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No Fire Without Smoke;

Smoke Rendering and Light Interaction for 

Real-Time Computer Graphics

Christopher J. Bass

Abstract

Realism in computer graphics depends upon digitally representing what we see in the 

world with careful attention to detail, which usually requires a high degree of complexity 

in modelling the scene.  With some computer graphics applications developers have to 

limit the complexity of the scene to allow the application to run in real-time on modern 

consumer grade graphics hardware.  This trade-off between realism and performance 

means that new techniques are continually being developed, the aim of which is to 

improve the realism of a scene without compromising the real-time performance.

Shadows provide an important visual clue to where objects are positioned in a computer-

generated scene, because without shadowing objects can look like they are floating above 

the ground.  Rendering shadows becomes even more important when translucent media, 

such as smoke, is rendered.  Without shadowing smoke can look like it is not part of a 

scene and without position or shape, appearing as unrealistic.

This thesis charts our investigation of methods for modelling computer generated smoke, 

techniques for global lighting, and the shadowing of solid objects.  We examine the 

rendering of smoke, its interaction with lighting, and how visually plausible shadows can 

be added to smoke.

We describe and discuss a novel method for casting shadows through a GPU-based 

particle system from an opaque solid object.  We also describe a new approach for 

ambient lighting, which we refer to as Surface-Curvature Ambient Occlusion (SCAO), 

taking advantage of the geometry shader in the Direct3D 10 programmable graphics 

pipeline.
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Chapter 1 Introduction

A successful modern computer game depends on captivating the user in a convincing and 

challenging virtual world.  Accurate lighting is essential for creating convincing 3D 

virtual worlds that immerse the user.  Real-time speeds are also essential so that the 

player can interact with the game without any delays, which would break the player’s 

immersion.  There are a variety of well-known existing lighting algorithms that are 

capable of attaining real-time speeds.  Many are designed for the lighting of opaque solid 

objects, but when we want to render matter such as smoke, which is translucent, these 

lighting models become inadequate.  Special effects such as particle systems are often 

used to create a representation for these substances.

Realistic rendering of natural phenomena such as smoke can help to create a rich virtual 

world to immerse the user.  With the rendering of smoke and translucent gases there are a 

range of new problems to tackle that do not occur (or are negligible) when rendering solid 

models.  When light interacts with a volume of smoke particles it might pass through, be 

absorbed or scattered.  This means that the rendering of smoke should be dealt with in a 

different way to rendering solid models to give a realistic output.  A significant issue with 

getting a realistic looking output from a smoke model is the shadowing.  There has 

already been research in this area that focuses on internal shadows and self-shadowing 

where the smoke casts shadows onto itself and solid objects in the environment.  There is 

not, however, any research that we are aware of looking at external shadows cast onto a 

volume of smoke particles, which is where this work finds an original topic to investigate.

Developments in computer graphics hardware and 3D graphics APIs (application 

programming interfaces) have freed software developers from using the fixed function 

graphics pipeline.  With the arrival of the programmable pipeline, developers can utilise 

the GPU in new ways, allowing new effects to be created to improve the graphics in 

applications such as computer games.

Adding to the graphical realism in games and virtual worlds adds to the immersion of the 

user and the overall experience.  New and more accurate lighting models than previously 

possible can be implemented through shaders and used for virtual environments.

For real-time applications such as computer games there is always a trade-off between 

rendering quality and performance.  Rendering smoke with accurate lighting, including 

scattering and shadowing is a challenge.  A sizeable body of research exists which 
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provides solutions for related topics in this area.  Some of these solutions operate at real-

time speeds and some are offline techniques.  Our work looks at producing a real-time 

solution, which could be implemented within current computer games and therefore most 

referenced literature will discuss real-time solutions.  Existing solutions in the literature 

will be discussed in more detail throughout this thesis.

1.1 Aims

The primary aim of this research was to develop a real-time model that improves upon the 

realism of smoke rendering under different lighting conditions.  Through a detailed 

exploration of the subject area we identified a gap in the existing research, being the 

casting of external shadows onto a virtual dynamic smoke model.  This became the focus 

of our work from which we developed an original solution.

Branching off from the primary aim, other objectives included exploring into related 

rendering effects that could be implemented through the programmable graphics pipeline 

via shaders.  This led us into exploring the capabilities of the pipeline and development of 

a novel ambient lighting estimate for opaque solid models.

1.2 Contribution

The main contribution of this thesis is a method for casting external shadows onto a 

volume of smoke particles.  The smoke particles are simulated using a GPU-based 

particle system and rendering is via a typical billboard (a camera aligned rectangular 

primitive with an attached texture) approach.

Another novel contribution of this thesis is the Surface-Curvature Ambient Occlusion 

(SCAO) technique, an ambient lighting estimate for opaque solid models.  This provides 

a beneficial improvement over using a constant term for ambient lighting.  It can easily be 

implemented on top of another lighting model, which could handle the diffuse and 

specular terms providing a complete lighting model for opaque solid objects.

Most of the explored techniques and all of the developments are for real-time applications 

and could be easily used in graphics applications such as computer games with little 

detriment in performance.
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1.3 Thesis Overview

This thesis is divided into 6 chapters, which break down as follows:

Following on from this introduction (Chapter 1), Chapter 2 details the graphics API that 

we used during development along with the programmable graphics pipeline discussing 

the programmable parts of the pipeline and its capabilities.  Chapter 3 examines existing 

lighting techniques and effects, which can be implemented on opaque solid models.  This 

chapter also covers our innovative ambient lighting model; SCAO.  In Chapter 4 we 

discuss existing techniques for simulating and rendering smoke in virtual worlds. 

Chapter 5 discusses our novel approach to adding shadows that can dynamically interact 

with a particle system.  In Chapter 6 we make a final conclusion and discuss areas for 

possible extended research and new ideas.  Appendix A includes a copy of our earlier 

Eurographics poster publication [Bass and Anderson 2010] which discussed our external 

shadowing technique for particle systems.
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Chapter 2 Programmable Graphics Pipeline

In recent years developments in graphics-hardware have been replacing sections of the 

fixed function pipeline to be programmable via so-called shaders.  As more of the 

pipeline is becoming programmable developers have more freedom to harness the power 

of the GPU for a mixture of applications.

Applications that use accelerated graphics usually make use of an API, the two most 

popular being either Direct3D [Microsoft 2010] or OpenGL (open graphics library) 

[Khronos Group 2006].  These API’s provide a large set of commands and instructions, 

giving a basic foundation, which graphics applications can build on.

Direct3D is a platform-dependent graphics API, part of DirectX [Microsoft 2010], 

requiring a Microsoft Windows operating system.  At the beginning of this research 

project Direct3D version 10 [Blythe 2006] was the most recent available version exposing 

more programmable parts of the graphics pipeline (geometry shaders) and providing more 

freedom with development.

OpenGL [Khronos Group 2006] is an open standard cross-platform graphics API, which 

exists on many different platforms.  At the beginning of this project OpenGL version 2.1 

was the most recent available version, which does not provide as many programmable 

parts of the pipeline as the Direct3D version at that time.

The reason for choosing Direct3D was that at the start of this project it allowed more of 

the pipeline to be programmable.  At the time of completing our research project and the 

writing of this thesis new API versions have been released.

This chapter discusses the Direct3D 10 pipeline.
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2.1 Direct3D 10 Programmable Graphics Pipeline

The Direct3D 10 pipeline adds programmable geometry shaders to the already existing 

vertex and pixel shaders.  This allows for a range of new effects and developments to be 

built on this technology.

The Direct3D 10 pipeline can be traversed in a few different ways.  The new geometry 

shader and the stream out stages give 4 possible paths through the Direct3D 10 pipeline 

as illustrated in Figure 2.1.a.  Note that the stream out stage can only be used if the 

geometry shader is used.  Also note that there is the option of passing data to the rasteriser 

even if the stream out stage is in use.  The smooth cornered boxes in Figure 2.1.a identify 

the programmable stages.  All of the stages are discussed in the following sections of this 

thesis.
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2.2 Input Assembler

The purpose of the input assembler is to transfer raw data from memory to the vertex 

shader.  Direct3D 10 provides 9 different topologies for defining the structure that the 

data is organised in.

Figure 2.2.a shows the different topologies available for defining the data structure in 

Direct3D 10.  The point list is a typical choice for particle systems that store single 
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particle data in each input vertex.  It can also be used for drawing single points on the 

screen.  The line list and line strip are for drawing straight lines on the screen with the list 

used for individual lines and the strip for drawing a joined line.  The triangle list and 

triangle strip are for drawing triangles, the list is for individual triangles and the strip for a 

joined up strip of triangles.  The main difference over the older Direct3D 9 graphics 

pipeline is the addition of adjacency information, which can be accessed in the geometry 

shader stage of the pipeline.

2.3 Vertex Shaders

Vertex shaders are the first programmable stage in the graphics pipeline and operate once 

per incoming vertex, allowing for the vertices to be manipulated in 3D space.

A common task for the vertex shader for rendering 3D meshes from a virtual 3D 

environment is to convert each vertex from model space to clip space.  This is achieved 

simply by multiplying each vertex by the ‘WorldViewProjection’ matrix.
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2.4 Geometry Shaders

Geometry shaders are a new addition to the Direct3D programmable graphics pipeline 

introduced with the arrival of Direct3D 10.  They are an optional programmable 

component, which if selected by the developer make up the second programmable stage.

Geometry shaders have similar functionality to vertex shaders but operate on individual 

3D primitives instead of individual vertices like the vertex shader does.  They also have 

some other differences to vertex shaders such as access to data from adjacent vertices and 

the ability to add new primitives or delete existing primitives.  These features allow the 

geometry shader to provide new effects such as the birth and death of particles and 

creating billboards on the fly from point data.  There are other effects that can be created 

with geometry shaders and there are plenty of examples available in the DirectX SDK 

[Microsoft 2010], which discuss their capabilities.

Geometry shaders can generate new geometry on the fly by creating and appending new 

primitives to the output stream.  The output stream can be set to a few different 

topologies, these being a point stream, a line stream, and a triangle stream.

The input and output stream are not required to have the same topology, so for example 

the input stream could be a point list and the output stream could be a triangle stream, and 

the geometry shader itself could be turning a single input point into billboards.

2.5 Stream Out

After the geometry shader stage there is the optional stream out function in the Direct3D 

10 graphics pipeline, which allows for primitives to be streamed out by writing them back 

to memory instead of, or as well as, passing them on to the rasteriser.  This new operation 

allows for particle systems to be entirely simulated on the GPU and individual particles 

can be stored as vertices instead of pixels in a texture.

