
PLANNING AND RESOURCE MANAGEMENT IN AN INTELLIGENT
AUTOMATED POWER MANAGEMENT SYSTEM

Final Report

NASA/ASEE Summer Faculty Fellowship Program -- 1991

Johnson Space Center

Prepared By:

Academic Rank:

University and Department:

NASA/JSC
Directorate:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

14-1

Robert A. Morris, Ph.D.

Assistant Professor

Florida Institute of
Technology

Computer Science Dept.
Melbourne, Florida 32901

Engineering

Propulsion and Power

Power

Thomas D. Jeffcoat

August 23, 1991

NGT-44-001-BOO

https://ntrs.nasa.gov/search.jsp?R=19920012035 2020-03-24T07:12:51+00:00Z
CORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10437242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT
Power system management is a process of guiding a power

system towards the objective of the continuous supply of
electrical power to a set of loads. Spacecraft power system
management, unlike most ground-based procedures, requires
planning and scheduling, since electrical power is typically
a scarce resource in space. This fact will be most evident in
future longer-term space missions such as Space Station
Freedom, lunar and Mars bases. The automation of power system
management for future spacecraft has been recognized as an
important research and development goal. Current automation
technology has evolved to include microprocessing capabili ties
in switchgear, applying data and numerical processing
capabilities to the retrieval, storage, and analysis of sensor
and switchgear data, and the use of expert systems for
automating human problem-solving capabilities. As examples of
the latter, several rule-based expert systems for fault
diagnosis and load scheduling have emerged. However, no single
expert system capable of performing all the functions of power
management has yet been developed. Presumably, the memory and
computational demands exceeds the capabilities of a single,
centralized expert system. In addition, it is highly unlikely
that such a system could meet all the requirements for
effective power system management, which includes a very fast
response time for fault diagnosis and recovery. Such
requirements are especially crucial in a hostile environment
such as space, with limited redundancy capabilities in power
system components. It is questionable, therefore, whether
current-generation expert system technology is applicable for
power system management for space. The objective of the ADEPTS
project at JSC ~s to investigate new techniques for power
management automation. These techniques involve integrating
current expert system technology with that of parallel and
distributed computing, as well as a distributed, object
oriented approach to software design. An overall design of the
ADEPTS power management system was proposed as the result of
the author's first summer fellowship [7]. The work performed
during the second term, which is summarized in this report, is
a further contribution to the .. ADEPTS development effort. The
focus of the current effort is the integration of new
procedures for automatically planning and scheduling loads
with procedures for performing fault diagnosis and control,
already implemented in ADEPTS. The objective is the concurrent
execution of both sets of tasks on separate transputer
processors, thus adding parallelism to the overall management
process.

14-2

INTRODUCTION

The objective of the activity summarized in this report
is the integration of planning and resource management into
the ADEPTS power management system. Planning activity takes
the form of scheduling, rescheduling and executing loads, and
the automation of this activity should admit interaction with
the human planner. Resource management consists of monitoring
the supply of power to the overall system, configuration
management, and load shedding.

The immediate purpose of this research activity was two
fold: first, to add more autonoay to ADEPTS, where by autonomy
is meant the ability to perform control fUnctions without the
intervention of human control, and secondly, to further
investigate the use of parallel processing for the performance
of power management for spacecraft.

In addition to developing these ADEPTS enhancements, a
more detailed overall design of a more robust ADEPTS system
was constructed during this research activity. This work
furthered the effort of last year's summer term (summarized in
[7]), and is also summarized in this report.

ADEPTS PLATFORM

Introduction to ADEPTS

ADEPTS (Advanced Electrical Power Management Techniques
for Space systems) is an example of a "reactive, real time
system" [4, p. 997]. By reactive is meant a non-terminating
program which maintains an on-going interaction with its
environment. By""real time is meant the imposition of timing
constraints on the execution of the tasks of the system. [1,
p. 1]. The environment here comprises both the power system
itself, as well as the human operator (crew member or mission
control personnel).

A.DEPTS uses distributed memory and distributed processing
for power system management. Independent, communicating
processes cooperate to solve problems related to diagnosis,
planning, and control of a power system. The memory is
physically distributed across a network. ADEPTS instantiates
a distributed process model involving synchronous message
passing. Processes interact using a rendezvous-like protocol
to service requests for data. Currently, ADEPTS is implemented
on a network of transputers using a Macintosh host.

