1,840 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Customized Pull Systems for Single-Product Flow Lines

    Get PDF
    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage of that line with each preceding stage; optimization of the corresponding simulation model, however, shows which of these potential control loops are actually implemented. This novel approach may result in one of the classic systems, but it may also be another type: (1) the total line may be decomposed into several segments, each with its own classic control system (e.g., segment 1 with Kanban, segment 2 with Conwip); (2) the total line or segments may combine different classic systems; (3) the line may be controlled through a new type of system. These different pull systems are found when applying the new approach to a set of twelve production lines. These lines are configured through the application of a statistical (Plackett-Burman) design with ten factors that characterize production lines (such as line length, demand variability, and machine breakdowns).Pull production / inventory;sampling;optimization;evolutionary algorithm

    Differential evolution to solve the lot size problem.

    Get PDF
    An Advanced Resource Planning model is presented to support optimal lot size decisions for performance improvement of a production system in terms of either delivery time or setup related costs. Based on a queueing network, a model is developed for a mix of multiple products following their own specific sequence of operations on one or more resources, while taking into account various sources of uncertainty, both in demand as well as in production characteristics. In addition, the model includes the impact of parallel servers and different time schedules in a multi-period planning setting. The corrupting influence of variabilities from rework and breakdown is explicitly modeled. As a major result, the differential evolution algorithm is able to find the optimal lead time as a function of the lot size. In this way, we add a conclusion on the debate on the convexity between lot size and lead time in a complex production environment. We show that differential evolution outperforms a steepest descent method in the search for the global optimal lot size. For problems of realistic size, we propose appropriate control parameters for the differential evolution in order to make its search process more efficient.Production planning; Lot sizing; Queueing networks; Differential evolution;

    Robust production planning and control for multi-stage systems with flexible final assembly lines

    Get PDF
    Production planning of final assembly systems is a challenging task, as the often fluctuating order volumes require flexible solutions. Besides, the calculated plans need to be robust against the process-level disturbances and stochastic nature of some parameters like manual processing times or machine availability. In the paper, a simulation-based optimisation method is proposed that utilises lower level shop floor data to calculate robust production plans for final assembly lines of a flexible, multi-stage production system. In order to minimise the idle times when executing the plans, the capacity control that specifies the proper operatorâtask assignments is also determined. The analysed multi-stage system is operated with a pull strategy, which means that the production at the final assembly lines generates demands for the preceding stages providing the assembled components

    Master production schedule using robust optimization approaches in an automobile second-tier supplier

