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Chapter 1
Introduction

1.1 Production control and inventory management
The objective of production control is to satisfy customer demands in terms of type of
product, amount, and delivery time, that is, production control deals with three issues,

namely, which type to produce, in which amount, and at what date There are many ways of
meeting this objective, but at different costs. Demand satisfaction may easily be achieved

by keeping large amounts of finished products This solution, however, may not be
practical because keeping large amounts of inventory has many drawbacks (see
section 1 2) Thus, inventory management is a necessary activity supporting production
control Without management tools such as production control and inventory management,
the efficiency of manufacturing systems would be endangered

Until the late 7Os, many manufacturing systems in the US were controlled through MRP

(MRPI: Material Requirements Planning, or MRPII: Manufacturing Resource Planning)
Next, authors reported the results obtained through Just-In-Time (JIT) in Japan, especially

at Toyota (Sugimori   et   al 1977, Schonberger 1982, Monden    1993)     JIT is Toyota's
philosophy of minimizing waste. MRP and JIT are often opposed, which is emphasized by
the reduction of MRP to push and JIT to  pull (see section 2 1  for a further discussion of
push vs pull) In practice, however, most manufacturing systems are controlled through
integrated MRP/JIT systems A thorough discussion of integrated MRP/JIT issues is given

in Benton and Shin (1998)

1.2       JIT and the benefits of inventory reduction

Many western industries have adopted J[T tools as best practice This success in industry
has raised a large interest in the research community. Thus, more than 800 articles related

to JIT have been published (Golhar and Stamm, 1991) The reason for this tremendous

interest in JIT is that waste reduction can be very fruitful: it is often acknowledged that the

amount of time spent by a product in a factory is due for 10% only to value adding

activities, and for 90% to handling, storage, quality control, etc The concepts embodied in
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JIT intlude total quality, continuous improvement (Kaizen), employee involvement,
inventory reduction, and pull production

JIT emphasizes inventory reduction. Indeed, JIT sees inventory as an evil in many
aspects First, inventory is an investment; it has a financial cost that affects price
competitiveness Second, it is used to hide problems such as defective quality of products,
process inefficiencies (breakdowns, long set-up times, large batch sizes, etc.), difficulties in
respecting due dates, etc Third, inventory is a source of lack of quality: for instance,

products kept in inventory become obsolete when new products are introduced, higher cost
results  in case of late detection of a defect. Inventory building-up characterizes "just-in-case
management"

Often, people working on JIT use the metaphor of a company floating as a boat on a sea
of inventory (see Figure 1) Lowering the inventory (sea) level creates difficulties (uncovers
rocks), which lead to perturbations (on which the boat may crash). The idea emphasized by

the JIT philosophy is that the sea level should be gradually lowered, and uncovered rocks
should be removed. The JIT technique for lowering inventory is pull production, and the
technique for removing rocks in continuous improvement.

, boat = companysea A=

inventory   - .
:.. .       '1     /»,»--,-»,- -'»-»:     :, "

4·  ..:11":' :.'.: t. ... sl .          A -rocks..,« 6 --\
problems         1 BE                                                  --    -    _ - .t

Figure 1. Metaphor of a company as a boat floating on a sea of inventory

1.3 Outline of the dissertation

This thesis is concerned with the design of pull control systems for single product
flowlines. We further limit the scope  of this research to Make-To-Stock systems We shall
make one main assumption: we consider internal production flows only, that is, we assume
that the supply of raw materials and components is continuous and infinite.

The outline of this thesis is the following. In Chapter 2 we review pull control systems
developed in the literature, and we propose a new classification Two issues arise, namely,

which type of pull systems should managers choose,  and how should they set the various
parameters of the chosen system These design issues will be our main concern. We
distinguish several formulations of our design problem depending on the assumptions we
make when modeling the production environment (which we shall define more precisely in
the Chapters 3 to 6: in Chapters 3 and 4 we consider the production environment as given,
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whereas in Chapters 5 and 6 we study production environments that are not known with
certainty and may show dynamic behavior) We conclude Chapter 2 by emphasizing the
need for new design approaches.

In Chapter 3 we show that selecting a specific pull system among all possible pull
systems is a complex problem, which has not been investigated in the literature Our
contribution is the design of a generic model, that is, a common representation of all the

pull systems presented in Chapter 2 We propose a procedure based on evolutionary
computation and simulation to configure the generic system for a given production system
and production environment; we call this procedure customization. The result shows which
pull system should be implemented. The benefits of customizing are illustrated for an
example production system taken from the literature, for which the optimal configurations
of several known pull systems have been determined in the past:  we find a pull system that
performs significantly better than the best system in the literature

In Chapter 4 we gain more insight into customization and its benefits by applying our
methodology to a variety ofproduction lines We review the pullliterature to determine this
variety, and use experimental design to generate a sample of twelve production line
configurations  For each production line we apply the customization methodology proposed
in Chapter 3. The results provide many conclusions concerning the best pull structures,
their performance, and their complexity

In Chapter 5 we identify three sources of uncertainty that may arise when designing pull
systems through simulation: (i) stochastic uncertainty, which is due to the use of
(pseudo)random numbers in our discrete-event simulation, (ii) subjective uncertainty,
which results from our need to model stochastic behaviors through probability distributions
based on either sampled data or expert opinions, and (iii) dynamic uncertainty, which is
resulting from variations over time in the real production environment Through simple
examples we illustrate the possible effects of these three sources of uncertainty,  and we
emphasize the need for assessing and integrating the effects of these uncertainties in the
design process. We contribute to this issue by proposing a novel procedure based on

Uncertainty/Risk Analysis (URA) and Taguchi's robust design
In Chapter 6 we apply our procedure to the design of pull systems under uncertainty  We

specify two robustness criteria - one based on service and the other one based on Work In
Process (WIP) - and we give a rigorous definition of the robust customization problem

Then, we consider the issue of comparing the robustness of pull systems We study the
relative performance of four pull systems using two comparison procedures, namely,

stochastic dominance and confidence ellipsoids built through bootstrapping We conclude
that a control system can be selected only if managers specify their attitude towards risk
and characterize their preferences. To support managers, we investigate the effects of the
various parameters within their control (the card numbers, the type of probability

distributions used in URA, and various parameters that specify the managers' attitude
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towards risk and characterize their preference). We apply the complete robust

customization procedure to the production system studied in Bonvik et al  (1997)
In Chapter 7 we summarize the main conclusions of this thesis, and give research

perspectives.



Chapter 2
Pull Control Systems: Classification and
Selection

Abstract
In this chapter we develop a new classification of the pull systems that have already been
proposed in the  literature.  We  identify  three  classes  of pull  systems:  traditional,  segmented,

and joint. Traditional pull systems are Kanban, Conwip, and Base Stock. Segmented
systems partition the production line into segments, each controlled through a traditional
pull system. Joint systems combine several traditional pull systems on the same segment of
the production line. Managers willing to implement pull control in their production
systems,  have  to deal with  two  main  issues:  which  type  of pull  systems  to  choose,  and how
to set the various parameters of the chosen system.  These are the two design issues that we
consider throughout the whole dissertation. We briefly review how these two design issues
are    treated    in    the     literature:     we    study    which    performance    measures    are    used,     how

parameters are set, and how pull systems are compared. We conclude by showing the need

for new design approaches.
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2.1       Typology of pull control systems in the literature
The principle of pull control is described as follows in Spearman and Zazanis (1992): "A
pull  system is characterized by the practice of downstream work centers pulling stock from
previous operations, as needed. All operations then perform work only to replenish

outgoing stock. Work is coordinated by using some sort of signal (or Kanban) represented
by a card or a sign " We consider Make-to-Stock systems, so the pulling signal at the last
stage is released when a finished product is delivered to customers (in Make-to-Order
systems the release of a new order would occur as an order is completed). Many

publications consider infinite demand, which results in order completion and product
delivery occurring at the same time. In pull systems, a work center may be blocked either
because it is starving - no parts in the input inventory - or because it is not allowed to
produce - all cards are attached to products and they will be released only if the
downstream work center uses one ofthese products

Figure 2 shows a possible implementation of the pull principle in a production line.
When machine i+k pulls a product from its input inventory, it releases the card attached to
the part and sends this card to an upstream machine 1 - not necessarily the immediately
preceding machine 0 and k positive integers) This card allows machine i to start

production, that is, pull a product from its input inventory, attach the card to this product,
and start processing. Therefore the number of cards that circulates in a specific control
loop, remains constant over time This number determines the maximum Work-In-Process

(WIP) in the production line segment controlled by the loop

Parts Machine i Machine i+k
-+ -+ »=+
-.
i Authorizations                                   :

--A Part flow - -*Information flow

Figure  2. Pull principle illustrated through a simple  line of queues

Pull control is often opposed to push control. There is no generally accepted definition of
push. Many researchers, however, define push control as based on demand forecasts to
schedule production For instance, Spearman et aL (1990) defines push systems as those

'where production jobs are scheduled' and pull systems as those 'where the start of one job
is  triggered  by the completion of another'    Ou and Jiang (1997) emphasize  that   ' [push]

controls throughput by establishing a master production schedule and keeps record of WIP
to detect problems in meeting the schedule [pull] controls WIP and adjusts throughput to
match the required demand...  [:] the work center works only to replace the number of items

pulled'. For Amin and Altiok (1997), '[production in a push system] is triggered in an
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upstream  part  of the system based  on the demand forecasts';  in  a pull system the market
conditions directly control the production schedules. They conclude that push systems seem
to emphasize throughput, whereas pull systems emphasize WIP inventories (JIT goal: zero

inventory)
Many types of pull systems have been developed The topic of the next sections is our

own classification of these systems. Throughout this dissertation we focus on production
lines processing a single part type. We identify three classes traditional, segmented, and

joint Traditional pull systems are Kanban, Conwip, and Base Stock Segmented systems
partition the production line into segments, each controlled through a traditional pull
system Joint systems combine several traditional pull systems on the same segment of the

production line.

2.1.1 Three traditional pull systems

A few pull control systems are widely used in industry They were often used in practice,
before appearing in the research literature, where they are known under the names Kanban,
Conwip, and Base stock. Next, we describe these three traditional systems.

2.1.1.1  Kanban

The Kanban strategy was developed by Dr Taichi Ohno, manager at the Toyota Motors
company. The principle is to limit the inventory level at each stage of a process, by defining
control loops between each pair of consecutive stages (Monden,  1993); see Figure 3. There
are many implementation forms for Kanban Berkley (1992) proposes a classification of
Kanban models; he uses operational design criteria, such as the blocking mechanism, the
withdrawal strategy, and the type of Kanban cards Huang and Kusiak (1996) survey
various Kanban implementations and alternative pull systems, and classify previous studies
Chu and Shih (1992) compare numerous simulation studies on Just-In-Time (JIT)
production systems. Price et al (1994) review optimization models of Kanban systems.
Sing and Brar (1992)'s review considers several issues, such as design, modeling,
scheduling, and comparisons with other control systems Gaury et al (1997a) survey the
way modeling techniques and simulation are used to study Kanban systems

Authorizations
----, ----1 ----,

A [ZZ-1
-7 F-lm„hin.„A-1=-1-A f .:ri:.Lj L.J

Raw Inventory Finished goods

materials $      /           L___yinventoryY
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Figure 3 Kanban system
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2.1.1.2 Conwip

Conwip stands for Constant Work In Progress. Spearman et al. (1990) proposed the name

Conwip, but Bertrand (1983) and Lambrecht and Segaert (1990) proposed similar

approaches under the names of workload control and long-pull systems respectively. These

approaches can be considered as capacity-based order review/release (ORR) strategies; see

Philipoom and Fry (1992) for a short review of ORR strategies.
The objective ofConwip is to combine the low inventory levels of Kanban with the high

throughput of Push To achieve this objective, Conwip uses a Push system that, however,

has only a limited number of parts allowed into the production system: raw materials can be

released into the system only when the last stage asks for it (Pull principle). This limitation
is implemented through a single control loop that links the last stage to the first one. As

explained in the introduction of section 2.1, we consider Make-to-Stock systems only, so
card flows along the control loops are triggered by the delivery of products to customers.

Though Conwip was originally designed for Make-to-Order systems, recent publications
adapted it to Make-to-Stock systems (see for instance Bonvik et al., 1997) Within the

system, each stage produces as fast as it can (Push principle) Comparing Figure 3 and
Figure 4 shows that Conwip's implementation is much simpler than Kanban's: there are
fewer control loops Thus, modeling and optimization are easier Actually, a Conwip
system can be viewed as a Kanban system with a single loop that controls the whole

production line.

r------- 1,-EjA·
Figure 4. Conwip system

2.1.1.3 Base stock

There are several definitions of the base stock system This system was developed in the

1950s, and has been extensively used by practitioners ever since Bonvik et W (1997) and
Lee and Zipkin (1992) consider the base stock policy originally described by Kimball
(1988). see Figure 5  The base stock level (say) S at stage i (i = 1 N, with N total
number of stages) refers to the echelon inventory at that stage, that is, the total amount of
products produced by stage i after the inventory point of stage i-1 that is in the line, either
as production order or as inventory in all downstream production and inventory points
Thus the echelon inventory of stage i i s included in the echelon inventory of stage i-1
Any demand for finished products immediately triggers demands at each preceding stage

demand information is broadcast from the last stage to each stage in the production line
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Demands that cannot be filled from stock, are backordered There is no upper bound for the

inventory level at any stage. The base stock levels S are the only parameters ofthis system.

Demands

r-
----

--'-f-

Figure  5. Base stock system

An advantage ofbase stock is its responsiveness to demand: as soon as a demand occurs,
all the stages can start working simultaneously. A drawback, however, is that consecutive

stages   are not coordinated:    if one stage fails, preceding stages   do   not stop working.    A
solution is to limit the amount of inventory, using authorizations as Kanban does  Then
when a finished good is delivered, one card is sent to each stage of the production line,
thereby allowing stages to produce Such a system is called an Integral Control System, see
Buzacott and Shanthikumar (1993).