2.6 Rasteriser

The rasteriser generates the pixels from the incoming vertices, depending on the primitive 

type.  The incoming vertices must have been converted to screen space coordinates by 

this point; the screen space conversion is usually done inside the vertex or geometry 

shader.  The rasteriser generates pixels depending on the primitive type, so rasterisation 

of 3 vertices will yield different results depending on the incoming primitive types.  The 
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primitive type triangle strip would produce a filled triangle from 3 vertices, whereas the 

type line strip would produce an unfilled triangle, and point list would produce 3 separate 

points.  The rasteriser also allows for some geometry to be culled before converting to 

pixels and passing to the pixel shader.

2.7 Pixel Shader

Pixel shaders are the final programmable stage of the Direct3D 10 graphics pipeline. 

They operate on each pixel and are often the most performance sapping part of the 

pipeline due to the large number of pixels passed from the rasteriser, which results in a 

high number of calculations.  Operating on individual pixels means that pixel shaders can 

produce detailed effects such as per pixel lighting, as opposed to per vertex lighting.  Per 

vertex data such as a normal vector or a colour value are interpolated for pixels depending 

on the distance from the vertices, so a pixel in-between two vertices would take a 

weighted average proportion from the normal data and colour data from each.  When the 

lighting calculations are performed in the pixel shader using the interpolated data, the 

surface appears smooth.

2.8 Output Merger

The final stage of the graphics pipeline is the output merger, which handles the render 

target and depth stencil buffer.  Once a pixel has been shaded the pixel must be compared 

to what may already be in the render target and then a decision how to overwrite it needs 

to be made.  If depth testing is enabled then a customisable test is performed between the 

pixel depth and the depth stored in the depth buffer.  The result from the depth test can 

then be used to make a decision on how the pixel should be blended to the render target. 

For opaque objects it is common to perform a depth test and then overwrite without any 

blending so that near objects appear in front of objects in the background without any 

form of blending.  Translucent objects require some sort of blending to achieve the 

desired result.  In Direct3D 10 a 'Blend State' is used to determine how pixels are blended 

when rendering.  If left to default the new pixel will overwrite the old pixel (useful for 

opaque objects).

Porter and Duff [Porter and Duff 1984] discuss the composition of digital images and 

how the alpha channel can be used to store the opacity of a colour, which can then be 

used when blending pixels.  In the Direct3D 10 programmable graphics pipeline there is 
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the option of configuring how a new pixel is blended to the render target.  The blending 

equation determines this and it can be customised using Direct3D output merger 

commands or from HLSL code inside the shader.

Equation 2.8.a shows the typical format of the blending equation performed in the output 

merger stage.  It can be customised using the available commands.  Firstly to use the 

blending equation blending must be enabled otherwise the output from the pixel shader is 

used without any blending.  With blending enabled the input RGB data sources 1 and 2 

(SrcBlend and DestBlend respectively) need to be chosen along with an optional pre-

blend operation.  The input alpha data sources 1 and 2 (SrcBlendAlpha and 

DestBlendAlpha respectively) also have options and the optional pre-blend operation is 

also available.  Finally the blending operation (BlendOp) needs to be selected which 

determines how channel 1 and 2 are combined.

The most commonly used configurations for the blending equation are additive blending, 

alpha additive blending, and alpha blending.

Additive blending is particularly useful for creating transparent objects without an alpha 

channel.  New object colours are added to the existing scene colour.  Black (being R=0, 

G=0, B=0) will act as a transparent colour adding nothing to the scene.  Also because 

addition can be performed in any order, the order of drawing is not important, therefore 

additive blending is useful for unsorted data.
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Final Colour = (SrcBlend * SrcBlendAlpha) BlendOp
(DestBlend * DestBlendAlpha)

Equation 2.8.b: Additive blending

Final Colour = (SrcColour * One) + (DestColour * One)

Equation 2.8.c: Additive alpha blending

Final Colour = (SrcColour * SrcAlpha) + (DestColour * One)
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Additive alpha blending is similar to additive blending, but the additional alpha channel 

on the source allows for any source colour coming from the pixel shader to be made 

transparent via this alpha value.  Note that the colour black will still add nothing to the 

scene hence will also act as a transparent colour.

Alpha blending is different to additive alpha blending by multiplying the destination 

colour by the inverse of the source alpha value.  This operation means opaque source 

colours (with an alpha value of 1) will overwrite the destination colour instead of just 

adding to it as in both additive blending and alpha additive blending.  This operation also 

means that the order of drawing the objects becomes important for correct opacity, 

therefore objects drawn with alpha blending need to be sorted by depth so that the objects 

in the distance can be drawn first and the objects nearer to the camera drawn last resulting 

in correct blending.

2.9 Multiple Render Targets

Multiple render targets (MRTs) allow for the pipeline to output data to different render 

targets on the same pass.  This is a particularly useful tool for outputting additional data 

as well as colour, such as normals and depth.  For example the first pass could render 

objects in the scene as well as storing additional information in a separate render target, 

which can then be used in the second pass to create post processing effects or particular 

lighting effects.  An example is the setup described by Fillion and McNaughton [Fillion

and McNaughton 2008] who use a setup using 4 MRTs to store information allowing for 

a range of lighting and special effects to be used in a modern game.
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Chapter 3 Opaque Solid Model Effects

With the programmable graphics pipeline there are a range of new special effects that can 

be used in real-time computer graphics applications such as games.  This chapter covers 

the effects related to opaque solid models including lighting models and shadowing 

techniques that can be implemented in the Direct3D 10 graphics pipeline. We also lead on 

to discuss SCAO – our innovative method for improving the ambient lighting term 

common in some lighting models.

3.1 Bi-directional Reflectance Distribution Function and the 
Rendering Equation

Bi-directional reflectance distribution function (BRDF) is a function which describes how 

light is reflected off opaque model surfaces at different incoming and outgoing angles 

with respect to the surface normal.  The Rendering equation is a fundamental concept in 

the rendering and lighting of many computer generated scenes.  It states that the outgoing 

light leaving a point on a surface is approximately equal to the sum of the emitted light 

plus the reflected light.  This can be written as a function for incoming light and a BRDF. 

The following Lighting models provide solutions to the rendering equation by assuming a 

function for incoming light and how the surface reflects light.  They can be used to give a 

reasonably accurate representation for rendering and lighting computer generated scenes.

3.2 Lighting Models

This section discusses the existing lighting models that can be used to shade opaque solid 

models under direct illumination from a light source.  In these models lights are usually 

modelled either as a directional light or as a point light.  Directional lights have direction 

and colour and can be effective in modelling distant light sources in computer generated 

scenes.  Point lights have a position and colour and can be effective in modelling nearby 

light sources emitting from a single point.  Many of these lighting models are built from 

separate different forms of lighting, which are calculated as separate terms before being 

added together as in the Phong and Blinn-Phong lighting models.
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3.2.1 Lambert

Lambert reflectance states that the light reflected off a surface will be the same regardless 

of the viewing angle.  This type of reflectance is particularly effective in modelling rough 

surfaces as it gives objects a matt look.  Lambert reflectance is sometimes used for 

modelling the diffuse reflection term found in some of the following lighting models (see 

3.2.2).

3.2.2 Phong and Blinn-Phong

The Phong [Phong 1973] and Blinn-Phong [Blinn 1977] lighting models break down 

shading into three different elements, these being ambient, diffuse, and specular, which 

when added together give the complete lighting model.

The ambient component is usually just a constant RGB colour value, which allows the 

objects in the scene to be visible even if there are no other lights.

The diffuse component is dependent on the angle at which light hits a surface; it is 

calculated by finding the dot product between the direction of the light source and the 

direction of the surface normal the diffuse term exhibits Lambert reflectance.

The specular component is dependent on the angle at which light hits a surface and the 

position of the viewer.  It is calculated in slightly different ways by the Phong and Blinn-

Phong models.  The Phong model finds the dot product between the reflection vector and 

the viewer.  The Blinn-Phong model simplifies the calculation for directional lights by 

first calculating the half-vector between the light and the viewer direction vectors and 

then finding the dot product between the half-vector and the surface normal.

3.2.3 Cook-Torrance

The Cook-Torrance lighting model [Cook and Torrance 1982] allows for more accurate 

modelling of rough surfaces, which is something the Blinn-Phong model does not 

consider.  It is particularly effective for modelling rough metals.  Like the Blinn-Phong 

model, the Cook-Torrance model breaks down into the three lighting elements, ambient, 

diffuse, and specular, with the main difference being the calculation of the specular term. 

The surface roughness is modelled based on the micro-facets method, where a rough 

surface is assumed to have evenly spaced (smaller than per-pixel) facets cut into the 

surface, which change the specular reflection properties of the modelled surface.
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Comparing the Blinn-Phong model to the Cook-Torrance model for the calculation of the 

specular component, there are three new elements introduced into the equation, these 

being Fresnel, roughness, and geometric.  

The Fresnel term improves the specular reflections by making the intensity of the 

specular highlight stronger at shallower angles.  This occurs in nature due to more light 

being reflected at shallow angles instead of being non-view-dependent as is the case with 

the Blinn-Phong model.

The roughness element describes the distribution of the micro facets that face in the same 

direction as the half-vector.  A rougher surface will see a larger specular reflection 

compared to a smoother surface with a small specular reflection.

The geometric term describes the amount of incoming and reflected light blocked by the 

micro-facets at shallow angles.  With deeper micro-facets more light is blocked and 

results in rough surfaces appearing duller than smooth surfaces.

These terms can be calculated in a number of different ways, making this a very flexible 

model, nevertheless this model can take a long time to fine tune to achieve the desired 

results.

3.2.4 Oren-Nayar

The Oren-Nayar [Oren and Nayar 1994] lighting model focuses on modelling only the 

diffuse term and the effects of the surface roughness on the diffuse term.  Similar to the 

Cook-Torrance model, the micro-facet concept to modelling rough surfaces also occurs in 

the Oren-Nayar model.  The micro-facets concept is developed to include inter-reflection 

between facets giving the effect of blurring the light leaving a surface.

In its full evaluation it is one of the most demanding and complex models, which can be 

too much of a hit on performance for some applications.  For this reason there are 

simplified versions, which trade accuracy for better performance.