    Full text link
    [EN] This paper considers a real-world automobile second-tier supplier that manufactures decorative surface finishings of injected parts provided by several suppliers, and which devises its master production schedule by a manual spreadsheet-based procedure. The imprecise production time in this manufacturer's production process is incorporated into a deterministic mathematical programming model to address this problem by two robust optimization approaches. The proposed model and the corresponding robust solution methodology improve production plans by optimizing the production, inventory and backlogging costs, and demonstrate the their feasibility for a realistic master production schedule problem that outperforms the heuristic decision-making procedure currently being applied in the firm under study.Funding was provided by Horizon 2020 Framework Programme (Grant Agreement No. 636909) in the frame of the "Cloud Collaborative Manufacturing Networks" (C2NET) project.Martín, AG.; Díaz-Madroñero Boluda, FM.; Mula, J. (2020). Master production schedule using robust optimization approaches in an automobile second-tier supplier. Central European Journal of Operations Research. 28(1):143-166. https://doi.org/10.1007/s10100-019-00607-2S143166281Alem DJ, Morabito R (2012) Production planning in furniture settings via robust optimization. Comput Oper Res 39:139–150. https://doi.org/10.1016/j.cor.2011.02.022Aloulou MA, Dolgui A, Kovalyov MY (2014) A bibliography of non-deterministic lot-sizing models. Int J Prod Res 52:2293–2310. https://doi.org/10.1080/00207543.2013.855336As’ad R, Demirli K, Goyal SK (2015) Coping with uncertainties in production planning through fuzzy mathematical programming: application to steel rolling industry. Int J Oper Res 22:1–30. https://doi.org/10.1504/IJOR.2015.065937Atamturk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55:662–673. https://doi.org/10.1287/opre.1070.0428Aytac B, Wu SD (2013) Characterization of demand for short life-cycle technology products. Ann Oper Res 203:255–277. https://doi.org/10.1007/s10479-010-0771-5Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769–805. https://doi.org/10.1287/moor.23.4.769Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424. https://doi.org/10.1007/PL00011380Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35–53. https://doi.org/10.1287/opre.1030.0065Caulkins JJ, Morrison E, Weidemann T (2007) Spreadsheet errors and decision making: evidence from field interviews. J Organ End User Comput 19:1–23Childerhouse P, Towill DR (2002) Analysis of the factors affecting real-world value stream performance. Int J Prod Res 40:3499–3518. https://doi.org/10.1080/00207540210152885Chu SCK (1995) A mathematical programming approach towards optimized master production scheduling. Int J Prod Econ 38:269–279. https://doi.org/10.1016/0925-5273(95)00015-GConlon JR (1976) Is your master production schedule feasible? Prod Invent Manag 17:56–63De La Vega J, Munari P, Morabito R (2017) Robust optimization for the vehicle routing problem with multiple deliverymen. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-017-0511-xDíaz-Madroñero M, Mula J, Jiménez M (2014a) Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. Int J Prod Res 52:6971–6988. https://doi.org/10.1080/00207543.2014.920115Díaz-Madroñero M, Mula J, Peidro D (2014b) A review of discrete-time optimization models for tactical production planning. Int J Prod Res 52:5171–5205. https://doi.org/10.1080/00207543.2014.899721Díaz-Madroñero M, Peidro D, Mula J (2014c) A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Appl Math Model 38:5705–5725. https://doi.org/10.1016/j.apm.2014.04.053Dolgui A, Ben Ammar O, Hnaien F et al (2013) Supply planning and inventory control under lead time uncertainty: a review. Stud Inform Control 22:255–268Dzuranin AC, Slater RD (2014) Business risks all identified? If you’re using a spreadsheet, think again. J Corp Account Finance 25:25–30. https://doi.org/10.1002/jcaf.21936Englberger J, Herrmann F, Manitz M (2016) Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment. Int J Prod Res 54:6192–6215. https://doi.org/10.1080/00207543.2016.1162917Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235:471–483Gharakhani M, Taghipour T, Farahani KJ (2010) A robust multi-objective production planning. Int J Ind Eng Comput 1:73–78. https://doi.org/10.5267/j.ijiec.2010.01.007González JJ, Reeves GR (1983) Master production scheduling: a multiple-objective linear programming approach. Int J Prod Res 21:553–562. https://doi.org/10.1080/00207548308942390Gorissen BL, Yanıkoğlu İ, den Hertog D (2015) A practical guide to robust optimization. Omega 53:124–137. https://doi.org/10.1016/j.omega.2014.12.006Grubbstrom RW, Tang O (2000) An overview of input-output analysis applied to production-inventory systems. Econ Syst Res 12:3–25. https://doi.org/10.1080/095353100111254Grubbström RW, Bogataj M, Bogataj L (2010) Optimal lotsizing within MRP theory. Annu Rev Control 34:89–100. https://doi.org/10.1016/J.ARCONTROL.2010.02.004Haojie Y, Lixin M, Canrong Z (2017) Capacitated lot-sizing problem with one-way substitution: a robust optimization approach. In: In 2017 3rd international conference on information management (ICIM). Institute of Electrical and Electronics Engineers Inc., pp 