
A formal verification framework and associated tools for Enterprise

Modeling: Application to UEML

V. Chapurlat a,*, B. Kamsu-Foguem a, F. Prunet b

aLGI2P-Laboratoire de Génie Informatique et d’Ingénierie de Production, Site EERIE de l’Ecole des Mines d’Alès,

Parc Scientifique George Besse, 30035 Nı̂mes Cedex 1, France
bLIRMM, Laboratoire d’informatique, de Robotique et de Microélectronique de Montpellier, 165, rue ada,

34065 Montpellier Cedex 5, France

Abstract

The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the

relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties.

Keywords: Enterprise Modeling; Verification; Validation; Property; UEML

1. Enterprise Modeling versus enterprise model

verification: problematic

A model is a representation of reality that enables a user to

understand a system or phenomenon better, to evaluate some of

its characteristics, and to share and argue opinions about it with

other users. Usually a model is used to support a decision-

making process to determine what actions (design, improve-

ment or control) have to be carried out on the system concerned.

Enterprise Modeling (EM) [1] is defined by [2] as the art of

externalizing enterprise knowledge which adds value to the

enterprise or needs to be shared. It consists of making models of

the structure, behavior and organization of the enterprise.

Several approaches, methods, reference models, architecture

models, norms and tools have been defined over the last 20 years.

A broad study of these is given in [19] and some of the more

important ones are described in Refs. [3,4]. We can cite, for

example, the ICAM Definition (IDef) family which includes

several modeling languages (Idef-0 and other) [5], CIM Open

System Architecture (CIMOSA proposing different views of the

enterprise: functional, informational, resource and organization)

[6], GRAI and GRAI-GIM (GRAI Integrated Methodology is a

methodology for the design and analysis of production systems,

and more particularly decision systems, in an enterprise) [7],

Process Specification Language (PSL) [8,9], TOronto Virtual

Enterprise (TOVE) [10], Business Process Modeling Language

(BPML) [11], Aris [12], some reference models, such as

Purdue Enterprise Reference Architecture (PERA) [13] or

Generalized Enterprise Reference Architecture and Methodol-

ogy (GERAM) [14,15] and some standards [16–18,63,64].

Finally, several tools (ARIS ToolSet, MEGA Process,

FirstSTEP, MooGo, Graisoft 1.0, etc.) supporting some of these

approaches provide modeling and analysis functionalities

enabling the behavior of a part of an enterprise to be

represented and investigated.

All of these approaches and tools offer modeling concepts,

relations between concepts and constructs that usually highlight

the relevant entities that make up an enterprise. Some of these

concepts and relations are common and focus on the same

entity as an activity or a process. However, they are defined

differently from one language to another. For example, a GRAI

activity and a PSL activity do not have the same semantic. On

the other hand, some languages propose particular concepts or

constructs which do not exist in another languages but are

necessary to build models responding to a particular use.

This results a ‘‘Tower of Babel’’ [2] situation in which it is

necessary to adopt a consensus and to determine a set of core

concepts and constructs for Enterprise Modeling. The goal is

not to define a unique modeling language that will replace all
* Corresponding author. Tel.: +33 466 703 866; fax: +33 466 387 074.

E-mail address: Vincent.Chapurlat@ema.fr (V. Chapurlat).

the others. The goal is to define a pivot modeling language

allowing to improve the communication between the existing

languages without loss of information and semantics, and

to define a set of common concepts which have to be

taken into account in the development of future modeling

languages. Researchers have focused on unified languages,

such as PSL (dedicated to the representation of manufacturing

systems) or Unified Enterprise Modeling Language (UEML)

which is dedicated to the representation of business processes

[19–22].

Finally, with these modeling languages available, any

obtained model can be validated and checked for rigor and

robustness [23]. Indeed, it is necessary to guarantee the

user a given level of confidence about the suitability,

correctness, relevance and fidelity of each model before using

it. In other words, it is necessary to integrate concepts and

mechanisms into modeling languages or modeling tools that

support or facilitate verification and validation (V&V) tasks:

� Verification must confirm [24] by examination and provision

of objective evidence that specified requirements have been

fulfilled, that is to say to respond to the question ‘‘Is the model

well formed?’’ This naturally involves checking the syntax,

but also verifying the semantic relevance of the model (the

model respects the language construction and behavioral

rules and the concepts used are clearly identified and

correctly interpreted).

� Validationmust confirm [24] by examination and provision of

objective evidence that the particular requirements for a

specific intended use are fulfilled, that is to say ‘‘Is it the

intended model?’’ or ‘‘Is the model faithful to reality?’’ This

involves assuming that the behavior of the model is

equivalent to the behavior of the system, if it exists, or to

the requirements, taking into account the modeling hypoth-

eses.

Verification and validation need to provide rigorous

arguments in order to convince users of the correct functioning

and reliability of a model and of model-based systems before

using them [25,26]. It also ensures the coherence between the

different models of a given enterprise, thus improving

communication and exchange among the different users, or

Table 1

Verification and validation techniques (V&V) [29]

Category Verification and validation techniques (V&V)

Informal Audit Desk checking

Face validation Inspections

Reviews Turing test

Walkthroughs

Static Cause–effect graphing Control analysis (calling structure;

concurrent process; control flow; state transition)

Data analysis (data dependency; data flow) Fault/failure analysis

Interface analysis (model interface; user interface) Semantic analysis

Structural analysis Symbolic evaluation

Syntax analysis Traceability assessment

Dynamic Acceptance testing Alpha testing

Assertion checking Beta testing

Bottom-up testing Comparison testing

Compliance testing (authorization; performance;

security; standards)

Debugging

Execution testing (monitoring; profiling; tracing) Fault/failure insertion testing

Field testing Functional (black-box) testing

Graphical comparisons Interface testing (data; model; user)

Object-flow testing Partition testing

Predictive validation Product testing

Regression testing Sensitivity analysis

Statistical techniques Special input testing (boundary value;

equivalence partitioning; extreme input; invalid

input; real-time input; self-driven

input; stress; trace-driven input)

Structural (white-box) testing (branch;

condition; data flow; loop; path; statement)

Sub-model/module testing

Symbolic debugging Top-down testing

Visualization/animation

Formal Induction Inference

Logical deduction Inductive assertions

Lambda calculus Predicate calculus

Predicate transformations Proof of correctness

between the different abstraction levels, each one represented

by a specific model.