3.2.5 Strauss

The Strauss [Strauss 1990] lighting model was developed with users in mind by featuring 

easy to understand tuning terms with ranges between 0 and 1.  This feature means it can 

be quickly tuned to model a range of smooth and rough, metals and plastics.  Although it 

is a somewhat recent model, it does not bring any novel ideas to already existing models.
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3.2.6 Ward

Ward [Ward 1992] developed his model to be an approximation of empirically observed 

results.  It is different to previous models by introducing anisotropic (instead of isotropic, 

assumed by previous models) specular highlights.  Being anisotropic means directionally 

dependent, so rotating an anisotropic surface around its surface normal will change its 

reflection properties.  This allows Ward to provide a superior model for materials other 

than metals and plastics.  In particular it is well suited to modelling materials with micro-

facet patterns such as wood (grain), fabrics, and brushed steel.  This model can be tuned 

to control the direction and strength of the grain to yield different results.

3.2.7 Ashikhmin-Shirley

The Ashikhmin-Shirley [Ashikhmin and Shirley 2000] lighting model takes inspiration 

from some of the previously discussed models.  Inspired by Ward, Ashikhmin-Shirley 

developed their model to approximate empirically observed results.  Like Ward, it is also 

an anisotropic model, making it well suited to modelling materials with grain.

Similar to the Cook-Torrance model, the Ashikhmin-Shirley model employs a Fresnel 

weighting element in the specular component to get a more physically accurate reflection.

Physical plausibility of the results was an important factor during the development of this 

model and by adding the Fresnel term the energy was unbalanced, which lead to their 

proposition of using a non-Lambertian diffuse component.

Although the Oren-Nayar model also has a non-Lambertian diffuse component, the Oren-

Nayar model is not referenced in Ashikhmin-Shirley [Ashikhmin and Shirley 2000] and 

the calculation of the diffuse term is different.

The Ashikhmin-Shirley model requires a more complex evaluation so may require some 

performance enhancing optimisations for implementation in some applications.  It can 

produce renders that none of the aforementioned models can match single-handedly, due 

to being anisotropic and including a non-Lambertian diffuse term.

3.3 Ambient Occlusion

In section 3.2 we discussed some lighting models which can be used to shade individual 

objects in a scene.  These lighting models can provide adequate shading for objects under 

direct illumination from directional and point light sources.  Objects not in direct 

illumination require global illumination to make them visible.  Global illumination is 
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perhaps the most complex form of lighting that is often simplified the most; as is the case 

with the Ambient lighting term which is just a single constant!  Ambient light is used to 

model light which has bounced many times and when simplified to just one constant is 

assumed to have no direction and have a constant intensity, with the purpose to make all 

the objects in a scene visible even when there are no lights.  Offline models such as 

photon mapping [Jenson 1996] can estimate the path light takes usually for a set 

maximum number of bounces and can provide detailed renders but the computational 

workload of these calculations is usually too high for real-time applications.  Ambient 

occlusion is an approximation to global illumination helping to add to the realism of the 

lighting in the scene.  To avoid the calculation-intense method of finding the full path 

which light takes from the light source to the surface. The ambient occlusion model 

usually works backwards by casting out single rays from the surface into the scene to 

determine if there are any occluding surfaces nearby which would reduce the amount of 

ambient light reaching the surface.

3.4 Surface-Curvature Ambient Occlusion

With the programmable graphics pipeline new real-time models have been developed and 

implemented to give a better estimate for the ambient term.  SSAO (screen-space ambient 

occlusion) [Mittring 2007] is a technique for modelling global illumination in real-time 

by estimating the ambient occlusion in the screen space.  The estimation is performed by 

comparing the depth values in the scene depth buffer to the local values selected via a 

randomly rotated kernel giving a variance which can be used to shade the pixels 

according to high frequency changes where deep variance results in a darker shading. 

This technique has advantages being independent from the scene complexity, easy-to-

integrate into a modern graphics pipeline using the existing data in the depth buffer, and 

can be processed using the GPU.  It has disadvantages being view-dependant, adding 

noise, and bleeding at depth discontinuities near object edges.

Filion and McNaughton [Fillion and McNaughton 2008] present another version of 

SSAO with a similar approach.  Between 8 and 32 samples are taken around the pixel 

position using a texture full of random vectors to determine which nearby pixels are 

selected.  The depth values are compared and if the pixel depth is greater than the 

sample's depth then that sample contributes to the occlusion.  With a greater difference 

between the depths the occlusion factor is greater.
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Bavoil and Sainz [Bavoil and Sainz 2008] present another different version of SSAO 

involving tracing rays in 2D across the depth values in screen space.  There is a 

demonstration program of this model in the NVidia Direct3D SDK [NVidia 2007].

Pharr and Green [Pharr and Green 2004] present an older ambient occlusion model that 

makes an estimate of how much ambient light can reach a particular part of a surface. 

They use an offline technique involving a ray tracer to build an ambient occlusion map of 

a model that can be used during rendering to give a better estimate of the ambient 

occlusion term.

Bunnell [Bunnell 2005] presents a faster ambient occlusion model that avoids casting 

rays.  Disks are used to approximate the ambient occlusion of objects in a scene.  For 

nearby occluding meshes one disk per vertex can be used but for distant objects this can 

be simplified further to fewer disks or even a single disk.  Then for each vertex, 

shadowing information from all the disks is summed up to give the approximate ambient 

occlusion for that vertex.  Hoberock and Jia [Hoberock and Jia 2007] build on this 

ambient occlusion model [Bunnell 2005] by allowing for higher quality, per-pixel 

accuracy, and reducing the present artefacts.
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Inspired by the SSAO models and ambient occlusion literature we developed a model by 

investigating a method to create an ambient occlusion effect using the geometry shader. 

The geometry shader has the ability to retrieve the data of adjacent vertices and by taking 

the normal vectors of them one can calculate the curvature of a surface and determine 

whether it is convex or concave.  Then by making the assumption that less ambient light 

can reach a concave surface a better ambient lighting estimate can be made for shading 

the surface.  The result is Surface-Curvature Ambient Occlusion (SCAO), an easy-to-

implement and efficient shader that visually improves the ambient estimate for the 

ambient term in a lighting model. Figure 3.4.a shows a comparison between the results of 

using a constant ambient term (left) versus the result from our novel SCAO technique 

(right).
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Figure 3.4.b shows the SCAO as it currently stands.  It is quite a simple idea and gives a 

rough estimate of the ambient light reaching a surface but makes a big improvement over 

just assuming ambient light is the same everywhere (by setting it to a static unchanging 

constant).  Compared to the discussed ambient occlusion models it should provide an 

improvement on performance, especially to the more complicated SSAO methods.  Our 

method does not require any additional data other than the mesh vertices allowing it to be 

integrated with any other global illumination lighting models with ease.

Our SCAO shader provides a novel implementation to ambient lighting using the 

geometry shader to detect the local surface curvature of the model.  The dwarf model that 

this shader was tested on is a low polygon model of roughly 1000 faces.  On more 
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detailed models often found in modern games the polygon count is a lot higher.  On a 

higher polygon model we expect the results to be more accurate resulting in an improved 

visual output.  For future work the adjacent faces could be used in addition to get more 

samples and an average of the local surface curvature.

3.5 Fresnel Highlighting Effect

The Fresnel effect is the effect where more light reflects off a surface at a shallow angle, 

and less at a steeper angle.  It is a term incorporated in some of the more complex world 

lighting models, which were discussed in a previous section.

For computer games this effect can be recreated ignoring the light position and with a 

variety of colours to provide an effective way of highlighting in-game objects.  The 

algorithm works by outputting a highlight colour from the pixel shader when the surface 

normals face away from the camera.  This effect can also be applied to an object that is 

bump mapped for a rough bumpy highlight effect around the edges of an object.

Figure 3.5.a shows the different amounts of light reflected at different angles.
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Figure 3.5.a: The Fresnel effect
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Figure 3.4.a and Figure 3.5.b show the relationship between the angle and the amount of 

reflected light.  By applying a highlight colour in the pixel shader that varies depending 

on the angle between the view and normal vector a Fresnel highlighting effect can be 

created.
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Figure 3.5.b: The vectors used in the Fresnel highlight effect
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Figure 3.5.c shows the Fresnel highlight effect. Note that tweaking the constant values in 

Equation 3.5.a will result in a variety of different outputs. The current settings for these 

constant values and the equation itself are given in Equation 3.5.a.

3.6 Shadow Volumes

Shadow volumes [Crow 1977] are a method for adding shadows to solid objects in a 

scene.  Shadow volumes can be created from the solid object geometry by extruding the 

back face of the model to infinity (or similar technique).  Pixels inside the shadow volume 

are shaded whereas those outside are not, which is usually determined via a stencil buffer 
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Figure 3.5.c: The Fresnel highlight effect in different highlight colours
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implementation, such as ‘depth fail’ [Bilodeau and Songy 1999] which is also known as 

‘Carmack’s reverse’ who independently discovered and advertised the technique 

[Carmack 2000].  Everitt and Kilgard [Everitt and Kilgard 2002] give a detailed 

discussion of the depth fail algorithm.  This implementation improved on previous 

techniques by fixing the errors occurring when the camera was positioned inside the 

shadow volume.

Figure 3.6.a shows a GPU shadow volume implementation which makes use of the 

geometry shader.  The programmable geometry shader in the Direct3D 10 graphics 

pipeline allows shadow volumes to be extruded and capped (closed) on the GPU 

improving the real-time performance of this shadowing technique over earlier 

implementations.  An implementation using the GPU to extrude the shadow volume can 
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Figure 3.6.a: Flowchart detailing GPU shadow volumes in Direct3D 10
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be found in the DirectX SDK [Microsoft 2010] (and SDK versions from later than 

December 2005) under 'ShadowVolume10'.

The geometry shader can be used to find the silhouette edges by looking at the normals of 

the two adjoining faces (by using an input topology of triangles with adjacency), if one 

faces towards the light source and the other faces away from the light source then the 

edge is a silhouette edge.  Once the edge has been found it can be extruded away from the 

light direction and capped to form the shadow volume.  Front capping can just use the 

front faces as they are, back capping can be achieved by using the front faces translated a 

distance away from the light direction at each vertex.

By building the shadow volume a two sided stencil can be rendered which masks the 

shadowed parts of the scene.  It operates by comparing the depth from the ambient pass to 

the back faces and incrementing the stencil, then comparing to the front faces and 

decrementing the stencil.  This results in a stencil where the non-zero values represent 

pixels inside the shadow volume.  Lighting for that light source can then be additively 

blended to each pixel in the scene where the stencil value is equal to zero.

Shadow volumes offer a real-time solution to shadowing solid objects which results in 

fairly accurate shadows for point lights with hard edged shadows without a penumbra.  A 

more advanced shadow volume algorithm is needed to add soft edged shadows to 

represent area lights.  Assarsson et al.  [Assarsson et al. 2003] discuss a soft shadow 

volume technique which they claim to be real-time, however a shadow mapping 

technique usually runs faster especially on large scene with lots of geometry.  Donnelly 

and Demers [Donnelly and Demers 2004] noted that the method discussed by Assarsson 

et al.  would not result in a real-time solution in their high geometry scene, instead they 

proposed a static lighting solution which could produce soft shadows for static geometry 

where the light source moved in a consistent pattern.

