case with

the Blinn-Phong model.

The roughness element describes the distribution of the micro facets that face in the same

direction as the half-vector. A rougher surface will see a larger specular reflection

compared to a smoother surface with a small specular reflection.

The geometric term describes the amount of incoming and reflected light blocked by the

micro-facets at shallow angles. With deeper micro-facets more light is blocked and

results in rough surfaces appearing duller than smooth surfaces.

These terms can be calculated in a number of different ways, making this a very flexible

model, nevertheless this model can take a long time to fine tune to achieve the desired

results.

3.2.4 Oren-Nayar

The Oren-Nayar [Oren and Nayar 1994] lighting model focuses on modelling only the

diffuse term and the effects of the surface roughness on the diffuse term. Similar to the

Cook-Torrance model, the micro-facet concept to modelling rough surfaces also occurs in

the Oren-Nayar model. The micro-facets concept is developed to include inter-reflection

between facets giving the effect of blurring the light leaving a surface.

In its full evaluation it is one of the most demanding and complex models, which can be

too much of a hit on performance for some applications. For this reason there are

simplified versions, which trade accuracy for better performance.

3.2.5 Strauss

The Strauss [Strauss 1990] lighting model was developed with users in mind by featuring

easy to understand tuning terms with ranges between 0 and 1. This feature means it can

be quickly tuned to model a range of smooth and rough, metals and plastics. Although it

is a somewhat recent model, it does not bring any novel ideas to already existing models.

p. 22 of 79

Chapter 3 Opaque Solid Model Effects

3.2.6 Ward

Ward [Ward 1992] developed his model to be an approximation of empirically observed

results. It is different to previous models by introducing anisotropic (instead of isotropic,

assumed by previous models) specular highlights. Being anisotropic means directionally

dependent, so rotating an anisotropic surface around its surface normal will change its

reflection properties. This allows Ward to provide a superior model for materials other

than metals and plastics. In particular it is well suited to modelling materials with micro-

facet patterns such as wood (grain), fabrics, and brushed steel. This model can be tuned

to control the direction and strength of the grain to yield different results.

3.2.7 Ashikhmin-Shirley

The Ashikhmin-Shirley [Ashikhmin and Shirley 2000] lighting model takes inspiration

from some of the previously discussed models. Inspired by Ward, Ashikhmin-Shirley

developed their model to approximate empirically observed results. Like Ward, it is also

an anisotropic model, making it well suited to modelling materials with grain.

Similar to the Cook-Torrance model, the Ashikhmin-Shirley model employs a Fresnel

weighting element in the specular component to get a more physically accurate reflection.

Physical plausibility of the results was an important factor during the development of this

model and by adding the Fresnel term the energy was unbalanced, which lead to their

proposition of using a non-Lambertian diffuse component.

Although the Oren-Nayar model also has a non-Lambertian diffuse component, the Oren-

Nayar model is not referenced in Ashikhmin-Shirley [Ashikhmin and Shirley 2000] and

the calculation of the diffuse term is different.

The Ashikhmin-Shirley model requires a more complex evaluation so may require some

performance enhancing optimisations for implementation in some applications. It can

produce renders that none of the aforementioned models can match single-handedly, due

to being anisotropic and including a non-Lambertian diffuse term.

3.3 Ambient Occlusion

In section 3.2 we discussed some lighting models which can be used to shade individual

objects in a scene. These lighting models can provide adequate shading for objects under

direct illumination from directional and point light sources. Objects not in direct

illumination require global illumination to make them visible. Global illumination is

p. 23 of 79

Chapter 3 Opaque Solid Model Effects

perhaps the most complex form of lighting that is often simplified the most; as is the case

with the Ambient lighting term which is just a single constant! Ambient light is used to

model light which has bounced many times and when simplified to just one constant is

assumed to have no direction and have a constant intensity, with the purpose to make all

the objects in a scene visible even when there are no lights. Offline models such as

photon mapping [Jenson 1996] can estimate the path light takes usually for a set

maximum number of bounces and can provide detailed renders but the computational

workload of these calculations is usually too high for real-time applications. Ambient

occlusion is an approximation to global illumination helping to add to the realism of the

lighting in the scene. To avoid the calculation-intense method of finding the full path

which light takes from the light source to the surface. The ambient occlusion model

usually works backwards by casting out single rays from the surface into the scene to

determine if there are any occluding surfaces nearby which would reduce the amount of

ambient light reaching the surface.

3.4 Surface-Curvature Ambient Occlusion

With the programmable graphics pipeline new real-time models have been developed and

implemented to give a better estimate for the ambient term. SSAO (screen-space ambient

occlusion) [Mittring 2007] is a technique for modelling global illumination in real-time

by estimating the ambient occlusion in the screen space. The estimation is performed by

comparing the depth values in the scene depth buffer to the local values selected via a

randomly rotated kernel giving a variance which can be used to shade the pixels

according to high frequency changes where deep variance results in a darker shading.

This technique has advantages being independent from the scene complexity, easy-to-

integrate into a modern graphics pipeline using the existing data in the depth buffer, and

can be processed using the GPU. It has disadvantages being view-dependant, adding

noise, and bleeding at depth discontinuities near object edges.

Filion and McNaughton [Fillion and McNaughton 2008] present another version of

SSAO with a similar approach. Between 8 and 32 samples are taken around the pixel

position using a texture full of random vectors to determine which nearby pixels are

selected. The depth values are compared and if the pixel depth is greater than the

sample's depth then that sample contributes to the occlusion. With a greater difference

between the depths the occlusion factor is greater.

p. 24 of 79

Chapter 3 Opaque Solid Model Effects

Bavoil and Sainz [Bavoil and Sainz 2008] present another different version of SSAO

involving tracing rays in 2D across the depth values in screen space. There is a

demonstration program of this model in the NVidia Direct3D SDK [NVidia 2007].

Pharr and Green [Pharr and Green 2004] present an older ambient occlusion model that

makes an estimate of how much ambient light can reach a particular part of a surface.

They use an offline technique involving a ray tracer to build an ambient occlusion map of

a model that can be used during rendering to give a better estimate of the ambient

occlusion term.

Bunnell [Bunnell 2005] presents a faster ambient occlusion model that avoids casting

rays. Disks are used to approximate the ambient occlusion of objects in a scene. For

nearby occluding meshes one disk per vertex can be used but for distant objects this can

be simplified further to fewer disks or even a single disk. Then for each vertex,

shadowing information from all the disks is summed up to give the approximate ambient

occlusion for that vertex. Hoberock and Jia [Hoberock and Jia 2007] build on this

ambient occlusion model [Bunnell 2005] by allowing for higher quality, per-pixel

accuracy, and reducing the present artefacts.

p. 25 of 79

Chapter 3 Opaque Solid Model Effects

Inspired by the SSAO models and ambient occlusion literature we developed a model by

investigating a method to create an ambient occlusion effect using the geometry shader.

The geometry shader has the ability to retrieve the data of adjacent vertices and by taking

the normal vectors of them one can calculate the curvature of a surface and determine

whether it is convex or concave. Then by making the assumption that less ambient light

can reach a concave surface a better ambient lighting estimate can be made for shading

the surface. The result is Surface-Curvature Ambient Occlusion (SCAO), an easy-to-

implement and efficient shader that visually improves the ambient estimate for the

ambient term in a lighting model. Figure 3.4.a shows a comparison between the results of

using a constant ambient term (left) versus the result from our novel SCAO technique

(right).

p. 26 of 79

Figure 3.4.a: Ambient estimate comparison

Chapter 3 Opaque Solid Model Effects

Figure 3.4.b shows the SCAO as it currently stands. It is quite a simple idea and gives a

rough estimate of the ambient light reaching a surface but makes a big improvement over

just assuming ambient light is the same everywhere (by setting it to a static unchanging

constant). Compared to the discussed ambient occlusion models it should provide an

improvement on performance, especially to the more complicated SSAO methods. Our

method does not require any additional data other than the mesh vertices allowing it to be

integrated with any other global illumination lighting models with ease.

Our SCAO shader provides a novel implementation to ambient lighting using the

geometry shader to detect the local surface curvature of the model. The dwarf model that

this shader was tested on is a low polygon model of roughly 1000 faces. On more

p. 27 of 79

Figure 3.4.b: Flowchart detailing the SCAO

In the geometry shader – topology: triangles with adjacency

Find the vector between the opposite two vertices

Dot product with vertex normal vector
(dot product of the two arrowed vectors)

This dot product gives an estimate of the local surface curvature

Pass the local surface curvature to the pixel shader and use in
estimating the amount of ambient light reaching this surface

4

5

21 3

Normal

0

Chapter 3 Opaque Solid Model Effects

detailed models often found in modern games the polygon count is a lot higher. On a

higher polygon model we expect the results to be more accurate resulting in an improved

visual output. For future work the adjacent faces could be used in addition to get more

samples and an average of the local surface curvature.

3.5 Fresnel Highlighting Effect

The Fresnel effect is the effect where more light reflects off a surface at a shallow angle,

and less at a steeper angle. It is a term incorporated in some of the more complex world

lighting models, which were discussed in a previous section.

For computer games this effect can be recreated ignoring the light position and with a

variety of colours to provide an effective way of highlighting in-game objects. The

algorithm works by outputting a highlight colour from the pixel shader when the surface

normals face away from the camera. This effect can also be applied to an object that is

bump mapped for a rough bumpy highlight effect around the edges of an object.

Figure 3.5.a shows the different amounts of light reflected at different angles.

p. 28 of 79

Figure 3.5.a: The Fresnel effect

AbsorbedReflecting Solid Model Surface

Incoming

Incoming Incoming

Reflected Reflected
Reflected

Absorbed

Absorbed

Chapter 3 Opaque Solid Model Effects

Figure 3.4.a and Figure 3.5.b show the relationship between the angle and the amount of

reflected light. By applying a highlight colour in the pixel shader that varies depending

on the angle between the view and normal vector a Fresnel highlighting effect can be

created.

p. 29 of 79

Figure 3.5.b: The vectors used in the Fresnel highlight effect

Normal Vector

View VectorThe greater the angle the
stronger the highlight

Chapter 3 Opaque Solid Model Effects

Figure 3.5.c shows the Fresnel highlight effect. Note that tweaking the constant values in

Equation 3.5.a will result in a variety of different outputs. The current settings for these

constant values and the equation itself are given in Equation 3.5.a.