2.1.2 Segmented systems

Segmented systems partition the production system into 'cells' (segments), and use a
separate policy per cell Figure 6 shows a variety of segmented systems, introduced in the
literature. A large part of the literature on these systems focuses on Conwip Another part
looks at the combination of Kanban and MRP along a production flow line Other types of

segmented systems have been proposed but not studied

Di Mascolo et al. (1996) emphasize that each stage of a Kanban system may consist of
more than one machine. Indeed, a stage may be associated with a subpart of the production
system; such a part may be a manufacturing flow line, a flexible manufacturing cell, etc
Such systems can be viewed as segmented Conwip systems Di Mascolo et aL assume that
the partitioning of the production system into cells is given; they do not tell how this
partition should be done in practice. Tayur (1993) develops theoretical and qualitative
results for partitioning of a production line into Kanban cells, and the allocation of cards to
each cell  Ettl and Schwehm (1995) suggest that for systems of realistic size powerful
heuristics are needed to solve the problems of partitioning the line, and allocating the cards.

They propose a heuristic based on a general-purpose genetic algorithm and an analytical
modeling method to simultaneously solve both problems

Segmented push/pull systems have also been investigated For instance, Cochran and
Kim (1998) consider a production line that is controlled partly through MRP and partly
through a pull strategy; they use simulated annealing to optimize inventory levels and the
junction point that separates the production line into two subsystems. Olhager and Ostlund
(1990) emphasize that the junction point can be the customer order point, a bottleneck

resource, or a point derived from the product structure
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Figure 6. Segmented systems in the literature

Recent papers suggest new types of segmented pull systems that are not just limited to
Kanban control. Gstettner and Kuhn (1996) propose segmented Kanban/Conwip and Base
stock systems; however, they do not further study such systems, nor do they propose a
design procedure. The issue is then not only to partition the line and allocate cards, but also
to choose the type of pull control (Kanban, Conwip, Hybrid) for each subpart of the

production system
Much research remains to be done on segmented systems there is no reason for limiting

the pull control system per segment to Conwip Hence the design problem is rather

complex: simultaneously define manufacturing segments, select control policies per
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segment, and configure the control policy per segment  To the best of our knowledge,  such

a general approach has not been proposed in the literature

2.1.3 Joint systems

To control a specific part of a system control mechanisms can also be combined:
superimpose several control systems; see Figure 7 for an example, namely a combination of
Kanban and Conwip Such combinations we call joint systems   The  goal  of our research on

joint systems is to combine benefits of several systems  The main research issue is to
evaluate the performance ofjoint systems, relatively to other control systems Comparisons

should not be limited to performance aspects, but should also include implementation
complexity (Conwip is simplest) One aspect of complexity is the control policy's number
of parameters (number of cards, number of base stock levels). Obviously this number

should be compared with the number of stages of the production system N Kanban and
Base stock both have N parameters, whereas Conwip has only one parameter (so Conwip's
complexity is independent ofthe number of stages)

--- -/

:---' 1---' 1 1---,                     1

Figure 7. Joint Kanban/Conwip Hybrid

Bonvik et al. (1997) propose a control system called (two-boundary) Hybrid (see again
Figure 7), which combines local control (one stage only) through Kanban, and integral

control (whole line) through Conwip Hybrid is easy to implement as a modification of
Kanban, its number of parameters  is N An interesting characteristic of Hybrid  is  that
production at the first stage is triggered by two signals: one from the second stage (Kanban
pattern) and another one from the last stage (Conwip pattern) Production at stage 1 is

allowed if both signals are present. In other words, the operator at stage 1 needs one card

from stage 2 and one card from the last stage to start producing. Both cards are attached to

the part, at stage 2 only the Kanban card is sent back to stage 1, and the Conwip card
remains attached to the part until it reaches the finished good inventory and is delivered
We shall use the same mechanism whenever production is triggered by several signals

Buzacott (1989) and Zipkin (1989) develop Generalized Kanban, which combines Base

Stock and Kanban The objective is to combine Base stock's rapid reaction to demand and

initial inventory levels, with Kanban's coordination between consecutive stages and local

control of inventory, see Figure 8 Dallery and Liberopoulos (1995) propose a general
approach to Base stock/Kanban joint systems, called Extended Kanban Liberopoulos and

Dallery (1997) propose variations of this approach for various production environments
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Extended Kanban has the same objective as Generalized Kanban, but it is claimed to be
conceptually clearer and potentially easier to implement Both systems, however, are rather

complex, since each has 2N parameters.

-1         -1          -1

1
1

------------ ---J
--, -----Dls.„

Figure 8. Joint Kanban/Base stock systems

2.2       Selection and configuration of pull systems

2.2.1 Two design issues, several formulations

There are two issues involved  in the design of a pull system. The first issue is which type of
pull system should be selected? More specifically, where should the control loops be placed

for a given production system and production environment? Should we use a pattern of
control loops as in one of the traditional pull systems, or should we select a segmented or a
joint system? In the remainder of the dissertation we will call a specific pattern of control

loops a pull structure. Selecting a pull structure includes defining a partitioning of the

production system into segments Once a structure is selected, the second design issue is to
decide how many cards should be allocated to each control loop  In the remainder of the
dissertation we will refer to this second issue as configuring a pull system: the
con/iguration of a specific pull structure is the set of card numbers to be placed in the
control loops. Figure 9 illustrates the goal o f the two design issues.

Traditional

MerIEI2rIff9Jtt363r Configuration
1 $.v„=«

....   .............:/                    11
structure f ?+ ·2&[hM:Ih&-02r 2?   27    4?

\ Joint
7/8/3/Adti,30/5,Ar

ribrimig26,25iL25;Iflizjr

Figure 9. Two design issues: selecting a structure, and configuring the chosen structure

Throughout the dissertation we focus on these two design issues. However, we
distinguish several formulations of our design problem depending on the assumptions we
make when modeling the production environment We define the production environment
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as the set of factors that are not completely controlled by the designer or manager of the

production system This environment includes processing times, demand rate, time between

failures, etc. (see section 5 2 1). In Chapter 3 and Chapter 4 we consider the production

environment as given, whereas in Chapter 5 and Chapter 6 we study production
environments that are not known with certainty and may have a dynamic behavior Next,
we discuss briefly the performance criteria used in the literature on pull production control

2.2.2 Performance criteria

Many performance measures have been used in the pull literature  Chu and Shih (1992)
classify these measures into three categories: overall, inventory related, and due-date

related Their review suggests that three criteria have been used frequently in the literature:

facility utilization, throughput rate, and WIP Facility utilization, however, should not be

used as a performance measure, because the goal of a JIT manufacturing system is not to
keep workers and machines busy (Goldratt and Fox, 1986) Thus, the remaining important

criteria are (i) WIP and (ii) throughput rate

(i) There are many ways of characterizing WW  The most common approach is to
consider overall WIP, that is, the difference between the number of parts that entered the

system and the number of delivered finished goods. Overall WIP is suited for cases that

have value more or less the same across the system, in most cases, however, inventory

value increases through value-adding operations  Thus, in general finished goods are much

more valuable than raw materials, and an objective might be to keep inventory at low levels

in the final stages in order to minimize the financial investment Then, WIP should be

characterized through the sum of inventory value per stage with inventory value per product
increasing as manufacturing operations are performed We denote the inventory value at

stage i by Fwipi. For both characterizations, the WIP performance is mainly measured

through the mean (expected value)
(ii) Throughput rate should be measured relatively to demand rate: a system should not

overproduce; it should meet demand very fast. Ideally, a manufacturing system should meet

demand from stock: 100% service goal. Demands that are not met from stock may either be

backordered or lost Hence, the proportion of demand actually met from stock is a good
indicator of system performance. We call this proportion service level, and we denote it

by S  A 100% service goal, however, is unrealistic in many cases; managers might prefer a

lower service goal as long as it is achievable by the system and acceptable from a customer

viewpoint.
In conclusion, our goal when designing a pull system will be to achieve a predetermined

service level with minimal overall WIP or minimal WIP value. We consider both measures

so that comparison of our research with previous studies is possible In Chapter 4 we also

consider the impact of the WW characterization on our results The formulation of our goal
implies the notion of WIP optimization under a constraint: the constraint is to achieve a



14                                                           Chapter 2. Pull Control Systems: Classdication and Selection

given service level. We denote this target level by r Thus the optimization problem is
formulated as follows:

Min  WIP or Min    1 FWIP,
(1)

s.t.S k T

The overall WIP can be seen as a WIP value with inventory value per part equal to  1.0 at
all stages.  Thus, in the remainder of this dissertation, the formulation of the optimization
problem we use Min EN= 1 WIp, only, instead of Min WIP or Min Il 1

p'WIP'

Another way of looking at the compromise between WIP and service uses a cost
function. Then the goal is to minimize a cost function equal to the cost-weighted sum of
WIP and the proportion of disservice: a. WIP + b.(1 - S). Then optimization is simpler as the
problem is formulated as follows:

Min[a.WIP + b.(1 - S)]                                                                                       (2)

However, as some authors admit, the cost of disservice (shortage cost), namely b, is
difficult to estimate in practice. Thus, many recent publications avoid the use of shortage

costs. An example of discussion on service level versus shortage cost is Janssen (1998,
p   20) He emphasizes that when shortage costs incorporate the customers'  loss of goodwill
or when a service target is chosen, the optimization problem has a long-term perspective.

Next we review the techniques proposed in the literature for configuring a pull system.

2.2.3   Selecting the card numbers

One of the main foci of researchers in the field of pull control is the determination of the
card numbers in a given pull structure, such that performance is optimal. The reason for this
interest is that the card numbers have a major influence on the performance and they are the

only means for balancing inventory and service performance. Gupta and Gupta (1989) and
Huang et aL (1983) conclude that pull systems perform well, only when the numbers of
cards are chosen optimallyl Figure 10 illustrates that the performance of a Conwip system
in terms of inventory is a linearly increasing function of the number of card. The
performance in terms of service level  is also linearly increasing but only for card numbers
below a threshold value; above the threshold, it remains equal to 100% The compromise
issue can be illustrated by considering a cost function that aggregates inventory and service
performance: for low card numbers, disservice costs have an important contribution to total
cost, whereas for high card numbers costs are only due to excess inventory Of course the
respective contributions of inventory and disservice to the cost function depend on the
choice ofa and b in Equation (2)

Many techniques for selecting card numbers are presented in the literature: (i) empirical

formulas, (ii) optimization based on analytical models, (iii) optimization based on
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simulation models Most techniques were developed for Kanban, but their extension to
other pull structures has also been studied.
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Figure 10 Performance as a function ofthe number of cards, a = 500 and b = 15000

(i) Sugimori et al (1977) report that Japanese managers at Toyota use the following
empirical inequality for computing the minimal number of cards to be used in control
loopi:

y, 2 D,L,(1 + a,)/a                                                     (3)

where y, is the number of Kanbans at stage i, D, is the average demand per time unit at
stage i, L, is the average production lead-time at i, a, is a variable for safety stock at i, and a
is the container capacity (a single Kanban is attached to each container). A reason for using
an inequality and a safety stock is that the card numbers are fine-tuned empirically as
follows Remove one card from the system and subsequently check for disruptions  If the
system behavior is not satisfactory anymore, put the removed card back into the system,
and try to identify and eliminate the causes of disruption (see section 1 2)

(ii) Analytical models can be either deterministic or stochastic Price et al. (1994) gives
a detailed review of deterministic optimization models of Kanban systems, their
assumptions and results. Most stochastic approaches use queuing networks as models, and
Markov chains and decomposition techniques for analyzing the modeled performance.
Table 1 gives some references to queuing network analysis for various types of pull
systems An advantage ofthese analytical techniques is that performance evaluation may be
quick and an exhaustive search can be performed on a limited domain to determine the card
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numbers. Such exhaustive searches are performed in Duri (1996) and Wang and Wang
(1990).

Table 1 Queuing network analysis of pull systems
Pull structure Reference

Kanban Di Mascolo et aL (1996)
Base stock Buzacott et at. (1991)
Generalized Kanban Frein et al. (1995)
Extended Kanban Dallery and Liberopoulos (1995)

(iii) Simulation models use less restrictive assumptions than analytical models do, but
require much more computational time for performance evaluation. Thus, exhaustive

searches are rarely performed when determining the card numbers; instead, optimization
techniques such as Response Surface Methodology (RSM) and evolutionary algorithms are

preferred. Table 2 gives references to simulation-based optimization of pull systems.

Table 2 Simulation-based optimization in the pullliterature

Reference Optimization technique Pull structure
Bonvik et al. (1996) Exhaustive search Kanban, Base stock,

Conwip, Hybrid
Paris and Pierreval (1997) Evolutionary algorithm Kanban
Davis and Stubitz (1987) RSM Kanban

Chang and Yih (1994) Simulated annealing Kanban

Simulation can also be used to derive "metamodels" of pull systems This metamodeling

estimates a mathematical relationship between the simulation inputs (card numbers, for
instance) and its outputs (such as performance measures) using (non-linear) regression
analysis Jothisankar and Wang (1993) use this technique for a two-stage Kanban system;
they derive the card numbers as functions of demand rate Aytug et al. (1996) determine a
relationship between the card numbers and the average time to fill a customer order for a
two-stage Kanban system Hurion (1997) uses simulation to train a neural network

metamodel, which he uses to estimate the optimal number of cards; finally, a local search is

used to refine the solution
Another problem considered in the literature is optimal allocation of cards along a

production line, given a fixed number of cards for the whole line; see Gstettner and Kuhn

(1996)  We will not consider this type of problem in this dissertation
This short review ofthe techniques for determining the number of cards in a control loop

shows that a large variety of techniques are available depending on which degree of
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precision to be achieved Empirical formulas give instantaneous results, but assume a
deterministic behavior of the production system Analytical methods require a low
computational cost, but use more restrictive assumptions and require analyst skills.
Simulation allows stochastic modeling of the production system, but requires long
computing times. This computational cost, however, is getting lower as computing power
increases. Next we review comparisons among pull systems

2.2.4     Review of comparisons among pull systems

Choosing among several pull systems is a complex problem Indeed, it is hard to say
whether a given pull structure is 'better' than another one. The fact that each pull structure
can have many configurations complicates comparisons In the literature the 'best' pull

system among several structures is always found using the following procedure For a given
production environment, find the optimal configuration of each structure, and compare the
performance of these optimal configurations The structure that yields the best
configuration is said to be the best structure Whenever a new pull system is proposed,

researchers make comparisons with existing pull systems and other inventory control
techniques, such as order release strategies and reorder point systems Thus the most
complete comparison studies are also the most recent studies  We now review comparison

studies,  in the order of publication of pull systems  in the literature, we start  with  one of the
first implementations of the pull principle, namely Kanban