Another difficulty for shadow volumes is that they are usually restricted to closed meshes, 

making them unsuitable in other situations.  Stich et al.  [Stich et al. 2007] present a 

robust shadow volume technique that can handle open meshes by extruding individual 

triangles.  This could be useful for shadowing point sprite particles, however this 

approach is computationally demanding which could be an issue for real-time 

applications.

The shadow volume technique has an artefact caused by the limiting granularity of the 

edges between faces when calculating the silhouette edge.  The silhouette is built from 
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vertices which can result in an irregular sawtooth silhouette edge.  On low-polygon 

meshes this artefact is pronounced whereas it is not as noticeable on higher-polygon 

meshes.  A possible solution is to use a depth bias which would offset the shadow volume 

a little, so as to avoid some of the artefact's evident self-shadows.

Often a better solution is to use shadow maps, which do not suffer from this artefact and 

tend to be less costly on large scenes.  We will discuss shadow maps in the following 

section.

3.7 Shadow Maps

Shadow maps [Williams 1978] provide an alternative method for adding shadows to a 

scene.  For this, first a depth map is generated from the light source point of view, 

mapping the distance from the light source to all the occluding shadow objects.  Then, 

during the rendering of the final scene, a comparison is made between the distance of the 

pixel to the light and the value that is stored in this height map.  If the distance to the light 

is greater than the value stored in the height map then the pixel is in shadow and rendered 

accordingly.

Figure 3.7.a illustrates how the basic shadow mapping algorithm works.
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Figure 3.7.a: Shadow mapping
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Figure 3.7.b shows a common artefact of the basic shadow map implementation 

[Williams 1978], in which the pixelated edges of the shadow are caused by the limited 

granularity of the shadow map texture.  Fortunately there exists a large number of 

published advanced shadow mapping techniques for reducing or removing these aliasing 

artefacts that produce smooth edges to a shadow representing the penumbra caused by 

area lights.  Another artefact also caused by the limited granularity of a shadow map is 

that shadow maps can miss high-frequency shadows where the shadow caster is small 

enough to be in-between two samples of the shadow map.  We can see the effect of this in 

Figure 3.7.b at the narrowest and sharpest points on the sword hilt where the shadow map 

granularity cannot capture all of the fine detail because it is sampling at a lower frequency 

than the detail.

Reeves et al.  [Reeves et al. 1987] presented the original percentage closer filtering (PCF) 

technique for smoothing the edges of a shadow created by shadow mapping.  Bunnell and 

Pellacini [Bunnell and Pellacini 2004] describe a more recent adaptation version of PCF 

in an article in GPU Gems.  They adapt the original technique so that an implementation 

on modern hardware (through pixel shaders) is straightforward and more efficient.  The 

PCF technique involves taking multiple samples from the depth map, determining if they 

are in shadow or not, and then taking an average to build a ‘shadow coefficient’.  The 

‘shadow coefficient’ then gives a gradual drop off at the shadow edge, resulting in a 

smoother edge with less noticeable aliasing artefacts.

Donnelly and Lauritzen [Donnelly and Lauritzen 2006] present variance shadow maps 

(VSM), which provide a solution to the aliasing artefacts in standard shadow maps. 
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Figure 3.7.b: A basic shadow map with jagged edge aliasing artefacts
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Instead of storing just the depth when rendering from the point-of-view of the light source 

(as in original shadow map implementations) they calculate and store the mean and the 

mean squared of a distribution of depths.  This allows for the variance to be calculated 

and a good approximation to be made when calculating the shadowing of the pixel. 

However this is only an approximation, and while it works for planar occluding objects 

and receivers it can lead to ‘light bleeding’ artefacts when the variance is high, causing 

areas that should be in shadow to be lit or partially lit.  Myers [Myers 2007] discusses 

some implementation issues with this technique and its suitability for implementing on 

Direct3D 10 hardware.  The main point being that the filtering precision on a Direct3D 10 

implementation can be 32-bit instead of 16-bit.  This is important because the 

computation in this algorithm is unstable and the precision has to be managed.  The 

precision and numerical stability was also discussed in Donnelly and Lauritzen [Donnelly

and Lauritzen 2006] but due to hardware constraints at the time they could only 

implement 32-bit precision by splitting depth values into two 16-bit values for storage 

and then recombining these afterwards.

Lauritzen [Lauritzen 2007] presents summed-area variance shadow maps (SAVSM), 

which build on VSM to reduce aliasing resulting in smooth soft shadow edges.

Lauritzen and McCool [Lauritzen and McCool 2008] present layered variance shadow 

maps (LVSM) which use multiple shadow map layers to remove the light leaking 

artefacts present in VSM.  Each layer represents a reduced depth range so the resolution 

of each layer need not be so high as to maintain adequate rendering quality.  LVSM can 

be used with 16-bit precision which is more readily available in graphics hardware.
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Figure 3.7.c illustrates a penumbra, the partial shadow between a shadowed and lit area 

giving a soft edge to shadows at a distance.  Notice that as the distance between the 

occluding and the receiving object increases, the penumbra will be larger and more 

gradual.  The distance and the radius of the light source also contribute to the size and 

smoothness of the penumbra.

Fernando [Fernando 2005] presents percentage-closer soft shadows (PCSS), which model 

the penumbra so that it varies depending on this distance.  This is an important addition to 

modelling shadows as it adds visual clues to the positioning of objects in a scene.  Where 

objects are in contact with one another (such as a character standing on a flat floor casting 

a shadow onto it) the shadow edge will be hard (small penumbra) near the feet of the 

character.  As the distance increases between the upper body of the character and the floor 

the shadow will get softer edges (large penumbra).  Bavoil [Bavoil 2008] presents an 

implementation of the PCSS technique, which can be found in the NVidia Direct3D SDK 

[NVidia 2007] under 'Percentage Closer Soft Shadows'.  Myers et al.  [Myers et al. 2008] 

discusses the same algorithm with more detail regarding integration into a game engine. 

Lauritzen [Lauritzen 2007] discussed combining the PCSS technique with SAVSM to 

achieve a varied penumbra with reduced aliasing artefacts.

Annen et al.  [Annen et al. 2007] introduce convolution shadow maps.  Instead of using a 

binary test to decide if a pixel is in shadow (between the depth stored in the depth map 

and the distance from the pixel to the light) they attempt to apply a linear filter to the 

shadow map.  Regular texture filtering applied to a shadow map does not result in 

filtering the end result of the shadow test, so instead they suggest a pre-filtering method. 
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This method involves converting the shadow map values by using a basis function.  The 

resulting convolution shadow map can then be pre-filtered resulting in a filtered end 

result.  They use a Fourier expansion to define the basis function.  This approach allows 

for a kernel function to determine the shadowing of a pixel.  This gives a smooth edge to 

shadows and does not suffer from aliasing artefacts like PCF.  The main disadvantage 

with convolution shadow maps is that they are a computationally demanding technique 

and a real-time solution may not be achievable in some scenarios.

Inspired by these convolution shadow maps Annen et al.  [Annen et al. 2008] developed 

exponential shadow maps (ESM).  Like in convolution shadow maps, ESM uses a basis 

function to allow pre-filtering of the shadow map.  Where this method varies is in the 

assumption that the distance to the light is greater than or equal to the distance stored in 

the shadow map.  This assumption allows for an exponential expansion approximation 

which drastically reduces the computational complexity and allows this method to out 

perform convolution shadow maps.  This assumption holds true in most cases, but not all, 

resulting in some artefacts.  As a solution Annen et al. suggest a simple-to-calculate fall-

back to an alternative technique such as PCF.

A combination of ESM and VSM was briefly discussed by Lauritzen and McCool 

[Lauritzen and McCool 2008].  The exponential variance shadow map (EVSM) produced 

'promising results with good performance'.

Scherzer et al.  [Scherzer et al. 2007] introduce a shadow mapping technique that makes 

use of old shadow map information from previous frames.  They use the aptly named 

history buffer to store the previous shadow information which can then be used in the 

following frames.  This approach is an efficient and computationally cheap method to 

produce accurate hard-edged shadows.

Shadow maps are usually used instead of shadow volumes for the large-scale real-time 

scenes often present in many games.  This is because they are usually less 

computationally complicated to implement so real-time speeds are more easily achieved. 

There is also a substantial amount of work that focuses on improving shadow mapping 

techniques for large scenes.

Zhang et al.  [Zhang et al. 2007] discuss parallel-split shadow maps (PSSM), which use 

multiple shadow maps in parallel spaced at different distances with each having a 

different resolution depending on the distance to the viewer.  This means nearby shadows 

can be calculated from a high-resolution shadow map whereas distant shadows can be 
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calculated from a low-resolution shadow map.  This level of detail approach saves 

valuable processing time in large scenes.

Dimitrov [Dimitrov 2007] describes cascaded shadow maps (CSM), which are similar to 

PSSM and build on them by taking into account view frustum culling.  An 

implementation of the CSM can be found in the NVidia OpenGL SDK [NVidia 2007] 

under 'Cascaded Shadow Maps'.

Some of the shadow mapping techniques can be combined into hybrid methods and 

benefit from the advantages of each.  In a recent release (June 2010) of the DirectX SDK 

[Microsoft 2010], CSM has been implemented with PCF (CSMPCF) and with variance 

shadow mapping (CSVM).  These are available as samples in the SDK (under 

'CascadedShadowMaps11').

As we have discussed there are a variety of advanced shadow mapping algorithms which 

provide effective solutions to shadowing.  Some of these techniques can be used in 

combination to create hybrid algorithms which benefit from multiple technique's 

advantages, resulting in improved solutions.

3.8 Smoothies and Penumbra Wedges

Many of the advanced shadow volume and shadow mapping algorithms for creating 

smooth soft edged shadows are computationally expensive.  The following methods offer 

alternatives and approximations for creating smooth edged shadows which may be able to 

offer improved performance for plausible soft shadows.

Penumbra wedges [Akenine-Moller and Assarsson 2002] offer an approximation to add 

soft edged shadows to the initial shadow volume technique.  The basic idea is to extrude a 

penumbra wedge in place of where the silhouette edge usually gets extruded.  This is 

done by extruding the silhouette edge twice, in two directions off a tangent to the light 

source which is of course dependent on the radius of the light source, to form the wedge 

shape.  Once the wedge is created a pixel inside the wedge can calculate the approximate 

shadowing depending on its position inside the wedge.  Given modern hardware, this 

method should now be capable of real-time speeds.