Several techniques and tools make verification and

validation possible in different domains [27,28]. Love and

Back [29] propose some common ones for Enterprise

Modeling, summarized in Table 1.

These go from the most informal ones more suitable for

validation to the most formal ones more dedicated to

verification. To summarize this table, validation remains

difficult without any human experts and verification remains

poorly developed. This article will focus on verification based

on formal principles. Indeed, formal methods [30,31] and tools

[28] offer the promise of significant improvements in

verification.

They are the only way capable of demonstrating the absence

of undesirable model behavior and of making sure that the

model will function as required. On the other hand, it is widely

recognized that these methods are expensive, not easy to use

and therefore not very accessible. The reason is that formal

approaches cannot be understood and handled by most experts

in the domain, and especially because they are not yet used in

the EM field. As a matter of fact, their use is not always very

interesting for a non-specialist because it lays down too strict

and a limited vision of the modeled system and leads to

uncertain delays before obtaining the needed results. This paper

presents the concepts and tools supporting an Enterprise

Modeling Verification methodology based on formal proof of

properties, taking into account the following main concepts and

mechanisms:

� Amodeling language enabling a property to be described and

handled [32].

� An ontology allowing us to develop a common vocabulary

[33] composed of sets of related concepts and relations

dedicated to Enterprise Model Verification. This ontology

allows us to propose extensions to UEML.

� A Properties Reference Repository (PRR) [34] is a pre-

defined properties database in which the user can choose,

select and specify different properties which classically have

to be proved on a model. We describe an EM PRR below.

� A set of formal verification mechanisms [35,36] based on

Conceptual Graphs [37].

In order to demonstrate this work, the proposed approach

will be applied to UEMLVersion 1.0 [20], whose meta model is

presented in Fig. 1.

UEML should be able to translate a business process model

into another modeling language without any distortion of

.

Fig. 1. UEML 1.0 meta model [20].

semantics. So, it will be considered here as a modeling

language even though that is not its prime objective. All the

proposed concepts, relations and mechanisms can be added

as proposed to UEML 1.0 enabling verification tasks to be

performed during the modeling process.

2. Principles of the methodology

The proposed methodology may be described by three

interconnected processes illustrated in Fig. 2 and detailed in the

following sections:

� Conceptualization process: Before being able to verify a

model, a set of experts defines a formal ontology for the

selected domain and builds a domain-oriented Properties

Reference Repository.

� Modeling process: The user represents a part of an enterprise

using UEML and specifies the properties corresponding

to the needs he or she wants to verify, using the

Property Reference Repository defined in the previous

phase.

� Verification process: The user must then prove some chosen

properties on the model by use of formal mechanisms

allowing him to increase his own knowledge and improve the

model’s quality and relevance. The user in charge of an

enterprise model will be involved only during the modeling

and verification processes, whereupon the conceptualization

process provides a PRR and common ontology available to

all the users.

3. The conceptualization process

3.1. From the property concept . . .

As proposed in Ref. [32], any real world entity (a system, a

component, an organization) is characterized by a set of

properties. It is therefore necessary to formalize these

properties during the modeling process [9,32] and to analyze

them in respect to the real entity. In the same way, any model of

a real world entity is itself characterized by a set of properties

that also have to be formalized during the modeling process. A

property is thus:

� Knowledge to be modeled: The modeling language used must

enable these properties to be formalized or must include

mechanisms and concepts that support this formalization.

This knowledge concerns the behavior (evolution rules of

the model, evolution laws of the system as proposed in Ref.

[38], temporal hypotheses, event occurrence descriptions,

auto-adaptive or auto-organization abilities of the entity and

so on), the structure and function of the entity or model

(functional and non-functional requirements, composition,

links and interactions between components and so on). This

knowledge may be:

- The characteristics of real entities (characteristics specific

to the entities). They may describe a temporal aspect

(activity duration, implementation date, date of birth, etc.),

a spatial aspect (position of an actor in a hierarchy,

geographic position of the enterprise, speed, acceleration,

Fig. 2. The methodology is described as three interconnected processes.

etc.) or morphological aspect (dimension, organization,

structure, financial costs, etc.).

- The characteristics of the model used (structure, decom-

position rules, behavioral evolution rules, etc.).

- Interactions between the entity (the model) and other

entities (models) and with the environment if temporal

constraints need to be considered. Several new properties

can emerge from this interaction.

- Relations existing between other properties characterizing

the entity (the model).

� Knowledge to be handled: During the modeling process, the

user, who is a non-specialist of knowledge modeling, must

specify, modify and improve the representation of an entity or

model by using properties.

� Knowledge to be checked: During the verification process, the

user must argue in an indisputable way, as formally as

possible, that all the necessary properties have been proven,

that is to say they are true. This allows the user to improve his

level of knowledge about the behavior and the structure of the

entity or model. Some particular mechanisms, such as those

presented below, then enable reasoning, proof and, if

possible, the identification of emergent properties, i.e. the

characteristics of the interrelations between entities or

models which were hidden or forgotten during the modeling

process.