3.6 Shadow Volumes

Shadow volumes [Crow 1977] are a method for adding shadows to solid objects in a

scene. Shadow volumes can be created from the solid object geometry by extruding the

back face of the model to infinity (or similar technique). Pixels inside the shadow volume

are shaded whereas those outside are not, which is usually determined via a stencil buffer

p. 30 of 79

Figure 3.5.c: The Fresnel highlight effect in different highlight colours

Equation 3.5.a: Fresnel highlight

PixelColour = LightingModelColour + FresnelHighlightColour

where,

FresnelHighlightColour =

HighlightColour * (0.7 - dot (ViewVector, NormalVector))^4

Chapter 3 Opaque Solid Model Effects

implementation, such as ‘depth fail’ [Bilodeau and Songy 1999] which is also known as

‘Carmack’s reverse’ who independently discovered and advertised the technique

[Carmack 2000]. Everitt and Kilgard [Everitt and Kilgard 2002] give a detailed

discussion of the depth fail algorithm. This implementation improved on previous

techniques by fixing the errors occurring when the camera was positioned inside the

shadow volume.

Figure 3.6.a shows a GPU shadow volume implementation which makes use of the

geometry shader. The programmable geometry shader in the Direct3D 10 graphics

pipeline allows shadow volumes to be extruded and capped (closed) on the GPU

improving the real-time performance of this shadowing technique over earlier

implementations. An implementation using the GPU to extrude the shadow volume can

p. 31 of 79

Figure 3.6.a: Flowchart detailing GPU shadow volumes in Direct3D 10

Render scene with ambient lighting only

Find silhouette edges

Extrude shadow volume in geometry shader

Add the near cap and far cap to close the volume

Create the stencil from the shadow volume

Render lit scene for this light

Additive blend this light to the final image

Final image with shadows

For each light

Create shadow volume

Chapter 3 Opaque Solid Model Effects

be found in the DirectX SDK [Microsoft 2010] (and SDK versions from later than

December 2005) under 'ShadowVolume10'.

The geometry shader can be used to find the silhouette edges by looking at the normals of

the two adjoining faces (by using an input topology of triangles with adjacency), if one

faces towards the light source and the other faces away from the light source then the

edge is a silhouette edge. Once the edge has been found it can be extruded away from the

light direction and capped to form the shadow volume. Front capping can just use the

front faces as they are, back capping can be achieved by using the front faces translated a

distance away from the light direction at each vertex.

By building the shadow volume a two sided stencil can be rendered which masks the

shadowed parts of the scene. It operates by comparing the depth from the ambient pass to

the back faces and incrementing the stencil, then comparing to the front faces and

decrementing the stencil. This results in a stencil where the non-zero values represent

pixels inside the shadow volume. Lighting for that light source can then be additively

blended to each pixel in the scene where the stencil value is equal to zero.

Shadow volumes offer a real-time solution to shadowing solid objects which results in

fairly accurate shadows for point lights with hard edged shadows without a penumbra. A

more advanced shadow volume algorithm is needed to add soft edged shadows to

represent area lights. Assarsson et al. [Assarsson et al. 2003] discuss a soft shadow

volume technique which they claim to be real-time, however a shadow mapping

technique usually runs faster especially on large scene with lots of geometry. Donnelly

and Demers [Donnelly and Demers 2004] noted that the method discussed by Assarsson

et al. would not result in a real-time solution in their high geometry scene, instead they

proposed a static lighting solution which could produce soft shadows for static geometry

where the light source moved in a consistent pattern.

Another difficulty for shadow volumes is that they are usually restricted to closed meshes,

making them unsuitable in other situations. Stich et al. [Stich et al. 2007] present a

robust shadow volume technique that can handle open meshes by extruding individual

triangles. This could be useful for shadowing point sprite particles, however this

approach is computationally demanding which could be an issue for real-time

applications.

The shadow volume technique has an artefact caused by the limiting granularity of the

edges between faces when calculating the silhouette edge. The silhouette is built from

p. 32 of 79

Chapter 3 Opaque Solid Model Effects

vertices which can result in an irregular sawtooth silhouette edge. On low-polygon

meshes this artefact is pronounced whereas it is not as noticeable on higher-polygon

meshes. A possible solution is to use a depth bias which would offset the shadow volume

a little, so as to avoid some of the artefact's evident self-shadows.

Often a better solution is to use shadow maps, which do not suffer from this artefact and

tend to be less costly on large scenes. We will discuss shadow maps in the following

section.

3.7 Shadow Maps

Shadow maps [Williams 1978] provide an alternative method for adding shadows to a

scene. For this, first a depth map is generated from the light source point of view,

mapping the distance from the light source to all the occluding shadow objects. Then,

during the rendering of the final scene, a comparison is made between the distance of the

pixel to the light and the value that is stored in this height map. If the distance to the light

is greater than the value stored in the height map then the pixel is in shadow and rendered

accordingly.

Figure 3.7.a illustrates how the basic shadow mapping algorithm works.

p. 33 of 79

Figure 3.7.a: Shadow mapping

Shadow map/Height map containing
distances of occluding objects

Light position
Shadowed pixel
distance to light

Occluding solid object
Object receiving shadow

Distance in shadow map is greater
than the distance to the pixel

therefore pixel is not in shadow

Distance in shadow map is less
than the distance to the pixel
therefore pixel is in shadow

Chapter 3 Opaque Solid Model Effects

Figure 3.7.b shows a common artefact of the basic shadow map implementation

[Williams 1978], in which the pixelated edges of the shadow are caused by the limited

granularity of the shadow map texture. Fortunately there exists a large number of

published advanced shadow mapping techniques for reducing or removing these aliasing

artefacts that produce smooth edges to a shadow representing the penumbra caused by

area lights. Another artefact also caused by the limited granularity of a shadow map is

that shadow maps can miss high-frequency shadows where the shadow caster is small

enough to be in-between two samples of the shadow map. We can see the effect of this in

Figure 3.7.b at the narrowest and sharpest points on the sword hilt where the shadow map

granularity cannot capture all of the fine detail because it is sampling at a lower frequency

than the detail.

Reeves et al. [Reeves et al. 1987] presented the original percentage closer filtering (PCF)

technique for smoothing the edges of a shadow created by shadow mapping. Bunnell and

Pellacini [Bunnell and Pellacini 2004] describe a more recent adaptation version of PCF

in an article in GPU Gems. They adapt the original technique so that an implementation

on modern hardware (through pixel shaders) is straightforward and more efficient. The

PCF technique involves taking multiple samples from the depth map, determining if they

are in shadow or not, and then taking an average to build a ‘shadow coefficient’. The

‘shadow coefficient’ then gives a gradual drop off at the shadow edge, resulting in a

smoother edge with less noticeable aliasing artefacts.

Donnelly and Lauritzen [Donnelly and Lauritzen 2006] present variance shadow maps

(VSM), which provide a solution to the aliasing artefacts in standard shadow maps.

p. 34 of 79

Figure 3.7.b: A basic shadow map with jagged edge aliasing artefacts

Chapter 3 Opaque Solid Model Effects

Instead of storing just the depth when rendering from the point-of-view of the light source

(as in original shadow map implementations) they calculate and store the mean and the

mean squared of a distribution of depths. This allows for the variance to be calculated

and a good approximation to be made when calculating the shadowing of the pixel.

However this is only an approximation, and while it works for planar occluding objects

and receivers it can lead to ‘light bleeding’ artefacts when the variance is high, causing

areas that should be in shadow to be lit or partially lit. Myers [Myers 2007] discusses

some implementation issues with this technique and its suitability for implementing on

Direct3D 10 hardware. The main point being that the filtering precision on a Direct3D 10

implementation can be 32-bit instead of 16-bit. This is important because the

computation in this algorithm is unstable and the precision has to be managed. The

precision and numerical stability was also discussed in Donnelly and Lauritzen [Donnelly

and Lauritzen 2006] but due to hardware constraints at the time they could only

implement 32-bit precision by splitting depth values into two 16-bit values for storage

and then recombining these afterwards.

Lauritzen [Lauritzen 2007] presents summed-area variance shadow maps (SAVSM),

which build on VSM to reduce aliasing resulting in smooth soft shadow edges.

Lauritzen and McCool [Lauritzen and McCool 2008] present layered variance shadow

maps (LVSM) which use multiple shadow map layers to remove the light leaking

artefacts present in VSM. Each layer represents a reduced depth range so the resolution

of each layer need not be so high as to maintain adequate rendering quality. LVSM can

be used with 16-bit precision which is more readily available in graphics hardware.

p. 35 of 79

Chapter 3 Opaque Solid Model Effects

Figure 3.7.c illustrates a penumbra, the partial shadow between a shadowed and lit area

giving a soft edge to shadows at a distance. Notice that as the distance between the

occluding and the receiving object increases, the penumbra will be larger and more

gradual. The distance and the radius of the light source also contribute to the size and

smoothness of the penumbra.

Fernando [Fernando 2005] presents percentage-closer soft shadows (PCSS), which model

the penumbra so that it varies depending on this distance. This is an important addition to

modelling shadows as it adds visual clues to the positioning of objects in a scene. Where

objects are in contact with one another (such as a character standing on a flat floor casting

a shadow onto it) the shadow edge will be hard (small penumbra) near the feet of the

character. As the distance increases between the upper body of the character and the floor

the shadow will get softer edges (large penumbra). Bavoil [Bavoil 2008] presents an

implementation of the PCSS technique, which can be found in the NVidia Direct3D SDK

[NVidia 2007] under 'Percentage Closer Soft Shadows'. Myers et al. [Myers et al. 2008]

discusses the same algorithm with more detail regarding integration into a game engine.

Lauritzen [Lauritzen 2007] discussed combining the PCSS technique with SAVSM to

achieve a varied penumbra with reduced aliasing artefacts.

Annen et al. [Annen et al. 2007] introduce convolution shadow maps. Instead of using a

binary test to decide if a pixel is in shadow (between the depth stored in the depth map

and the distance from the pixel to the light) they attempt to apply a linear filter to the

shadow map. Regular texture filtering applied to a shadow map does not result in

filtering the end result of the shadow test, so instead they suggest a pre-filtering method.

p. 36 of 79

Figure 3.7.c: Penumbra illustration

Light source

Shadow Penumbra Lit

Chapter 3 Opaque Solid Model Effects

This method involves converting the shadow map values by using a basis function. The

resulting convolution shadow map can then be pre-filtered resulting in a filtered end

result. They use a Fourier expansion to define the basis function. This approach allows

for a kernel function to determine the shadowing of a pixel. This gives a smooth edge to

shadows and does not suffer from aliasing artefacts like PCF. The main disadvantage

with convolution shadow maps is that they are a computationally demanding technique

and a real-time solution may not be achievable in some scenarios.