Chan and Durand [Chan and Durand 2003] present smoothies, a technique that builds on 

the shadow mapping algorithm to remove the aliasing artefacts at the edges of the 

shadow.  Unlike the other soft shadow map algorithms, that usually perform different 

operations to the shadow map or sample from it differently, smoothies hide the rough 
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shadow edge by building a smooth fake edge.  Although this method could be considered 

an inaccurate representation of shadows it does provide a smooth edge to shadows with 

real-time performance.  The model works by building a standard shadow map, storing the 

depth values of the occluding objects in the scene.  Then the silhouette edges of the 

objects are extruded and filled to create the smoothies.  The smoothies are rendered to 

separate buffers storing a depth map and an alpha map of the values.  Finally the final 

image is created using the information from the maps to create smooth edged shadows. 

This method builds smoothies from the silhouette edges so it might be possible to 

implement this technique on the GPU using the geometry shader in a similar fashion to 

the way it was used in the 'ShadowVolume10' sample found in the DirectX SDK 

[Microsoft 2010] (and SDK versions from later than December 2005).

Wyman and Hansen [Wyman and Hansen 2003] introduce penumbra maps which map 

out the approximate penumbra regions by calculating the silhouette edges of shadow 

casting objects from the light source.  First a shadow map is created storing the depths of 

objects to the light source.  Then a penumbra map is generated which stores the shadow 

intensity at the silhouette edges.  Finally the shadow can be rendered by combining the 

depth information from the shadow map and the shadow intensity from the penumbra 

map.  This method can produce soft edged shadows with a varying size penumbra similar 

to that achieved by PCSS.
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Chapter 4 Making Smoke

Opaque solid models and effects can be used to build many scenes and virtual worlds in 

computer graphics but cannot be used convincingly to simulate and render transparent 

volumes.  Another approach is required when we want to render smoke or similar 

transparent non-solids.  In Chapter 4 we look at how smoke can be simulated and 

rendered in computer graphics and then we discuss the addition of shadows.

4.1 Simulation

The main techniques for the simulation of smoke can be broken down into different 

categories and include particle-based Lagrangian systems, grid-based Eulerian methods, 

and hybrids.

The accuracy required for the simulation of smoke depends on the specific application it 

is being designed for.  Some approaches derive the simulation directly from the Navier-

Stokes equations, Stam [Stam 1999].  Other approaches, Fedkiw et al.  [Fedkiw et al.

2001], use the inviscid Euler equations, which provide a good model for smoke because 

smoke has a low viscosity, which can be considered negligible.  For the application of 

computer games where real-time speeds are critical, simple and efficient methods are 

preferable.

4.1.1 Grid-Based Eulerian Approach

A grid-based Eulerian approach to smoke simulation involves modelling a theoretical box 

volume, which the smoke will occupy.  The volume is divided into voxels (volumetric 

pixel – small equally sized cubes) with each voxel containing information about the 

density, pressure, and other factors that are used to build up a simulation for a smoke 

model.  In a simulation step the content of a voxel is calculated from nearby neighbouring 

voxels or by an advection technique as in the ground-breaking work on Stable Fluids by 

Stam [Stam 1999] [Stam 2003].  Stam discusses a stable grid-based model for fluid 

simulation which has been a basis for many other models in this area since.  This 

proposed model suffers from numerical dissipation, which causes the flow to dampen too 

quickly, nevertheless the proposed model still provides a suitable technique for graphics 

applications such as games where accuracy is not paramount.
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Fedkiw et al.  [Fedkiw et al. 2001] introduce a vorticity confinement technique to 

improve the accuracy of the model proposed by Stam.  Vorticity confinement adds back 

the lost energy due to numerical dissipation and this technique has been noted for 

producing ‘some of the most visually complex fluid simulations to date’ [Molemaker et

al. 2008].

These vorticity confinement methods can produce some very realistic simulations of 

smoke, however, as usual, there is a trade-off between the accuracy of the simulation and 

the computational workload.  Still many of these methods can be run in real-time on 

modern hardware.

Molemaker et al.  [Molemaker et al. 2008] propose the use of the QUICK (Quadratic 

Upstream Interpolation for Convective Kinematics) advection scheme to minimise the 

numerical dissipation.  This method preserves the small-scale turbulent flows without 

needing to implement vorticity confinement techniques, which ‘cannot fully compensate 

for excess numerical dissipation’ [Molemaker et al. 2008].

Crane et al.  [Crane et al. 2007] discuss a grid-based smoke simulation method that 

physically responds to movement of 3D objects.  An implementation of their method can 

be found in the NVidia Direct3D SDK [NVidia 2007] under 'Smoke'.  They make use of 

the MacCormack advection scheme discussed by Selle et al.  [Selle et al. 2008].

A disadvantage with all the grid-based methods is that the smoke volume is confined to a 

limited size grid that requires some sort of boundary conditions to confine the smoke 

volume.  This has been overcome in recent research [Cohen et al. 2010] by use of a 

hybrid method combining a grid-based approach with a particle-based approach which we 

discuss below (see section 4.1.4).

4.1.2 Particle System-Based Lagrangian Approach

The particle system Lagrangian approach involves modelling smoke as a group of 

particles, the concept introduced by Reeves [Reeves 1983].  Particles are born in an initial 

position and state and then move according to a set of rules or equations until they are 

destroyed or are reset.  Particle systems can be used to model a wide range of fuzzy 

objects and are flexible by adapting the rules that govern their simulation.  The 

constraints of this approach include the quantity of particles that can be processed in real-

time and the complexity of the rules for the simulation.
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The nature of particle systems means that they are well suited to the SIMD (single 

instruction multiple data) architecture of GPUs.  A single instruction can be used to 

govern the many particles in a particle system.  The parallel processing capabilities of 

modern GPUs provide a vast improvement to simulation speeds for most particle systems. 

For smoke simulation via a particle system a GPU implementation is advisable to reap the 

benefits of parallel processing.

A common method for a GPU implementation involves using textures with particle data 

stored in the colour channels in each texel (texture element).  This approach was used by 

Latta [Latta 2004] to create a GPU-based particle system containing roughly one million 

particles.  This was achieved by using texture sizes of 1024 by 1024 to store the particle 

data while the particle simulation was performed inside the pixel shader.  Kolb et al.  

[Kolb et al. 2004] built on this by adding support for collision detection with geometry.

Now with the geometry shader and the stream out function in Direct3D 10 [Blythe 2006], 

particles can be stored as vertices with simulation operations performed in the geometry 

shader and streamed out.  Also because the geometry shader can add or remove vertices 

from the stream, particles can be created or destroyed in the geometry shader.  An 

implementation that uses this approach can be found in the DirectX SDK [Microsoft

2010] (and SDK versions from later than December 2005) under ‘ParticlesGS’.  The 

sample demonstrates how a particle system can be entirely encapsulated on the GPU in 

Direct3D 10.  The simulation is processed in the geometry shader with a stream of 

vertices representing each particle.  The geometry shader can create or destroy particles 

stored as vertices and the stream can be passed out before going any further down the 

pipeline.  On the rendering pass particles in the stream are expanded to form billboards by 

the geometry shader and then they are additively blended to the scene.

Latta [Latta 2007] presents a useful overview on particle systems, briefly describing the 

main ways to implement them on the CPU and GPU and key considerations when 

developing them for use in games.

4.1.3 Smoothed Particle Hydrodynamics

Smoothed-particle Hydrodynamics (SPH) is a Lagrangian method of simulating fluids. 

The system is built from a set of complex particles usually storing information in 

attributes for use in simulation.  Particles have a spatial distance over which their attribute 

values are smoothed.  A kernel function is used to determine the distance and the amount 

                                                                                                                                                
p.  42 of 79



Chapter 4 Making Smoke
                                                                                                                                                               

of smoothing that takes place.  This means the attribute values of a particle in a particular 

position can be determined by looking at the nearby particles as denoted by the kernel 

function.  On a side note, there are similarities between SPH and the Boids [Reynolds

1987] flocking model.  The kernel function introduces local relationships between 

particles, similar to the local relationships in Boids (separation is similar to pressure, and 

alignment is similar to viscosity).  Particles that are further than a set distance away (from 

the measured attribute 'position'), determined by the kernel function, contribute nothing to 

the measured property so that they can be ignored and calculations do not scale at an 

exponential complexity rate.  The kernel function can change depending on factors such 

as particle density, which can also reduce complexity by making the kernel ignore 

particles outside a smaller nearby area for high-density areas (therefore reducing the 

number of lookups).

The work by Muller et al.  [Muller et al. 2003] on fluid simulation is based on SPH, 

which they describe as ‘an interpolation method for particle systems’.  They suggest using 

a particle system because it simplifies the Navier-Stokes equations.  They write “In 

contrast to Eulerian grid-based approaches, the particle-based approach makes mass 

conservation equations and convection terms dispensable which reduces the complexity 

of the simulation”.  Reducing the complexity of the simulation means that there is less to 

calculate at run-time so the model can run quicker, which is a boon for real-time 

applications.

4.1.4 Hybrid Methods

Cohen et al.  [Cohen et al. 2010] use a hybrid approach to achieve a complex and detailed 

model for smoke and dust trailing from the back of a virtual model car.  A grid-based 

approach is used for dust in close proximity to the back of the virtual car.  A box volume 

is used to contain the grid-based simulation, which moves relative to the car (similar to 

the way a bounding box encapsulates a model for collision detection algorithms).  Any 

dust that reaches the edge of the volume is transferred into a particle system allowing the 

new particle dust to move freely outside of the box volume.  This hybrid method takes the 

accuracy and fine detail of a grid-based approach and combines it with the boundless 

freedom of a particle system. For the grid-based part of the simulation the MacCormack 

advection scheme discussed by Selle et al.  [Selle et al. 2008] is used.
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4.2 Rendering

4.2.1 Volume Rendering

Volume rendering is not a major topic for discussion in this thesis due to the early choice 

of simulating smoke via particle systems.  It does however offer an alternative solution 

for simulation and there is plenty of ongoing research in this field which the reader may 

find interesting.

Kruger and Westermann [Kruger and Westermann 2003] present a volume ray-casting 

technique for rendering volumes using DirectX 9 level graphics.  They utilise the SIMD 

architecture of the GPU via textures and the pixel shader to accelerate volume rendering. 

The volume ray-casting technique involves casting rays (one per pixel) from the camera 

viewpoint through the volume clipping it to the edges of the volume.  Then a number of 

sample points are taken at intervals along the cast ray (through the volume).  The samples 

are shaded and then amalgamated to arrive at a final value for that individual pixel.