The CRED model [32,33] allows us to specify and

manipulate a property as a causal relation between two sets

of data called facts.1 These two sets are named Cause and

Effect, respectively, and the causality relation postulates that

there is a law by which the occurrence of the Effect depends on

the occurrence of the Cause. This causal relation is a typed and

constrained relation:

� Logical: It describes relations of implication and equivalence

(reciprocity between cause and effect).

� Temporal: It describes temporal links, such as antecedence, in

which the cause must be prior to, or at least simultaneous

with, the effect.

� Influence: Knowledge about a particular cause modifies the

opinion about the verification of the effect [39]. It thus defines

how causes and effects must be linked with respect to

particular events or situations. A sense of variation is

associated to each influence relation, and can be interpreted

as a beneficial or harmful influence on the effect.

� Emergence: Each modeled system can be described by some

characteristics which are not directly deducible from the

characteristics of its components but which result from

relations between these components. The explanation of this

kind of property needs to take into account all the interactions

and feedbacks which connect the entity or model with its

environment.

This typology allows us to define a property classification

that takes into account the following factors:

� Time: A static property remains always true or true for a given

time interval as proposed in Temporal Logic [40,65], which

considers temporal operators, such as ‘always’ or ‘for all t’. A

dynamic property depends on the evolution of time (wear rate

of a tool, financial cost taking into account variation in

material costs, etc.).

� The level of detail that is employed during the modeling

process. A property is defined at a given level of detail by

using the information avoidable at this level. Some

information may be hidden in sub-levels or upper levels,

so a level of granularity is defined by the user. This defines

the various levels of detail and fixes the ordered relations

between these levels. An example of granularity is shown in

Fig. 3. In this case the relation may, for example, comply with

behavioral decomposition rules of the modeling language.

� The property’s objective: An ‘‘own property’’ (one for which

the set of causes is empty) describes an attribute of an entity

irrespective of its environment (color of an object, ability

level of an actor). A conjunction property, on the other hand,

describes an attribute of the network interaction in which the

entity is involved.

This classification allows us to describe, for example, a static

own property (the color of an object cannot be modified) or a

dynamic own property (the skill level of a human resource

evolves). Any combination is possible. The CRED model

defines a property as:

P ¼ hCP;RP;EP;DPi

where

� Causes CP = {factjfact 2 F}, card(CP) � 0.2

� Effects EP = {factjfact 2 F}, card(EP) > 0.

� Detail level DP = hName, Gi is the level of detail named

Name of which P is defined in a given granularity G

(DP 2 G).

� Relation RP is the relation defining the causal link between

Causes and Effects. It is defined by the 4-tuple:

RP ¼ hType; SP; uc; ue; u pi

where

.

Fig. 3. Example of granularity.

1 A fact may be an assertion about a parameter, a variable of any type (integer,

boolean, real, string, character) contained in the model, that is to say one of the

elements of the model, or it may describe information added by the user

considering the modeling domain (for example, another property). All facts are

gathered in the set F. 2 Set C is empty for each property of type ‘own property’.

- Type denotes the relation type (logical, temporal, influence,

emergence).

- SP = {factjfact 2 CP \ EP} is the set of common facts

(parameters and variables) which are considered simulta-

neously as a cause and an effect of P (for example, a variable

named t which denotes time).

- The Boolean function uc describes under which conditions (by

interpretation of causes), the property is verified. uc is defined

as follows:

uc: CP [SP ! {true, false}; If there is an empty cause then

uc = true.

- The Boolean function ue describes what are the results on the

effects (by interpretation of updating functions) when the

property is verified. ue is defined as follows:

ue: EP [SP ! {true, false}.

- The Boolean function up describes the constraint under which

the property P is verified. up is defined as follows:

up: SP ! {true, false}.

3.2. Example

A manufacturing process describes the transformation of a

product. Fig. 4 shows a part of this process, made up of two

activities named ‘Control conformity’ and ‘Stock’. Each

activity is seen here as a processor which modifies the shape,

space and/or time attributes [41] of one or more of its inputs in

order to provide one or more outputs, taking into account

objectives, constraints, rules and resources. There are four types

of activity:

� Transformation: A transformation activity implies that all the

input flows (bill of materials, information and data, financial

and so on) are modified by the activity into output flows and

that all the resources used are modified (material wear of a

machine, for example). This modification changes one or

more attributes of every input and every output flow.

� Decision: A decision activity needs to perform and argue

for a decision. The resources supporting this activity must be

able to take the decision by considering and trusting the

information contained in the input flows coming from other

activities or from the environment.

� Control: A control activity consists in analyzing all the

attributes of an input flow in order to verify whether they

respect the needs specified by the control input flows.

� Measure: A measure activity consists in obtaining (a set of)

information about a given (set of) object(s). These can be a

product, a piece of information, a set of resources and so on.

The aim of this activity is therefore to evaluate, estimate,

compute or obtain physical information about this (set of)

object(s) and to create an output information flow that enables

something to be controlled or decided concerning this (set of)

object(s).

In our example, ‘Control conformity’ is a Control activity

type. The property P indicates that each control activity (one or

several control operations on a flow value whatever is the type

of this flow (information, resource, material, etc.) are executed

during the activity), must be followed by a decision activity that

takes into account the result of this control operations results. In

other word, P can be written as:

f½ 8AjA2Activities�g; f½A:Type ¼0 Control0�

) ½ 9BjB2Activities; ðA< >BÞ^

� ðB:InputFlows�A:OutputFlowsÞ^ ðB:Type¼0Decide0Þ�g

Then, the elements of P are:

� CP = Activities where Activities is the set of the activities of

the process.

� EP = Activities.

� Relation RP is of type Logical Implication ()) with:

- SP = Activities.