As reports appeared on the benefits obtained in Japanese companies through the Kanban

method, researchers tried to compare Kanban with classical methods such as MRP
manufacturing and reorder point systems A major publication is Krajewski et al. (1987):
they report on a project to assess the expected performance of Kanban in typical U.S.
manufacturing environments, they try to find which factors have the biggest impact on
performance They consulted a large panel of managers across the U S,t o formulate a list
of factors that might affect performance, and to select low and high values for each factor
Then they build a sample of representative plants and simulate each plant Their main
conclusion is that Kanban is very efficient for some environments, but more traditional
systems also perform well for these environments In other environments, however, the
Kanban method is much less efficient Other studies emphasize that in a Western

environment push systems perform better than pull systems However, Gupta and Gupta
(1989), Huang et al (1983), and Schroer et al (1985), conclude that high production rates

can be realized, only when the number of kanbans is chosen optimally
Veatch and Wein (1994) compare base stock to Kanban for two-stage systems. They

show that base stock may or may not be better than Kanban, depending on the production
environment For instance, the position of the bottleneck  has a major impact on the choice

between the two systems
To the best of our knowledge, Conwip has been compared with other strategies through

simulation only Roderick et al. (1994) and Roderick et al. (1992) compare Conwip to
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MRP and three order release strategies. They conclude that Conwip gives the best
performance measured in mean WIP, mean throughput, and proportion of tardy jobs.  Thus,

Roderick et al. (1992) recommends Conwip as a "strategy that should be seriously

considered by practitioners for implementation in actual shop environments" Gstettner and

Kuhn (1996), however, compare Conwip to Kanban for a five-stage line and conclude that
Kanban is more flexible than Conwip when a specific performance level is to be achieved

They also show that Kanban reaches a given production rate with less inventory than

Conwip does
The literature on Hybrid is not large, because Hybrid appeared only recently Bonvik et

al. (1997) perform many optimizations using simulation and exhaustive search They show
that the advantage of Hybrid over Kanban increases, as the service target gets closer to

100%. They also consider Conwip, minimal blocking (a variant of Kanban), and base stock

They conclude that Hybrid is best in terms of average overall inventory for a given service

target. Kanban and minimal blocking have similar performance, the same close relationship

is observed for Conwip and base stock. The performance of Conwip and base stock falls

between those ofKanban and Hybrid.
Duri (1996) compares the costs ofthe optimal configurations ofbase stock, Kanban, and

Generalized Kanban. She determines these costs analytically using queuing network theory
If demands have to be satisfied immediately (no delay between demand and delivery), then

the costs are the same, so Kanban would be preferred because of its simplicity   If a delay is

allowed between demand and delivery (backordering), then Generalized Kanban and base

stock give lower costs than Kanban for the same service level Since base stock does not

limit WIP, users might prefer Generalized Kanban
Sometimes contradictory results can be found in the literature, particularly for Kanban,

as we saw earlier in this section An explanation is that comparisons are made for a given

production environment, so a particular pull structure may be best in one environment, but

may be outperformed in other environments. Only a very limited number of studies provide
extensive information on the pull structure to choose for a particular production

environment. Bonvik et al (1997) determine which pull structure - Kanban or Hybrid - to
prefer  when the service target is changed  from  99  to   100%   For each target value  they  find

the optimal configurations with minimal inventory of Kanban and Conwip, given the
service target They summarize their results through a plot showing the WIP performance

as a function of the service level performance for the best configurations of Kanban and
Hybrid: Hybrid is always better. These results, however, do not tell how the other pull
structures perform in the same conditions, and if other environmental factors (such as the
demand rate, the imbalance of processing times) affect the relative performance of pull

systems. A more complete study is Karaesman and Dallery (1998), who compare Kanban,
Base stock, Extended Kanban, and Generalized Kanban   for a sample   of   18   sets   of
parameter values These parameters include production rates per stage and cost parameters

They conclude that Kanban performs well under certain conditions, and base stock
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performs better under other conditions Since Generalized Kanban is a combination of
Kanban and Base stock, it performs well over a larger range of conditions - in the example

under consideration Extended Kanban is a special case of Generalized Kanban. Their
results, however, are limited to two-stage systems; they do not consider other pull
structures, such as Hybrid

2.3 Conclusion
The problem of designing a pull system is twofold select a pull structure (decide where to
place the control loops) and configure it (determine the number of cards to be used in each
control loop selected) In section 2 1 we saw that many pull structures have been proposed
in the literature. For most structures we have only partial knowledge of how well they
perform The only selection technique proposed in the literature consists in finding the
optimal configuration of each pull structure under consideration, and comparing these

optima Applications of this technique, however, suffer from two main limitations:  (i) the
optimal configuration of a pull structure may be hard to find, it gets harder as the number of
production stages increases, and (ii) optimization has to be repeated for each pull structure
Extension to bigger numbers of stages and pull structures would have a high computational

cost  In fact, we shall see in the next chapter that the number of possible pull structures is
increasing rapidly, as the number of stages in the production system increases  Thus, the
technique comparing the optimal configuration of each pull structure is not attractive if we
want to choose among all possible pull structures: there is a need for a new selection

technique.
Another limitation  of the literature  is  that many studies  do not study the influence  of the

environment on the choice of a pull system  And when the issue is raised, the investigation
is often limited to a few factors only; an exception is Krajewski et al (1987), but the only
pull structure they consider is Kanban  Thus a more complete study of how the production
environment impacts the choice of a pull system is required We perform such a study in

Chapter 4.



Chapter 3
Generic Model and Customized Pull
Systems: Methodology

Abstract
In Chapter 2 we proposed a typology of known pull systems. We also saw that choosing
among these known systems is dijjicult. for a given production system and production
environment it is not possible to say a priori which pull structure should be implemented.
Furthermore, many other structures can be created that do not match any known pull
structures: the choice is not limited to traditional pull control systems and their
combinations.  Selecting a specific pull system among all possible pull systems is a complex
problem that has not been investigated in the literature. Our contribution to solving this
problem is presented in this chapter: we design a generic model that is a common
representation of all the pull systems presented in Chapter 2. For a given production
system and production environment, the optimization of the generic system yields not only
the pull structure (which control loops should be implemented), but also the optimal card
numbers for each loop actually implemented.  The result Of this approach may be one  of the
traditional systems, Init it may also be one of the following three new types.  (1) The total

line may be decomposed into several segments, each with its own traditional control
system. (2) The total line or its segments may combine different traditional systems. (3) The
line may be controlled through a new  type  of control system.  Thus,  the generic model does
not only help choosing among known pull structures;  it extends the concept of pull control.
We call  this extended approach customization.  The  benefits  Of this approach are  shown for
an example production system taken from the literature, for which the optimal
configurations of several known pull systems have been determined in that literature. we
find a novel pull system that pedorms significantly better than the best system in the
literature, namely Kanban/Conwip Hybrid.
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3.1 Introduction
The subject of this chapter is customized control systems that may replace traditional
control systems such as Kanban, Conwip, and Base stock In Chapter 2 we saw that many
structures of pull system already exist,  and that many others  can be added Our objective  is
to consider many more structures including traditional, segmented, and joint systems, as
well as structures that do not match the typology of known systems presented in section
2.1. In section 3.2 we shall see that this objective leads to a problem of high complexity
because the number ofpossible structures grows exponentially with the number of stages.

In Chapter 2 we also suggested that we need an alternative to the technique proposed in

the literature for choosing among pull systems. Indeed, this technique consists in
optimizing each structure type individually. Thus the computational cost of the technique
grows proportionally to the number of considered structures To achieve customization we
propose a generic optimization model that may represent all possible pull control systems

This model connects each stage of a production line with each preceding stage

(section 3  3)   Customization consists of a single optimization of the  corresponding  model  to

determine which control loops actually need to be implemented. The advantage of this
approach in terms of computational costs is increased by deriving structural properties of
the generic model (section 3.4). In section 3 5 we design an evolutionary algorithm to
perform the optimization; we use discrete-event simulation to evaluate the performance of

the generic model In section 3 6 we show the benefits of our customization approach

through an example taken from the literature, for which the performance of several known

pull systems have been determined in that literature

3.2      Extending the traditional pull systems

We saw in our typology (Chapter 2) that many pull structures already exist or have been

considered. Yet, we do not see any reason for limiting research to these systems only.
Huang and Kusiak (1998) criticize traditional strategies, for not considering the specific
characteristics of manufacturing systems They propose an algorithm based on decision
rules for choosing which strategy - push or pull - should be adopted at each stage of a
manufacturing system. Even though they consider only local control (no combinations),
they are among the first researchers to investigate what we call customized control systems
Each production system has its own specificity, and requires a special control system; that
is, predefined systems such as Kanban, Conwip, and Base stock might not be good enough

Many systems can be created that do not match the typology of known pull systems;  a

simple    example is shown in Figure    1 1.    In    fact,    for an N-stage serial line there are

N(N + 1)/2 possible control loops connecting a stage to a preceding stage. Each of these
possible loops can be implemented or not. The choice of which  loop to implement defines a
pull structure. For instance, if we decide to implement loops only between consecutive
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stages, then we have a Kanban system The number of all possible pull structures is equal to
2N(N + 1 72 Table 3 gives the value of this expression for several values of N and shows that
the problem ofchoosing a pull structure among all possible structures is a complex problem
even for small numbers of stages  To the best of our knowledge this problem has not been
considered in the literature before.

-- --

-+- -,        1

Figure  1 1.  A pull structure that does not match the typology of known systems

Table 3 Number of possible control loops and pull structures as functions of the
number of stages

# stages # possible loops # possible structures
2                3                     8
4               10                  1024
10                        55                           3.6 x 1016

Our objective is to extend the choice of a specific pull system to all 2 structures,AIN  +   1)/2

instead of focusing on a few known structures  In this perspective the technique used so far
in the literature is not adapted. Indeed, optimizing each possible pull structure would not be
possible:    for a production   line   with four stages   only, we would   have to perform    1024

optimizations in order to select the best values for one to ten parameters. Instead we

propose a generic optimization approach based on Gaury et al. (1997b) which was limited
to Kanban, Conwip, and Hybrid only.

3.3 Customization through a generic pull control system

3.3.1 Generic optimization model for Kanban, Conwip, and Hybrid

In Gaury et al (1997b) we propose a new methodology for choosing among Kanban,
Conwip, and Hybrid The idea is to optimize a generic system that combines the
information flows    of the three systems; see Figure    12 This generic system    is    an

optimization model that can represent a Kanban, Conwip, or Hybrid system, depending on

the choice of the card numbers in each control loop. The key concept of the optimization
model is that a control loop with an infinite number of authorizations does not impose any

constraint on the flow of parts (WIP). Indeed an infinite number of cards means that a
machine is always allowed to produce Thus the authorization information is not necessary

and the corresponding control loop does not affect the performance of the production line.
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Therefore it can be removed from the generic system; it does not need to be implemented.

We denote an infinite number of cards by the usual symbol oo. Table 4 shows how to set the

parameters of the optimization model in order to  get a Kanban, Conwip, or Hybrid system;
c denotes a finite number ofConwip cards and k, a finite number ofkanbans.

C/----- --,«---f---,z,-- ----

1 --KL., 1---, 1---, , _ E._  

Figure 12. The generic model for Kanban, Conwip and Hybrid in Gaury et al. (1997b)

For a given production system, the optimal configuration of the generic system not only

shows which type of pull strategy is preferred,  but also which values should be selected  for

the various numbers of cards For example, suppose that optimization of the generic model

for a specific four-stage production line gives ki - 2, k2 = 3. 6 - 5.  k4 = 4,  and c = 00.
According to Table 4, this configuration of the generic model is equivalent to a Kanban

system. Thus, Kanban provides the best performance; its optimal configuration is ki - 2,
k2 -3, kj= 5, and k4 -4.

Table 4. Generic system for three pull production control systems

C Ki K2 Kn-1   K.

Kanban 00     ki k2 kn-1     kn

Conwip C            00 00 00       00

Hybrid c         ki         k2                    kn-1         4

We give a different example In Gaury et al. (1998) we optimized the generic model

using an evolutionary algorithm (see section 3.5) for a specific production line with four
stages, inspired by a Toyota factory (we give more details about this production line in

section 3.6). We found the following estimated card numbers: kl =6, ky -3, ki = co. 6 = co,

and c = 14. This system cannot be classified as Kanban, Conwip, or Hybrid; it may be
considered to be a simplified Hybrid system. In general, the best solution found through the
optimization of the generic model, does not necessarily correspond to any traditional
control system (such as Kanban).

3.3.2 Generic model for customization

Our objective is to design a pull control system for a given line, without a priori limiting

the type of control to traditional pull systems  Instead, we search for a control system in the
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set of pull systems that consists of Kanban, Conwip, and its Hybrid, local and integral

control, segmented and joint systems. To achieve this goal, we link - through control loops

- each stage to all its preceding stages. More specifically, we link each stock point

(inventory) to each preceding resource (machine)  So we design a new generic system that

accounts  for  all possible types  of pull control Figure 13 gives an example  for  a  line  with

four stages; k,:j denotes the number of authorizations that circulate in the loop linking stage

i to stage j, M, and I, denote the resource (Machine) and the stock point (Inventory) at stage

i respectively. We number the stages in increasing order following the flow of parts; that is,

the raw material enters at stage 1 and finished goods leave at stage N; we also havels i. In
Figure 13 there  are 10 (potential) loops  (10  = 4(4 + 1)/2) However,  we  do not implement

control loops with infinite card numbers; also see the former generic model (Gaury et al.,

1997b), which, however, was limited to Kanban, Conwip, and Hybrid

k.4,1

k4.2
i i  4,
i ' . _ .hi,_ ik,:1 k'.2 1             :      :

Hi-; - - - 'WH-i . "i          I   F '.-1            1            1--W-,

Mi                 Mi                  13                 MAIt                          I:                          I,                          L

Figure 1 3. Generic system accounting for all possible pull patterns

Next we consider the general case of a production line with N stages controlled by a

generic system (Figure   13  was the special  case  of N = 4)    If we  want the generic control

system to be Kanban, then we select the numbers of authorizations as follows: kiu =  00,
V(i,j) e {1,...,N}2 / i #j (k,:1 is infinite  for all  i  and j  such that  i #j),  and  kri<< 00,

Vi €{ 1,...IN}  (k,:,  has a finite value for all i) Similarly, we obtain Conwip by choosing

kN.1 <<00,  and  k,u= 00,  V(i,j) E {l,...,N}2/(i,j) 0 (N, 1). The generic model cannot

represent   the Base stock policy of section  2  1.1 3 because that strategy uses information

about demand occurrences, whereas the generic model focuses on information about actual

deliveries. However, the Integral Control variant of Base stock (see again section 2  1  1.3) is

a possible instantiation of the generic model. The generic model  can also represent control

systems that have not been investigated in the literature, for instance, a system with control

loops that link each machine to the first machine (to release raw materials, this system

requires authorizations from all machines to machine  1)

To find the best customized pull system for a given line, we optimize the generic system

If this optimization gives a solution with some card numbers being infinite, then the
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corresponding loops are not implemented. The optimization problem can be stated by
completing statement (1) (see section 2.2 2) as follows:

Min  - 11'WIP,({ki.J})
s.t.Str

k,3 e N* u {00}, V(i,j) e { 1,...,N}2,                                             (4)
where N* is the set of natural integers, zero excluded.

