91,435 research outputs found

    Unified Approach in the DSS Development Process

    Get PDF
    The structure of today's decision support environment become very complex due to new generation of Business Intelligence applications and technologies like Data Warehouse, OLAP (On Line Analytical Processing) and Data Mining. In this respect DSS development process are not simple and needs an adequate methodology or framework able to manage different tools and platforms to achieve manager's requirements. The DSS development process must be view like a unified and iterative set of activities and operations. The new techniques based on Unified Process (UP) methodology and UML (Unified Modeling Language) it seems to be appropriate for DSS development using prototyping and RAD (Rapid Application Development) techniques. In this paper we present a conceptual framework for development and integrate Decision Support Systems using Unified Process Methodology and UML.Decision Support Systems, Unified Process, UML, Prototyping, DSS Tools

    Development of Cost Estimation Tool

    Get PDF
    Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field of software engineering. The Unified Modeling Language includes a set of graphic notation techniques to create visual models of object-oriented software-intensive systems. In software engineering, a class diagram in the UML is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among the classes. The aim of my project is to develop a tool to estimate the cost of a software using UML class diagram. This is achieved by converting UML class diagram to XML (Extensible Markup Language) representation. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By using the concept of class point approach, it calculates the total number of adjusted class point by parsing the XML file. First step for development of cost estimation tool requires understanding the concept of UML and XMI (XML Metadata Interchange). XMI is an Object Management Group (OMG) standard for exchanging metadata information via Extensible Markup Language (XML). The most common use of XMI is as an interchange format for UML models, although it can also be used for serialization of models of other languages. Conversion of UML class Diagram to XML representation using Magic Draw for parsing. Creating a XMI parser to find the NEM (Number of External Methods), NSR (Number of Service Requested) and NOA (Number of Attributes) and the type of classes. Using class point object oriented approach, calculate the effort required to develop a software system by NEM, NSR and NOA. Information procession size estimation includes identification and classification of classes, evaluation of complexity level of each class using 24 different type of drivers, estimation of the Total Unadjusted Class Point

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties

    Generating operation specifications from UML class diagrams: A model transformation approach

    Get PDF
    One of the more tedious and complex tasks during the specification of conceptual schemas (CSs) is modeling the operations that define the system behavior. This paper aims to simplify this task by providing a method that automatically generates a set of basic operations that complement the static aspects of the CS and suffice to perform all typical life-cycle create/update/delete changes on the population of the elements of the CS. Our method guarantees that the generated operations are executable, i.e. their executions produce a consistent state wrt the most typical structural constraints that can be defined in CSs (e.g. multiplicity constraints). In particular, our method takes as input a CS expressed as a Unified Modeling Language (UML) class diagram (optionally defined using a profile to enrich the specification of associations) and generates an extended version of the CS that includes all necessary operations to start operating the system. If desired, these basic operations can be later used as building blocks for creating more complex ones. We show the formalization and implementation of our method by means of model-to-model transformations. Our approach is particularly relevant in the context of Model Driven Development approaches. © 2011 Elsevier B.V. All rights reserved.The authors want to thank the anonymous referees of this journal for their interesting suggestions. This work has been partly supported by the MICINN under projects TIN2008-00444, Grupo Consolidado and TIN2010-18011, and by the Generalitat Valenciana under the project OKA PROMETEO/2009/015, and co-financed with the European Regional Development Fund.Albert Albiol, M.; Cabot Sagrera, J.; Gómez Seoane, C.; Pelechano Ferragud, V. (2011). Generating operation specifications from UML class diagrams: A model transformation approach. Data and Knowledge Engineering. 70(4):365-389. https://doi.org/10.1016/j.datak.2011.01.003S36538970

    Temporal verification in secure group communication system design

    Get PDF
    The paper discusses an experience in using a real-time UML/SysML profile and a formal verification toolkit to check a secure group communication system against temporal requirements. A generic framework is proposed and specialized for hierarchical groups

    UML Class Diagram or Entity Relationship Diagram : An Object Relational Impedance Mismatch

    Get PDF
    It is now nearly 30 years since Peter Chen’s watershed paper “The Entity-Relationship Model –towards a Unified View of Data”. [1] The entity relationship model and variations and extensions to ithave been taught in colleges and universities for many years. In his original paper Peter Chen looked at converting his new ER model to the then existing data structure diagrams for the Network model. In recent years there has been a tendency to use a Unified Modelling Language (UML) class diagram forconceptual modeling for relational databases, and several popular course text books use UMLnotation to some degree [2] [3]. However Object and Relational technology are based on different paradigms. In the paper we argue that the UML class diagram is more of a logical model (implementation specific). ER Diagrams on theother hand, are at a conceptual level of database design dealing with the main items and their relationships and not with implementation specific detail. UML focuses on OOAD (Object Oriented Analysis and Design) and is navigational and program dependent whereas the relational model is set based and exhibits data independence. The ER model provides a well-established set of mapping rules for mapping to a relational model. In this paper we look specifically at the areas which can cause problems for the novice databasedesigner due to this conceptual mismatch of two different paradigms. Firstly, transferring the mapping of a weak entity from an Entity Relationship model to UML and secondly the representation of structural constraints between objects. We look at the mixture of notations which students mistakenly use when modeling. This is often the result of different notations being used on different courses throughout their degree. Several of the popular text books at the moment use either a variation of ER,UML, or both for teaching database modeling. At the moment if a student picks up a text book they could be faced with either; one of the many ER variations, UML, UML and a variation of ER both covered separately, or UML and ER merged together. We regard this problem as a conceptual impedance mismatch. This problem is documented in [21] who have produced a catalogue of impedance mismatch problems between object-relational and relational paradigms. We regard the problems of using UML class diagrams for relational database design as a conceptual impedance mismatch as the Entity Relationship model does not have the structures in the model to deal with Object Oriented concepts Keywords: EERD, UML Class Diagram, Relational Database Design, Structural Constraints, relational and object database impedance mismatch. The ER model was originally put forward by Chen [1] and subsequently extensions have been added to add further semantics to the original model; mainly the concepts of specialisation, generalisation and aggregation. In this paper we refer to an Entity-Relationship model (ER) as the basic model and an extended or enhanced entity-relationship model (EER) as a model which includes the extra concepts. The ER and EER models are also often used to aid communication between the designer and the user at the requirements analysis stage. In this paper when we use the term “conceptual model” we mean a model that is not implementation specific.ISBN: 978-84-616-3847-5 3594Peer reviewe

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Modeling the object-oriented software process: OPEN and the unified process

    Get PDF
    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed
    corecore