Inspired by these convolution shadow maps Annen et al. [Annen et al. 2008] developed

exponential shadow maps (ESM). Like in convolution shadow maps, ESM uses a basis

function to allow pre-filtering of the shadow map. Where this method varies is in the

assumption that the distance to the light is greater than or equal to the distance stored in

the shadow map. This assumption allows for an exponential expansion approximation

which drastically reduces the computational complexity and allows this method to out

perform convolution shadow maps. This assumption holds true in most cases, but not all,

resulting in some artefacts. As a solution Annen et al. suggest a simple-to-calculate fall-

back to an alternative technique such as PCF.

A combination of ESM and VSM was briefly discussed by Lauritzen and McCool

[Lauritzen and McCool 2008]. The exponential variance shadow map (EVSM) produced

'promising results with good performance'.

Scherzer et al. [Scherzer et al. 2007] introduce a shadow mapping technique that makes

use of old shadow map information from previous frames. They use the aptly named

history buffer to store the previous shadow information which can then be used in the

following frames. This approach is an efficient and computationally cheap method to

produce accurate hard-edged shadows.

Shadow maps are usually used instead of shadow volumes for the large-scale real-time

scenes often present in many games. This is because they are usually less

computationally complicated to implement so real-time speeds are more easily achieved.

There is also a substantial amount of work that focuses on improving shadow mapping

techniques for large scenes.

Zhang et al. [Zhang et al. 2007] discuss parallel-split shadow maps (PSSM), which use

multiple shadow maps in parallel spaced at different distances with each having a

different resolution depending on the distance to the viewer. This means nearby shadows

can be calculated from a high-resolution shadow map whereas distant shadows can be

p. 37 of 79

Chapter 3 Opaque Solid Model Effects

calculated from a low-resolution shadow map. This level of detail approach saves

valuable processing time in large scenes.

Dimitrov [Dimitrov 2007] describes cascaded shadow maps (CSM), which are similar to

PSSM and build on them by taking into account view frustum culling. An

implementation of the CSM can be found in the NVidia OpenGL SDK [NVidia 2007]

under 'Cascaded Shadow Maps'.

Some of the shadow mapping techniques can be combined into hybrid methods and

benefit from the advantages of each. In a recent release (June 2010) of the DirectX SDK

[Microsoft 2010], CSM has been implemented with PCF (CSMPCF) and with variance

shadow mapping (CSVM). These are available as samples in the SDK (under

'CascadedShadowMaps11').

As we have discussed there are a variety of advanced shadow mapping algorithms which

provide effective solutions to shadowing. Some of these techniques can be used in

combination to create hybrid algorithms which benefit from multiple technique's

advantages, resulting in improved solutions.

3.8 Smoothies and Penumbra Wedges

Many of the advanced shadow volume and shadow mapping algorithms for creating

smooth soft edged shadows are computationally expensive. The following methods offer

alternatives and approximations for creating smooth edged shadows which may be able to

offer improved performance for plausible soft shadows.

Penumbra wedges [Akenine-Moller and Assarsson 2002] offer an approximation to add

soft edged shadows to the initial shadow volume technique. The basic idea is to extrude a

penumbra wedge in place of where the silhouette edge usually gets extruded. This is

done by extruding the silhouette edge twice, in two directions off a tangent to the light

source which is of course dependent on the radius of the light source, to form the wedge

shape. Once the wedge is created a pixel inside the wedge can calculate the approximate

shadowing depending on its position inside the wedge. Given modern hardware, this

method should now be capable of real-time speeds.

Chan and Durand [Chan and Durand 2003] present smoothies, a technique that builds on

the shadow mapping algorithm to remove the aliasing artefacts at the edges of the

shadow. Unlike the other soft shadow map algorithms, that usually perform different

operations to the shadow map or sample from it differently, smoothies hide the rough

p. 38 of 79

Chapter 3 Opaque Solid Model Effects

shadow edge by building a smooth fake edge. Although this method could be considered

an inaccurate representation of shadows it does provide a smooth edge to shadows with

real-time performance. The model works by building a standard shadow map, storing the

depth values of the occluding objects in the scene. Then the silhouette edges of the

objects are extruded and filled to create the smoothies. The smoothies are rendered to

separate buffers storing a depth map and an alpha map of the values. Finally the final

image is created using the information from the maps to create smooth edged shadows.

This method builds smoothies from the silhouette edges so it might be possible to

implement this technique on the GPU using the geometry shader in a similar fashion to

the way it was used in the 'ShadowVolume10' sample found in the DirectX SDK

[Microsoft 2010] (and SDK versions from later than December 2005).

Wyman and Hansen [Wyman and Hansen 2003] introduce penumbra maps which map

out the approximate penumbra regions by calculating the silhouette edges of shadow

casting objects from the light source. First a shadow map is created storing the depths of

objects to the light source. Then a penumbra map is generated which stores the shadow

intensity at the silhouette edges. Finally the shadow can be rendered by combining the

depth information from the shadow map and the shadow intensity from the penumbra

map. This method can produce soft edged shadows with a varying size penumbra similar

to that achieved by PCSS.

p. 39 of 79

Chapter 4 Making Smoke

Chapter 4 Making Smoke

Opaque solid models and effects can be used to build many scenes and virtual worlds in

computer graphics but cannot be used convincingly to simulate and render transparent

volumes. Another approach is required when we want to render smoke or similar

transparent non-solids. In Chapter 4 we look at how smoke can be simulated and

rendered in computer graphics and then we discuss the addition of shadows.

4.1 Simulation

The main techniques for the simulation of smoke can be broken down into different

categories and include particle-based Lagrangian systems, grid-based Eulerian methods,

and hybrids.

The accuracy required for the simulation of smoke depends on the specific application it

is being designed for. Some approaches derive the simulation directly from the Navier-

Stokes equations, Stam [Stam 1999]. Other approaches, Fedkiw et al. [Fedkiw et al.

2001], use the inviscid Euler equations, which provide a good model for smoke because

smoke has a low viscosity, which can be considered negligible. For the application of

computer games where real-time speeds are critical, simple and efficient methods are

preferable.

4.1.1 Grid-Based Eulerian Approach

A grid-based Eulerian approach to smoke simulation involves modelling a theoretical box

volume, which the smoke will occupy. The volume is divided into voxels (volumetric

pixel – small equally sized cubes) with each voxel containing information about the

density, pressure, and other factors that are used to build up a simulation for a smoke

model. In a simulation step the content of a voxel is calculated from nearby neighbouring

voxels or by an advection technique as in the ground-breaking work on Stable Fluids by

Stam [Stam 1999] [Stam 2003]. Stam discusses a stable grid-based model for fluid

simulation which has been a basis for many other models in this area since. This

proposed model suffers from numerical dissipation, which causes the flow to dampen too

quickly, nevertheless the proposed model still provides a suitable technique for graphics

applications such as games where accuracy is not paramount.

p. 40 of 79

Chapter 4 Making Smoke

Fedkiw et al. [Fedkiw et al. 2001] introduce a vorticity confinement technique to

improve the accuracy of the model proposed by Stam. Vorticity confinement adds back

the lost energy due to numerical dissipation and this technique has been noted for

producing ‘some of the most visually complex fluid simulations to date’ [Molemaker et

al. 2008].

These vorticity confinement methods can produce some very realistic simulations of

smoke, however, as usual, there is a trade-off between the accuracy of the simulation and

the computational workload. Still many of these methods can be run in real-time on

modern hardware.

Molemaker et al. [Molemaker et al. 2008] propose the use of the QUICK (Quadratic

Upstream Interpolation for Convective Kinematics) advection scheme to minimise the

numerical dissipation. This method preserves the small-scale turbulent flows without

needing to implement vorticity confinement techniques, which ‘cannot fully compensate

for excess numerical dissipation’ [Molemaker et al. 2008].

Crane et al. [Crane et al. 2007] discuss a grid-based smoke simulation method that

physically responds to movement of 3D objects. An implementation of their method can

be found in the NVidia Direct3D SDK [NVidia 2007] under 'Smoke'. They make use of

the MacCormack advection scheme discussed by Selle et al. [Selle et al. 2008].

A disadvantage with all the grid-based methods is that the smoke volume is confined to a

limited size grid that requires some sort of boundary conditions to confine the smoke

volume. This has been overcome in recent research [Cohen et al. 2010] by use of a

hybrid method combining a grid-based approach with a particle-based approach which we

discuss below (see section 4.1.4).

4.1.2 Particle System-Based Lagrangian Approach

The particle system Lagrangian approach involves modelling smoke as a group of

particles, the concept introduced by Reeves [Reeves 1983]. Particles are born in an initial

position and state and then move according to a set of rules or equations until they are

destroyed or are reset. Particle systems can be used to model a wide range of fuzzy

objects and are flexible by adapting the rules that govern their simulation. The

constraints of this approach include the quantity of particles that can be processed in real-

time and the complexity of the rules for the simulation.

p. 41 of 79

Chapter 4 Making Smoke

The nature of particle systems means that they are well suited to the SIMD (single

instruction multiple data) architecture of GPUs. A single instruction can be used to

govern the many particles in a particle system. The parallel processing capabilities of

modern GPUs provide a vast improvement to simulation speeds for most particle systems.

For smoke simulation via a particle system a GPU implementation is advisable to reap the

benefits of parallel processing.

A common method for a GPU implementation involves using textures with particle data

stored in the colour channels in each texel (texture element). This approach was used by

Latta [Latta 2004] to create a GPU-based particle system containing roughly one million

particles. This was achieved by using texture sizes of 1024 by 1024 to store the particle

data while the particle simulation was performed inside the pixel shader. Kolb et al.

[Kolb et al. 2004] built on this by adding support for collision detection with geometry.

Now with the geometry shader and the stream out function in Direct3D 10 [Blythe 2006],

particles can be stored as vertices with simulation operations performed in the geometry

shader and streamed out. Also because the geometry shader can add or remove vertices

from the stream, particles can be created or destroyed in the geometry shader. An

implementation that uses this approach can be found in the DirectX SDK [Microsoft

2010] (and SDK versions from later than December 2005) under ‘ParticlesGS’. The

sample demonstrates how a particle system can be entirely encapsulated on the GPU in

Direct3D 10. The simulation is processed in the geometry shader with a stream of

vertices representing each particle. The geometry shader can create or destroy particles

stored as vertices and the stream can be passed out before going any further down the

pipeline. On the rendering pass particles in the stream are expanded to form billboards by

the geometry shader and then they are additively blended to the scene.

Latta [Latta 2007] presents a useful overview on particle systems, briefly describing the

main ways to implement them on the CPU and GPU and key considerations when

developing them for use in games.

4.1.3 Smoothed Particle Hydrodynamics

Smoothed-particle Hydrodynamics (SPH) is a Lagrangian method of simulating fluids.