- up = [8A] which select all instances of activity.

- uc(CP [SP) = [A.Type = ‘control’] which returns true if the

instance A of activity is of type ‘control’.

- ue(EP [SP) = [9BjB 2 Activities, (A<>B) ^(B.Input-
utFlows � A.OutputFlows) ^ (B.Type = ‘Decide’)]}

which returns true for each instance B of an activity which is

different from A, where the outputs of A are contained in the

inputs of B, and B is of the type ‘decide’.

- DP is the detail level of the activity model.

In this case, it is impossible to prove the property P: perhaps

the type of the activity called ‘Stock’ does not match. This may

highlight a modeling error or other mistake, enabling the user to

rectify the model.

The CRED model allows us to describe the properties of an

entity. All the properties are represented in the same manner,

thus guaranteeing the homogeneity of the representation.

However, the specification of a property remains difficult. The

following section presents the concepts we propose to help the

user during the modeling process.Fig. 4. Short example.

3.3. . . . To the Property Reference Repository . . .

The user may ask the following types of questions:

� What is (are) the required property(ies) which have to be

specified in order to be able to verify and, if possible, validate

a part of my model?

� Is there a generic wording of some classical properties

available for my problem, even if it is proposed at a higher

level of abstraction?

Our approach proposes the definition of a database, named

the Properties Reference Repository, that lists and maps

fundamental and generic properties to help, structure and reduce

the user’s efforts during the modeling process. No property can

be proved directly on a model without interpretation. The

following property typology helps the user to select the relevant

properties from the PRR:

� Axiomatic properties: An axiomatic property is considered as

an axiom of indubitable knowledge. Such properties

primarily characterize the environment or intrinsic char-

acteristics of a system or the modeling language used, which

are considered as always verified from the user’s perspective.

They are inspired by taking into account theoretic system

engineering, modeling standards and if necessary the user’s

experience. For example, they may translate the laws of

nature in order to explain certain phenomena external to the

studied model (such as Maxwell’s equations of electro-

magnetism or Newton’s laws of gravity).

� System properties: According to a system engineering

modeling approach [42], a system property is ‘perceptible

or given or fixed by an observer to represent the purpose of a

system, i.e. the objective fixed for the system, without taking

into account possible alterations to its environment, at least

over the given period’. A system property describes:

- A system (set of) constraint(s): deployment, geographical,

architectural, functional, safety, confidentiality, maintain-

ability, environmental, volume, performance, availability,

accessibility, usability or usage, etc. These properties

describe constraints which have to be respected, that is to

say the requirements and expectation of the user.

- A system (set of) characteristic(s): ‘‘own’’ characteristics

(such as color, speed, dimension, etc.), performance,

mission, objective, composition, interactions between com-

ponent properties, input/output relations, current behavior,

etc.

- A negative characteristic or constraint, which cannot be

verified by the model of the system but have to be verified

by the model of the anti-system. The anti-system is a system

that is the exact opposite of the studied system. These

properties enable the user to specify what the system must

not do or not be able to do, the characteristics it must not

have, etc.

� Meta model and modeling language properties: These

properties:

- Characterize the capabilities of the model, that is to say its

structure, behavioral semantics (impact of the behavioral

rules on the model) and temporal evolution.

- Enable the user to establish what to expect from the model:

correctness, coherence, re-initialize state, parallelism,

synchronization, sequence, bounded marking, cycle, tem-

poral aspects, etc. This allows the user to translate some of

the system’s properties corresponding to requirements and

expectations.

This typology enables us to define either a PRR suitable for

specific domain of application and to describe the design

process of a PRR. It consists of the three tasks detailed below,

managed by a group of experts:

� Experts’ Task 1: To build a vocabulary. A model, essentially

for reasons of ease of representation and communication,

readability, relevance and formal use, is always built up on

the basis of a limited and fixed list of common concepts,

relations between those concepts, hypotheses and rules (for

Fig. 5. Conceptualization and implementation of the ontology.

example, cardinality constraints on each relation). Verifica-

tion requires the completion and enrichment of the base

vocabulary of UEML, by defining relevant concepts and

associated relations using the property model proposed in

CRED. An ontology is therefore proposed in order to describe

these concepts and relations. An ontology is a ‘conceptua-

lization of the real world’ [43] and, in our case, the ontology

needs to include concepts and relations considered as

commonly accepted by several methods in the Enterprise

Modeling domain and already defined in the UEML language

(see Fig. 1). Other existing ontologies, such as TOVE and

PSL and some related works on enterprise system engineer-

ing [41,42,44,45] have been merged, using the conceptua-

lization and implementation approach summarized in Fig. 5.

It is then necessary for the user to have at his/her disposal the

extensions required for manipulating the properties in

compliance with the CRED model. A part of the main result

is presented in Figs. 6 and 7 in the form of a meta-model of

the proposed ontology.

For more clarity, this meta-model was built using the Unified

Modeling Language (UML) class diagram format [46] which

is now often used for meta-modeling. UML offers a good

compromise between power of description (a relation is

constrained by cardinality and role, possibility of progressive

enrichment of concepts using inheritance links, etc.), read-

ability, existing works and reference in the domain [47] and a

sufficient formalization level. The meta-model was implemen-

ted using Rational Rose1. Object Classes proposed without any

ambiguities by UEML 1.0 [20] or the UEML meta model

proposed by [21] are marked by a (*). All other meta-entities

have been added in order to complete the ontology to address

the property verification objective. Using scripts, Rational

Rose1 allows documentation to be generated in order to help

the experts to validate their meta-model as proposed in the

NIAM-ORM approach [48] throughout the ontology con-

ceptualization process, and to implement the obtained ontology

that is to say to extract and to translate the object classes and

relations that make up the vocabulary. Each object class,

attribute, method and relation of this meta model has been

checked and the resulting modeling language may be

considered as an extension of UEML, interoperable with

UEML 1.0. This new language is now usable using the

modeling environment GME [49]. This tool allows the user to

describe his/her own models of processes as shown, for

example, in Fig. 8, which highlights some accepted modeling

concepts and relations of the new language.