Ikits et al.  [Ikits et al. 2004] present some typical volume rendering implementations and 

some advanced techniques for volumetric lighting, shadows, and some light scattering 

through translucent media.

4.2.2 Particle System Rendering

We have discussed the methods for simulation of a particle system, some more involved 

than others, but either way the particles need to be rendered to make the system visible 

and achieve the required effect.  Each particle in the system can be rendered as a single 

pixel or an object.  The most common method in games is to render the particle as a 

billboard.  3D meshes or metaballs can also be rendered in the place of particles.

Selle et al.  [Selle et al. 2004] use a billboard approach to achieve a cartoon style output 

rendering of smoke from their particle system.  In addition to the standard billboarding 

technique they also use a technique for edge detection so the edges of the render can be 

drawn in black adding to the overall effect of the carton style rendering.  These sharp 

silhouettes are also drawn in where there is a big change in the depth between particles so 

as to highlight interesting points in the smoke volume.
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4.2.3 Particle Blending and Sorting

When we render particles to the scene there are a number of blending options available. 

Additive and alpha additive blending add the particle colour to the colour already present 

in the scene (as long as the depth test is passed).  Particle colours are added to the scene 

irrelevant of their individual depths and order which has no effect on the final result. 

Where particles overlap one another additive blending can lead to undesired results as the 

resulting colour is an equal weighting of every overlapping colour, which is unrealistic 

for translucent media.  To get a more accurate result alpha blending can be used but the 

requirement of alpha blending is that the particles must be sorted in the correct depth 

order so that particles in the distance are rendered first, allowing the front particles to be 

blended correctly.  Unfortunately sorting on the GPU is not trivial and it is 

computationally demanding, however, there are methods for GPU sorting that can run in 

real-time and various optimisations that can improve performance.  Kipfer and 

Westermann [Kipfer and Westermann 2005] discuss implementing sorting algorithms on 

the GPU.  They examine a simple implementation of the odd-even transition sort, which 

operates by comparing the data in the even positions with data in the odd positions and 

switching them if they are not in order, then comparing odd data with the even data, and 

repeating until the data set is sorted.  Odd-even transition sorting can work for small data 

sets (small number of particles) but when we want to deal with large particle systems we 

need a faster algorithm or approximation to keep the simulation running at real-time 

speeds.  Kipfer and Westermann [Kipfer and Westermann 2005] go on to discuss the 

odd-even merge sort, which is a faster algorithm, taking 210 passes to sort a data set of 1 

million elements (or 1 million particles), whereas the odd-even transition sort takes 1 

million passes for the same data set.  Although 210 passes would likely take too much 

computation time per frame to be performing real-time, the algorithm can be split down 

to perform some of the passes each frame.  As a result we do not have a perfectly sorted 

set of data every frame but the data set becomes closer to being sorted every frame and 

the performance is real-time, which is often an acceptable solution for particle systems. 

Kipfer and Westermann [Kipfer and Westermann 2005] then describe a more efficient 

GPU implementation using a bitonic merge sort.  This algorithm has an advantage of 

performing a complete sort faster than the odd-even merge sort but a disadvantage of not 

approaching a complete sort in a smooth way and hence is not suitable for splitting the 

computation over multiple frames.  To keep the simulation running in real-time the size 
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of the data set must be kept small enough to be completely sorted within the time one 

frame is rendered.  Sorting smaller sets of data tends to be much faster, so many 

performance enhancing methods involve splitting large data sets down into multiple 

smaller sets wherever possible.

Another technique to improve the performance of sorting for particle systems is the half-

angle axis sorting approach discussed by both Ikits et al.  [Ikits et al. 2004], and later by 

Green [Green 2008].  Green requires a set of sorted particles in both the light direction 

and the camera direction so that correct self-shadowing and correct blending can be 

performed.  The method that he proposes is to sort the particles along the half-angle 

between the camera and the light, tackling two expensive sorting requirements with only 

one sorting operation.  Another technique he uses is to split the particles into batches 

arranged as slices perpendicular to the half-angle axis so that the particles can be rendered 

in smaller batches.  Slices can also be used to split up the size of a data set before sorting 

individual batches.  Splitting up a data set in this fashion is often called a bucket sort 

whereby data is split into different 'buckets' (subsets).  This divide and conquer approach 

is efficient for breaking down large data sets to get a roughly sorted data.  If a complete 

sort is required a different algorithm such as the bitonic merge sort could be used on each 

bucket.  Hybrid methods like this or the similar hybrid method employed by Sintorn and 

Assarsson [Sintorn and Assarsson 2007] are often very efficient and there are a variety of 

other sorting algorithms that may be advantageous in a hybrid approach.  With a set of 

sorted data we can perform alpha blending and render particles in a back to front order so 

we achieve correct blending.  With unsorted data we can use additive blending or alpha 

additive blending instead.

4.2.4 Overdraw in Particle System Rendering

Overdraw is a problem which occurs when a screen pixel has to be re-rendered multiple 

times due to multiple translucent objects on top of one another.  Overdraw often plagues 

particle systems that are rendered with large translucent billboards.  Each particle requires 

rendering and if these particles are large and numerous the amount of pixels which 

require shading is likely vast.  Cantley [Cantlay 2007] discusses some techniques to 

tackle overdraw in particle systems by introducing a mixed resolution technique.  Another 

simpler solution is discussed by The Valve Developer Community [The Valve Developer

Community 2010] whereby particle billboards are blended out and then not rendered 

depending on how much screen space they take up.  This is a similar idea to the soft 
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particle technique, however, with soft particles each pixel is blended out where it is 

positioned closely to 3D geometry.  The soft particles technique is discussed in detail in 

the following section.

4.2.5 Soft Particles

When a particle is rendered as a 2D billboard and intersects 3D geometry a common 

artefact occurs; a hard edge is seen at the intersection point.  This can be rectified by a 

technique called soft particles.  The idea behind soft particles is to make the particle more 

transparent as it gets closer to intersecting with 3D geometry.  Recording the depth 

information from the 3D geometry in the scene and then comparing to the depth of the 

particle is a commonly used technique to solve this.

Lorach [Lorach 2007] discusses the soft particles technique in a GPU implementation. 

First the depth values are needed, and Lorach suggests two possible solutions; depth 

information can be stored on a first pass using the depth buffer, or alternately the depth 

information can be stored in a separate render target whilst rendering background objects 

in the scene (objects behind the particle system effect).  Using the MRTs suggestion is 

likely to be a more efficient and flexible solution, because the stored depth information 

could be reused in other effects.  The second pass deals with the rendering of the particle 

system.  The geometry shader is used to expand a set of particle positions into two 

triangles forming the canvas for the billboard.  In the pixel shader the depth values can be 

compared and the particle can be made more transparent as it approaches any of the 

stored depths.  For this Lorach suggests using a custom contrast function to fade instead 

of a linear fade between the particle’s maximum opacity and completely transparent.

                                                                                                                                                
p.  47 of 79



Chapter 4 Making Smoke
                                                                                                                                                               

Figure 4.2.5.a the numbering shows the difference of the depths, which are used to 

calculate the opacity of the pixels in the 2D particle.  Difference d1 is negative so the 

pixel is ignored, d2 and d4 are small so the pixels here are slightly faded, d3 is large so 

the pixels is at the particle’s maximum opacity.

The ‘SoftParticles’ sample in the DirectX SDK [Microsoft 2010] (and SDK versions from 

later than June 2006) shows an implementation of the soft particles technique in action.  It 

implements the basic soft particles model but also implements, soft depth sprites, and soft 

volumetric particles.  Depth sprites are simply particles that have additional depth 

information.  This depth can be used in the soft particles technique when calculating the 

opacity of the particle.
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Volumetric particles offer a more complicated technique for rendering which does not 

suffer from the artefacts caused by 2D billboards intersecting with 3D geometry in the 

same way.  However, the soft particles technique can still be implemented on volumetric 

particles.  Particle billboards are encapsulated in an imaginary sphere.  When rendering a 

pixel on the billboard, a ray is cast from the camera through the pixel.  Where this ray 

intersects the sphere in two places a set of sample points are taken through the sphere in-

between the intersection points with each point mapping to a 3D noise texture, based on 

the concept of hypertextures [Perlin and Hoffert 1989].  A ray march through the sample 

points calculates the opacity and the lighting for the pixel.  The addition with the soft 

volumetric particles implementation adjusts to take only samples between the first 

intersection point and the depth buffer if the depth buffer intersects the ray before the 

second intersection point on the sphere.

4.2.6 SPH Rendering

Smoothed particle hydrodynamics systems are often rendered in a different way to the 

standard particle systems.  SPH systems can be converted to a 3D grid and then a volume-

rendering technique can be used.  This is often an expensive method, which can cause 

problems with keeping the simulation and rendering real-time.
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Figure 4.2.5.b: The soft volumetric particles technique
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The previously discussed work by Muller et al.  [Muller et al. 2003] covers both splatting 

and marching cubes rendering methods for SPH.  They test both for performance and 

conclude that splatting runs faster than the marching cubes but the marching cubes 

method produces a more realistic output.

Fraedrich et al.  [Fraedrich et al. 2010] present a volume rendering technique for SPH. 

Particles are re-sampled to a 3D grid in view space, which they call the ‘perspective grid’. 

A kernel function is used to re-sample the SPH data to the perspective grid and then a 

GPU-based volume ray-casting technique is used to render the re-sampled data.
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Chapter 5 Homemade Smoke and Shadows

This chapter discusses our main contribution to research; casting shadows onto a volume 

of smoke particles.

5.1 Particle System Development

Our implementation uses a DirectX 10 GPU-based particle system with particles stored as 

vertices and simulation through the geometry shader and stream out sections of the 

pipeline.  The particle simulation employs a similar approach to the implementation 

found in the ‘ParticlesGS’ sample found in the DirectX SDK [Microsoft 2010] (and SDK 

versions from later than December 2005).

The nature of the geometry shader in the Direct3D 10 pipeline means that new vertices 

(particles) can be created on the fly, so a range of new particle system effects can be 

created.  ParticlesGS shows an example of how exploding fireworks can be created with 

this new capability.

Our particle system runs entirely on the GPU and particles can be created and destroyed 

in the geometry shader, so there is no need for CPU intervention.  Keeping the particle 

system on the GPU allows for faster speeds and frees the CPU up for other tasks.

There are two common GPU particle system implementations; one that stores particles as 

texels in a texture and updates through a pixel shader, and another that stores particles as 

vertices in a vertex buffer using the geometry shader to perform updates and stream out to 

make an early exit from the pipeline.