The system is built from a set of complex particles usually storing information in

attributes for use in simulation. Particles have a spatial distance over which their attribute

values are smoothed. A kernel function is used to determine the distance and the amount

p. 42 of 79

Chapter 4 Making Smoke

of smoothing that takes place. This means the attribute values of a particle in a particular

position can be determined by looking at the nearby particles as denoted by the kernel

function. On a side note, there are similarities between SPH and the Boids [Reynolds

1987] flocking model. The kernel function introduces local relationships between

particles, similar to the local relationships in Boids (separation is similar to pressure, and

alignment is similar to viscosity). Particles that are further than a set distance away (from

the measured attribute 'position'), determined by the kernel function, contribute nothing to

the measured property so that they can be ignored and calculations do not scale at an

exponential complexity rate. The kernel function can change depending on factors such

as particle density, which can also reduce complexity by making the kernel ignore

particles outside a smaller nearby area for high-density areas (therefore reducing the

number of lookups).

The work by Muller et al. [Muller et al. 2003] on fluid simulation is based on SPH,

which they describe as ‘an interpolation method for particle systems’. They suggest using

a particle system because it simplifies the Navier-Stokes equations. They write “In

contrast to Eulerian grid-based approaches, the particle-based approach makes mass

conservation equations and convection terms dispensable which reduces the complexity

of the simulation”. Reducing the complexity of the simulation means that there is less to

calculate at run-time so the model can run quicker, which is a boon for real-time

applications.

4.1.4 Hybrid Methods

Cohen et al. [Cohen et al. 2010] use a hybrid approach to achieve a complex and detailed

model for smoke and dust trailing from the back of a virtual model car. A grid-based

approach is used for dust in close proximity to the back of the virtual car. A box volume

is used to contain the grid-based simulation, which moves relative to the car (similar to

the way a bounding box encapsulates a model for collision detection algorithms). Any

dust that reaches the edge of the volume is transferred into a particle system allowing the

new particle dust to move freely outside of the box volume. This hybrid method takes the

accuracy and fine detail of a grid-based approach and combines it with the boundless

freedom of a particle system. For the grid-based part of the simulation the MacCormack

advection scheme discussed by Selle et al. [Selle et al. 2008] is used.

p. 43 of 79

Chapter 4 Making Smoke

4.2 Rendering

4.2.1 Volume Rendering

Volume rendering is not a major topic for discussion in this thesis due to the early choice

of simulating smoke via particle systems. It does however offer an alternative solution

for simulation and there is plenty of ongoing research in this field which the reader may

find interesting.

Kruger and Westermann [Kruger and Westermann 2003] present a volume ray-casting

technique for rendering volumes using DirectX 9 level graphics. They utilise the SIMD

architecture of the GPU via textures and the pixel shader to accelerate volume rendering.

The volume ray-casting technique involves casting rays (one per pixel) from the camera

viewpoint through the volume clipping it to the edges of the volume. Then a number of

sample points are taken at intervals along the cast ray (through the volume). The samples

are shaded and then amalgamated to arrive at a final value for that individual pixel.

Ikits et al. [Ikits et al. 2004] present some typical volume rendering implementations and

some advanced techniques for volumetric lighting, shadows, and some light scattering

through translucent media.

4.2.2 Particle System Rendering

We have discussed the methods for simulation of a particle system, some more involved

than others, but either way the particles need to be rendered to make the system visible

and achieve the required effect. Each particle in the system can be rendered as a single

pixel or an object. The most common method in games is to render the particle as a

billboard. 3D meshes or metaballs can also be rendered in the place of particles.

Selle et al. [Selle et al. 2004] use a billboard approach to achieve a cartoon style output

rendering of smoke from their particle system. In addition to the standard billboarding

technique they also use a technique for edge detection so the edges of the render can be

drawn in black adding to the overall effect of the carton style rendering. These sharp

silhouettes are also drawn in where there is a big change in the depth between particles so

as to highlight interesting points in the smoke volume.

p. 44 of 79

Chapter 4 Making Smoke

4.2.3 Particle Blending and Sorting

When we render particles to the scene there are a number of blending options available.

Additive and alpha additive blending add the particle colour to the colour already present

in the scene (as long as the depth test is passed). Particle colours are added to the scene

irrelevant of their individual depths and order which has no effect on the final result.

Where particles overlap one another additive blending can lead to undesired results as the

resulting colour is an equal weighting of every overlapping colour, which is unrealistic

for translucent media. To get a more accurate result alpha blending can be used but the

requirement of alpha blending is that the particles must be sorted in the correct depth

order so that particles in the distance are rendered first, allowing the front particles to be

blended correctly. Unfortunately sorting on the GPU is not trivial and it is

computationally demanding, however, there are methods for GPU sorting that can run in

real-time and various optimisations that can improve performance. Kipfer and

Westermann [Kipfer and Westermann 2005] discuss implementing sorting algorithms on

the GPU. They examine a simple implementation of the odd-even transition sort, which

operates by comparing the data in the even positions with data in the odd positions and

switching them if they are not in order, then comparing odd data with the even data, and

repeating until the data set is sorted. Odd-even transition sorting can work for small data

sets (small number of particles) but when we want to deal with large particle systems we

need a faster algorithm or approximation to keep the simulation running at real-time

speeds. Kipfer and Westermann [Kipfer and Westermann 2005] go on to discuss the

odd-even merge sort, which is a faster algorithm, taking 210 passes to sort a data set of 1

million elements (or 1 million particles), whereas the odd-even transition sort takes 1

million passes for the same data set. Although 210 passes would likely take too much

computation time per frame to be performing real-time, the algorithm can be split down

to perform some of the passes each frame. As a result we do not have a perfectly sorted

set of data every frame but the data set becomes closer to being sorted every frame and

the performance is real-time, which is often an acceptable solution for particle systems.

Kipfer and Westermann [Kipfer and Westermann 2005] then describe a more efficient

GPU implementation using a bitonic merge sort. This algorithm has an advantage of

performing a complete sort faster than the odd-even merge sort but a disadvantage of not

approaching a complete sort in a smooth way and hence is not suitable for splitting the

computation over multiple frames. To keep the simulation running in real-time the size

p. 45 of 79

Chapter 4 Making Smoke

of the data set must be kept small enough to be completely sorted within the time one

frame is rendered. Sorting smaller sets of data tends to be much faster, so many

performance enhancing methods involve splitting large data sets down into multiple

smaller sets wherever possible.

Another technique to improve the performance of sorting for particle systems is the half-

angle axis sorting approach discussed by both Ikits et al. [Ikits et al. 2004], and later by

Green [Green 2008]. Green requires a set of sorted particles in both the light direction

and the camera direction so that correct self-shadowing and correct blending can be

performed. The method that he proposes is to sort the particles along the half-angle

between the camera and the light, tackling two expensive sorting requirements with only

one sorting operation. Another technique he uses is to split the particles into batches

arranged as slices perpendicular to the half-angle axis so that the particles can be rendered

in smaller batches. Slices can also be used to split up the size of a data set before sorting

individual batches. Splitting up a data set in this fashion is often called a bucket sort

whereby data is split into different 'buckets' (subsets). This divide and conquer approach

is efficient for breaking down large data sets to get a roughly sorted data. If a complete

sort is required a different algorithm such as the bitonic merge sort could be used on each

bucket. Hybrid methods like this or the similar hybrid method employed by Sintorn and

Assarsson [Sintorn and Assarsson 2007] are often very efficient and there are a variety of

other sorting algorithms that may be advantageous in a hybrid approach. With a set of

sorted data we can perform alpha blending and render particles in a back to front order so

we achieve correct blending. With unsorted data we can use additive blending or alpha

additive blending instead.

4.2.4 Overdraw in Particle System Rendering

Overdraw is a problem which occurs when a screen pixel has to be re-rendered multiple

times due to multiple translucent objects on top of one another. Overdraw often plagues

particle systems that are rendered with large translucent billboards. Each particle requires

rendering and if these particles are large and numerous the amount of pixels which

require shading is likely vast. Cantley [Cantlay 2007] discusses some techniques to

tackle overdraw in particle systems by introducing a mixed resolution technique. Another

simpler solution is discussed by The Valve Developer Community [The Valve Developer

Community 2010] whereby particle billboards are blended out and then not rendered

depending on how much screen space they take up. This is a similar idea to the soft

p. 46 of 79

Chapter 4 Making Smoke

particle technique, however, with soft particles each pixel is blended out where it is

positioned closely to 3D geometry. The soft particles technique is discussed in detail in

the following section.

4.2.5 Soft Particles

When a particle is rendered as a 2D billboard and intersects 3D geometry a common

artefact occurs; a hard edge is seen at the intersection point. This can be rectified by a

technique called soft particles. The idea behind soft particles is to make the particle more

transparent as it gets closer to intersecting with 3D geometry. Recording the depth

information from the 3D geometry in the scene and then comparing to the depth of the

particle is a commonly used technique to solve this.

Lorach [Lorach 2007] discusses the soft particles technique in a GPU implementation.

First the depth values are needed, and Lorach suggests two possible solutions; depth

information can be stored on a first pass using the depth buffer, or alternately the depth

information can be stored in a separate render target whilst rendering background objects

in the scene (objects behind the particle system effect). Using the MRTs suggestion is

likely to be a more efficient and flexible solution, because the stored depth information

could be reused in other effects. The second pass deals with the rendering of the particle

system. The geometry shader is used to expand a set of particle positions into two

triangles forming the canvas for the billboard. In the pixel shader the depth values can be

compared and the particle can be made more transparent as it approaches any of the

stored depths. For this Lorach suggests using a custom contrast function to fade instead

of a linear fade between the particle’s maximum opacity and completely transparent.

p. 47 of 79

Chapter 4 Making Smoke

Figure 4.2.5.a the numbering shows the difference of the depths, which are used to

calculate the opacity of the pixels in the 2D particle. Difference d1 is negative so the

pixel is ignored, d2 and d4 are small so the pixels here are slightly faded, d3 is large so

the pixels is at the particle’s maximum opacity.