ADEPTS seeks to incorporate recent innovations in object
oriented processing to the system design [1, 8]. The object
based paradigm is being used to establish a concurrent system
development environment, whereby an object is viewed as an
entity whose behavior is described in terms of operations it
is subjected to and carries out on other objects .[1]. This
approach has also been used in the development of the ADEPTS

14-3

"

prototype in Ada (9).
Finally, the ADEPTS processing model incorporates

techniques from distributed knowledge-based systems. It
includes the idea of a small, loosely-coupled group of semi
autonomous canagers (defined below) cooperating to
continuously maintain the proper distribution of electrical
power to a set of loads. The organization model loosely chosen
as the paradigm for ADEPTS is the mission control model,
wherein a committee of experts cooperate to maintain the
proper flow of power through the spacecraft.

For clarity, the following terminology is used to
describe the processing components of ADEPTS. ADEPTS is viewed
as a network of managers. A aanager is a processing unit which
has been allocated a role (set of tasks, expertise). A role
may consist of some expertise in power management (fault
diagnosis, scheduling), data processing (e.g., providing an
interface to the human operator) or communication and control.
In order to perform a role, a manager must have direct (i.e.
local, as opposed to remote) access to, and manipulate, a set
of objects in memory; such objects include a database and
knowledge base. A manager may also control a set of agents,
which are smaller processing units dedicated to the
performance of a single task among those allocated to the
manager. From an architectural point of view, each manager in
ADEPTS is assigned a single processor (specifically, a
transputer) and some memory; it runs independently from the
other managers. Agents local to the same manager run
concurrently on the same processor and share memory. The
result is a network of managers.

Currently, the overall power management task consists of
the following roles:

* Load Managecent
* Fault Management
* Resource Managecent
* Low-leVel Monitor and Control Management
* User Interface

A more detailed description of each of these roles appears in
[7]. The processing tasks involve a combination of data
processing, knowledge management, numerical processing, and
communication. The highlighted components in the above list
indicate the scope of the investigation summarized in this
report.

The current overall ADEPTS control architecture,
including communication links, is displayed in Figure 1. Each
of the managers runs on a transputer in parallel. As ADEPTS
executes, math model data, representing voltage and current
readings from a power system [61, is sent for evaluation and
analysis to the power manager executive. Concurrently, loads
are being planned and executed_via the user interface and the

14-4

load manager. If the power system data indicates the presence
of a faul t, the fault manager is invoked to diagnose and
implement corrective measures.

User Interface
(Mac Host)

I
Math Model Power Manager Load Manager
Simulation Executive

1 I I
Resource Fault Manager
Manager

Figure 1: ADEPTS Configuration

The enhancement to ADEPTS which resulted from the project
described in this report is the addition of the Load Manager
and Resource Manager (represented in the figure by the double
stroke lines). The load manager was developed in order to
automate the process of executing loads to a power system. The
resource manager determines whether there is enough power to
execute loads as planned. Finally, communication links were
established between the load manager and the fault manager,
the user interface, and the resource manager. Each of these
components is described further in this report.

ADEPTS Software Engineering Approach

The life cycle of a real time system such as ADEPTS is
complex. Figure 2 is a reproduction of (part of) a standard
flow chart for an ideal real-time system life cycle [1,p.76].
ADEPTS is currently at the requirement specification phase.
The result of the preliminary activity was the selection of
the transputer as the architecture in which to develop ADEPTS,
and the development of a small, experimental version of ADEPTS
(summarized in [6]). The system requirement review was
performed by initial NASA and contractor developers, and by
the author of this report during last summer's research
(summarized in [7]).