A practical problem is the complexity of this optimization: the generic system has

N(N+ 1)/2 parameters, namely, the card numbers in all potential control loops (for
example, for ten machines, the generic model has 55 control loops). This optimization
concerns a non-linear model with integer variables  If in the example with ten machines we

restrict the various card numbers  to  { 1...20}  u {ao},  then the search space still includes

2155 = 5.27 x 1072 configurations of the generic system, which  is a rather large search

space Our approach, however, is much less complex than when optimizing each possible

pull structure: for ten machines we would need to perform 3.6 x 1016 optimizations, each
involving a search space size ranging from 21 to 2155 configurationsl

In the next section we study structural properties of the generic model. The objective  is

to find ways of limiting the search space without loss of generality for our customization
approach, that is, without discarding any pull structure during the search

3.4 Structural properties
In the previous section we explained that a control loop with an infinite number of cards

does not need to be implemented because it does not add any constraint on the flow of
products, that is, cards are always available to authorize production Another formulation is
that a control loop that does not constraint the flow of products  can be replaced by a control

loop with an infinite number ofcards: cards are always available to authorize production, so
adding more cards does not change anything. The object of this section is to identify the
cases for which a given control  loop  does not constraint  the  flow of products

above
--  --------   ---.
1                             below                              11     --------11

Stage / Stage l Stage m Stage n

Figure 14 Illustration ofthe above/below relationship among control loops
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Let  { 1...K,J}  u  {co}  be the search domain  for  the card number k,J  in  the  control  loop
linking stagej to stage i  We say that a control loop linking stage m to stage l is below the
control loop linking stagej to stage i if we have:  i f l s m Sj.  Then,  we say that the control

loop linking stagej to stage i is above the control loop linking stage m to stage l, see Figure
14.

Property 1
Any control loop, below a given control loop with c cards, must have less than c cards to
be a constraint on the flow of products Otherwise, this control loop does not need to be
implemented and its number ofcards can be set to an infinite value

Let k,2 = c,  with i tj, then (kt m 2 c,  with i E l s m 5 j) => kt m = ao

Thus, ifc 4 1,k t m e  { 1,...,c-l}u{co},else ki· m - 00.

Indeed, setting the number of cards to c in a given control loop (say CLI) means that

only c products at most can be present simultaneously in any portion of the system within
the control loop Thus, selecting a number of cards superior or equal to c in a control loop
below CL, means that there will always be free cards so production will always be allowed
for  parts that entered this portion  of the system Figure 15 gives a simple illustration  of

property 1 for a two-stage system.

5                                   5.-------, --------, -_-5-__,
100 A'41-1 5 1-5-1   4--/     f i = i . _ 1

-L_1€rl_1€1+ -[3*0* -1-Jitrillijt
Figure 15. Simple illustration of property 1

To derive a second property, we define a sequence ofnon-overlapping control loops (say

0) as a set of control loops such that each machine or inventory is controlled by one and

only one loop of the set. In Figure  16,  such a sequence for stages  1  to 3  can be o)  = (CLi,i,

Cia.2); we denote by CL,;, the control loop going from stage j to stage  i We define the
number of cards in the sequence e as k(e) = ki,1 + 6,2. The sequence (CLt,1, Cia,1) has
overlapping control loops because stage 1 is controlled by both CLI.1 and Cia,i We denote

ELL'_ _ _ _

; - - J&-,-- _ _ ELLL -11 "jlJ  - 7 2523 CIL·11

216/16/H,
Stage 1 &*2 Stage 3

Figure 16 Possible control  loops in a three-stage line
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by fl,v the set of all sequences of non-overlapping control loops below CI.3;„ with i <j. In
Figure 16, we have Qi.3 = {(CLi.1, CL3.2), (CLI.1, CL2.2, CL3.3), (CL2.1, CL3.3)}·

Property 2
A control loop should have fewer cards than the total number of cards in any sequence of
non-overlapping control loops on the same section of the line Otherwise, this control loop
does not need to be implemented and its number ofcards can be set to an infinite value.

Let k,·J = c, with i tj, then (c 2 Min k(o)), with o) € fl,;J) z> k.j = w

Thus, ki:j € {1,..., Minm e o,J k(co)} u {00}.

A demonstration of this property is given in Appendix  1. That demonstration is based  on

a recursive formulation of the maximal number of parts allowed to enter a given portion of
the system This recursive formulation is particularly useful for implementation in a
computer program.

Detailed example

In this example we show how properties 1 and 2 can be used to simplify a customized
control system and to limit the number ofpossible values for the number of cards in a given
control loop Figure 17 gives an example of such a simplification procedure

1.--1--6-7---3---I-4-----7---     R l     1--1--6-7---3--1-4------I-]    %,    1 -I       I--3-----4------- 'L*        u    .           1- -666{56 6,&66-0-4 -0-60-60-6
k(CLi,,) = 7) AND (k(CL,,2) = 4) -2 (k(CLi,) = co) Prop. 1

k(CLi.,) + k(CL:3) = 4) AND (k(CL:.1) - 6) = (k(CL:,1) = 00)     Prop. 2

Figure 17. Example of simplification procedure

In order to determine the possible values for CL3,1, we use property 2 and look at the
number ofcards in all the sequences of non-overlapping control loops on the corresponding

portion  of the  line.

k(CLi,1, CL2,2, CL3,3) =1+3+0 0= 00,
k(CLI,1, CIa·2) =1+4=5,
k(CL2;1, CL3;3) = 00 + 00 = 00.
So,  Min«» e  n     k(a)) = 5,  and  kj 1  E  {1,2,3,4,  5}  u {00}.  In this example a value  of

'4

k3:' strictly bigger than five is equivalent to an infinite value
We note that the order in which properties 1 and 2 are used, is not important Indeed,

applying property 2 directly on the non-simplified system in Figure 17 yields:

k(CL1,1, CL2,2, CL],3) =1+3+7=1 1,
k(CLi i, CL3,2) =1+4=5,
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k(CL2.1, CL3.3) =6+7=1 3
So the result is unchanged (kj:t e {1,2,3,4,5} u {oo}).
Using the two properties, we can avoid evaluating equivalent solutions, which is

particularly interesting during optimization In the next section we detail the optimization
technique used for customizing the pull control system

3.5 Customization through simulation and evolutionary algorithms

3.5.1 Introduction

Evolutionary Algorithms (EAs) include a variety of algorithms that can be used to tackle
our optimization problem. Three main classes of EAs  have been identified  in the literature:

Evolutionary Programming (Fogel et al., 1966), Evolution Strategies (Rechenberg, 1965),
and Genetic Algorithms (Holland, 1975). Further, Back and Schwefel (1993) give and
overview of the similarities and differences among these three classes. For more details

about EAs, we refer to Back (1996) and Michalewicz (1992). Applications to simulation

optimization can be found in Pierreval and Tautou (1997)
The algorithm we use for our experiments works with a set of potential solutions (pull

structures); this set is called a population. Each iteration (generation) of the algorithm
consists in a reproduction-evaluation cycle Solutions in the population are selected for

reproduction purposes - the best adapted solutions have a higher chance of being selected -

and their offspring is submitted to recombination and mutation operators (which we
describe in section 3.5.3.4) Recombination mixes parental information, while passing  it  on
to the offspring. Mutation introduces innovation  into the population   Next, the fitness of the
new solutions is evaluated  The main steps of our algorithm are as follows (Spears et al,

1993 and Back, 1996):

Step 0 Start with the generation counter equal to zero
Step 1. Initialize a population of potential solutions.
Step 2 Evaluate the fitness of all solutions in the initial population

Step 3 Increase the generation counter

Step 4 Select a sub-population for reproduction (selection)
Step 5 Recombine selected parents (recombination)
Step 6 Perturb the mated population stochastically (mutation)
Step 7 Evaluate the fitness ofthe mated population (evaluation)
Step 8.  Test the termination criterion, and stop or return to step 3

Five main choices have to be made in order to implement this algorithm: encoding of

solutions, fitness, selection mechanism, evolutionary operators, and parameters of the
algorithm  Next we review the literature on these specific implementation issues
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3.5.2 Implementation issues of the EA algorithm

3.5.2.1 Solution encoding

In a computer program individuals can be implemented as a data structure. Often the
structure is a vector, with components that are the optimization parameters themselves or
representations Recent literature, however, investigates the possibility of using tree
structures instead of vectors (Pierreval and Tautou, 1997). These structures have
components that may be binary, real, or integer values; they may also be qualitative
variables (for instance, design options such as conveyor, automated guided vehicle, or
forklift truck)
3.5.2.2 Fitness

Fitness is a value assigned to an individual that reflects how well this individual solves the
optimization problem Thus, the fitness is often an objective function value Depending on
the optimization problem, the objective may be based on a single criterion or a collection of
several criteria including constraints. In the latter case, the objective function may be
expressed as a weighted sum of several performance measures (equivalent to the single

criterion case); it may also include a penalty function that penalizes individuals only if
constraints are violated (see Michalewicz, 1992)

3.5.2.3 Selection

One of the most popular selection systems is the roulette wheel (Goldberg, 1989). In that
system the decision whether to select an individual is made according to a probability
assigned to each individual That probability is based on the fitness of the individual,  such
that the one with the best fitness has the highest chance of surviving The literature provides

many other selection techniques, some ofwhich may be combined with the roulette wheel:

• Sigma-scaling also accounts for the standard deviation of the individual fitness (Forrest,
1985);

• Elitism preserves a number of the best individuals, from one generation to another (De

Jong, 1975);
• Boltzmann selection uses the principle of "crystallization" that is also used in simulated

annealing (Goldberg, 1990, De la Maza and Tidor, 1993);
• Rank selection maintains the pressure of selection, even when the fitness of individuals

gets very close to each other (Baker, 1985);
• Tournament selection makes individuals compete against each other (Goldberg and Deb,
1991)
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3.5.2.4 Evolutionary operators: recombination and mutation

Recombination consists in mixing the information contained in a pair of individuals and
creating a new pair. Several mixing strategies can be found in the literature. The simplest
one is the single-point crossover (Goldberg, 1989), which replaces with probability p,Cross
two parents X and «¥ by their offspring X' and Aa', as follows. An integer pos represents

the point at which the solutions X and X are cut; pos is selected randomly between 1 and
q -  1  where q is the number of components in the data structure. This random selection may

be based on various probability distributions, uniform being the most common one. The
inversion of the two parts of each individual leads to a new pair of individuals  This
recombination process is shown in Figure 18. More complex mixing strategies are multiple-
point crossovers, which require the definition of several crossover points (see Goldberg,

1989)

x =   x1  x ,       x „, r p„.4     x,      p-   x'=  x ,  x2 - -   x„. r p...1- - -Frf
...........

32   =       21       X,                  r                                                                                      x"  =       341       34 2                  le p„   X p„. 1               x'q4,+ 4               4

Figure 18. Recombination operator

Mutation creates new individuals by making small alterations of the data components
Each component has a chance pmut of mutating  The new component value is chosen

randomly among possible values (search domain) The following strategies can be found in
the literature (Michalewicz, 1992, and Pierreval and Tautou, 1997): selection of the bounds

of the domain,  use  of a uniform, a triangular,  or a Gaussian probability distribution,  etc.

3.5.2.5 Parameters of the EA algorithm

The last implementation issue concerns the choice of values for the various parameters in

the EA De Jong (1975) performs many experiments with Genetic Algorithms (GAs) in
order to investigate the influence of parameter values on the EA performance. He concludes

that the best population  size  is  50 to 100 individuals,  the best single-point crossover  rate is

approximately 0.6 per pair of parents, and the best mutation rate is 0 001 per bit (GAs have
binary-valued data components) Obviously these parameter values depend on his
experimental conditions; for instance, a population  of 50  to 100 individuals takes too much

computer time when fitness is estimated through stochastic simulation More generally,

Mitchell  (1996,  p 175-177) suggests that crossover, mutation, and selection should  be

balanced, depending on both the fitness function and the encoding Therefore, she
recommends choosing the parameter values according to a trial and error strategy
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3.5.3 EA algorithm implementation for customizing pull systems

3.5.3.1  Vector Of card numbers

We choose to represent our generic system through a vector with components that are the
various card numbers: (ki.1, k2.2, k2:J'kii, kj,2, ···'kN.'1)' where k,:i, ....kN·Jare the numbers

of cards shown in Figure  13  (also see section 3.3 2). The order in which the card numbers
are listed in the vector, follows the order in which a part encounters the corresponding

control    loops from stage to stage:     ki:1 at stage   1,    ki:2    and  k2 1 at stage  2,     etc    We    are

interested in vector components  with a domain  of the  type Du{co}, where D i s a finite  set

of integer values

3.5.3.2 Fitness

Our goal is to achieve a predetermined service level, while minimizing the total WIP value

or the overall WIP (see section 2.2.2). In section 3 5 2 2 w e saw that there are EAs for such

optimization problems with a constraint (such as service level above a specific value). The
most widely used technique penalizes solutions that do not respect the constraint,
artificially either decreasing or increasing the fitness of these solutions, according to the
objective (Michalewicz, 1992). If the objective is to minimize the fitness value, then
penalizing a solution that does not respect the constraint implies increasing its fitness value

In our case, the optimization problem stated in (4) becomes

Minf[{kid}),
F  11'WIP,({k,u}) if S k r

wheref{k,J}) = i rN                                                                                          (5)LL.,= 1 Fwip,({k,u}) + k otherwise,

k > 0 is the penalty,

s.t. k,4 e N* u {00}, V(i,JO e {1,...,N}2,
where N*  is the set of natural integers, zero excluded.