Finally, the hierarchy of concepts described in the meta-

model is translated into a ‘Concepts lattice’. At the same time,

all relations are gathered into a ‘Relations lattice’ respecting the

rules given in Fig. 9. These two lattices will be necessary for the

last phase of the verification process.

� Experts’ Task 2: To describe generic properties. It seems

desirable to guide or to help experts during this stage,

particularly for generating Model properties and System

Properties. The approach encourages them to settle the

following questions3:

- What does a concept currently do and/or what should it do?

This is a question of representing the properties that

characterize the functional aspect attached to every concept.

.

Fig. 6. Partial view of the proposed ontology meta-model.

3 The questions must be answered by considering their positive form—the

properties focus on the system and the model or their negative form—the

properties focus on the anti system. This will reveal any psychological inertia

on the part of the experts during the design task.

Fig. 8. Example of a process model using UEML 1.0 and GME [49].

Fig. 7. Partial view of the inheritance tree used to describe the ontology.

For instance, a system must have a purpose; any activity

must be characterized by a performance objective and so on.

- How does it evolve and/or how should it evolve in time (f or

every concept)? This is a question of representing the

properties that characterize the behavior of each concept.

For instance, in a process that is initiated by an event, the

firing rules of a transition in the model (for example, if the

model is a Petri net) cause the evolution of the marking

vector by respecting a hypothesis of synchronism and

parallelism.

- What is the composition of each concept and how is it

structured through these components, themselves other

concepts? The answer enables the properties characterizing

the structure of each concept to be identified. For instance, a

network of activities in the GRAI approach is composed of

one or more decision-making activities and of zero or more

execution activities; the modeling of an assembling activity

must necessarily show two or more input flows of objects

and one or more output flows of objects.

- Of what information, knowledge or data is every concept

the source, the destination or the container?

- With which other concept(s) does a concept interact?

� Experts’ Task 3: To classify the properties obtained by

establishing the coherence and completeness of the Repo-

sitory. In the present state of study, this stage is assured

through critical examination by the experts. Mechanisms to

analyze dependency and coherence are explored in our

studies. Fig. 10 shows a part of the PRR obtained, considering

the UEML case.

Fig. 10. Partial view of properties reference repository (PRR).

Fig. 9. Translation rules used for lattice construction.

4. The modeling process

Taking into account the model M of a given part of enterprise

to be analyzed, the user has to specify the properties by carrying

out the following tasks:

� User’s Task 1: To identify and select a set of relevant or

interesting properties in the Properties Reference Repository

depending on the user’s point of view and modeling

objectives (behavioral analysis of a system, performance

analysis, etc.).

� User’s Task 2: To formalize this set of chosen properties. Each

property is specified in the PRR at a high level of abstraction.

It has to be formalized taking into account the facts (extracted

from the model M or specified by the user) in order to give it

some meaning, by means of the CRED modeling language

and considering the vocabulary which has been proposed by

the experts. This task is supported by a Unified Property

Specification Language (UPSL) [50] tool which implements

the CRED model.

Due to the dependence between some of the specified

properties (e.g. the same fact has been used in different properties

which become dependent on one another), the result of the

properties specification phase is a non-connected graph. This

gathers all the knowledge the user has added to themodel. All the

properties describing this knowledge now have to be verified.

5. The verification (and, as far as possible, validation)

process

Indeed, CREDallows us to formalize knowledge and it is then

sometimes possible and interesting to translate this knowledge

into other formal languages (temporal logic, CTL, TCTL, Z or

others) as input for theorem provers, such as Z-Eves [51] or

model checkers, such as PVS [52], STEP or SMV [53,27].

Fig. 11. Verification using conceptual graphs [37].

A relatively recent trend in formal techniques, often called

‘‘lightweight formal methods’’ [31], has shown potential for

detecting major errors in requirements statements, without the

expense of formal design verification [54], by applying formal

analysis to earlier products and models of the system design

process.

In particular, conceptual graphs [37] are a language of

knowledge representation [55] that enables the user at the same

time to define a vocabulary (i.e. an ontology that closely

corresponds to the concepts/relations relevant to Enterprise

Modeling) and to use this vocabulary to conceptualize facts. A

simple conceptual graph is a finite, connected, directed, and

bipartite graph composed of two kinds of nodes called concepts

and conceptual relations. Conceptual Graphs can be considered

as a compromise between formal language and graphical

language because they are visual and incorporate a range of

reasoning processes. The graph operations (projection, rules

and constraints [56]) provide several means of analysis, for both

quantitative and functional properties (completion time,

workloads, critical path, data flow, process type and so on).

While the formality of graph operations does not provide any

guarantees, it helps to increase confidence in the model by

demonstrating that some classes of error are not present.

The methodology aims to translate the model to be analyzed

into a global conceptual graph highlighting concepts and

relations between concepts which are described in the model.

Each property that has been specified by the user is translated

from a formal manner into another conceptual graph. Each

translation (model or property) is made by using an appropriate

algorithm [33]. Finally, projection mechanisms, rules or a

constraints scheme may be used in order to prove the chosen

property that is to say to compare the conceptual graphdescribing

the property to the conceptual graph describing the model.