The software engineering philosophy of ADEPTS is that too
much documentation, and not enough implementation is not a
healthy approach. One reason for this is that the software and
hardware technology being applied to power management has not

14-5

been extensively tested and verified. Another reason is that
the developers do not have extensive programming experience on
the transputer, and hence require extensive hands-on training.
Thus, the developers prefer an approach which combines three
activities during the current specification and review phases:

* Specification documentation
* Rapid prototyping of concepts
* Iterative development on the transputer

~
Preliminary Activities I System production and

Deployment Phase
,

'Of I System Requirement Review I System Integration
and Verification

't'

,
System Full-Scale Development Phase Unit Integration

and Verification

- 't
* Requirements Specification Unit

Implementation

* SysteOm Design Review --.1
* Preliminary and Detailed Design

Figure 2. Real-Time System Life Cycle

The purpose of the first task is clear: to provide a
detailed design and task description for ADEPTS, and to
allocate subtasks to the ADEPTS developers. The purpose of the
second task is to allow for a empirical verification of the
overall design, and to identify any modifications or further
enhancements to the design that might be required. A prototype
environment for ADEPTS has been developed in Ada under Unix
[9]. Finally, the purpose of the third task is to test the
real time machine-dependent aspects of the design, especially
the synchronization and communication mechanisms. Performing
the third task also has the practical advantage of allowing
the developers, many of whom may be unfamiliar with the
transputer environment, with an opportunity to become more

14-6

familiar with its features.

LOAD MANAGER AND RESOURCE MANAGER DEVELOPMENT

In the following sections, we describe the steps leading
to the development of the load management and resource
management roles in ADEPTS. First, a set of requirement
specifications for each manager is identified. Then, the data
structures and algorithms used to implement these managers are
described. It should be noted that the scope and complexity of
each of these manager's roles prohibited an implementation of
all the features specified in the requirements description in
the ten weeks allocated for this activity. Thus, the
discussion concludes with a list of future enhancements
required for each manager.

Resource .fanager Requirements Specification

The resource manager automates the power management tasks
associated with system configuration~ including

* Monitoring the supply of power to the system;

* Reconfiguration as a result of adding or deleting
loads, or as a response to a faulty condition; and

* Load shedding as a result of too much demand for
power.

The goal in developing this agent is to free the crew member
and mission c·ontrol personnel of routine power supply
monitoring tasks, to have an effective intelligent control
mechanism in the event of loss or decrease of power to the
system, and to aid in the planning and execution of power
system events.

To perform these tasks, a resource manager must interact
with both the diagnostic and planning managers, as well as
with the low-level power system monitors, who will supply it
with sensor data from the main busses supplying power. The
latter will allow the resource manager to determine whether a
loss of power to the loads has occurred, and consequently
whether shedding may be required.

The communication link with the planner (load manager)
provides the resource manager with the task of filtering
commands to the system for powering on loads. This filter is
necessary to avoid requests for power to loads on a path which
contains a fault. On the ADEPTS approach, there are two ways
this scenario can be avoided. First, the load manager will be
informed of faulty power system components. This will allow it
to delay requests for power to such loads. The resource
manager provides a second filtering mechanism; it will

14-7

prohibit situations in which a fault has occurred and
identified by the fault manager, but has not been yet recorded
by the load manager.

Consequently, the resource manager will act as a filter
in case either there is a fault on the main bus, or there is
a fault downstream of which the load manager has not been
notified.

In addition to being a filter, the resource manager is
also a configuration expert. It has the expertise to translate
load requests into activation commands (i.e., throwing
swi tches off or on). It also shares with the load manager
information about the critical loads in the systems, those
loads with redundant sources of power. If a fault on one of
the paths to the critical load is detected, the resource
manager will automatically reconfigure the system to the
redundant path. This act may result in the lack of power to
other loads, and hence the need for shedding loads, which will
also be performed automatically by the resource manager.
Finally, load shedding may need to be performed as a direct
result of a reduction in the supply of power on the main bus;
this event will be perceived by the resource manager, and the
act of shedding performed.

To summarize, the resource manager has a three-fold role:
as a monitor of the supply of power along the main bus, as a
fil ter of load requests from the load manager, and as a
configuration expert, which implies the ability to perform
load shedding and redundancy switching for critical loads. In
future enhancements to ADEPTS, each of these three sub-roles
may be assigned agents.

Data Structures· for ADEPTS Resource Manager

To perform its role, the resource manager maintains two
lists as data: a fault list and an activation list. The fault
list indicates which components of the system are faulty. The
activation list indicates the status of each switch in the
system (on or off). These lists are constantly being updated,
as the result of its own actions (i.e. controlling the
switches), as the result of diagnostic information from the
fault manager, and from its own main bus sensor data
indicating available power.