So when a solution does not meet the service constraint, the objective function f is
increased by a penalty value equal to k. when the service constraint is respected, the

optimum is the solution with the lowest total inventory value.
Michalewicz et al. (1996) mention that the main difficulty is choosing the right level of

penalty:  if the penalty is too low, the final solution might not respect the constraint;  if the
penalty is too high, the search might be confined to a too small part of the search space and

converge to a local optimum. Therefore, we tried several ways of implementing the
penalization. Figure 19 gives plots  of the following fitness functions (all three plots  have

k = 100):

  fWIP if Service 2 99.9%
1WIP + 499.9 - Service) otherwise,
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fWIP if Service 2 99.90%
0  kWIP(99.9 - Service) otherwise,

[WIP if Service 2 99.90%
®   WIPo + 499.9 - Service) if Service < 99.9% and WIP < WIPo,

tWIP + *99.9 - Service) otherwise

where WIPo is a constant.
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Figure 19. Fitness for optimization with service target constraint of 99 9%

Of course, this plot representation is not correct since certain WIP-Service combinations
cannot occur in practice For instance, it may not be possible to achieve high service level
with low WIP Nevertheless, such plots illustrate soft versus hard constraints Indeed, an
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acceptable solution may slightly violate a soft constraint, whereas it should not violate a
hard constraint. For the sake of comparison with previous research, we choose to
implement the service level constraint as a strong constraint. This means that the fitness
function cannot be continuous. Otherwise, as Figure 19 illustrates, solutions may be chosen
that are close to the plot's optimum but do not respect the constraint This issue becomes
critical if the solutions around the plot's optimum and respecting the constraint do not
correspond to any existing pull system. Plot ® is a compromise between continuous and
non-continuous functions. If WIP is above the value WIPo (12 in the figure), chosen high
enough, or if Service is above target, then the plot is the same as plot *; otherwise, as soon
as the service target is not respected, the fitness value jumps to WIPo augmented with a
penalty, which is a function ofthe deviation from service target We shall use such a fitness
function  for most  of our optimizations.

We evaluate the fitness of an individual through discrete-event simulation. As a
simulation language we use SIMAN (Pegden et W ,  1991)  The EA sends the vector of
parameters corresponding to the individual as input to the simulation model, which returns
a fitness estimation (see Figure 20). The fitness is a function of the simulation output
variables. The reason for choosing simulation is mainly that its assumptions are less

restrictive; the price is long computing times. To estimate the fitness in case of stochastic

simulation, we can use either several replications or a single long simulation run. In
Chapter 5 we shall discuss in more detail issues related to uncertainties in simulation and
ways of dealing with  them

EITT---1/El
EA 4   Simulation

Fitness = Total WIP value
+ penalty (service level)

Figure 20 Simulation-optimization for pull control customization

3.5.3.3 Selection

We choose to implement the principles of elitism and the roulette wheel.  So,  part of the
new population is an exact copy of the best solutions in the previous generation (elitism),
whereas another part is selected randomly from the previous population (roulette wheel)
and is changed by evolutionary operators The roulette wheel selection is performed such
that there are as few identical individuals in the new population as possible (Michalewicz et
al., 1996). The idea is to maintain a high degree of variety in the population, from
generation to generation.

3.5.3.4 Evolutionary operators

The combination ofEA and simulation is rather time-consuming In order to save computer

time, uninteresting solutions should be avoided We use the two properties described in



35

section 34, whenever we need to choose a number of cards, that is, when we create the
initial population, and whenever we use the mutation operator (alteration of data
components) and recombination operator (partial repair of the offspring)

As a recombination operator we use a single-point crossover To improve computing
efficiency, the offspring may be partially 'repaired', avoiding uninteresting solutions. A
simple reparation consists in making sure that there is an upper-bound to the overall WIP
level  This can be done through Property 2, by searching for the minimal number of cards
in all sequences of non-overlapping loops that cover the whole production line, including
the "Conwip loop": Min k(o)), with m e fli N u {CLi,N}· If this number is equal to infinity,
then there is no upper-bound and we remedy this problem by selecting randomly a value for

kl.N in the set {l,..,Min k(o)) - 1}
For our customization we define the following mutation operator The value of a

mutated vector component k,u  must be chosen within the domain  { 1.    cm«,(k,u)} u {00},
where cmq*(k,J) is determined using the two properties of section 3.4

Cmq*(k,J) = Mill(Cmaxi, Cm, 2),

where cmari and cmax, are determined using Properties 1 and 2 respectively  For this purpose
we develop simple algorithms: for Property 1 we search for the smallest card number
such that 1 2 i and m sj; for Property 2 w e translate the recursive formula proposed in

Appendix 1 into a recursive program
The probability distribution for the selection of a vector component value within its

domain is chosen as follows: co is selected with a given probability denoted as p«, and any

integer value   of  { 1.     cmqg} with constant probability   (1 -p.)/Card({ 1. cmqr}), where

Card({ 1.     cmar})  is the number of integer values contained  in the set  {1..  c.w}.  The same
probability distribution is used to define the initial population (step 1 in the algorithm)

This mutation operator can randomly generate any solution (or simplified equivalent) of
the search space in the initial population Furthermore, any solution of the search space can

be reached from any other solution, using a finite sequence of mutations

Next, we illustrate the benefits of customization  As an example we use a production
system taken from the literature, for which the optimal configurations of several known pull

systems have been determined by that literature

3.6       Benefits of customization: an example

3.6.1   Bonvik et al. (1997)

The example in Bonvik et al. (1997) is a production line with four machines, inspired by
the Toyota Motor Company. this line makes components for an automobile assembly line.

Those authors perform extensive simulation experiments to study several control systems,
namely Kanban, minimal blocking, Base stock, Conwip, and Hybrid Kanban/Conwip.
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Their objective in terms of performance is to achieve a given service level with minimal
inventory level. In these terms they show that the best Hybrid configuration outperforms
the best Kanban configuration, and that this advantage grows as the demand rate increases.

Kanban and minimal blocking perform similarly; the same close relationship is observed

for Conwip and Base stock Conwip and Base stock perform between Kanban and Hybrid.
To see whether considering new types of pull systems  is of practical interest,  we use the

same production line as Bonvik et aL (1997). So we built a simulation model with the same
assumptions They assume that the delivery of raw materials is continuous and infinite, and
that movements of products and cards are instantaneous. Moreover, inventory value is
constant over the production line. The production system has the following other

characteristics. Processing times at each station follow a lognormal distribution with a mean
of   0  98 time units (minutes)    and a standard deviation    of   0.02 time units. Demand

interarrival time is a constant, namely one time unit. (The system is feeding an assembly

line that is modeled as a deterministic demand process consuming one part per minute.) If
no finished product is available, the assembly line stops and demand is lost. (Actually, in
Toyota plants, lost demands are prevented by working longer hours, until the production
plan for the day is met.) Thus, it is essential to have a service level close to 100%; as
Bonvik et aL (1997) do, we set the service target at 99 9% Machines have times between

failures and repair times  that are exponentially distributed with means  of  1000  and  3  time

units respectively.
In accordance with Bonvik et al.  (1997) we select  a run length of 240,000 time units;  we

discard results collected during the transient period estimated to last 9,600 time units  We

verify our simulation model by comparing its simulated output with results in Bonvik et al.

(1997).

3.6.2 EA's convergence

We want to customize the generic model for the example production line described in the
previous section  So we optimize the card numbers of the ten possible control loops. The
result should show which control loops should be implemented We use the evolutionary
algorithm presented in section 3.5; we search  in the integer  set  { 1,   .,  20}  for  each  card

number. In order to improve the search efficiency we introduce the best Conwip system (15                     I

cards, as found by Bonvik et al., 1997) in the initial population
An important issue is whether the evolutionary algorithm converges to a same solution

and at the same speed, independently of its parameter values We study this convergence by

optimizing the generic model for various mutation and recombination probabilities. The
results are shown in Table 5, which consists of three parts: (i) the mutation and
recombination probabilities 0=,andpreA, (ii) the resulting card  numbers  in  each  of the ten
control loops of the best solution found by the algorithm (a shaded cell corresponds to an
infinite number ofcards), and (iii) the WIP and service performance ofthis best solution.
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Table 5 Optimization results, given a 99 9% service target, for various EA parameter
values (shaded: k = 00)

Prec    p.t     k· ·     k22     k21     k33     k32     k31     k44     k43     k.2     k41     WIP    Senlice

0.9 0.1      5    

1111111111'Illl Ill'Illl    4    111111111     1                 15     14-21    99.-.O

0.8 0.2      6        1 Ill'll  13   15 14.22 99.9477

0.7 0.3

11111111111111    Il 11111111111111       15   14 29  99.914

I      lillI    4   13   15 13.41 999200.5 0.5                                                       13           15    13.41   99 920

111|11|1|111 IlllII 1111|111|11|111|       15  14.17  99.919

0.3 0.7

13        15  13.41  99.920

15 1411 99918
0.2 0.8

.-..-,                       m  muimill'111.,i,1              15  14.05 99.928

The nine solutions (nine lines in Table 5) have similar performance The solutions for
recombination probabilities equal  to  0.2,  05,  and  06  even have exactly  the  same
performance: low WIP level compared with the other solutions, with a service level above
the 99.9% target. The nine solutions also show similar structures: some control loops are

never implemented (see columns labeled ki 1, k22, k44.  and k42), others are implemented only
once (kli and kn), and the remaining ones have finite card numbers in most cases. These

remaining loops define a common structure for most solutions This common structure is
shown in Figure 21   Thus the algorithm does converge to a same structure of pull system

However, the card numbers in the implemented loops depend on the chosen mutation and
recombination probabilities So a single optimization does not yield a global optimum, but
it may provide a good idea ofthe best structure

-4---                     - -1
 - - - - - - - - -k i, - - - - - - - - -

1 1

1'_____6___-9 ,---A-kil----4

Figure 21 Common structure to most optimization results

The convergence speed can be studied by looking at the fitness of the best solution as a
function  of the generation number, see Figure  22 For reasons of readability  we show these

convergence plots for only four combinations of mutation and recombination probabilities
It is  interesting to point out that convergence to  a same solution (fitness - 1 3.4) requires

twelve generations in one case, and 21 in another case. In some other cases the optimization
stops prematurely with higher fitness than in the best cases  This is due to our choice of the
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stopping criterion: after a given number of generations without improvement of the best
solution, the algorithm stops. Increasing that number may improve the convergence in
terms of fitness,  but at a cost of many more computations

14,6

14,4   4: - - - - - - - - - - - - - - - - - - - - - -   -  - - ----././..././..
14.2 - rlifF.irp.-

-*-prec - 0.1, pmut = 0.9
           14-       11:"2=Z*=2=**p........ -0-prec = 0.2, pmut = 0.8

 
13,8

-0-prec - 0.6, pmut - 0.4

13.6
-0- prec = 0.7, pmut - 0.3

13,4 ·-------

13.2

0          5         10         8         20

# generations

Figure 22 Convergence speed for various mutation and recombination probabilities

Our nine optimizations provide information on the best customized structure for the
production line studied in Bonvik el al (1997) However, they only indicate possible values

for the best configuration of this customized structure  EAs are known to be efficient in
finding good regions in the search space, but they may be less suitable for the exploration
of these good regions Therefore the literature recommends combining EAs with a local

search technique, in a two-step optimization approach (Syrjakow and Szczerbicka, 1994)
To perform this local search, we use a technique called Response Surface Methodology

(RSM).

3.6.3 Fine-tuning through Response Surface Methodology

RSM is a heuristic sequential optimization technique based on regression (meta)modeling,

design of experiments (DOE), and steepest ascent; see Kleijnen (1998). The principle of
RSM is to build a set of regression (meta)models of the relationship among the simulation's

input and output variables. An RSM algorithm is given in the following:

Step 1. Select a starting area  in the search space, either randomly or using prior
knowledge about the system to be optimized

Step 2 Within the selected area, build a first-order regression (meta)model to
get an approximation  of the system's local input/output transformation

Ifthe metamodel is valid, then
Step 3 Use the regression model to estimate the gradient vector, showing

the  direction  of the steepest ascent  path

Step 4. Select a starting point within the area defined in Step 1  Move from
this point, along the steepest ascent path, into the direction that



39

improves the system's performance, until no further improvement is
obtained.

