5,532 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Planning and Resource Management in an Intelligent Automated Power Management System

    Get PDF
    Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process

    Evaluating the economic impact of smart care platforms : qualitative and quantitative results of a case study

    Get PDF
    Background: In response to the increasing pressure of the societal challenge because of a graying society, a gulf of new Information and Communication Technology (ICT) supported care services (eCare) can now be noticed. Their common goal is to increase the quality of care while decreasing its costs. Smart Care Platforms (SCPs), installed in the homes of care-dependent people, foster the interoperability of these services and offer a set of eCare services that are complementary on one platform. These eCare services could not only result in more quality care for care receivers, but they also offer opportunities to care providers to optimize their processes. Objective: The objective of the study was to identify and describe the expected added values and impacts of integrating SCPs in current home care delivery processes for all actors. In addition, the potential economic impact of SCP deployment is quantified from the perspective of home care organizations. Methods: Semistructured and informal interviews and focus groups and cocreation workshops with service providers, managers of home care organizations, and formal and informal care providers led to the identification of added values of SCP integration. In a second step, process breakdown analyses of home care provisioning allowed defining the operational impact for home care organization. Impacts on 2 different process steps of providing home care were quantified. After modeling the investment, an economic evaluation compared the business as usual (BAU) scenario versus the integrated SCP scenario. Results: The added value of SCP integration for all actors involved in home care was identified. Most impacts were qualitative such as increase in peace of mind, better quality of care, strengthened involvement in care provisioning, and more transparent care communication. For home care organizations, integrating SCPs could lead to a decrease of 38% of the current annual expenses for two administrative process steps namely, care rescheduling and the billing for care provisioning. Conclusions: Although integrating SCP in home care processes could affect both the quality of life of the care receiver and informal care giver, only scarce and weak evidence was found that supports this assumption. In contrast, there exists evidence that indicates the lack of the impact on quality of life of the care receiver while it increases the cost of care provisioning. However, our cost-benefit quantification model shows that integrating SCPs in home care provisioning could lead to a considerable decrease of costs for care administrative tasks. Because of this cost decreasing impact, we believe that the integration of SCPs will be driven by home care organizations instead of the care receivers themselves

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the Industry 4.0 perspective

    Full text link
    [EN] Based on a scientific literature review in the conceptual domain defined by smart manufacturing scheduling (SMS), this article identifies the benefits and limitations of the reviewed contributions, establishes and discusses a set of criteria with which to collect and structure its main synergistic attributes, and devises a conceptual framework that models SMS around three axes: a semantic ontology context, a hierarchical agent structure, and the deep reinforcement learning (DRL) method. The main purpose of such a modelling research is to establish a conceptual and structured relationship framework to improve the efficiency of the job shop scheduling process using the approach defined by SMS. The presented model orients the job shop scheduling process towards greater flexibility, through enhanced rescheduling capability, and towards autonomous operation, mainly supported by the use of machine learning technology. To the best of our knowledge, there are no other similar conceptual models in the literature that synergistically combine the potential of the specific set of Industry 4.0 principles and technologies that model SMS. This research can provide guidance for practitioners and researchers¿ efforts to move toward the digital transformation of job shops.The research leading to these results received funding from the European Union H2020 Programme ,Belgium with grant agreements No. 825631 "Zero-Defect Manufacturing Platform (ZDMP) ", No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q) " and 872548 "Fostering DIHs for Embedding Interoperability in Cyber-Physical Systems of European SMEs (DIH4CPS) ", from Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and the Regional Department of Innovation, Universities, Science and Digital Society of the Generalitat Valenciana entitled "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PROMETEO/2021/065).Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2022). Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the Industry 4.0 perspective. Journal of Manufacturing Systems. 63:185-202. https://doi.org/10.1016/j.jmsy.2022.03.0111852026

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Today’s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices
    • …
    corecore