159–163Kara G, Özmen A, Weber G-W (2017) Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-017-0508-5Kawas B, Laumanns M, Pratsini E (2013) A robust optimization approach to enhancing reliability in production planning under non-compliance risks. OR Spectr 35:835–865. https://doi.org/10.1007/s00291-013-0339-2Kimms A (1998) Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing. Omega 26:355–366. https://doi.org/10.1016/S0305-0483(97)00056-XKo M, Tiwari A, Mehnen J (2010) A review of soft computing applications in supply chain management. Appl Soft Comput 10:661–674. https://doi.org/10.1016/j.asoc.2009.09.004Körpeolu E, Yaman H, Selim Aktürk M (2011) A multi-stage stochastic programming approach in master production scheduling. Eur J Oper Res 213:166–179. https://doi.org/10.1016/j.ejor.2011.02.032Kovačić D, Bogataj M (2013) Reverse logistics facility location using cyclical model of extended MRP theory. Cent Eur J Oper Res 21:41–57. https://doi.org/10.1007/s10100-012-0251-xKuchta D (2011) A concept of a robust solution of a multicriterial linear programming problem. Cent Eur J Oper Res 19:605–613. https://doi.org/10.1007/s10100-010-0150-yLage Junior M, Godinho Filho M (2017) Master disassembly scheduling in a remanufacturing system with stochastic routings. Cent Eur J Oper Res 25:123–138. https://doi.org/10.1007/s10100-015-0428-1Lee SM, Moore LJ (1974) Practical approach to production scheduling. Prod Invent Manag J 15:79–92Lehtimaki AK (1987) Approach for solving decision planning of master scheduling by utilizing theory of fuzzy sets. Int J Prod Res 25:1781–1793Li Z, Li Z (2015) Optimal robust optimization approximation for chance constrained optimization problem. Comput Chem Eng 74:89–99. https://doi.org/10.1016/j.compchemeng.2015.01.003Li Z, Ding R, Floudas CA (2011) A Comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind Eng Chem Res 50:10567–10603. https://doi.org/10.1021/ie200150pLi Z, Tang Q, Floudas CA (2012) A comparative theoretical and computational study on robust counterpart optimization: II. Probabilistic guarantees on constraint satisfaction. Ind Eng Chem Res 51:6769–6788. https://doi.org/10.1021/ie201651sMula J, Poler R, Garcia-Sabater J, Lario F (2006a) Models for production planning under uncertainty: a review. Int J Prod Econ 103:271–285. https://doi.org/10.1016/j.ijpe.2005.09.001Mula J, Poler R, Garcia JP (2006b) MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst 157:74–97. https://doi.org/10.1016/j.fss.2005.05.045Mula J, Poler R, Garcia-Sabater JP (2008) Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. Int J Prod Res 46:5589–5606. https://doi.org/10.1080/00207540701413912Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264–281. https://doi.org/10.1287/opre.43.2.264Nannapaneni S, Mahadevan S (2014) Uncertainty quantification in performance evaluation of manufacturing processes. In: 2014 IEEE international conference on Big Data (Big Data). IEEE, pp 996–1005Ng TS, Fowler J (2007) Semiconductor production planning using robust optimization. In: 2007 IEEE international conference on industrial engineering and engineering management. IEEE, pp 1073–1077Peidro D, Mula J, Poler RR, Lario F-C (2009) Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Technol 43:400–420. https://doi.org/10.1007/s00170-008-1715-yPochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer, BerlinPowell SG, Baker KR, Lawson B (2008) A critical review of the literature on spreadsheet errors. Decis Support Syst 46:128–138. https://doi.org/10.1016/j.dss.2008.06.001Rahmani D, Ramezanian R, Fattahi P, Heydari M (2013) A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Appl Math Model 37:8957–8971. https://doi.org/10.1016/j.apm.2013.04.016Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28:971–983. https://doi.org/10.1016/j.compchemeng.2003.09.017Sakhaii M, Tavakkoli-Moghaddam R, Bagheri M, Vatani B (2015) A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl Math Model 40:169–191. https://doi.org/10.1016/j.apm.2015.05.005Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157. https://doi.org/10.1287/opre.21.5.1154Supriyanto I, Noche B (2011) Fuzzy multi-objective linear programming and simulation approach to the development of valid and realistic master production schedule. Logist J. https://doi.org/10.2195/lj_proc_supriyanto_de_201108_01Tavakkoli-Moghaddam R, Sakhaii M, Vatani B et al (2014) A robust model for a dynamic cellular manufacturing system with production planning. Int J Eng 27:587–598. https://doi.org/10.5829/idosi.ije.2014.27.04a.09Vargas V, Metters R (2011) A master production scheduling procedure for stochastic demand and rolling planning horizons. Int J Prod Econ 132:296–302. https://doi.org/10.1016/j.ijpe.2011.04.025Wang J, Shu Y-F (2005) Fuzzy decision modeling for supply chain management. Fuzzy Sets Syst 150:107–127Weng ZK, Parlar M (2005) Managing build-to-order short life-cycle products: benefits of pre-season price incentives with standardization. J Oper Manag 23:482–495. https://doi.org/10.1016/j.jom.2004.10.008Werner R (2008) Cascading: an adjusted exchange method for robust conic programming. Cent Eur J Oper Res 16:179–189. https://doi.org/10.1007/s10100-007-0047-6Yu C-S, Li H-L (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64:385–397. https://doi.org/10.1016/S0925-5273(99)00074-