Fig. 11 illustrates how a givenmodel (in this case, an activity

is only represented at a detail level named ‘Operation’) is

translated into a conceptual graph and the lattices of concepts

and relations defined in the previous section by the experts. The

user has chosen the following property: ‘If the activity aims to

transport a product from one point to another one without any

transformation, the outputs of the activity must have the same

shape attributes (no transformation of the value) as its inputs

(none of the shape attributes of an input should be modified by

the activity)’. This property P is then described in CRED with:

� CP = Activities.

� RP = {Activities, [8AjA 2 Activities, 8iji 2 A.InputFlows.

Attributes],[A.Nature = ‘Transportation’ ^ i.AttributeTyp-

i.AttributeType = ‘‘Shape’’],), [9! o: o 2 A.OutputFlows.

Attributes/o.AttributeType = ‘‘Sha-

pe’’ ^ i.Value = o.Value]}.

� EP = Activities.

� DP = ‘Operation’.

Let G be the graph representing the model, P be the query

graph representing this property, R be a set of implicit

knowledge rules and C be a set of constraints depending on the

domain. P is deduced from (G, R, C) if it is possible to obtain a

valid graph G’ by a sequence of immediate transformations on

G, such that P can be projected intoG’. In this case, the property

P will be verified. If not, Conceptual Graph theory offers some

means to establish the possible causes for the non-verification

of P. This enables defaults or mistakes to be highlighted and the

model to be improved.

6. Conclusion

This paper proposes a methodology for achieving the

verification, and to some extent the validation (V&V) for

Enterprise Modeling. This methodology has been applied here

to a common and relevant modeling language named UEML

and is supported by a set of interconnected tools:

� The Unified Property Specification Language [50] frame-

work to provide the property specification and handling

mechanisms.

� Rational Rose1 for building parts of the Ontology and

generating interchange files (XML, CogXML and SQL) so as

to establish communication without loss of meaning between

all the other tools.

� Generic Modeling Environment (GME) [49] used for UEML

processing and model translation.

� Cogitant 5.1.4 [57] to provide verification mechanisms.

This approach has multiple interests. The requirements,

characteristics and, constraints which cannot be described

using UEMLmay be specified by means of a unique knowledge

modeling language called CRED, which then enables Con-

ceptual graphs, a theorem prover or a model checker to be used

for the verification.

There are numerous perspectives for future work. First,

Conceptual Graphs cannot describe temporal evolution in a

simple way. Further research will develop this aspect. Second,

this kind of analysis approachmay enable a simulation process to

be guided by helping the user to choose particular scenarios. In

the same way, the impact on the system’s behavior on possible

improvements and ameliorations that are classically used in

industry (such as proposed by [38,58,59]) may then be described

and tested in order to modify the model to obtain a ‘TO BE’

model. This will be done in order to help the user to select a

potential solution and to improve the performance of a business

process.

Last but not least, a study is ongoing and appropriate tools

are under construction in the risk analysis domain [60] in order

to improve the risk management toolbox [61,62].

References

[1] F.B. Vernadat, Enterprise Modeling and Integration: Principles and

Applications, Chapman & Hall, 1996.

[2] A. Molina, H. Panetto, D. Chen, F. Vernadat, L. Whitman, Enterprise

Integration and Networking: Milestone Report, TC 5.3 Enterprise Integra-

tion and Networking to Appear in ICEIMT2004, International Conference

on Enterprise Integration and Modeling Technology, Canada, 2004.

[3] P. Bernus, K. Mertins, G. Schmidt, Handbook on Architectures of

Information Systems, Springer, 2003.

[4] K. Kosanke, R. Jochem, J.G. Nell, AOrtiz Bas, Enterprise Inter and Intra-

organisational Integration—Building an International Consensus, Kluwer

Academic Publishers, 2003, ISBN: 1-4020-7277-5.

[5] C.P. Menzel, R.J. Mayer, The IDEF family of languages, in: P. Bernus,

K.et Mertins, G. Schmidt (Eds.), Handbook on Architectures of Informa-

tion Systems, Springer, Berlin, 1998.

[6] AMICE Consortium AMICE, CIMOSA: Open Architecture for CIM,

Berlin, Springer-Verlag, 1993.

[7] G. Doumeingts, B. Vallespir, D. Chen, GRAI grid decisional modeling, in:

P. Bernus, K. Mertins, G. Schmidt (Eds.), Handbook on Architectures of

Information Systems, International Handbooks on Information Systems,

Springer, 1998.

[8] NIST Process Specification Language, see http://ats.nist.gov/psl/, 2002.

[9] PSL Property Specification Language Reference Manual, Accelera For-

mal Verification Technical Committee (FVTC), Version 1.1, see http://

www.eda.org/vfv/, 2004.

[10] M.S. Fox, The TOVE project: a common-sense model of the enterprise,

industrial and engineering applications of artificial intelligence and expert

systems, in: F. Belli, F.J. Radermacher (Eds.), Lecture Notes in Artificial

Intelligence #604, Springer-Verlag, Berlin, 1992, pp. 25–34.

[11] A. Arkin, Business Process Modeling Language BPML 1.0, see

www.BPMI.org, 2002.

[12] A.-W. Scheer, ARIS, Business Process Frameworks, second ed.,

Springer-Verlag, 1998.

[13] T.J. Williams, G.A. Rathwell, H. Li (Eds.), PERA A Handbook on Master

Planning and Implementation for Enterprise Intergration Programs Based

on the Purdue Enterprise Reference Architecture (PERA) and the Purdue

Methodology, Purdue Laboratory for Applied Industrial Control, 2001.

[14] GERAM GERAM: Generalised Enterprise Reference Architecture and

Methodology Version 1.6.1, IFIP–IFAC Task Force on Architectures for

Enterprise Integration, 1999.