The ‘SoftParticles’ sample in the DirectX SDK [Microsoft 2010] (and SDK versions from

later than June 2006) shows an implementation of the soft particles technique in action. It

implements the basic soft particles model but also implements, soft depth sprites, and soft

volumetric particles. Depth sprites are simply particles that have additional depth

information. This depth can be used in the soft particles technique when calculating the

opacity of the particle.

p. 48 of 79

Figure 4.2.5.a: The soft particles technique

d1
d2

d3

d4
2D particle billboard

Camera

Background 3D geometry

Chapter 4 Making Smoke

Volumetric particles offer a more complicated technique for rendering which does not

suffer from the artefacts caused by 2D billboards intersecting with 3D geometry in the

same way. However, the soft particles technique can still be implemented on volumetric

particles. Particle billboards are encapsulated in an imaginary sphere. When rendering a

pixel on the billboard, a ray is cast from the camera through the pixel. Where this ray

intersects the sphere in two places a set of sample points are taken through the sphere in-

between the intersection points with each point mapping to a 3D noise texture, based on

the concept of hypertextures [Perlin and Hoffert 1989]. A ray march through the sample

points calculates the opacity and the lighting for the pixel. The addition with the soft

volumetric particles implementation adjusts to take only samples between the first

intersection point and the depth buffer if the depth buffer intersects the ray before the

second intersection point on the sphere.

4.2.6 SPH Rendering

Smoothed particle hydrodynamics systems are often rendered in a different way to the

standard particle systems. SPH systems can be converted to a 3D grid and then a volume-

rendering technique can be used. This is often an expensive method, which can cause

problems with keeping the simulation and rendering real-time.

p. 49 of 79

Figure 4.2.5.b: The soft volumetric particles technique

2D Particle Billboard

Imaginary
Sphere

Camera
Intersection

Point

Sample
Points

Background
3D Geometry

Chapter 4 Making Smoke

The previously discussed work by Muller et al. [Muller et al. 2003] covers both splatting

and marching cubes rendering methods for SPH. They test both for performance and

conclude that splatting runs faster than the marching cubes but the marching cubes

method produces a more realistic output.

Fraedrich et al. [Fraedrich et al. 2010] present a volume rendering technique for SPH.

Particles are re-sampled to a 3D grid in view space, which they call the ‘perspective grid’.

A kernel function is used to re-sample the SPH data to the perspective grid and then a

GPU-based volume ray-casting technique is used to render the re-sampled data.

p. 50 of 79

Chapter 5 Homemade Smoke and Shadows

Chapter 5 Homemade Smoke and Shadows

This chapter discusses our main contribution to research; casting shadows onto a volume

of smoke particles.

5.1 Particle System Development

Our implementation uses a DirectX 10 GPU-based particle system with particles stored as

vertices and simulation through the geometry shader and stream out sections of the

pipeline. The particle simulation employs a similar approach to the implementation

found in the ‘ParticlesGS’ sample found in the DirectX SDK [Microsoft 2010] (and SDK

versions from later than December 2005).

The nature of the geometry shader in the Direct3D 10 pipeline means that new vertices

(particles) can be created on the fly, so a range of new particle system effects can be

created. ParticlesGS shows an example of how exploding fireworks can be created with

this new capability.

Our particle system runs entirely on the GPU and particles can be created and destroyed

in the geometry shader, so there is no need for CPU intervention. Keeping the particle

system on the GPU allows for faster speeds and frees the CPU up for other tasks.

There are two common GPU particle system implementations; one that stores particles as

texels in a texture and updates through a pixel shader, and another that stores particles as

vertices in a vertex buffer using the geometry shader to perform updates and stream out to

make an early exit from the pipeline.

Our particle system stores particles as vertices using vertex buffers for storage. In

particular, we use three separate vertex buffers for storage. One initial seeding buffer is

used to start the simulation, holding an initial state. The other two are used as an input

and an output buffer, which are switched every time particles are updated so that the

output from the previous update becomes the input to the next update. Our initial seeding

buffer is initialised to contain a single ‘root’ type particle, which is used as the spawn

location for other particles in the system.

As mentioned above, particle information is stored in vertices, but the format in which

this is stored is flexible. For example, most particle system simulations require particle

positional information to be stored, so this could be done using a 3D vector with 32-bit

p. 51 of 79

Chapter 5 Homemade Smoke and Shadows

precision for each of the X, Y, and Z coordinates. A solution for this is to use a three

component, 96-bit, floating-point format for the first element of the vertex input layout

description allowing us to store position information for particles. If we want to store

additional information such as the type, the colour, or the timer on a particle before it is

reset then we have to add elements to this input vertex layout to allow for the storage of

this information. There is a limit to how much data can be stored and therefore a

maximum number of particles before the memory is exhausted, so careful design is

important.

The parallel nature of a GPU vertex based particle system that creates and destroys a

varying amount of particles per update, means that there is no way of knowing how many

particles are in a scene at any one time. To handle draw calls a ‘DrawAuto’ feature is

included in Direct3D 10 that can handle the varying amount of data written to the stream

out vertex buffer to be used as the input data for the next draw call.

Particle systems can be designed to represent a vast variety of different objects, making

them a very flexible tool in computer graphics for applications such as computer games.

Particle movement is usually the most important part of the simulation, and particles can

be made to follow curved paths made from splines, causing them to move away from or

towards a position, or to accelerate or decelerate towards a position or in a direction. The

possibilities are almost endless, the only constraints being the amount of available

memory for particle data storage and the computational power of the GPU (if a real-time

solution is important). Only storing the position of a particle limits the complexity of

movement possible. By storing additional positional data such as a velocity vector, an

acceleration vector, or even multiple positions that form a spline and that are

accompanied by a timer, particles can be made to move in much more complex patterns.

An important component in the movement of particles is the element of randomness.

Without some randomness in the movement or some randomness when a new particle is

spawned, all the particles will be moving in the same way and the system as a whole

would look too simple with all the particles following each other. Adding some

randomness gives the illusion that the system is more complex than it actually is and adds

some differences to each particle. Getting different random numbers for each particle in a

system is not a trivial task on the GPU. A pseudo-random number generator (often

abbreviated as PRNG) can be used for some tasks, taking an input seed value and

returning a pseudo-random number resulting from some equation. However, this

p. 52 of 79

Chapter 5 Homemade Smoke and Shadows

approach can result in some unwanted patterns when used in particle systems for

movement. Howes and Thomas [Howes and Thomas 2007] discuss and compare some

different methods for PRNG on the GPU using CUDA [NVidia CUDA 2007].

Another approach to getting random numbers onto the GPU is to fill all the texels in a

texture with random numbers using the CPU and then pass the texture as a resource to the

GPU. The random numbers in the texture can then be sampled and used. The texture is

filled with new random numbers every frame from the CPU. This method can be used to

provide a consistent flow of good random numbers.

Figure 5.1.a shows particles following randomly generated splines forming a spherical

shape. Particles spawn randomly on a large radius sphere and then move towards the

centre following a spline.

p. 53 of 79

Figure 5.1.a: Particle system with particles following splines to form a sphere

Chapter 5 Homemade Smoke and Shadows

Figure 5.1.b shows particles following randomly generated splines to form smoke plume

shapes.

Figure 5.1.c shows particles following randomly generated splines to form smoke plume

shapes in which particles are rendered with a large radius and with a smoke texture.

For our purposes a complex particle system simulation is not a priority; in fact, a very

simple simulation with particles just drifting in a direction with some random vectors can

p. 54 of 79

Figure 5.1.b: Particle systems forming smoke plume shapes

Figure 5.1.c: Particle systems forming smoke plume shapes with texture

Chapter 5 Homemade Smoke and Shadows

be enough to represent the buoyancy of hot smoke drifting out of a vent, or the changes in

wind direction. Whatever the scene, smoke simulation in real-time applications (such as

games), is usually kept simple and efficient. Our work uses a simple particle system to

simulate the smoke, in which particles are spawned in a grid from a ground plane and

drift upwards along the y-axis before being removed from simulation. Although this is

not a physically accurate model for a smoke volume, it allows for testing rendering

techniques and shadowing, for which we present a novel idea for rendering shadows

through the smoke particle system. A more complicated and physically accurate particle

system could be used with our rendering technique with ease.

In our implementation we use alpha additive blending, therefore we do not need to sort

the particles beforehand. Our shadowing method, which is discussed in the next section,

can be used with alpha blending but this will require an additional sorting solution to

achieve correct blending. The odd-even merge sort with sorting passes split over multiple

frames would be a suitable solution and has been used successfully in related work by van

Pelt et al. [van Pelt et al. 2010] and direct to video [direct to video 2009].

p. 55 of 79

Chapter 5 Homemade Smoke and Shadows

5.2 Adding Shadows

Shadowing of a particle system adds a visual element to its position and shape, helping to

make it look natural and integrate into the scene rather than looking out-of-place. There

are different kinds of shadowing resulting from different shadowing techniques. We will

refer to them using the following terms:

Cast shadows – are shadows that are cast by the particle system and are visible on other

solid objects in the scene.

Self-shadows (or self-shadowing) – are shadows that are cast by the particles that appear

on other particles in the same particle system.

External shadows – are shadows that are cast by other solid models in the scene and land

on the particle system.

The use of shadow maps is a common approach to implementing cast shadows from

particle systems. Unlike casting shadows from solid opaque objects, particles are often

represented as translucent billboards therefore requiring shadowing techniques to be

implemented differently and the translucency becomes an issue. These difficulties can

make shadows look unrealistic and therefore a more advanced shadow approach may be

required. Cast shadows often tie in with the self-shadowing of a particle system where

the resulting self-shadowing information, often stored as a shadow map, can be reused to

create cast shadows.

Most existing methods involving self-shadowing of particle systems require particles to

be sorted along an axis so that the opacity and shadowing information can be accumulated

for each particle in order. This process is computationally demanding but there are

optimisations, which can reduce the complexity. Green [Green 2008] performs real-time

self-shadowing of a particle system and discusses some techniques for reducing the

complexity, including the half-angle slice rendering technique, which was discussed in

the previous chapter.

Deep shadow maps [Lokovic and Veach 2000] can be used to add self-shadowing to

particle systems where particles are translucent. Where as regular shadow maps store a

single depth value for each pixel, a deep shadow map stores a ‘visibility function’ which

estimates the amount of light that passes through at different depths. Unfortunately deep

shadow maps are computationally expensive and cannot guarantee a real-time solution.

p. 56 of 79

Chapter 5 Homemade Smoke and Shadows

Opacity shadow maps [Kim and Neumann 2001] provide a real-time solution to self-

shadowing. Opacity maps are spaced out throughout the volume and face towards the

light source; cutting the volume into slices. Each is rendered from the point of view of

the light source summing and storing the alpha values of the particles contained up to the

depth of the opacity map (any particles outside the depth of the slice are clipped). These

opacity maps store opacity values at different depths through the volume which can be

used to calculate the shadowing at different depths when rendering the volume. While

this technique does provide a real-time solution it does introduce artefacts due to linear

interpolation between opacity maps. The layering artefacts can be reduced with a greater

number of opacity maps but obviously at a cost of speed.