Then, select a new area  Go to Step 2
Else,

Step 5 Build a second-order regression model, within the selected area
Step 6 Use the model of Step 5 to find analytically the input combination(s)

that leads to an optimum

To apply RSM to our specific customization problem two main adaptations have to be
made First, we need to build metamodels for both the overall WIP level and the service
level Second, since we already have an idea ofthe location ofthe optimal solution from the
results presented  in the previous section, we skip the first phase of RSM   Thus, we focus  on
the second RSM phase (Steps 5 and 6 of the algorithm), namely, estimate second-order
polynomial approximations of the performance measures, and solve the resulting
optimization problem analytically

In section 3 6.2 (see Table 5), we identified four important simulation inputs (card
numbers): kii, k3/, k,3, and k4i. Our objective is to find the combination of these inputs that
yields the best performance, that is, lowest inventory, given the 99 9% service level
constraint Hence, we want to build the following second-order polynomial approximations

of overall WW ( WIP ) and Service level (S):

WIP  = ao +Ila,499+ B:Jk'.Al.b + e
i,j

S =  70 + 7QCY,uk':J +  %':Jk'.Jk,u) + e
1,J

where (i, j) takes value in the set {(2, 1), (3, 1), (4, 3), (4, 1)}, a,:1, A:1, Y'·J, and 1:J are the
regression parameters, and e is the additive random error The regression parameters are
estimated from the simulation input/output data: we simulate combinations of input values
selected through design of experiments (DOE)  We use a central composite design, which
is a (fractional) factorial design (+1 and -1 is standardized notation) augmented with a one-
factor-at-a-time design with two values per factor (-a, +a) (axial points giving star design),
and the central point (0) (see Appendix 2). Using Table 5, we select the (non-standardized)
input values for k2j, k31, k43, and k47 that are shown in Table 6 More details about regression

parameters estimation for the customization problem can be found in Gaury et al  (1998)
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Table 6. Input values for central composite design

-a     -1     0 +1 +a

k21 3 4567
k31         3          4          5          6          7
63 11 12 13 14 15
6, 13 14 15 16 17
Once the regression parameters are estimated, we can solve the constrained optimization

problem analytically through the technique ofthe Lagrangean multiplier (say) A

Min[ WIP ( k,u) + AS(k,:J) - 99.91]

So we set the five partial derivatives 8/86, 8/Bk31, 8/863, 8/8 41, and 2/81 to zero, which
gives five equations Solving this system of equations gives several real-valued solutions,
some of which are not acceptable (negative values for card numbers) Searching among the
closest integer-valued solutions yields the following result: (k21, k31, k43, k41) - (3, 6, 12, 00)

Next, we compare our customized system to the best result obtained so far for this specific

production line, namely, Bonvik's Kanban/Conwip Hybrid

3.6.4     Discussion of customizing

Bonvik et aL (1997) perform an exhaustive search for the best configuration for each of
their production control systems They simulate all configurations with card numbers less
than 5 for stages 1 to 3, less than 25 for the last stage, and less than 25 for the Conwip loop
They   conclude that Hybrid   is   the best system,   and   that   its best configuration   is   c =  1 5,
k1 = 2, ki = 3, kj = 5, and k# = 15 (actually, their article gives c = 13, but in a letter to us
they  confirm  that the correct value  is  15).  The 95% confidence interval  for  WIP  in  this

system is 13.93 + 0.03; for service it is 99.907 i 0.007
For the same production line as Bonvik et al. (1997) studied, we obtain significantly

different pull systems through our customization approach:

(i) New structure. Our procedure (EA, RSM fine-tuning) results in a type of pull system -
see Figure 23 - that does not belong to any predefined type of pull system: it does not
match the typology of pull systems presented in Chapter 2 Indeed a noticeable property
of this solution is that it does not have a Conwip loop Therefore, it is completely
different from Bonvik's Hybrid

(ii) Improved performance. The following performance measures are averaged  over  30

replications For comparing our solution to the best Hybrid found by Bonvik et al.

(1997), we use the paired t-test with 95% confidence (see Law and Kelton, 1991,
pp    587). Our system yields an overall    WIP  of 1 3.3 7 units against 1 3 9 3 units    for

Bonvik's best Hybrid The paired t-test shows that this is a significant difference Apart
from statistical significance, this difference represents a decrease by more than 0 5 units,
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which is an important gain considering that Hybrid already outperforms systems such as

Kanban, Conwip, and Base stock Given the service level constraint of 99 9%, we have
S = 99.88% for customized, against   S = 99 91% for Hybrid Hypothesis testing,

however, does not show a significant difference between the two systems, at a
confidence level of 95% Hence, our system yields a significantly lower WIP level with
the same service level.

(iio Lower complexity. Our customized pull system is also less complex as it has only three
parameters (three control loops), whereas Hybrid has five parameters for this specific example of
production line.

In summary, our solution is a type of pull system that has not been considered in the
literature before; it yields significantly better performance - with a lower complexity - than
the best system  so far, namely, Bonvik' s Hybrid Therefore, this illustration indicates  that

our customization approach can yield results of practical interest in terms of performance

and complexity

Best Hybrid in Bonvik et aL (1997)
151--------------------- -----

i __2_ ,            3                 5---I ---' 15_  

Our best customized solution
6--  --------     --

1 1

3                               12I----------' ,- -- bl- - -- --9

Figure 23 Customized generic model for the example in Bonvik et al  (1997)

3.7 Conclusion
We propose a novel approach to the design of pull control systems for single-product flow
production lines Instead of limiting these systems to traditional Kanban, Conwip, and Base

stock systems, we design customized systems. For this customization we use a generic
control model that connects each stage of a given production line with each preceding

stage Optimization of the generic model shows which potential control loops should
actually be implemented A single optimization is enough for selecting and configuring a

pull system among all possible instances of pull structures  This is major improvement
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compared with the selection technique that is usually proposed in the literature (one
optimization per type of pull system under consideration) Furthermore, we exploit
structural properties of the generic optimization model in order to limit the size of the
search space. Optimization combines an evolutionary algorithm for searching with discrete-
event simulation for performance evaluation ofthe generic model configurations

Our approach may result not only in the three traditional pull systems, but also in
combinations of these three systems Moreover, this approach extends the pull concept to
control systems that have never been investigated in the literature

We illustrate our approach with the example of a production line taken from the
literature  on pull systems (Bonvik  et  al,   1997) The outcome  of our customization
procedure is a pull system that has never been considered before, that shows significantly
better performance than the best pull system so far, and that has a lower complexity in
terms of number of parameters. Thus, our approach may be ofpractical interest

The objective of the next chapter is to gain more insight into customization Therefore
we shall investigate customization for a wide variety of production lines: we define a
sample of production lines that are compatible with models studied  in the literature,  and we
customize the pull system for each ofthese lines



Chapter 4
Customization for a Variety of Production
Lines

Abstract
To gain more insight into customization and its benejits, we apply our methodology to a
variety  of production lines.  We  review the pull literature  to determine  this variety.  Through
that review we identify ten factors - such as line  length, demand variability,  and machine
breakdowns - and classify these factors into three categories:  (i) process,  (ii) demand, and
(iii) performance factors.  To select  typical values for each factor, we further examine  the
literature. Then we use a Plackett-Burman experimental design to generate a sample of
twelve production line configurations. For each production line we apply the customization
methodology proposed in Chapter 3. The results provide many interesting conclusions.
First,   none   of  the  pull  structures  presented  in  our  typology   in  section   2.1   is   best  for   all

production lines.  Second,  the  resulting control systems are  quite  simple; Conwip,  which  is
the simplest pull system, yields a performance that is often close to our customized system.
Sometimes,  however,  customization  can  reduce  the  inventory  value  by  up  to  17%  compared

with Conwip, and still satisfy the service target. Third, the customized systems reveal three
important structural patterns for their control loops. Hence, an optimization model that
combines only these three patterns might be preferred to the complex generic optimization
model, as it reduces the computational time requirements.
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4.1        A sample of twelve production lines

In the previous chapter we presented a methodology for designing a customized pull
control system for a given production line To evaluate that methodology we now apply it
to a sample of production lines In order to select that sample, we analyze the characteristics
of production lines that have already been studied in the pullliterature (mainly on Kanban).
Our analysis yields ten factors, together with their typical values. These factors may be
classified as characterizing the (i) process, (ii) demand, and (iii) performance  Next, we
review the factor values investigated in the literature, and we choose two values or levels
per factor (Table 12 gives an overview of our ten factors and their levels, we shall return to

that table.)

4.1.1 Process factors

4.1.1.1 Line length

Chu and Shih (1992) point out that most of the Kanban models in the literature are
relatively small: the usual line length is four or five stages; the largest length is nine (an
outlier is 50, studied in Krajewski et al., 1987) Conwip models, however, are simpler so
they might easily be studied for larger systems Table 7 gives some references for line
length. For our sample we choose a low level offour, and a high level ofeight stages.

Table  7. Line length  in  the pull literature

Reference Control system Line length

Krajewski et al. (1987) Kanban                            50
Sarker and Fitzsimmons (1989) Kanban                             9
Spearman et al. (1990) Conwip                                             10

Meral and Erkip (1991) Kanban 3,4,5,6

Savsar and Al-Jawini (1995) Kanban 3,5,7

Bonvik et al. (1997) Kanban, Conwip, Hybrid,             4
Base stock

4.1.1.2 Line imbalance

A line is said to be non-balanced (bottlenecked) when machines along the line do not have
the same production rate. Sarker and Harris (1988) and Gupta and Gupta (1989) claim that
balanced pull systems outperform non-balanced ones The literature, however, does not
always agree: for instance, Villeda et al. (1988) show that some imbalance patterns can
improve output rates Various patterns are defined and analyzed (Hillier and Boling, 1966);
for example, bowl (the machines at the two ends of the line have the highest mean
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processing times), funnel (mean processing times are getting shorter from stage to stage),

and reversed funnel (mean processing times are getting longer from stage to stage). In
theory the imbalance factor should also consider processing time variances and machine
breakdown rates as possible causes of bottlenecks We, however, focus on the mean
processing times, because we will consider process variability and machine reliability as

separate factors (For assembly systems, Powell and Pyke (1998) analyze imbalance in both

processing time means and variances)
An interesting measure of imbalance is defined by Meral and Erkip (1991): the Degree

of Imbalance (Dl) of a line is
DI = max{TWCIN - min(PT,); max(PT,) - 71FCIN}NITWC
where PTi is the mean Processing Time at workstation i in an N-station line, and TwCiN

is the mean processing time at a workstation on the balanced N-station line; TIFC stands for
Total Working Capacity

For our sample we define two factors: DI and imbalance pattern Table 8 reviews some

of the values for DI in the Kanban literature. As DI levels we choose 0 (perfect balance)
and   0.5.   For the latter DI level we consider two imbalance patterns: funnel and reversed

funnel (we see the bowl pattern as a combination of funnel and reversed funnel, so we do

not study bowl).

Table 8 Degree of imbalance in the Kanban literature

Reference                                    DI
Villeda et al. (1988) 0 0 to 1.4 (step 0 2)

O.Ot00.7(stepO.1)
Meral and Erkip (1991) 0 0,01,02,0 45
Yavuz and Satir (1995) 0.0,0.1,0.3,0.5

4.1.1.3  Processing  time  variability

It is well known that performance is sensitive to processing time variability  As a measure

of variability we use the Coefficient of Variation (CV), which is the standard deviation
divided by the mean Table 9 reviews CV values used in the study of Kanban systems,  most

values are between 00 and  1  0. For our sample, we use a low level of 0 1  and a high level

of O.5.
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Table 9. Coefficient ofVariation of processing times in the Kanban literature

Reference Coefficients of variation, CV
Sarker and Fitzsimmons (1989) 0.0,01,0.2,0.3,0.4,06,0.8,1.0
Meral and Erkip (1991) 1.0,15,2.0
Swinehart and Blackstone (1991) 0.2,05,1.0
Savsar and Al-Jawini (1995) 0.2,06,12,1.8
Yavuz and Satir (1995) 0,01,05,09

4.1.1.4 Machine reliability

To model machine breakdowns we need two random variables: Time Between Failures

(TBF) and Time To Repair (TTR). Many different distributions have been used in the
literature, especially exponential (most popular), uniform, and normal. Table 10 reviews
TBF and TTR distributions in the Kanban literature We define two levels for machine

reliability: either all machines are considered as perfectly reliable, or TBF and TTR are
exponentially distributed

Table 10 Distributions for machine breakdowns in the Kanban literature

Reference TBF Distribution TTR Distribution

Krajewski et al (1987) Normal Normal
So and Pinault (1988) Exponential Exponential
Sarker and Fitzsimmons (1989) Normal Exponential
Wang and Wang (1990) Exponential Exponential
Yavuz and Satir (1995) Uniform Uniform
Bonvik et aL (1997) Exponential Exponential

4.1.2 Demand factors

4.1.2.1  Demand rate

In a production system the demand rate may change frequently  So it is a key issue to know
whether the choice of a control system depends on the demand rate:  once a control system
is implemented, it might not be changed easily Demand rate has to be defined relatively to

line capacity   Thus, we take as one of our factors the ratio of demand rate and line capacity.
We select these ratios equal to 0 8 and 0 9 respectively

4.1.2.2 Demand variability

For demand variability we use the same principle as for processing time variability: we take
its CV Table  11  gives a sample of values in studies on pull control systems We choose the
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levels 0.0 and 0.5 (0 0 may correspond to dependent demand; for example, in Bonvik et al
(1997) the line feeds an assembly system that processes parts at a constant rate)

Table 11 Demand variability in the Kanban literature

Reference Demand CV

Berkley (1996) 0.1,0.045
Yavuz and Satir (1995) 0052,0075,0115,0133
Savsar and At-Jawini (1995) 0,0.1,0.316,0.447,0.707,1

4.1.2.3  Customer attitude

We define customer attitude as willingness to wait for finished products We consider two
extreme cases: lost sales versus backorders. In the first case, customers do not accept any
waiting, and do not order if they cannot be satisfied from stock  In the second case, the
company backlogs orders that cannot be filled from stock Most publications   on    pull

production consider backorders only. Bonvik et al. (1997), however, study lost sales.

4.1.3 Performance factors

In this section we further discuss the performance criteria described in section 2.2.2: we see
them as factors that may influence the outcome of our customization  Thus, we define
several levels for (1) the service level target, and (2) the inventory value

4.1.3.1  Service  level  target

The service level (fill rate) is the proportion of demand immediately supplied from stock
Obviously, the higher the level of finished good products, the higher the service level

Thus, the choice of a target value for this level affects overall WIP. This target should be
set by managers; it varies  with  the  type of production system Targets close  to  100%  may

be used for systems with lost sales, whereas lower targets may correspond with systems

with backorders So, it is necessary to consider service as a factor (not only as a
performance measure). Setting a target for the service level has not often been done in the

literature, yet, Bonvik et aL (1997) do use a target, namely 99.9%. We will also use service
levels close to 100%: a low level of 95% and a high level of 99%

4.1.3.2  Inventory  value  and added  value

The ideal of pull production control is zero inventories.  Thus, the inventory level is a major
performance indicator In some cases, however, managers may need to account for the
value of inventories. Indeed, whereas keeping a high finished good inventory may be good
for the service level, the added value may make this policy prohibitively expensive Goldrat
and Fox (1986) emphasize that inventory is money invested, minimizing this investment
may improve competitiveness  We use the total value of inventories along the line as a
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performance measure We assume that each stage adds the same value We define the total-
value factor as the ratio of the finished good value and the raw material value. Our two
levels are  1.0 (value not of interest to managers; total inventory value equals total inventory

level) and 2.0. We expect these two cases to yield different inventory allocations along the

production line, and different customized pull systems.