[15] D. Chen, B. Vallespir, G. Doumeingts, DesigningManufacturing Systems:

Contribution to the Development of an Enterprise Engineering Methodol-

ogy (EEM) within the Frame of GERAM, IFAC’2002 World Congress,

Barcelona, Spain, 2002.

[16] ISA Enterprise—Control system Integration, Instrument Society of Amer-

ica, Part 1, ISA-ds95.01, Draft 14, 1999.

[17] ITU Information Technology, Open Distributed Processing, Reference

model, Enterprise Language, Telecommunication Standardization Sector

of International Telecommunication Union, Recommendation X.911,

Draft 7, 2000.

[18] D. Chen, Vernadat Enterprise Interoperability: A Standardization View,

Handbook on Architectures of Information Systems, Springer, 2003.

[19] M. Petit, G. Doumeingts, Enterprise Modeling State of the Art, Deliverable

D1.1 of the UEML Project, November 2002, see www.ueml.org, 2002.

[20] UEML Deliverable D3.1: Requirements Analysis: Initial Core Constructs

and Architecture, Unified Enterprise Modeling Language UEML The-

matic Network—IST-2001-34229, see www.ueml.org, 2003.

[21] F.B. Vernadat, UEML: towards a unified enterprise modeling language, in:

Proc. 3ème Conférence Francophone de Modélisation et Simulation

(MOSI-M’01), Troyes, France, 2001.

[22] C. Chen, B. Vallespir, G. Doumeingts, Developing an unified enterprise

modeling language (UEML)—roadmap and requirements, in: Third IFIP

Working Conference on Infrastructures for Virtual Enterprise, Collabora-

tive Business Ecosystems and Virtual Enterprises, Kluwer Academic

Publishers, Sesimbra, Portugal, 2002ISBN: 1-4020-7020-9.

[23] Popkin Enterprise Modeling: Aligning Business and Information Tech-

nology, White Paper, Popkin Software, see http://www.popkin.com/cus-

tomers/customer_service_center/downloads/whitepaper/index.htm, 2003.

[24] ISO 8402: Quality Management and Quality Assurance—Vocabulary,

second ed., 1994-04-01, International Standard Organization, 1994.

[25] NASA Formal Methods Specification and Analysis Guidebook for the

Verification of Software and Computer Systems, Volume II: A Practi-

tioner’s Companion, http://www.eis.jpl.nasa.gov/quality/Formal_Methods/

document/NASAgb2.pdf, 1998.

[26] J. Schekkerman, Enterprise Architecture Validation, Achieving Business-

Aligned and Validated Enterprise Architectures Institute For Enterprise

Architecture Developments Report, 2003.

[27] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph.

Schnoebelen, P. McKenzie, Systems and Software Verification: Model

Checking Techniques and Tools, Springer, 2001.

[28] Yahoda web site presenting an overview of formal verification tools, see

http://anna.fi.muni.cz/yahoda/, 2003.

[29] G. Love, G. Back, Model Verification and Validation for Rapidly Devel-

oped Simulation Models: Balancing Cost and Theory, White Paper of the

Project Performance Corporation, http://www.ppc.com/, 2000.

[30] A. Van Lamsweerde, in: A. Finkelstein (Ed.), Formal Specification: A

Roadmap, The Future of Software Engineering, ACM Press, 2002.

[31] D. Jackson, Lightweight formal methods, in: Proceedings of International

Symposium of Formal Methods Europe, Berlin, Germany, March 12–16,

2001.

[32] E. Lamine, éfinition d’un modèle de propriété et proposition d’un langage

de spécification associé: LUSP, Ph.D. Thesis, Montpellier II University,

2001 (in French).

[33] B. Kamsu-Foguem, Modélisation et Vérification des propriétés de sys-

tèmes complexes: application aux processus d’entreprise, July 2004, Ph.D.

Thesis University Montpellier II, 2004 (in French).

[34] V. Chapurlat, B. Kamsu-Foguem, F. Prunet, A property relevance model

and associated tools for system life-cycle management, in: 15th IFAC

World Congress on Automation Control (B’02), Barcelona, Spain, 2002.

[35] B. Kamsu-Foguem, V. Chapurlat, F. Prunet, Enterprise model verification:

a graph-based approach, in: Proceedings of CESA’2003, Computing

Engineering in Systems Applications, Lille, France, 2003.

[36] V. Chapurlat, B. Kamsu Foguem, F. Prunet, Enterprise model verification

and validation: an approach, Annual Review in Control, IFAC Journal

(2003).

[37] J.F. Sowa, Conceptual Structures: Information Processing in Mind and

Machine, Addison-Wesley, New York (U.S.A.), 1984.

[38] D. Mann, Hands on Systematic Innovation, CREAX Press Editor, 2002.

[39] J. Pearl, Causality: Models, Reasoning and Inference, Cambridge Uni-

versity Press, 2000.

[40] J.F. Allen, Towards a general theory of action and time, Artificial

Intelligence 23 (1984) 123–154.

[41] F. Mayer, Contribution au Génie Productique: Application à l’ingénierie

pédagogique en Atelier Inter établissements de Productique Lorrain,

Thèse de doctorat en production automatisée, Université Henri Poin-

caré/Nancy I, 1995 [in French].

[42] SAGACE Méthode SAGACE: le systémographe, CEA, Version 1.0, 1999

(in French).

[43] M. Uschold, M. Gruninger, Ontologies: principles, methods and applica-

tions, Knowledge Engineering Review 11 (2) (1996) 93–136.

[44] C. Feliot, Modélisation de systèmes complexes: intégration et

formalisation de modèles, Ph.D. Thesis, University Lille I, 1997 (in

French).