Figure 5.2.a shows the similarities between opacity shadow maps (left) and deep opacity

shadow maps (right). Deep opacity maps [Yuksel and Keyser 2008] offer a solution

which does not suffer from layering artefacts and yet runs at real-time speeds. First a

depth map is created from the point of view of the light source, which captures the depth

of particles nearest the light source. Secondly, opacity maps are created, storing the

opacity at different depths through the volume, but instead of using flat parallel slices for

each layer, the depth map dictates the first layer and further layers are at an increment to

this depth map. The difference between the layers is illustrated in Figure 5.2.a. This

adjustment improves the accuracy of the shadowing and does not need as many layers as

the opacity shadow maps technique to achieve an improved quality final image. With

these recent techniques, real-time self-shadowing of particle systems has become feasible

p. 57 of 79

Figure 5.2.a: Opacity shadow maps and deep opacity shadow maps

0 1 2 3 4 5 6 7 8

Opacity Layers

Light Particle System Light Particle System

Chapter 5 Homemade Smoke and Shadows

for mainstream consumer graphics cards, and they open up some interesting future

possibilities for hybrid techniques.

To our knowledge, external shadowing of particle systems has not been the focus of any

other research, so shadowing information from solid objects currently in a scene has no

effect on a particle system. A particle system which represents smoke should interact

with external shadows from other objects in the scene so as to look realistic and properly

integrated into the scene. Figure 5.2.b shows our GPU vertex based particle system

without any form of shadowing. Particles are expanded in the geometry shader and

rendered as point sprites with alpha additive blending which does not require any sorting.

An external shadow is cast from the dwarf model, which should be seen cast onto the

smoke particle system as well as on the wall.

We have experimented with both shadow mapping and shadow volume techniques for

implementing external shadows. We found shadow mapping to be a more suitable

solution in this case as it is a simple operation to determine if a particle is in shadow or

not and we can easily pass the shadow map as a texture input when rendering our GPU

p. 58 of 79

Figure 5.2.b: GPU particle system without external shadowing effect

Chapter 5 Homemade Smoke and Shadows

vertex based particle system. We sample and compare the depth in the shadow map to

the actual depth of the particle in the pixel shader to determine if the particle pixel is in

shadow and render the correct colour accordingly. Figure 5.2.c shows our results using

this technique. The test application runs at real-time speeds on modern consumer

graphics hardware, Figure 5.2.c was rendered at 145 fps on a NVidia GeForce 8800 GTS

graphics card. The light source in Figure 5.2.c is modelled as a single dynamic point light

which followed a circular path in this test scene.

p. 59 of 79

Figure 5.2.c: GPU particle system with external shadowing effect

Chapter 5 Homemade Smoke and Shadows

Figure 5.2.d shows our model from a different camera angle. We presented this method

as a poster at the Eurographics 2010 conference [Bass and Anderson 2010]. A copy of

the poster can be found in Appendix A.

Figure 5.2.e shows a detailed flowchart describing the processes that take place in

rendering a single frame using our technique. For the particle system simulation we use a

GPU vertex based particle system in which a seeding buffer is used to initialise the

system. Input and output buffers are used afterwards to store the particle system

simulation data which are swapped each frame. Once the particle system has been

updated, the remaining scene objects are updated. A shadow map is created and the scene

objects are rendered with shadows. The shadow map is reused when rendering the

particle system to apply external shadowing to the particle system.

p. 60 of 79

Figure 5.2.d: Different view showing our external shadow implementation

Chapter 5 Homemade Smoke and Shadows

p. 61 of 79

Figure 5.2.e: Flowchart of the processes in rendering a frame of our model

Update particle system

Create shadow map texture

Render solid objects with shadows

Render particle system with shadows

Update cameras and lights

Seeding buffer Input buffer

Output buffer

Swap input and output buffer for next update

GPU update particle system and stream out

Shadow map

Expand each particle to a point
sprite using the geometry shader

Input buffer

Compare the distance to the light to the depth in
the shadow map to find if the pixel is in shadow
and render the pixel in the appropriate colour

Particle texture

Calculate the distance from the particle
pixel to the light in the pixel shader

Chapter 5 Homemade Smoke and Shadows

5.3 Improving our Method by Incorporating Existing Techniques

The current implementation shows a lot of room for improvements. This section will

discuss some ideas for future research and development.

The basic shadow map algorithm suffers from aliasing artefacts resulting in rough

pixelated edges to shadows. By using shadow mapping our method also suffers from

these artefacts throughout the 3D shadow. However, as we have discussed in a previous

chapter, there are several available advanced shadow mapping techniques that

successfully remove such artefacts and result in a smooth edged shadow. Combining one

of the more advanced shadow mapping techniques with our external shadowing should be

a trivial task. The PCSS [Fernando 2005] technique would be a particularly interesting

addition as it has a variable size penumbra which would be emphasised by our 3D

shadow effect seen through the particle system. Sharper edged shadows would become

more blurred for particles further away from the light source, adding to the realism of the

scene.

Soft particles is a technique to remove hard edges where a 2D billboard intersects 3D

geometry. In our current external shadowing technique there are hard edges where the

shadow cuts through particles. This is partly caused by the inaccuracies in the shadow

mapping technique and the sharp drop off which we can also address with an alternative,

more advanced, shadow mapping algorithm (like PCSS [Fernando 2005]).

The soft particles technique uses the scene depth buffer when rendering particles and as

the distance between the particle and the depth buffer shortens, the particle is alpha

blended out. We can use the soft particles technique in our model to alpha blend particle

pixels which intersect 3D geometry as normal but we cannot use the soft particles

technique directly to help remove any artefacts caused by 2D particles intersecting our

shadow map. However we can implement a similar technique which uses the depths

stored in the shadow map to blend particle pixels.

p. 62 of 79

Chapter 5 Homemade Smoke and Shadows

Figure 5.3.a shows how we have implemented a soft shadow technique using a shadow

map. Notice that the particle billboards in Figure 5.3.a are partially in shadow and

partially lit. In our original shadowing a hard edge appears at the cut-off between pixels

in shadow and lit areas. In the vertex shader we have sampled the shadow map,

calculated the distance between the particle position and the shadow map sample and

passed the result to the pixel shader. In the pixel shader we repeat a similar process to

calculate the distance between the pixel and the shadow map sample. With this data we

can calculate the pixel shading using a simple weighting function between the two depths,

so as the depths vary the pixel can be smoothly shaded from being in full shadow to being

fully lit. The shadow map tends to vary fairly quickly and consequently the shading will

also, but to counter this the shadow map could be blurred beforehand.

p. 63 of 79

Figure 5.3.a: Soft particles for our technique

Particle billboards

Light

Occluding solid object

Particles

Shadow

Shadow map

Chapter 5 Homemade Smoke and Shadows

Figure 5.3.b shows the result we achieve from using this technique with a shadow map.

We could use this technique of comparing the per vertex depth and the per pixel depth

with a more complex shadow mapping model, but we will leave this for future research.

Another possibility for reducing the hard edge artefacts is to look at using volumetric

particles to represent smoke. Figure 5.3.b was rendered at 124 fps on an ATI Radeon HD

5770 graphics card.

Green [Green 2008] published a particularly relevant paper, describing a method for

volumetric particle shadows, which includes a discussion for sorting on the GPU and a

method for the self-shadowing of particle systems. Self-shadowing of particle systems

p. 64 of 79

Figure 5.3.b: Our soft particles

Chapter 5 Homemade Smoke and Shadows

usually requires particles to be sorted along an axis. Green suggests using half-angle slice

rendering [Ikits et al. 2004] and half-angle axis sorting for the basis of his method. By

sorting particles along the half-angle axis (between the light and the viewer), all the

information for accumulating shadows and blending is available, saving on the

computational complexity and the memory requirements. Another option for self-

shadowing is a deferred shadowing approach like the method discussed by direct to video

[direct to video 2009]. The deep opacity maps [Yuksel and Keyser 2008] method is

another approach to self-shadowing which could be applied to particle systems, which

looks to be a particularly effective approach. Deep opacity maps could be used instead of

the regular slicing method discussed by Green [Green 2008] to build an improved

solution.

p. 65 of 79

Chapter 6 Final Conclusions

Chapter 6 Final Conclusions

6.1 Summary of Contributions

We have presented an overview on lighting techniques, methods for smoke simulation

and rendering with various shadowing techniques. We have added to the body of

knowledge in this area by presenting two novel techniques.

6.1.1 External Shadowing of Particle Systems

Our main contribution is our method for casting external shadows onto particle systems.

Our method can be used to achieve real-time 3D shadowing seen visually through a

translucent particle system. We have successfully implemented this technique on a GPU

vertex based particle system simulation using a typical billboarding approach for

rendering particles to represent smoke. We have also discussed a modified

implementation of the soft particles technique (inspired by Lorach [Lorach 2007] and the

sample in the DirectX SDK [Microsoft 2010]) with the purpose of reducing the hard edge

artefacts.

6.1.2 Surface-Curvature Ambient Occlusion

Our second contribution is Surface-Curvature Ambient Occlusion (SCAO); a method for

estimating ambient lighting for opaque solid models. SCAO uses the geometry shader to

provide a more accurate estimate of the ambient lighting term where often a constant

ambient lighting term is used. It can be easily implemented into a lighting model with

diffuse and specular terms providing a complete lighting model for 3D opaque solid

models.

6.2 Discussion

The primary aim of our research has been to develop a real-time method that improves

upon the realism of smoke rendering under different lighting conditions. Through a

detailed exploration of the subject area we narrowed our focus to the casting of external

shadows onto a smoke particle system.

p. 66 of 79

Chapter 6 Final Conclusions

Our resulting method provides an effective way to add external shadowing to a smoke

particle system with aesthetically pleasing results. Our method opens up many interesting

opportunities for further work.

During our research we developed another novel method, SCAO, using the geometry

shader to calculate an estimate for ambient lighting reaching a surface.

6.3 Future Work

Our two novel techniques which we have introduced provide some scope for further

development and future research.

6.3.1 External Shadowing of Particle Systems

We have already looked at using the soft particles technique to reduce the hard edge

artefacts and while our modified soft particles implementation yielded some promising

results, it did not completely resolve the artefacts. Perhaps a better solution might be to

use a more advanced shadow mapping technique to determine the shadow of a particle.

We have already discussed many advanced shadow mapping techniques which could

provide a solution, especially the PCSS [Fernando 2005] technique, which would have

the added benefit of providing a varied soft edge to the 3D shadow depending on the

distance from the light and the occluding model. We believe this would give a varied

penumbra to our 3D shadow which could be seen through the particle system, greatly

improving the aesthetics of the overall effect. This would likely be a fruitful path for

future research.