Our particle system stores particles as vertices using vertex buffers for storage.  In 

particular, we use three separate vertex buffers for storage.  One initial seeding buffer is 

used to start the simulation, holding an initial state.  The other two are used as an input 

and an output buffer, which are switched every time particles are updated so that the 

output from the previous update becomes the input to the next update.  Our initial seeding 

buffer is initialised to contain a single ‘root’ type particle, which is used as the spawn 

location for other particles in the system.

As mentioned above, particle information is stored in vertices, but the format in which 

this is stored is flexible.  For example, most particle system simulations require particle 

positional information to be stored, so this could be done using a 3D vector with 32-bit 

                                                                                                                                                
p.  51 of 79



Chapter 5 Homemade Smoke and Shadows
                                                                                                                                                               

precision for each of the X, Y, and Z coordinates.  A solution for this is to use a three 

component, 96-bit, floating-point format for the first element of the vertex input layout 

description allowing us to store position information for particles.  If we want to store 

additional information such as the type, the colour, or the timer on a particle before it is 

reset then we have to add elements to this input vertex layout to allow for the storage of 

this information.  There is a limit to how much data can be stored and therefore a 

maximum number of particles before the memory is exhausted, so careful design is 

important.

The parallel nature of a GPU vertex based particle system that creates and destroys a 

varying amount of particles per update, means that there is no way of knowing how many 

particles are in a scene at any one time.  To handle draw calls a ‘DrawAuto’ feature is 

included in Direct3D 10 that can handle the varying amount of data written to the stream 

out vertex buffer to be used as the input data for the next draw call.

Particle systems can be designed to represent a vast variety of different objects, making 

them a very flexible tool in computer graphics for applications such as computer games. 

Particle movement is usually the most important part of the simulation, and particles can 

be made to follow curved paths made from splines, causing them to move away from or 

towards a position, or to accelerate or decelerate towards a position or in a direction.  The 

possibilities are almost endless, the only constraints being the amount of available 

memory for particle data storage and the computational power of the GPU (if a real-time 

solution is important).  Only storing the position of a particle limits the complexity of 

movement possible.  By storing additional positional data such as a velocity vector, an 

acceleration vector, or even multiple positions that form a spline and that are 

accompanied by a timer, particles can be made to move in much more complex patterns.

An important component in the movement of particles is the element of randomness. 

Without some randomness in the movement or some randomness when a new particle is 

spawned, all the particles will be moving in the same way and the system as a whole 

would look too simple with all the particles following each other.  Adding some 

randomness gives the illusion that the system is more complex than it actually is and adds 

some differences to each particle.  Getting different random numbers for each particle in a 

system is not a trivial task on the GPU.  A pseudo-random number generator (often 

abbreviated as PRNG) can be used for some tasks, taking an input seed value and 

returning a pseudo-random number resulting from some equation.  However, this 
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approach can result in some unwanted patterns when used in particle systems for 

movement.  Howes and Thomas [Howes and Thomas 2007] discuss and compare some 

different methods for PRNG on the GPU using CUDA [NVidia CUDA 2007].

Another approach to getting random numbers onto the GPU is to fill all the texels in a 

texture with random numbers using the CPU and then pass the texture as a resource to the 

GPU.  The random numbers in the texture can then be sampled and used.  The texture is 

filled with new random numbers every frame from the CPU.  This method can be used to 

provide a consistent flow of good random numbers.

Figure 5.1.a shows particles following randomly generated splines forming a spherical 

shape.  Particles spawn randomly on a large radius sphere and then move towards the 

centre following a spline.
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Figure 5.1.a: Particle system with particles following splines to form a sphere
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Figure 5.1.b shows particles following randomly generated splines to form smoke plume 

shapes.

Figure 5.1.c shows particles following randomly generated splines to form smoke plume 

shapes in which particles are rendered with a large radius and with a smoke texture.

For our purposes a complex particle system simulation is not a priority; in fact, a very 

simple simulation with particles just drifting in a direction with some random vectors can 
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Figure 5.1.b: Particle systems forming smoke plume shapes

Figure 5.1.c: Particle systems forming smoke plume shapes with texture
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be enough to represent the buoyancy of hot smoke drifting out of a vent, or the changes in 

wind direction.  Whatever the scene, smoke simulation in real-time applications (such as 

games), is usually kept simple and efficient.  Our work uses a simple particle system to 

simulate the smoke, in which particles are spawned in a grid from a ground plane and 

drift upwards along the y-axis before being removed from simulation.  Although this is 

not a physically accurate model for a smoke volume, it allows for testing rendering 

techniques and shadowing, for which we present a novel idea for rendering shadows 

through the smoke particle system.  A more complicated and physically accurate particle 

system could be used with our rendering technique with ease.

In our implementation we use alpha additive blending, therefore we do not need to sort 

the particles beforehand.  Our shadowing method, which is discussed in the next section, 

can be used with alpha blending but this will require an additional sorting solution to 

achieve correct blending.  The odd-even merge sort with sorting passes split over multiple 

frames would be a suitable solution and has been used successfully in related work by van 

Pelt et al.  [van Pelt et al. 2010] and direct to video [direct to video 2009].

                                                                                                                                                
p.  55 of 79



Chapter 5 Homemade Smoke and Shadows
                                                                                                                                                               

5.2 Adding Shadows

Shadowing of a particle system adds a visual element to its position and shape, helping to 

make it look natural and integrate into the scene rather than looking out-of-place.  There 

are different kinds of shadowing resulting from different shadowing techniques.  We will 

refer to them using the following terms:

Cast shadows – are shadows that are cast by the particle system and are visible on other 

solid objects in the scene.

Self-shadows (or self-shadowing) – are shadows that are cast by the particles that appear 

on other particles in the same particle system.

External shadows – are shadows that are cast by other solid models in the scene and land 

on the particle system.

The use of shadow maps is a common approach to implementing cast shadows from 

particle systems.  Unlike casting shadows from solid opaque objects, particles are often 

represented as translucent billboards therefore requiring shadowing techniques to be 

implemented differently and the translucency becomes an issue.  These difficulties can 

make shadows look unrealistic and therefore a more advanced shadow approach may be 

required.  Cast shadows often tie in with the self-shadowing of a particle system where 

the resulting self-shadowing information, often stored as a shadow map, can be reused to 

create cast shadows.

Most existing methods involving self-shadowing of particle systems require particles to 

be sorted along an axis so that the opacity and shadowing information can be accumulated 

for each particle in order.  This process is computationally demanding but there are 

optimisations, which can reduce the complexity.  Green [Green 2008] performs real-time 

self-shadowing of a particle system and discusses some techniques for reducing the 

complexity, including the half-angle slice rendering technique, which was discussed in 

the previous chapter.

Deep shadow maps [Lokovic and Veach 2000] can be used to add self-shadowing to 

particle systems where particles are translucent.  Where as regular shadow maps store a 

single depth value for each pixel, a deep shadow map stores a ‘visibility function’ which 

estimates the amount of light that passes through at different depths.  Unfortunately deep 

shadow maps are computationally expensive and cannot guarantee a real-time solution.
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Opacity shadow maps [Kim and Neumann 2001] provide a real-time solution to self- 

shadowing.  Opacity maps are spaced out throughout the volume and face towards the 

light source; cutting the volume into slices.  Each is rendered from the point of view of 

the light source summing and storing the alpha values of the particles contained up to the 

depth of the opacity map (any particles outside the depth of the slice are clipped).  These 

opacity maps store opacity values at different depths through the volume which can be 

used to calculate the shadowing at different depths when rendering the volume.  While 

this technique does provide a real-time solution it does introduce artefacts due to linear 

interpolation between opacity maps.  The layering artefacts can be reduced with a greater 

number of opacity maps but obviously at a cost of speed.

Figure 5.2.a shows the similarities between opacity shadow maps (left) and deep opacity 

shadow maps (right).  Deep opacity maps [Yuksel and Keyser 2008] offer a solution 

which does not suffer from layering artefacts and yet runs at real-time speeds.  First a 

depth map is created from the point of view of the light source, which captures the depth 

of particles nearest the light source.  Secondly, opacity maps are created, storing the 

opacity at different depths through the volume, but instead of using flat parallel slices for 

each layer, the depth map dictates the first layer and further layers are at an increment to 

this depth map.  The difference between the layers is illustrated in Figure 5.2.a.  This 

adjustment improves the accuracy of the shadowing and does not need as many layers as 

the opacity shadow maps technique to achieve an improved quality final image.  With 

these recent techniques, real-time self-shadowing of particle systems has become feasible 
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Figure 5.2.a: Opacity shadow maps and deep opacity shadow maps
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for mainstream consumer graphics cards, and they open up some interesting future 

possibilities for hybrid techniques.

To our knowledge, external shadowing of particle systems has not been the focus of any 

other research, so shadowing information from solid objects currently in a scene has no 

effect on a particle system.  A particle system which represents smoke should interact 

with external shadows from other objects in the scene so as to look realistic and properly 

integrated into the scene.  Figure 5.2.b shows our GPU vertex based particle system 

without any form of shadowing.  Particles are expanded in the geometry shader and 

rendered as point sprites with alpha additive blending which does not require any sorting. 

An external shadow is cast from the dwarf model, which should be seen cast onto the 

smoke particle system as well as on the wall.

We have experimented with both shadow mapping and shadow volume techniques for 

implementing external shadows.  We found shadow mapping to be a more suitable 

solution in this case as it is a simple operation to determine if a particle is in shadow or 

not and we can easily pass the shadow map as a texture input when rendering our GPU 
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Figure 5.2.b: GPU particle system without external shadowing effect
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vertex based particle system.  We sample and compare the depth in the shadow map to 

the actual depth of the particle in the pixel shader to determine if the particle pixel is in 

shadow and render the correct colour accordingly.  Figure 5.2.c shows our results using 

this technique.  The test application runs at real-time speeds on modern consumer 

graphics hardware, Figure 5.2.c was rendered at 145 fps on a NVidia GeForce 8800 GTS 

graphics card.  The light source in Figure 5.2.c is modelled as a single dynamic point light 

which followed a circular path in this test scene.
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Figure 5.2.c: GPU particle system with external shadowing effect
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Figure 5.2.d shows our model from a different camera angle.  We presented this method 

as a poster at the Eurographics 2010 conference [Bass and Anderson 2010].  A copy of 

the poster can be found in Appendix A.