    Designing pull production control systems:Customization and robustness

    Get PDF
    In this dissertation we address the issues of selecting and configuring pull production control systems for single-product flowlines. We start with a review of pull systems in the literature, yielding a new classification. Then we propose a novel selection procedure based on a generic system that we test on a case also studied in the literature. We further study our procedure for a variety of twelve production lines. We find new types of pull systems that perform well. Next, we raise the issue of designing pull systems under uncertainty. We propose a novel procedure to minimize the risk of poor performance. Results show that risk considerations strongly influence the selection of a specific pull system

    Performance evaluation of flexible manufacturing systems under uncertain and dynamic situations

    Get PDF
    The present era demands the efficient modelling of any manufacturing system to enable it to cope with unforeseen situations on the shop floor. One of the complex issues affecting the performance of manufacturing systems is the scheduling of part types. In this paper, the authors have attempted to overcome the impact of uncertainties such as machine breakdowns, deadlocks, etc., by inserting slack that can absorb these disruptions without affecting the other scheduled activities. The impact of the flexibilities in this scenario is also investigated. The objective functions have been formulated in such a manner that a better trade-off between the uncertainties and flexibilities can be established. Consideration of automated guided vehicles (AGVs) in this scenario helps in the loading or unloading of part types in a better manner. In the recent past, a comprehensive literature survey revealed the supremacy of random search algorithms in evaluating the performance of these types of dynamic manufacturing system. The authors have used a metaheuristic known as the quick convergence simulated annealing (QCSA) algorithm, and employed it to resolve the dynamic manufacturing scenario. The metaheuristic encompasses a Cauchy distribution function as a probability function that helps in escaping the local minima in a better manner. Various machine breakdown scenarios are generated. A ‘heuristic gap’ is measured, and it indicates the effectiveness of the performance of the proposed methodology with the varying problem complexities. Statistical validation is also carried out, which helps in authenticating the effectiveness of the proposed approach. The efficacy of the proposed approach is also compared with deterministic priority rules

    Proactive, dynamic and multi-criteria scheduling of maintenance activities.

    No full text
    International audienceIn maintenance services skills management is directly linked to the performance of the service. A good human resource management will have an effect on the performance of the plant. Each task which has to be performed is characterised by the level of competence required. For each skill, human resources have different levels. The issue of making a decision about assignment and scheduling leads to finding the best resource and the correct time to perform the task. The solve this problem, managers have to take into account the different criteria such as the number of late tasks, the workload or the disturbance when inserting a new task into an existing planning. As there is a lot of estimated data, the managers also have to anticipate these uncertainties. To solve this multi-criteria problem, we propose a dynamic approach based on the kangaroo methodology. To deal with uncertainties, estimated data is modelled with fuzzy logic. This approach then offers the maintenance expert a choice between a set of the most robust possibilities
    corecore