4.1.4    Summary of factors and levels

Table 12 gives an overview  of our ten factors, now labeled  from A through  J, and their
levels Given these ten factors and their two levels, we can easily design an experiment

Table 12. Design factors and levels

Factor Levels Letter

Line length                                  4                        8                    A
Line imbalance                             0                       0 5                   B
Imbalance pattern Funnel Reversed funnel          C

Processing time CV 01 0 5                        D

Machine reliability Perfect Breakdowns               E
Demand CV                                0                       0 5                   F
Demand rate/capacity 0.9 0 8                        G

Service level target (%)                     99                           95                      H
Inventory value ratio                          1                             2                        I
Customers' attitude Lost sales Backorders                J

Table 1 3. Plackett-Burman design for production lines configurations

Legend: + and - denote the two values per factor
Factors

Line#     A      B      C      D      E      F      G      H      I       J
1 + + - + + + - - -+
2+-+++---+-

3 - + + + - l i T .       T

4+++---+- + +
5++---+-++-

6 + - - - + - ++-+
7 - - - + - + + -           +          +

8 - - + - ++-+++
9- + - +          + - + + + -
10     + - +          + - +++--
11     -   +   + - + + + - - -
12     -    -    -    -    -    -    -    -    -    -
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through the statistical theory on Design Of Experiment (DOE), see Kleijnen  (1998)  for an

introduction to DOE in simulation DOE combines the various factor levels, which define a
(systematic, non-random) sample of line configurations To minimize the number of
configurations that must be simulated and optimized, we use the Plackett-Burman design

for ten factors combined in twelve configurations (see Appendix 2). see Table   1 3.   This

table  must be  read as follows:  line configuration  1 has factor  A (line length;  see  Table  12)

at  its + level  (the  line has 4  stages, see Table 12 again),  B (line imbalance)  is + (value  0),

, I (inventory ratio) is - (value 2), and J (customer attitude) is + (lost sales)

4.2       Results of customizing the generic pull system

Because it would be difficult to use analytical techniques to study the line configurations in

Table   1 3, we choose simulation  to  evaluate the performance of these configurations    For

this simulation we use the SIMAN simulation language (Pegden et al , 1991) We estimate

the performance measures through a single long run per pull system configuration; each run

has 240,000 time units, after elimination of a start-up period of 9,600 time units (these
figures  are  the  same  as in Bonvik  et  al ,  1997)   The  next  step  is  to  find the optimal

configuration  of the generic pull control system for each  line
We build twelve generic models that correspond with the twelve production lines in

Table  13   Each of these models must be optimized These models have N(N +  1)/2  control
loops, in Table 12, N is 4 or 8 (factor A), so there are 10 or 36 loops Per loop we try to
optimize the number of cards, k,:1, for these numbers we consider 21 integer values
including infinity  So the search space consists of 2110 or 2136 possible solutions. We
further simplify our customized control systems as follows: we measure the WIP level

within each segment ofthe line controlled through a loop, if the maximal WIP level for that
segment remains below the corresponding number of cards, then this control loop does not

need to be implemented
As a yardstick for the results of our methodology we select Conwip, because Conwip is

the simplest policy and it has been proven to be very efficient Since this pull system has

only one parameter, we find its optimal configuration (lowest number of cards that still

guarantees a service above target) very easily by running the simulation models for
increasing numbers of Conwip cards, starting from a low number: when the service level
performance exceeds the target for the first time in our search, we have the optimal number

of Conwip cards
A detailed description of the results of our methodology is given by Gaury et al. (1998),

here we summarize these results, as follows We expect that the 'best' customized control
systems may be (i) one of the traditional pull systems (Kanban, Conwip, Base stock), (ii) a
segmented,  (iii) a joint,  or (iv)  a new type of control system Indeed, the twelve best control

systems - for the line configurations in Table  1 3 -d o turn out to belong to these four types
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We note that since we use a heuristic optimization technique, we cannot be sure of having

found optimal solutions.
(i) For line configuration #1 the result (see Figure 24) is a traditional Kanban system;

see section 211.1. The card (optimal) numbers are one, for each stage. So this is a highly
synchronized system: as soon as a machine stops, the upstream stages are not authorized to
produce anymore and the downstream stages starve. An advantage is extremely low
inventory. Such a system, however, is highly sensitive to variations (demand variability,

process variability, breakdowns, etc). In fact, it is well known that a single Kanban card per
control loop suffices  if the production environment is ideal. Indeed,  we  saw in section 2.2.3

that Japanese managers use the following empirical formula to determine the number of
Kanban:

yi 2 DiLi( 1 + ai)/a,

where y, is the number of Kanbans at stage i. D, is the average demand per time unit at

stage j, L, is the average production lead-time at i, a, is a variable for safety stock at i, and a
is the container capacity (a single Kanban is attached to each container) If demand is met

with probability one, then D,L, = 1. If there is no variation, then safety stocks are not

needed,  so ai  = 0 Moreover, if transport and switchover costs are unimportant, then there  is

no need for containers so a=l. Thus, in an ideal production environment, the minimum

number of Kanbans at each stage is one: y, 2 1. In line configuration #1, demand is indeed

constant, processing time variability is low, and customer pressure is low compared to line

capacity (service level  of 95%  and no backlog); see Table  12  and  line  1 of Table  13   Thus,

it seems reasonable to have a single Kanban per loop

1                   1                   1                   1---- ---- ---- - - -4     DEMANDS
Time between:

1.25 (constant)
Workload: 80%
Service target:

STAGE 1 STAGE 2 STAGE 3 STAGE 4 95%

Prommg times: Proc:cs'Ag timcs: Pmcissing titles: Processing tunes: Lost sales

Logn(1.0,0.1) Logn(1.0,0.1) Logn(1.0,0.1) Logn(1.0,0.1)
Break(towns: Brcakdowns: Breakdowns Breakdowns:

TBF exp(1000) TBF exp(1000) 1BF exp(1000) -1BF exp(1000)
TIR cxpo) TIR expo) TIR expO) TIR exp(3)

Valle of invcntory Value of inventory Value of inventory Vakle of inventory
per unit: 1.0 per unit: 1.333 per unit: 1.666 pcr unit: 2.0

Figure 24 Customized system for line configuration #1

(ii) Though none of the twelve lines yields a segmented system (see section 212), the
customized system obtained for configuration #2 is almost a segmented Conwip system,

see Figure 25
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Figure 25. Customized system for line configuration #2

(iii) Some line configurations give joint control systems, which combine several policies
on the same portion of the line. In configurations with eight stages, these systems can be
rather complex; they yield little benefit compared with the simpler Conwip system.

(iv) For some other configurations new control types result that connect each  stage of the
line  to the first stage A typical example is configuration #5; see Figure  26. This system

permits release of raw materials (stage  1) only if each stage of the line allows production -
one loop (from stage 3) does not need to be implemented. Once a part is released, it does
not require any additional authorization to progress Another example of a new control type
is found for line configuration #10; see Figure 27  For the first two stages this configuration
uses   the new policy derived   for line configuration  #5;   for   the last three stages   it   uses

Integral Control.

-------- --12- -,I 4
Ir-3---------1 1

DEMANDS
Time between:

1.25 (constant)
Workload: 80%
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STAGEl STAGE 2 STAGE 3 STAGE 4 99%
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Lign(1.0,0.5) Logn(10,0.5) Logn(1.0,0.5) Logn(1.0,0.5)
Breakdowns: Breakdowns: Breakdowns: Breakdowns

TBF exp(1000) TBF exp(1000) TBF exp(1000) TBF exp(1000)
TTR exp(3) TrR exp(3) TrR exp(3) TrR exp(3)

Vakie of inventory Value of inventory Value of inventory Value of inventory
per unit: 1.0 per unit: I.0 per unt: I.O per unit: 1.0

Figure 26. Customized system for line configuration #5
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-- -JI--
- -1

3l      3  11---.
DEMANDS
Time between:

1666 (constant)
Workload: 90%
Service target:

99%STAGE 1 STAGE 2 STAGE 3 STAGE 4

Processmg times: Proce„Ag times: Processing times: Procm# times: Backorders

Logn(1.5.0.15) Logn(1.17,0.11D Logn(0.83,0.083) Logn(0.5,0.05)
Breakdowns Brcakdowns: Breakdowns: Brcakdowns:

TBF exp(1000) TBF cxp(1000) 1BF exp(1000) TBF exp(1000)
TIR cxpo) TIR expO) 1-IR cxp(3) 1-IR exp(3)

Value of inventory Value of inventory Vahle of inventory Value of inventory
per unit: 1.0 per unit: 1.333 pcrunit: 1.666 per unit: 2.0

Figure 27 Customized system for line configuration #10

In summary, optimization ofthe generic model leads to simpler control systems than we
expected: the generic model  has N(N + 1)/2 loops, whereas the optimized control systems

rarely  have more than N+1  loops!  For many  configurations,  however,  we prefer Conwip
because the customized system does not reduce the inventory value substantially. Most of

these configurations have eight stages. More generally, we observe that the relative benefit

of the generic system often depends on how close to target Conwip's service level is

Indeed, the customized systems realize some of the largest WIP reductions when Conwip

Table 14 Performance of Generic versus Conwip for each ofthe twelve configurations in
Table  13

Inventory value Service level

Line Generic Conwip Loss

  Generic Conwip    Gain (%)
(above target) (above target)      (%)

1 5.99 6.38 6.11 98 91 (3 91) 100 00 (5 00) 1.09

2 410 4 73 13.32 9631 (131) 99.21 (4 12) 2 92

3 17.42 17 96 3.01 9901 (001) 99 17 (0 17) 0 16

4 936 9.95 5.93 95 13 (013) 95 49 (0 49) 0.38

5 11.34 11.70 3.08 99.05 (0.05) 99.31 (0.31) 0.26

6 15.18 1635 7.16 99.00 (0.00) 99.17 (0.17) 0.17

7 5.30 6.00 11.67 97.48 (2.48) 99.07 (4.07) 1.60

8       7 91 7.99 100 99 03 (0 03) 99 12 (0 12) 0.09

9 14.90 1514 1.59 99.04 (0.04) 99.12 (0.12) 0.08

10 8.52 10.33 17.52 99.00 (0.00) 99.36 (0.36) 0.36

11 4121 4236 271 9511(011) 96 00 (1 00) 0 93

12      16 68 17.28 3 47 95.06 (0 06) 9601 (101) 0 99
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overshoots the service target: see lines #2 and #7 in Table 14 An exception is configuration
#10:  inventory  value  in our customized solution  is  17 52% lower, compared  to  the  best

Conwip system, for a service level decrease of 0.36% only In general, customization may
yield significant WIP reductions along the line, and still satisfy the service target

4.3 General results: simplification through meshing
The results of customizing the generic pull system for a variety of production lines provide
information that can be exploited for generalization  In this section we derive commonalties
in the structure of the customized pull systems Three main structural patterns seem to
emerge, they correspond to different ways of reducing inventory value.

(i) First, the release  of raw materials (at stage   1)   can be limited   so  that the overall
inventory level is reduced  In most of the customized pull systems, the release of raw
materials requires authorizations from several stages, not just from the last stage as in
Conwip or Base stock  Thus,  if one machine in the line fails, the release of raw materials
may be blocked much earlier than in Conwip system: the control system reacts faster

(ii) Second, when value is added along the line, the total inventory value can be reduced
through a more efficient allocation of WIP along the line Indeed, when inventory value is

considered, the fact that Conwip pushes parts to the last stage is a disadvantage in terms of

costs, our customized systems result in lower costs To achieve this cost reduction our
systems often have several control loops that link the last stage to upstream stages. The

extreme  case  of this structural pattern is Integral control  (see Base stock in section  2.1.1.3);
our customized systems do not link the last stage to all preceding stages but only to a few of
them  Configuration #10 (see again Figure 27) illustrates the gains achieved through this
second structural pattern Table 15 clearly shows  that  the WIP allocation along  the  line

differs completely between these two solutions: Conwip concentrates WIP at the end of
line, whereas our customized system allocates more WIP at the first stage and in the middle
ofthe line The result is a reduction oftotal inventory value by  17 5% in our solution

Table 15 Performance    of the customized    and best Conwip systems    for   line

configuration #10

Service WIP at stage
Value Target is 99% 1 234

Best Generic 8.52 99.00% 1.94 0.99 1.96 0.99

Conwip 6 10.33 99.36% 0.91 0.71 0.50 3.82

(iii) The third structural pattern is less obvious than the two patterns: it appears only

when one of the machines is a bottleneck In those cases, control loops link the input
inventory of the bottleneck to the previous stages so that inventory in front of the
bottleneck does not grow unnecessarily Goldratt has emphasized the importance of
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focusing on bottleneck machines in his famous book 77ie goal (Goldratt and Fox, 1986); he
further explained his theory in the Theory Of Constraints (TOC). In our investigation,

however, bottleneck machines do not seem to play such a predominant role in the
positioning of control loops. The reasons may be that only three line configurations in our
sample of twelve  have a bottleneck machine within the  line  (not  at one extremity)  and  that

the structural patterns presented in (i) and (ii) control the whole line, including the
bottleneck resources

Many customized systems combine these three structural patterns A typical example is

configuration #7, shown in Figure 28 In this example, pattern (i) loops are displayed in

solid lines, pattern (ii) in long-dashed lines, and pattern (iii) in round-dotted lines

Line configuration #7 is not an exception: all four-stage lines and many eight-stage lines

are a superimposition of the three structural patterns only; the few remaining eight-stage

lines add some control loops that do not match the three patterns. This is an important

conclusion that leads us to focus on these three structural patterns So instead of using the

generic optimization model described in section 3.3 2, we now limit our investigation to a
simpler optimization model that combines the three structural patterns only. We call this

concept meshing; the terminology is inspired by the field of structural engineering, which

studies the resistance of mechanical structures ranging from bolts to bridges and buildings.