The expertise it has to allow it to translate load
requests into switch commands resides in a configuration
knowledge base. This consists of·structural information about
the configuration of the system, as well as load information
(e.g. how much power a load needs, and whether or not it is a
critical load, one with a redundant path).

ADEPTS Iapleaentation of Resource Hanager .

The current ADEPTS resource manager does not perform load

14-8

shedding or redundancy reconfiguration. In pseudo-code, the
current resource manager consists of the following algorithm:

loop
{wait for

fault_data; (* from fault manager *)
load_request; (* from load manager *)

case
fault_data

update_fault_list;
load_request

confirm_request; (* check for fault *)
if confirmed then
reconfigure_system; (*send switch commands*)
update_activation_list;

Confirm_request checks the fault list and configuration
knowledge base for faulty conditions along a path to a
requested load. Reconfigure_system constructs an activation
command, which is a set of switch commands (on or oft), which
it sends to the executive, and ultimately to the math model
simulation.

Future Enhancements to Resource Manager

The current ADEPTS Resource Manager implements the
filtering task and part of the configuration task in
fulfillment of this manager's requirements. To complete the
implementation, ,the monitoring task must be developed, as well
as the ability 'to perform redundancy configuration and load
shedding. Finally, the load manager should receive from the
resource manager an acknowledgement of its request, or, if the
request cannot be met, a message indicating that the request
cannot be serviced.

Load Manager Require.ents Specification

The load manager is responsible for the planned control
of power system events. A load manager should be flexible
enough to operate either autonomously, or as an assistant to
the human operator. "Offline", the load manager should manage
the planning and scheduling of loads. "Online", it should
contain the means to automatically cause the execution of a
set of scheduled loads. In carrying out its assigned task,
the load manager will free both crew member and mission
control personnel from routine or time-consuming tasks related
to planning and executing loads. In addition, it will provide
an on-board database of load information, and procedures to
assist humans in manually developing or changing load
schedules.

14-9

A robust on-board load scheduler should combine both
predictive and dynamic aspects. By predictive is meant the
capability to plan a schedule for the future. By dynamic is
meant the capabili ty to react to unforseen events in the
environment by rescheduling loads. An on-board system should
also combine full autonomy with an interactive capability. It
should assist the hUman in incrementally developing a
schedule, and it should also be able to develop a full
schedule from a list of loads and their constraints. The
scheduling algorithm can combine traditional techniques with
knowledge-based approaches. The most promising knowledge-based
approach to predictive, autonomous scheduling is the
constraint-based approach. This approach has been used in a
number of applications, including payload scheduling for
spacecraft [10]. Recently, a distributed constraint-based
approach has been proposed [11].

Data Structures For Load Hanagecent

The ADEPTS load manager consists of a load table
containing information about loads to be powered during a
relatively short duration (one day) of time. Its permanent
knowledge consists of information useful for either automatic
or interactive planning and scheduling activity. Load
priority, power and resource requirements, timing constraints,
as well as whether the load is currently faulted, are examples
of useful load information.

" The load table could consist of a short term (one day)
schedule of loads, or a long-term schedule, or both. The load
event should consist of a load identifier, and the interval(s)
during which it"is to be powered, comprising a start time and
end time. (The load table can be displayed to the user as a
table of time intervals). Thus, for example, Payload L3 has
been scheduled once during this time frame, during the
interval starting at mission time 2 and extending to mission
time 9.

The load table is implemented in ADEPTS as a linked list
of load information. This information is of two kinds: status
information and occurrence information. Status information is
a record implemented in C as follows:

typedef struc
{ short activation status;

short fault status;
tslot timeslot;)

loadrecord;

Activation status (OFF or ON) indicates whether a load
currently has power. Fault status (FAULTED, HEALTHY) indicates
whether there is a fault somewhere in the line leading to the
load.