The soft volumetric particles technique could also be used to reduce the hard edge

artefacts but would need to be modified to work with a 2D shadow map instead of with

regular 3D geometry. This could be a path for future research.

Finally combining our method with a self-shadowing and an alpha-blending technique

should enrich the final scene. A sorting technique will likely be needed to implement

these and we suggest using the odd-even merge sort [Kipfer and Westermann 2005]

because of its ability to perform sorting passes over multiple frames, gradually and

smoothly moving towards a sorted data set. The half-angle axis sorting [Ikits et al. 2004]

concept may also be useful in reducing the workload. Green [Green 2008] uses this

technique successfully to implement a self-shadowing particle system. Deep opacity

maps [Yuksel and Keyser 2008] look to be another boon for self-shadowing and might be

p. 67 of 79

Chapter 6 Final Conclusions

applied instead of a regular slicing technique, certainly worth investigating in future

research.

6.3.2 Surface-Curvature Ambient Occlusion

For Surface-Curvature Ambient Occlusion we suggest future work include investigating

using multiple adjacent vertices and possibly taking an average to improve the accuracy

when calculating the local surface curvature. Also the method needs to be thoroughly

tested on high and low polygon models which may affect the results.

Finally, future work could look at using a normal map when calculating the surface

curvature to improve the accuracy of the results and explore how this method could fit in

with level of detail techniques.

p. 68 of 79

 Appendix A

Appendix A

The following 2 pages are a short poster paper published at the 2010 Eurographics

conference [Bass and Anderson 2010].

p. 69 of 79

 Appendix A

Eurographics page 1

p. 70 of 79

This item has been removed due to third party copyright. The unabridged version of the thesis can be
viewed at the Lanchester library, Coventry university.

 Appendix A

Eurographics page 2

p. 71 of 79

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at
the Lanchester library, Coventry university.

 Glossary

Glossary

API (application programming interface) – an interface implemented by software

allowing other software to interact via commands. Offers a layer of abstraction

between software so that higher-level programs can become hardware

independent. Allows for high-level software commands to interact with low-level

software and hardware without requiring detailed knowledge of the low-level

software.

Billboard – a camera aligned rectangular primitive (often built from two triangles) with

an attached texture also known as a sprite or an imposter under some

circumstances.

Billboarding – a rendering technique involving the use of billboards (see above).

GPU (graphics processing unit) – a parallel processor designed for the acceleration of 3D

graphics rendering.

MRT (multiple render target) – the ability to render out to multiple different render

targets in one pass.

OpenGL (open graphics library) – an open-source cross-platform graphics API providing

programmers with many graphics related commands providing a basic foundation

for applications using accelerated graphics.

Pixel (picture element) – a fundamental element (building block) of a raster image, which

contains a solid colour, made up from RGB channels.

QUICK (quadratic upstream interpolation for convective kinematics) – an advection

technique which can be used to simulate the movement of fluid.

SDK (software development kit) – a group of development tools and reference material

which aid a software developer in writing programs for a specific software

platform.

Shadow volumes – a shadowing technique that involves extruding a shadow volume from

the occluding mesh which encapsulates the shadowed parts of the scene.

Shadow mapping – a shadowing technique that involves creating a height map of the

occluding mesh from the light position. The height map is then used to determine

if a pixel is in shadow or not by comparing the depth of the pixel and the depth in

the height map.

p. 72 of 79

 Glossary

SCAO (surface-curvature ambient occlusion) – a technique for estimating the ambient

light reaching a surface by using the geometry shader to calculate the local surface

curvature.

SSAO (screen space ambient occlusion) – a post process lighting effect that adds an

estimate of the amount of ambient lighting in a scene by using the depth of the

pixels in screen space.

Texel (texture pixel) – a pixel belonging to a texture.

Voxel (volumetric pixel) – a fundamental element (building block) of a volume split into

a regular grid of small equally sized cubes.

p. 73 of 79

 References

References

Akenine-Moller, T. and Assarsson, U. (2002) 'Approximate Soft Shadows on Arbitrary

Surfaces using Penumbra Wedges'. pp. 297-306 Eurographics Workshop on

Rendering: Eurographics ISBN: 1-58113-534-3

Annen, T.; Mertens, T.; Bekaert, P.; Seidel, H.-P. and Kautz, J. (2007) 'Convolution

Shadow Maps'. pp. 51-60 Rendering Techniques 2007: Eurographics Symposium

on Rendering: Eurographics 18 ISBN: 978-3-905673-52-4

Annen, T.; Mertens, T.; Seidel, H.-P.; Flerackers, E. and Kautz, J. (2008) 'Exponential

shadow maps'. pp. 155-161 Graphics Interface: Canadian Information Processing

Society ISBN: 978-1-56881-423-0

Ashikhmin, M. and Shirley, P. (2000) 'An Anisotropic Phong Light Reflection Model'.:

The University of Utah

Assarsson, U.; Dougherty, M.; Mounier, M. and Akenine-Möller, T. (2003) 'An

Optimized Soft Shadow Volume Algorithm with Real-Time Performance'. pp. 33-

40 Graphics Hardware: Eurographics ISBN: 1-58113-739-7

Bass, C. J. and Anderson, E. F. (2010) 'Real-Time Smoke Rendering and Light

Interaction'. Eurographics Posters: Eurographics

Bavoil, L. (2008) 'Percentage-Closer Soft Shadows'.: NVidia [online] available from

<http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/PercentageClo

serSoftShadows/doc/PercentageCloserSoftShadows.pdf>

Bavoil, L. and Sainz, M. (2008) 'Screen Space Ambient Occlusion'.: NVidia [online]

available from

<http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceA

O/doc/ScreenSpaceAO.pdf>

Bilodeau, B. and Songy, M. (1999) 'Real Time Shadows'. Creativity: Creative Labs Inc.

Blinn, J. F. (1977) 'Models of Light Reflection for Computer Synthesized Pictures'. pp.

192-198 SIGGRAPH: ACM 11 (2)

Blythe, D. (2006) 'The Direct3D 10 System'. pp. 724-734 SIGGRAPH: ACM 25 (3)

ISBN: 1-59593-364-6

Bunnell, M. (2005) 'Dynamic Ambient Occlusion and Indirect Lighting'. ch. 14 pp. 223-

233 NVidia GPU Gems 2: Programming Techniques for High-Performance

p. 74 of 79

 References

Graphics and General-Purpose Computation: Addison-Wesley ISBN: 0-321-

33559-7

Bunnell, M. and Pellacini, F. (2004) 'Shadow Map Antialiasing'. ch. 11 NVidia GPU

Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics:

Addison-Wesley ISBN: 0-321-22832-4

Cantlay, I. (2007) 'High-Speed, Off-Screen Particles'. ch. 23 pp. 513-529 NVidia GPU

Gems 3: Addison-Wesley ISBN: 0-321-51526-9

Carmack, J. (2000) Unpublished: 'Carmack on Shadow Volumes'. [online] available from

<http://developer.nvidia.com/attach/6832>

Chan, E. and Durand, F. (2003) 'Rendering Fake Soft Shadows with Smoothies'. pp. 208-

218 Eurographics Workshop on Rendering: Eurographics ISBN: 3-905673-03-7

Cohen, J. M.; Tariq, S. and Green, S. (2010) 'Interactive Fluid-Particle Simulation using

Translating Eulerian Grids'. pp. 15-22 SIGGRAPH: ACM ISBN: 978-1-60558-

939-8

Cook, R. L. and Torrance, K. E. (1982) 'A Reflectance Model for Computer Graphics'.

pp. 7-24 TOG: ACM 1 (1)

Crane, K.; Llamas, I. and Tariq, S. (2007) 'Real-Time Simulation and Rendering of 3D

Fluids'. ch. 30 pp. 633-675 NVidia GPU Gems 3: Addison-Wesley ISBN: 0-321-

51526-9

Crow, F. C. (1977) 'Shadow Algorithms for Computer Graphics'. pp. 242-248

SIGGRAPH: ACM 11 (2)

Dimitrov, R. (2007) 'Cascaded Shadow Maps'.: NVidia [online] available from

<http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_

maps/doc/cascaded_shadow_maps.pdf>

direct to video (2009) 'A Thoroughly Modern Particle System'.: direct to video [online]

available from <http://directtovideo.wordpress.com/2009/10/06/a-thoroughly-

modern-particle-system>

Donnelly, W. and Demers, J. (2004) 'Generating Soft Shadows Using Occlusion Interval

Maps'. ch. 13 NVidia GPU Gems: Programming Techniques, Tips, and Tricks for

Real-Time Graphics: Addison-Wesley ISBN: 0-321-22832-4

Donnelly, W. and Lauritzen, A. (2006) 'Variance Shadow Maps'. pp. 161-165 Symposium

on Interactive 3D Graphics: ACM ISBN: 1-59593-295-X

p. 75 of 79

 References

Everitt, C. and Kilgard, M. J. (2002) 'Practical and Robust Stenciled Shadow Volumes for

Hardware-Accelerated Rendering'.: NVidia [online] available from

<http://developer.nvidia.com/attach/6831>

Fedkiw, R.; Stam, J. and Jensen, H. W. (2001) 'Visual Simulation of Smoke'. pp. 15-22

SIGGRAPH: ACM ISBN: 1-58113-374-X

Fernando, R. (2005) 'Percentage-Closer Soft Shadows'. p. 35 SIGGRAPH: ACM

Fillion, D. and McNaughton, R. (2008) 'Starcraft 2 Effects and Techniques'. pp. 133-164

SIGGRAPH: ACM

Fraedrich, R.; Auer, S. and Westermann, R. (2010) 'Efficient High-Quality Volume

Rendering of SPH Data'. IEEE Visualization: IEEE 16 (6)

Green, S. (2008) 'Volumetric Particle Shadows'.: NVidia [online] available from

<http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/smokePa

rticles/doc/smokeParticles.pdf>

Hoberock, J. and Jia, Y. (2007) 'High-Quality Ambient Occlusion'. ch. 12 pp. 257-274

NVidia GPU Gems 3: Addison-Wesley ISBN: 0-321-51526-9

Howes, L. and Thomas, D. (2007) 'Efficient Random Number Generation and

Application Using CUDA'. ch. 37 pp. 805-831 NVidia GPU Gems 3: Addison-

Wesley ISBN: 0-321-51526-9

Ikits, M.; Kniss, J.; Lefohn A. and Hansen C. (2004) 'Volume Rendering Techniques'. ch.