Figure 5.2.e shows a detailed flowchart describing the processes that take place in 

rendering a single frame using our technique.  For the particle system simulation we use a 

GPU vertex based particle system in which a seeding buffer is used to initialise the 

system.  Input and output buffers are used afterwards to store the particle system 

simulation data which are swapped each frame.  Once the particle system has been 

updated, the remaining scene objects are updated.  A shadow map is created and the scene 

objects are rendered with shadows.  The shadow map is reused when rendering the 

particle system to apply external shadowing to the particle system.
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Figure 5.2.d: Different view showing our external shadow implementation
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Figure 5.2.e: Flowchart of the processes in rendering a frame of our model
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5.3 Improving our Method by Incorporating Existing Techniques

The current implementation shows a lot of room for improvements.  This section will 

discuss some ideas for future research and development.

The basic shadow map algorithm suffers from aliasing artefacts resulting in rough 

pixelated edges to shadows.  By using shadow mapping our method also suffers from 

these artefacts throughout the 3D shadow.  However, as we have discussed in a previous 

chapter, there are several available advanced shadow mapping techniques that 

successfully remove such artefacts and result in a smooth edged shadow.  Combining one 

of the more advanced shadow mapping techniques with our external shadowing should be 

a trivial task.  The PCSS [Fernando 2005] technique would be a particularly interesting 

addition as it has a variable size penumbra which would be emphasised by our 3D 

shadow effect seen through the particle system.  Sharper edged shadows would become 

more blurred for particles further away from the light source, adding to the realism of the 

scene.

Soft particles is a technique to remove hard edges where a 2D billboard intersects 3D 

geometry.  In our current external shadowing technique there are hard edges where the 

shadow cuts through particles.  This is partly caused by the inaccuracies in the shadow 

mapping technique and the sharp drop off which we can also address with an alternative, 

more advanced, shadow mapping algorithm (like PCSS [Fernando 2005]).

The soft particles technique uses the scene depth buffer when rendering particles and as 

the distance between the particle and the depth buffer shortens, the particle is alpha 

blended out.  We can use the soft particles technique in our model to alpha blend particle 

pixels which intersect 3D geometry as normal but we cannot use the soft particles 

technique directly to help remove any artefacts caused by 2D particles intersecting our 

shadow map.  However we can implement a similar technique which uses the depths 

stored in the shadow map to blend particle pixels.

                                                                                                                                                
p.  62 of 79



Chapter 5 Homemade Smoke and Shadows
                                                                                                                                                               

Figure 5.3.a shows how we have implemented a soft shadow technique using a shadow 

map.  Notice that the particle billboards in Figure 5.3.a are partially in shadow and 

partially lit.  In our original shadowing a hard edge appears at the cut-off between pixels 

in shadow and lit areas.  In the vertex shader we have sampled the shadow map, 

calculated the distance between the particle position and the shadow map sample and 

passed the result to the pixel shader.  In the pixel shader we repeat a similar process to 

calculate the distance between the pixel and the shadow map sample.  With this data we 

can calculate the pixel shading using a simple weighting function between the two depths, 

so as the depths vary the pixel can be smoothly shaded from being in full shadow to being 

fully lit.  The shadow map tends to vary fairly quickly and consequently the shading will 

also, but to counter this the shadow map could be blurred beforehand.
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Figure 5.3.a: Soft particles for our technique
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Figure 5.3.b shows the result we achieve from using this technique with a shadow map. 

We could use this technique of comparing the per vertex depth and the per pixel depth 

with a more complex shadow mapping model, but we will leave this for future research. 

Another possibility for reducing the hard edge artefacts is to look at using volumetric 

particles to represent smoke.  Figure 5.3.b was rendered at 124 fps on an ATI Radeon HD 

5770 graphics card.

Green [Green 2008] published a particularly relevant paper, describing a method for 

volumetric particle shadows, which includes a discussion for sorting on the GPU and a 

method for the self-shadowing of particle systems.  Self-shadowing of particle systems 
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Figure 5.3.b: Our soft particles
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usually requires particles to be sorted along an axis.  Green suggests using half-angle slice 

rendering [Ikits et al. 2004] and half-angle axis sorting for the basis of his method.  By 

sorting particles along the half-angle axis (between the light and the viewer), all the 

information for accumulating shadows and blending is available, saving on the 

computational complexity and the memory requirements.  Another option for self-

shadowing is a deferred shadowing approach like the method discussed by direct to video 

[direct to video 2009].  The deep opacity maps [Yuksel and Keyser 2008] method is 

another approach to self-shadowing which could be applied to particle systems, which 

looks to be a particularly effective approach.  Deep opacity maps could be used instead of 

the regular slicing method discussed by Green [Green 2008] to build an improved 

solution.
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Chapter 6 Final Conclusions

6.1 Summary of Contributions

We have presented an overview on lighting techniques, methods for smoke simulation 

and rendering with various shadowing techniques.  We have added to the body of 

knowledge in this area by presenting two novel techniques.

6.1.1 External Shadowing of Particle Systems

Our main contribution is our method for casting external shadows onto particle systems. 

Our method can be used to achieve real-time 3D shadowing seen visually through a 

translucent particle system.  We have successfully implemented this technique on a GPU 

vertex based particle system simulation using a typical billboarding approach for 

rendering particles to represent smoke.  We have also discussed a modified 

implementation of the soft particles technique (inspired by Lorach [Lorach 2007] and the 

sample in the DirectX SDK [Microsoft 2010]) with the purpose of reducing the hard edge 

artefacts.

6.1.2 Surface-Curvature Ambient Occlusion

Our second contribution is Surface-Curvature Ambient Occlusion (SCAO); a method for 

estimating ambient lighting for opaque solid models.  SCAO uses the geometry shader to 

provide a more accurate estimate of the ambient lighting term where often a constant 

ambient lighting term is used.  It can be easily implemented into a lighting model with 

diffuse and specular terms providing a complete lighting model for 3D opaque solid 

models.

6.2 Discussion

The primary aim of our research has been to develop a real-time method that improves 

upon the realism of smoke rendering under different lighting conditions.  Through a 

detailed exploration of the subject area we narrowed our focus to the casting of external 

shadows onto a smoke particle system.
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Our resulting method provides an effective way to add external shadowing to a smoke 

particle system with aesthetically pleasing results.  Our method opens up many interesting 

opportunities for further work.

During our research we developed another novel method, SCAO, using the geometry 

shader to calculate an estimate for ambient lighting reaching a surface.

6.3 Future Work

Our two novel techniques which we have introduced provide some scope for further 

development and future research.

6.3.1 External Shadowing of Particle Systems

We have already looked at using the soft particles technique to reduce the hard edge 

artefacts and while our modified soft particles implementation yielded some promising 

results, it did not completely resolve the artefacts.  Perhaps a better solution might be to 

use a more advanced shadow mapping technique to determine the shadow of a particle. 

We have already discussed many advanced shadow mapping techniques which could 

provide a solution, especially the PCSS [Fernando 2005] technique, which would have 

the added benefit of providing a varied soft edge to the 3D shadow depending on the 

distance from the light and the occluding model.  We believe this would give a varied 

penumbra to our 3D shadow which could be seen through the particle system, greatly 

improving the aesthetics of the overall effect.  This would likely be a fruitful path for 

future research.

The soft volumetric particles technique could also be used to reduce the hard edge 

artefacts but would need to be modified to work with a 2D shadow map instead of with 

regular 3D geometry.  This could be a path for future research.

Finally combining our method with a self-shadowing and an alpha-blending technique 

should enrich the final scene.  A sorting technique will likely be needed to implement 

these and we suggest using the odd-even merge sort [Kipfer and Westermann 2005] 

because of its ability to perform sorting passes over multiple frames, gradually and 

smoothly moving towards a sorted data set.  The half-angle axis sorting [Ikits et al. 2004] 

concept may also be useful in reducing the workload.  Green [Green 2008] uses this 

technique successfully to implement a self-shadowing particle system.  Deep opacity 

maps [Yuksel and Keyser 2008] look to be another boon for self-shadowing and might be 
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applied instead of a regular slicing technique, certainly worth investigating in future 

research.

6.3.2 Surface-Curvature Ambient Occlusion

For Surface-Curvature Ambient Occlusion we suggest future work include investigating 

using multiple adjacent vertices and possibly taking an average to improve the accuracy 

when calculating the local surface curvature.  Also the method needs to be thoroughly 

tested on high and low polygon models which may affect the results.

Finally, future work could look at using a normal map when calculating the surface 

curvature to improve the accuracy of the results and explore how this method could fit in 

with level of detail techniques.
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Appendix A

The following 2 pages are a short poster paper published at the 2010 Eurographics 

conference [Bass and Anderson 2010].
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This item has been removed due to third party copyright. The unabridged version of the thesis can be 
viewed at the Lanchester library, Coventry university.
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Glossary

API (application programming interface) – an interface implemented by software 

allowing other software to interact via commands.  Offers a layer of abstraction 

between software so that higher-level programs can become hardware 

independent.  Allows for high-level software commands to interact with low-level 

software and hardware without requiring detailed knowledge of the low-level 

software.

Billboard – a camera aligned rectangular primitive (often built from two triangles) with 

an attached texture also known as a sprite or an imposter under some 

circumstances.

Billboarding – a rendering technique involving the use of billboards (see above).

GPU (graphics processing unit) – a parallel processor designed for the acceleration of 3D 

graphics rendering.

MRT (multiple render target) – the ability to render out to multiple different render 

targets in one pass.

OpenGL (open graphics library) – an open-source cross-platform graphics API providing 

programmers with many graphics related commands providing a basic foundation 

for applications using accelerated graphics.

Pixel (picture element) – a fundamental element (building block) of a raster image, which 

contains a solid colour, made up from RGB channels.

QUICK (quadratic upstream interpolation for convective kinematics) – an advection 

technique which can be used to simulate the movement of fluid.

SDK (software development kit) – a group of development tools and reference material 

which aid a software developer in writing programs for a specific software 

platform.

Shadow volumes – a shadowing technique that involves extruding a shadow volume from 

the occluding mesh which encapsulates the shadowed parts of the scene.

Shadow mapping – a shadowing technique that involves creating a height map of the 

occluding mesh from the light position.  The height map is then used to determine 

if a pixel is in shadow or not by comparing the depth of the pixel and the depth in 

the height map.
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SCAO (surface-curvature ambient occlusion) – a technique for estimating the ambient 

light reaching a surface by using the geometry shader to calculate the local surface 

curvature.

SSAO (screen space ambient occlusion) – a post process lighting effect that adds an 

estimate of the amount of ambient lighting in a scene by using the depth of the 

pixels in screen space.

Texel (texture pixel) – a pixel belonging to a texture.

Voxel (volumetric pixel) – a fundamental element (building block) of a volume split into 

a regular grid of small equally sized cubes.
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