14-10

Occurrence information contains the start and end times
of each scheduled occurrence of the load. This allows a load
to have multiple, periodic occurrences during the same time
frame. The C record for an occurrence has the following
declaration:

typedef struc
[ulong startTime

ulong endtime :
tslot timeslot;(* pointer to next load

occurrence*)

tslotrecord:

These data structures should be enhanced in future work to
include other information useful in the scheduling or
rescheduling of loads. For example, load priority information,
resource requirements (power, instruments, crew, etc.) could
be declared as additional slots. Since the current load
manager does not engage in any scheduling activities, it was
not deemed necessary to include these fields in the
definitions.

Load Manager Functional Specification

The load manager role can be classified into three
subtasks:

* Monitoring/executing events from the load table
* Updating the load table
* Scheduling and rescheduling loads

These tasks can be viewed as independent: hence, as involving
separate agents. On the other hand, each operates on the same
data structure, the load map. Hence, for future ADEPTS
enhancements, it should be possible to perform these tasks
concurrently, but probably using one transputer.

The communication links required by load manager are to
the User Interface and Resource Manager (Figure 1). The user
interface link allows the user (crew member or mission control
personnel) to update the load table as required. It also
allows for the communication and display of load table and
other load information to the human operator. The resource
manager link allows for the coordination of load execution
activity. As noted, the resource manager will not cause a load
to be executed if a fault has been identified by the fault
manager along a path leading to this load, unless a redundant
path exists to this load, and there is enough redundant power
to allow the load to be executed. To avoid the useless
communication of load execution information between the load

14-11

manager and resource manager, the load manager can receive
current faul t information from the resource manager. This
allows the load manager to update its load table so that loads
along the path of a fault will not be executed until the fault
has been corrected.

C Implementation of Load Manager Functions

The main procedure of the load manager currently consists of
calls to initialize a time map and the local clock, and a
continuous loop for monitoring and executing loads:

void main
{

InitializeTimeBase ()i
InitializeLoadRecord ()i

do
CheckSchedule ()i

while (DoCommand (»i

InitializeTimeBase requests the real time from the main
clock, and converts it into a "mission time" framework, where
the Oth time point is the onset of the mission. This time
measure corresponds to the metric used in the load map; i.e.,
each load map starts at 0 mission time. This simplified time
framework suffices for the purposes of this "not fully real
time" version of ADEPTS. Future versions will demand more
complex procedures for representing real time and mission
time.

The do loop in the main procedure handles both the
communication and time map monitoring. DoCommand is a
procedure for input channel communication. The input will be
in the form of schedule information, either from a file, or
through user commands from the keyboard. CheckSchedule is the
monitor and load execution procedure. It performs a traversal
of the time map to search for loads that need to change their
status (from on to off or visa versa). To match global time
with mission time, a function for converting one to the other
is employed. On the Mac, global time is depicted as number of
seconds that have elapsed since midnight on January 1, 1904.
This value is translated into mission time wi thin
Checkschedule.

If a load status needs to be changed, load information in
the form of a load identifier and a command, is communicated
to the resource manager.

Possible Enhanceaents to Load Manager

A number of enhancements is required for Load Manager to

14-12

meet design specifications. In sum, these include:

* Development of Predictive Scheduler
* Development of Enhanced Dynamic Scheduler
* A Load Map Display Mechanism
* A Finer Partitioning ot Management Tasks
* A More Object-oriented Approach to Knowledge

Representation
* Development of a More Interactive Approach to

Scheduling (More User Friendly Control)

FUTURE OVERALL ADEPTS ENHANCEMENTS

In addition to the enhancements to the load and resource
managers recommended above, additional development efforts
have been identified as the result of this summer's activity.
In this section, these are summarized.

Certain limitations of the Macintosh/transputer network
have been identified and should be addressed in the future.
First, major limitations of the transputer are due to its
message passing protocol. In ADEPTS, the transputer hardware
and software forces a synchronous exchange between processes.
This means that the execution of an output command by a
process i is delayed until the receiving process j is ready to
execute a read operation, and visa versa. There are
potentially serious problems as a result of imposing
synchronism on processes. One of the most serious is the
absence of fault-tolerance of transputer networks; if a
rece1v1ng process fails, each of the processes which
communicate with it will eventually fail as well. It should be
noted that a form of asynchronism can be achieved through
employing a timed-out mechanism in the communication. As
ADEPTS develops, this mechanism should be considered more
fully.