39 NVidia GPU Gems: Programming Techniques, Tips, and Tricks for Real-

Time Graphics: Addison-Wesley ISBN: 0-321-22832-4

Jenson, H. W. (1996) 'Global Illumination using Photon Maps'. pp. 21-30 Eurographics:

Springer-Verlag ISBN: 3-211-82883-4

Khronos Group (2006) 'OpenGL 2.1'. [online] available from <http://www.opengl.org/>

Kim, T.-Y. and Neumann, U. (2001) 'Opacity Shadow Maps'. pp. 177-182 Eurographics:

Springer-Verlag ISBN: 3-211-83709-4

Kipfer, P. and Westermann, R. (2005) 'Improved GPU Sorting'. ch. 46 pp. 733-747

NVidia GPU Gems 2: Programming Techniques for High-Performance Graphics

and General-Purpose Computation: Addison-Wesley ISBN: 0-321-33559-7

Kolb, A.; Latta, L. and Rezk-Salama, C. (2004) 'Hardware-based Simulation and

Collision Detection for Large Particle Systems'. pp. 123-131 SIGGRAPH: ACM

ISBN: 3-905673-15-0

p. 76 of 79

 References

Kruger, J. and Westermann, R. (2003) 'Acceleration Techniques for GPU-based Volume

Rendering'. p. 38 IEEE Visualization: IEEE Computer Society ISBN: 0-7695-

2030-8

Latta, L. (2004) 'Building a Million Particle System'.: Massive Development GmbH

[online] available from <http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf>

Latta, L. (2007) 'Everything about Particle Effects'.: Game Developers Conference

[online] available from

<http://www.2ld.de/gdc2007/EverythingAboutParticleEffectsSlides.pdf>

Lauritzen, A. (2007) 'Summed-Area Variance Shadow Maps'. ch. 8 pp. 157-183 NVidia

GPU Gems 3: Addison-Wesley ISBN: 0-321-51526-9

Lauritzen, A. and McCool, M. (2008) 'Layered Variance Shadow Maps'. pp. 139-146

Graphics Interface: Canadian Information Processing Society ISBN: 978-1-

56881-423-0

Lokovic, T. and Veach, E. (2000) 'Deep Shadow Maps'. pp. 385-392 SIGGRAPH: ACM

ISBN: 1-58113-208-5

Lorach, T. (2007) 'Soft Particles'.: NVidia [online] available from

<http://developer.download.nvidia.com/whitepapers/2007/SDK10/SoftParticles_h

i.pdf>

Microsoft (2010) 'DirectX SDK June 2010'. [online] available from

<http://msdn.microsoft.com/en-us/directx/default.aspx>

Mittring, M. (2007) 'Finding Next Gen: CryEngine 2'. pp. 97-121 SIGGRAPH: ACM

Molemaker, J.; Cohen, J. M.; Patel, S. and Noh, J. (2008) 'Low Viscosity Flow

Simulations for Animation'. pp. 9-18 Symposium on Computer Animation:

Eurographics ISBN: 978-3-905674-10-1

Muller, M.; Charypar, D. and Gross, M. (2003) 'Particle-Based Fluid Simulation for

Interactive Applications'. pp. 154-159 Symposium on Computer Animation:

Eurographics ISBN: 1-58113-659-5

Myers, K. (2007) 'Variance Shadow Mapping'.: NVidia [online] available from

<http://developer.download.nvidia.com/whitepapers/2007/SDK10/VarianceShado

wMapping.pdf>

Myers, K.; Fernando, R. and Bavoil, L. (2008) 'Integrating Realistic Soft Shadows into

Your Game Engine'.: NVidia [online] available from

<http://developer.download.nvidia.com/whitepapers/2008/PCSS_Integration.pdf>

p. 77 of 79

 References

NVidia (2007) 'NVidia CUDA SDK and GPU Computing'. [online] available from

<http://developer.nvidia.com/object/gpucomputing.html>

NVidia (2007) 'NVidia Direct3D and OpenGL SDKs version 10'. [online] available from

<http://developer.nvidia.com/object/sdk_home>

Oren, M. and Nayar, S. K. (1994) 'Generalization of Lambert’s Reflectance Model'. pp.

239-246 SIGGRAPH: ACM ISBN: 0-89791-667-0

Perlin, K. and Hoffert, E. M. (1989) 'Hypertexture'. pp. 253-262 SIGGRAPH: ACM 23

(3) ISBN: 0-89791-312-4

Pharr, M. and Green, S. (2004) 'Ambient Occlusion'. ch. 17 pp. 279-292 NVidia GPU

Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics:

Addison-Wesley ISBN: 0-321-22832-4

Phong, B. T. (1973) 'Illumination of Computer-generated Images'.: The University of

Utah

Porter, T. and Duff, T. (1984) 'Compositing Digital Images'. pp. 253-259 SIGGRAPH:

ACM 18 (3) ISBN: 0-89791-138-5

Reeves, W. T. (1983) 'Particle Systems - A Technique for Modeling a Class of Fuzzy

Objects'. pp. 359-375 SIGGRAPH: ACM ISBN: 0-89791-109-1

Reeves, W. T.; Salesin, D. H. and Cook, R. L. (1987) 'Rendering Antialiased Shadows

with Depth Maps'. pp. 283-291 SIGGRAPH: ACM 21 (4) ISBN: 0-89791-227-6

Reynolds, C. W. (1987) 'Flocks, Herds and Schools: A Distributed Behavioral Model'. pp.

25-34 SIGGRAPH: ACM ISBN: 0-89791-227-6

Scherzer, D.; Jeschke, S. and Wimmer, M. (2007) 'Pixel-Correct Shadow Maps with

Temporal Reprojection andShadow Test Confidence'. Symposium on Rendering:

Eurographics

Selle, A.; Fedkiw, R.; Kim, B.; Liu, Y. and Rossignac, J. (2008) 'An Unconditionally

Stable MacCormack Method'. pp. 350-371 Journal of Scientific Computing:

Plenum Press 35 (2-3)

Selle, A.; Mohr, A. and Chenney, S. (2004) 'Cartoon Rendering of Smoke Animations'.

pp. 57-60 Non-Photorealistic Animation and Rendering: ACM ISBN: 1-58113-

887-3

Sintorn, E. and Assarsson, U. (2007) 'Fast Parallel GPU-Sorting Using a Hybrid

Algorithm'. pp. 1381-1388 Journal of Parallel and Distributed Computing:

Academic Press Inc. 68 (10)

Stam, J. (1999) 'Stable Fluids'. pp. 121-128 SIGGRAPH: ACM ISBN: 0-201-48560-5

p. 78 of 79

 References

Stam, J. (2003) 'Real-Time Fluid Dynamics for Games'.: Game Developers Conference

Stich, M.; Wachter, C. and Keller, A. (2007) 'Efficient and Robust Shadow Volumes

Using Hierarchical Occlusion Culling and Geometry Shaders'. ch. 11 pp. 239-257

NVidia GPU Gems 3: Addison-Wesley ISBN: 0-321-51526-9

Strauss, P. S. (1990) 'A Realistic Lighting Model for Computer Animators'. pp. 56-64

IEEE Computer Graphics and Applications: IEEE Computer Society Press 10 (6)

The Valve Developer Community (2010) 'Particle System Overview'.: The Valve

Developer Community [online] available from

<http://developer.valvesoftware.com/wiki/Particle_System_Overview>

van Pelt, R.; Vilanova i Bartroli, A. and van de Wetering, H. (2010) 'Illustrative Volume

Visualization using GPU-Based Particle Systems'. pp. 571-582 IEEE

Visualization: IEEE 16 (4)

Ward, G. (1992) 'Measuring and Modelling Anisotropic Reflection'. pp. 265-272

SIGGRAPH: ACM 26 (2)

Williams, L. (1978) 'Casting Curved Shadows on Curved Surfaces'. pp. 270-274

SIGGRAPH: ACM 12 (3)

Wyman, C. and Hansen, C. (2003) 'Penumbra Maps: Approximate Soft Shadows in Real-

Time'. pp. 202-207 Eurographics Workshop on Rendering: Eurographics ISBN:

3-905673-03-7

Yuksel, C. and Keyser, J. (2008) 'Deep Opacity Maps'. Computer Graphics Forum:

Eurographics 27 2

Zhang, F.; Sun, H. and Nyman, O. (2007) 'Parallel-Split Shadow Maps on Programmable

GPUs'. ch. 10 pp. 203-235 NVidia GPU Gems 3: Addison-Wesley ISBN: 0-321-

51526-9

p. 79 of 79

	NofireCover Page
	NoFire
	Chapter 1 Introduction
	1.1 Aims
	1.2 Contribution
	1.3 Thesis Overview

	Chapter 2 Programmable Graphics Pipeline
	2.1 Direct3D 10 Programmable Graphics Pipeline
	2.2 Input Assembler
	2.3 Vertex Shaders
	2.4 Geometry Shaders
	2.5 Stream Out
	2.6 Rasteriser
	2.7 Pixel Shader
	2.8 Output Merger
	2.9 Multiple Render Targets

	Chapter 3 Opaque Solid Model Effects
	3.1 Bi-directional Reflectance Distribution Function and the Rendering Equation
	3.2 Lighting Models
	3.2.1 Lambert
	3.2.2 Phong and Blinn-Phong
	3.2.3 Cook-Torrance
	3.2.4 Oren-Nayar
	3.2.5 Strauss
	3.2.6 Ward
	3.2.7 Ashikhmin-Shirley

	3.3 Ambient Occlusion
	3.4 Surface-Curvature Ambient Occlusion
	3.5 Fresnel Highlighting Effect
	3.6 Shadow Volumes
	3.7 Shadow Maps
	3.8 Smoothies and Penumbra Wedges

	Chapter 4 Making Smoke
	4.1 Simulation
	4.1.1 Grid-Based Eulerian Approach
	4.1.2 Particle System-Based Lagrangian Approach
	4.1.3 Smoothed Particle Hydrodynamics
	4.1.4 Hybrid Methods

	4.2 Rendering
	4.2.1 Volume Rendering
	4.2.2 Particle System Rendering
	4.2.3 Particle Blending and Sorting
	4.2.4 Overdraw in Particle System Rendering
	4.2.5 Soft Particles
	4.2.6 SPH Rendering

	Chapter 5 Homemade Smoke and Shadows
	5.1 Particle System Development
	5.2 Adding Shadows
	5.3 Improving our Method by Incorporating Existing Techniques

	Chapter 6 Final Conclusions
	6.1 Summary of Contributions
	6.1.1 External Shadowing of Particle Systems
	6.1.2 Surface-Curvature Ambient Occlusion

	6.2 Discussion
	6.3 Future Work
	6.3.1 External Shadowing of Particle Systems
	6.3.2 Surface-Curvature Ambient Occlusion

	Appendix A
	Glossary
	References