[45] P. Lamboley, Proposition d’une méthode formelle d’automatisation de

systèmes de production à l’aide de la méthode B, Ph.D. Thesis University

Henri Poincaré Nancy I, 2001 (in French).

[46] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modelling Language

User Guide, Addison-Wesley, 1999.

[47] OMG Object Management Group (OMG) web site, see UML, MDA and

other related works on http://www.omg.org/, 2004.

[48] G.M. Nijssen, T. Halpin, Conceptual Schema and Relational Database

Design, Prentice Hall, Sydney, 1989.

[49] GME Generic Modeling Environment (GME) Version 4 User’s Manual,

Release 4-2-3, Institute for Software Integrated Systems (ISIS) Vanderbilt

University, 2004.

[50] V. Chapurlat, T. Lambolais, F. Benaben, C. Antoine, Unified Properties

Specification Language: A Framework in Preprints of INCOM’04 con-

gress, 2004a.

[51] M. Saaltink, The Z/EVES 2.0 User’s Guide, TR-99-5493-06a, see http://

www.ora.on.ca/z-eves/, 1999.

[52] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert, PVS Lan-

guage Reference, Version 2.4, Computer Sciences Laboratory, SRI Inter-

national, see http://pvs.csl.sri.com/, 2001.

[53] K.L. McMilan, The SMV System for SMV Version 2.5.4: SMV Manual,

see http://www-2.cs.cmu.edu/�modelcheck/smv.html, 2000.

[54] S.R. Rakitin, Software Verification and Validation for Practitioners and

Managers, Artech House Publishers, 2001.

[55] J.F. Sowa, J.A. Zachman, Extending and formalising the framework for

information systems architecture, IBM Systems Journal 31 (3) (1992)

590–616.

[56] J.F. Baget, Représenter des connaissances et raisonner avec des hyper-

graphes: de la projection à la dérivation sous contraintes, Ph.D. Thesis,

University of Montpellier 2, 2001 (in French).

[57] D.N. Chrorafas, Enterprise Architecture and New Generation Information

Systems, Information Technology Coll, St. Lucie Press, 2002.

[58] D. Genest, CoGITaNT Version-5.1—Manuel de référence, see http://

cogitant.sourceforge.net, 2003 (in French).

[59] J.B Revelle, Manufacturing handbook of best practices: an innovation,

productivity and quality focus, in: J.B. Revelle (Ed.), APICS Series on

Resource Management, St. Lucie Press, 2002.

[60] V. Chapurlat, J. Montmain, A. Djamel Gharbit, Proposition for risk

analysis in manufacturing and enterprise modeling, In: P. Bernus, M.

Fox, J.B.M Goossenaerts (Eds.), Knowledge Sharing in the Integrated

Enterprise, Proceedings of ICEIMT’04, International Conference on

Enterprise Integration Modelling and Technology, 9–11 October 2004,

Toronto, ISBN:0-387-26608-9.

[61] J. Tixier, G. Dusserre, Review of 62 risk analysis methodologies of

industrial plants, Journal of Loss Prevention in the Process Industries

(2000).

[62] CAS Overview on Enterprise Risk Management, Casualty Actuarial

Society ed., 2003.

[63] D. Chen, F. Vernadat, Standards on enterprise integration and engineer-

ing—a state of the art, International Journal of Computer Integrated

Manufacturing (IJCIM) 17 (April–May (3)) (2004) 235–253.

[64] EN/DIS Language Construct for Enterprise Modeling, EN/DIS 19440,

CEN/TC 310/WG 1 Systems Architecture, 2002.

[65] Z. Manna, P. Pnuelli, The Temporal Logic of Reactive and Concurrent

Systems, Springer-Verlag, Berlin, 1992.

Vincent Chapurlat has a master’s in control

command of production systems (1991) and a

PhD in control command system specification

and verification (1994) from the University of

Montpellier II. He is currently assistant professor

at the Laboratory of Informatics and Production

Systems Engineering (LGI2P) from the Ecole des Mines d’Alès. His research

aims to develop and to formalize concepts and tools allowing to help complex

systems’ designer teams to verify and to validate their design models. The

concerned application domains are the Enterprise Modeling and the System

Engineering (SE) domains. He is member of the Technical Committee 5.3

‘Enterprise Networking’ from IFAC Board and head of the ‘Verification,

Validation and Accreditation of Enterprise Models’ sub group.

Bernard Kamsu Foguem has a bachelor’s degree

in mathematics from University of Tunis, a mas-

ter’s in Operational Research (2000) from National

Polytechnic Institute of Grenoble, and a PhD in

Computer Science and Automatic (2004) from the

University of Montpellier 2. As a scholarship

holder of the French industry minister, he spent

four years working on research and development

projects at Alès School of Mines. assistant profes-

sor at the Department of Computer Science of the

University of Lyon 2 from 2003 to 2004, he is

currently assistant professor at the Pharmacy faculty of the University of Lille 2.

His main fields of interest are: Modeling and verification of Discrete Processes,

Conceptual Structures for Knowledge sharing, Graph-Theoretic Algorithms,

Clinical decision support systems, human-computer interaction, Medical Infor-

matics with special emphasis on Formal Methods.

François Prunet is professor from the University

of Montpellier II. He became engineer from the

ENSEEIHT in 1967 and obtains a PhD in 1972. His

research concern discrete events systems and

hybrid system applied in production systems engi-

neering and automation domains. He was head of

Procution systems Team from the Laboratoire

d’Informatique et de Microélectronique de Mon-

tpellier (LIRMM/CNRS). He was one of the crea-

tors of the Grafcet (FCCS). He published several

articles about control command, Hybrid system

modeling and simulation (Batches Petri Nets) and focus currently on deci-

sion-making process support for production systems engineers. He was respon-

sible of more than 25 PhD students in these domains.