Additional limitations arise as a result of the
interaction between the Macintosh host and the transputers.
The host computer is required to simultaneously process user
input and transputer data. The programmer is required to
establish the protocol for servicing these requests. If the
transputer is given full priority, the user may be
indefini tely forced to wait on his or her request. On the
other hand, if the user is given priority, the transputer is
forced to wait until its request can be serviced, which means
that its other processing tasks may be thwarted. The current
solution employed in ADEPTS allows for fairness in the
servicing of requests from the user and the transputer. As a
result, however, the performance of the transputers may still
be affected, especially if it is assumed that the user will
use the system often.

Part of the problem is that the current Machintosh
operating system (6.0) does not support multitasking

14-13

capabilities. As a result, the programmer is forced to ensure
fairness and liveness properties of the system. Future
versions of the Macintosh operating system (7.0) will support
multi-tasking, and hence improve the real-time capabilities of
the system, and free the programmer from the responsibilities
of enforcing fairness and liveness properties. It behooves the
developers of ADEPTS to address the problem of the
host/transputer interaction in more detail.

The final set of enhancements to be recommended for
future ADEPTS development activity address the furthering of
the effort of establishing an overall design for a real time
ADEPTS system.
In general, ADEPTS can be viewed as having four layers:

* The Interface layer
* The Communication and Control layer
* The Data and Numerical Processing layer
* The Expert System layer

Each of these layers requires a more detailed set of
requirements than is currently available. The interface layer
requires specifications for the user interface, as well as the
lower-level interfaces to the system hardware. The
communication and control layer demands a set of
specifications for communication among managers, and among
agents wi thin a manager, as well as deciding on a more
effective global control mechanism for the performance of
management tasks. The data and numerical processing layer
defines the data to be used and communicated among managers,
as well as the algorithms for processing the data. Finally,
the expert system layer addresses problems of knowledge base
representation and management, handling uncertainty, and
heuristic reasoning.

SUMMARY

The ADEPTS project seeks to integrate expert system
technology with parallel and distributed computing for the
purpose of developing an autonomous system for spacecraf t
power management. The primary focus of this summer's activity
was on the means of increasing the autonomy of ADEPTS by
developing techniques for the automatic scheduled execution of
payloads, as well as.a means of coordinating planning with
limitations in power resources. Implementing these techniques
also aided the developers in evaluating the transputer as a
parallel computing hardware for ADEPTS. A secondary focus of
this summer's work was to continue the effort of developing a
set of design specifications for a more real time version of
ADEPTS. The overall result of this effort has been a more
precise and detailed description of the ADEPTS control
mechanism and agent roles.

14-14

r

REFERENCES

. 1. Levi, S. and Agrawala, A. Real Time System Design.
McGraw-Hill, 1990.

2. Hughes, J. Object-Oriented Databases. Prentice Hall,
1991-

3. Van Leeuwen, J. Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Semantics. The MIT
Press/Elsevier, 1991.

4. Emerson, E. A., Temporal and Modal Logic. In [3],
Chapter 16.

5. Lamport, L., and Lynch, N. Distributed Computing:
Models and Methods. In [3], Chapter 18.

6. Sandman, T., Advanced Electrical Power Techniques for
Space Systems, Phase I Report. Document JSC-24745, October
1990.

7. Morris, R., A Design for an Intelligent Monitor and
Controller For Space Station Electrical Power Using Parallel
and Distributed Problem Solving. Final Report, NASA/ASEE
Summer Faculty Fellowship, Johnson Space Center, '1990.

8. Chin, R., and Chanson, S., Distributed Object-Based
Programming Systems. ACM Computing Surveys, Vol. 23, No.1,
March 1991, pp. 91-124.

9. Morris, R., and Baggs, R. Distributed Intelligence
Monitoring and Control. NASA-JSC Final Contractor Report, T-
6956R, 1991.

10. Touchton, R.A. COmDon Module Dynamic Payload
Scheduler Expert System. 21st Intersociety Energy Conversion
Conference, Washington, DC, American Chemical Society, 1986.

11. Rzevski, G. Distributed Intelligent Knowledge Based
Systems for Cell Scheduling and Control. ISATA 19th
International Symposium on Automotive Technology and
Automation, Monaco, 1988.

14-15