Such studies are based on computer models that decompose structures into small elements;
the technique is called finite elements decomposition  A key principle is to define elements

of smaller size, that is, make a fine meshing in those places where constraints are expected

to be important. We use the same approach for our customized pull systems: we put
potential control loops at the places where constraints are expected to be important The
gain in terms of reduced complexity is important: our original customization model had
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Processlng ttmes: Prolessng lima Processing tdnes Process.g Urnes
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Value of Inventory Value of Inventory Value of Inventory Value o f tr,ventory
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per unit. 1.0 per uni[  10 per unit  10
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5                                                                                1 666 (constant)
4                                                  : Workload 90%
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Figure 28 Customized system for line configuration #7 combination of three control

patterns
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N(N + 1)/2  potential  control  loops,  whereas  our  new  meshed  model  has  only  2N -1+P
control loops, with O E P<N-1 depending  on the position  of the bottleneck  in  the
production line (order AR versus N). The gain becomes particularly important as the
production line length N grows Table 16 compares the complexity of our original
customization model with the complexity of the meshed model when the bottleneck is
positioned at stage 1   or  N  (P =0, minimal complexity),  and at stage N-1  OP =N-2,
maximal complexity)

Table 16 Complexity of customization versus meshed optimization model

# stages # possible loops *
# possible structures

Custom Meshed Custom Meshed'
4               10 7/9 1024 128 / 512

10              55              19 / 27 3.6 x 1016 5.2 x 105 / 1.3 x 108
20 210 39/57 1.6  x 1063 5.5 x 1011 / 1.4 x 1017

min./max. complexity

4.4       Effects of production line characteristics

Another important result of our sample customization  is that WIP varies drastically with the
characteristics ofthe production lines. For instance, the number of cards (determining WIP)
in  the best Conwip system vary between  4  and   12 for four-stage lines, and between  6  and

27 for eight-stage lines Hence overall WIP in an eight-stage line can increase by a factor
up to 45, depending on the characteristics of the line! This result agrees with a general

conclusion of Krajewski  et W. (1987): improving the production environment  is a potential
source of bigger gains than improving the control system only Indeed, the biggest gain
obtained by changing the control system from Conwip to a customized system  is a  1 7 5%

reduction of total inventory value. However, many factors in the production environment
are not within control  of a manager, whereas the production control system  is

Our sample enables us to study the effects of the ten factors defined in section 4 1   For

this purpose we use analysis  of variance (ANOVA), which consists of fitting a regression
model to the input/output data ofthe simulation. As input we use the standardized values in
Table 12 where the symbol - now means -1 and + means +1, this standardization allows a
fair comparison of the factor effects independently of their measurement scales (see

Kleijnen, 1998 for details). As output we select the optimized number of Conwip cards.

This ANOVA shows that a first-order approximation (main effects only) is not very
adequate: the adjusted coefficient of determination (Adj.Rb is only 0.517 (an exact fit
would yield a value of 10): see Table 17) Hence the following discussion of these

estimated main effects is only approximate (estimating higher-order effects would require
many more configurations to be simulated and optimized)  Five of the ten factors seem to
have an important effect: line length (factor A), line imbalance (B), processing time's CV
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(D),  ratio of demand rate and capacity (G), and customer attitude (J). These results suggest
where to focus the efforts to improve the performance of production lines controlled by a
customized pull system. Surprisingly, the demand CV (factor F) and the service target (H)
seem to be unimportant. These conclusions, however, also depend on the ranges over which
we change the factors in our experiment. We emphasize that our goal is not to derive
general recommendations based on extensive simulation experiments; instead, we wish to
show that environmental factors may have a major effect on performance. A difficulty is
that a manager rarely has direct control over these environmental factors Thus these effects

may be difficult to avoid or limit.

Table 17. Main effects often factors on the optimal number ofConwip cards

R2 = 0.956, Adj.R  = 0.517

Factor A   BCDEFGHI   J
Regression -2.58   3.08   092   -2.42   108   008   2.08   -008   -0.75   -225
Coefficient

4.5 Conclusion
To gain more insight into customization and its benefits, we applied our methodology to a
variety of production lines, namely twelve configurations These combinations were
selected through an experimental design (Plackett-Burman) with ten factors, such as line
length, demand variability, and machine breakdowns. The results provide the following

important conclusions
There is not a single dominant type of pull control system. Indeed, depending on the

characteristics of the production line,  the best system may be traditional, segmented, joint,
or novel. This conclusion further validates the need for customization.

Despite the complexity of our generic optimization model, the resulting control systems

are quite simple Conwip, however, remains the simplest system; its performance is often

close to our customized system. Therefore we prefer Conwip for most lines with eight
stages Nevertheless, customization can reduce the inventory value by up to 17% compared

with Conwip, while our system still satisfies the service target
Our  results also reveal three important structural patterns for control loops One pattern

links each stage to the first stage; another pattern links the last stage to each preceding stage
(Integral Control); the last pattern links the input inventory of the bottleneck machine to
each preceding stage These patterns characterize most of our customized solutions. The
first pattern and its combination with the other patterns have not been mentioned in the
literature Since our generic optimization model is rather complex - especially for long
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production lines - we might prefer an optimization model that combines the three patterns

only
We also studied the performance effects of the production line characteristics. Our

conclusion is that bigger gains may be achieved by modifying the production environment
instead of changing the production control system only Krajewski et al (1987) refer to this
approach as 'shaping the environment' A manager, however, may not have control over all
ten factors studied in this chapter Moreover a production environment is rarely stable over
time So 'shaping the environment'  may not be the best solution The objective of the next
three chapters is to review and develop ways of dealing with the effects of the production
environment on performance. We shall see that a famous technique in quality control
developed by Taguchi, consists in designing products or systems that are less sensitive to
the effects ofthe environment, instead ofcontinuously 'shaping the environment'



Chapter 5
Uncertain and Dynamic Environments

Abstract
In this chapter, we identify three sources of uncertainty in simulation: (i) stochastic
uncertainty, which is due to the use of (pseudo)random numbers in our discrete-event
simulation, (ii) subjective uncertainty, which results from our need to estimate the
probability distributions based on either sampled data or expert opinions, and (iii) dynamic
uncertainty, which results from variations in the real production environment.  Through
simple examples we  illustrate  the possible  ellects of these  three  sources  of uncertainty.  We
conclude that simulation studies for system design should assess the ejfects Of these
uncertainties, and try to integrate them in the design process. In the literature, various
techniques have  been developed to tackle different aspects of uncertainty assessment and
integration.  These techniques, however, have been used in different fields and have never
been integrated. We present two main techniques, namely, uncertainty/risk analysis and
robust design (Taguchi), and we show how they can be combined to support system design
through simulation.
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5.1           Introduction

A simulation model can be seen as a black box that processes inputs to produce outputs.
There are two categories of inputs: the environmental parameters, which are used to model
the production environment, and the decision variables, which characterize the factors that
are controllable by the designer or manager of the production system. Simulation outputs
can be any kind of performance measures. The purpose of design through simulation is to
decide which values to give to the decision variables so that either an optimal or a
satisfactory level of estimated performance is achieved  The main difficulty of system
design through simulation is that the outputs are not only functions of the decision
variables: they also depend on the simulation model itself Indeed, such a model is one
specific representation of an existing or future system, the assumptions used for building
this model are critical. Many uncertainties arise when building and using a simulation

model, because it is difficult to model reality though mathematics and statistics, and that
reality is dynamic. In this dissertation, we shall focus on three sources of uncertainty that
are due to the input data of simulation only. Uncertainty in the model structure is rarely

considered in the literature (Helton, 1997).
In such circumstances, decision making is not simple We illustrate this through the

following metaphor of continuous improvement found in the literature (also see
section  1.2). The company  is a boat floating on a sea of inventory, and rocks are problems
that may arise when the inventory is too low  When this 'sea of inventory' is placid (no
uncertainties), it is easy to decide what should be the inventory level. When, however, this
sea is turbulent, the decision is much more difficult and involves a higher risk: uncertain
parameters such as the amplitude and the frequency  o f the waves  have to be accounted  for;
compare Figure  1 to Figure 29.   In this chapter, we identify various sources of uncertainty
involved in system design through simulation, and we investigate ways of incorporating
them in the design process.

boat = company
sea                           *
=

inventory *

rocks          '  '   4.  ,  .                „
= .i

problems -,

Figure 29 Managing inventory levels under uncertainty
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5.2 System design using stochastic simulation

5.2.1 Stochastic uncertainty

As mentioned in section 2 2.1, we define the production environment as the set of factors
that are not completely within control of the designer or manager of the production system
This environment includes processing times, demand rate, time between failures, etc These

factors change over time in a fashion that may be interpreted as randomness by an analyst
Yet, there may be an explanation for such changes; for instance, it is possible to explain

why a component failed by looking at its microscopic structure. However, if the objective
of the simulation analysis does not require such a level of precision, then the microscopic
phenomena are modeled using probabilistic theories Ziegler (1976, pp 42) discusses

thoroughly this modeling issue In simulation, the environmental factors (say) Xi are
modeled through random variables: a probability distribution fi is associated with one or
several Xi's and values are randomly selected from this (multi-variate)distribution. Thus,
the output of a simulation  is also a random variable. This randomness is inherent to the  real
system, and it cannot be reduced It is often called stochastic uncertainty, but other
designations can be found in the literature, such as aleatory uncertainty, irreducible
uncertainty, and variability (Helton, 1997) This type of uncertainty differentiates a
stochastic model from a deterministic one.

5.2.2 Subjective uncertainty

A difficult stage of simulation modeling is the definition of the probability distributions  f;
Several decisions have to be made concerning the shape or type of the distribution (such as
exponential, normal, lognormal) and its parameters ai,    , a  (which fix the mean, median,

variance). Many simulation studies assume that the production environment is known and
modeled with certainty. This would mean that the input distributions are known with
certainty Yet, these parameters can only be estimated through real data (also called

objective ckita) from an existing system or forecasts and expert knowledge (subjective data)
for a system in its design phase. Because of the limited availability of data, analysts cannot
know these parameters with certainty This type of uncertainty is called subjective
uncertainty, other designations in the literature include epistemic, analyst, and reducible

uncertainty (Helton, 1997)

Both stochastic and subjective uncertainties are involved in any simulation-based

analysis Most simulation studies do account for stochastic uncertainty (using pseudo-
random numbers); they rarely consider subjective uncertainty Even books that are
dedicated to simulation teaching do not mention this issue. For instance, Law and Ketton

(1991) focus on model validation only: "if output is sensitive to some aspect, then that

aspect must be modeled carefully" A recent paper that considers both types of uncertainty
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is Helton (1997), which refers to Hacking (1975) as one of the first paper to make the
distinction between the two types of uncertainties

5.2.3 Dynamic uncertainty
Another characteristic of many studies is that the production environment is considered to
be stable over time; this is a static formulation Yet, a particular production environment
does vary over time. For instance, the demand for a product evolves over time because of
the product life cycle or seasonal trends. Also the production system may be improved: a
bottleneck resource may be removed by adding capacity   Thus the characteristics  aij  of the
probability distributions f; should be functions of time:  aij = g(t).  It is often difficult to
distinguish between randomness as defined in section  5 2 1  and a change  in the
characteristics of the production environment. Indeed, if a machine starts failing more
often,  is it just an effect of randomness (bad luck) or is it because the machine is getting  old

(a trend)? Furthermore, dynamic behaviors cause uncertainties, which we call dynamic
uncertainties and can be interpreted partly as subjective uncertainties. Indeed, dynamics
imply that the future environment is not known with certainty: the analyst can only forecast
the evolution of the environment over time (in the field of quality control, Statistical
Process Control is such a technique that tries to identify trends in product quality). Thus,
we shall  see that there  is a strong relationship among the various sources of uncertainty; the

approaches that deal with subjective uncertainty can also be used for dynamic uncertainty
However, we will continue to distinguish between subjective and dynamic uncertainties
because the literature treated these two problems independently

When the objective of a simulation study  is to design a system,  it is very risky to assume
that the environment is known and modeled with certainty (we shall illustrate the effect of
uncertainties on the simulation outputs) Thus we claim that in practice it is important to
consider the uncertainty in our design issues for pull systems In this dissertation we
consider all three types of uncertainty  For the subjective uncertainty, however, we assume
the type of distribution to be known In Figure 30 we recapitulate the various sources of

Sample data
- Fit input probability

distributions                  Forecasts    -9 X, - f,(ai,..., (4..., af)+
expert knowledge Run simulation

/\-
Decision-i./-1. => select randomly -, Outputs

xi from fi using
random stream (i)

Subjective uncertainty: Dynamic uncertainty: Stochastic uncertainty:
value of aj? aj= gl(t)? value of Xi?

Figure 30 Three sources ofuncertainty in design through simulation
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uncertainty involved in any design study through simulation Next, we look at the effects of
uncertainties and dynamic environments.

5.2.4    Effects of uncertainties

In this section,  we  show the importance  of the uncertainties discussed above. The outputs  of
a simulation (performance measures) can be defined as a function of the decision variables

(card numbers, for instance), the shape and characteristics  aj  of the probability distributions

fi,  and the  set of random numbers e.  For a given  set of inputs  of the simulation model,  we
want to study the effect ofuncertainties on the outputs Important issues are:

- What ifthe estimates for the aj's are wrong?
- What ifthe production environment is evolving over time?

Let us consider a simple example, namely a bank office with a single office counter
Customers arrive at time intervals that seem random  from the viewpoint of the analyst;  they

are served on a first arrived / first served basis. The service time also seems random: some
customer' s demands require a short service    time only, whereas other more complex
demands may require a much longer time The analysts are interested in estimating the
daily average number of customers waiting for service, given a design option (such as a
single office counter). Thus, they build a model: using sample data they estimate that the
time between customer arrivals X, follows an exponential probability distribution with

mean  Pl, O = 5 minutes and the service  time  at the office counter  X2  follows an exponential

probability distribution    too,    but   with    mean    m. 0=4 minutes We denote   this    as

Xi - floti, O) = Exp(5)  and  X2 - f2O12,0) = Exp(4).  For  this  simple model, queuing theory
provides a formula for the determination of the steady-state mean number of customers

waiting for service (say) Q (see Gross and Harris, 1998, p.63)

Q = pv/(1 - p),   .                                                        (6)

with traffic intensity p = th Bl.
When  building the model the analysts estimate the mean values vi, o  and  m. o  of Xi  and

X2 from sample data Now, as we saw in the previous section, the 'actual' means can be

different  from the analysts' expectation Figure 31 shows the effect  of vi  and  m  on  Q,  we
vary the values of lit  and m within the respective intervals  [pi, 0-2.5%; Fi, 0+ 2.5%]  and

[m. 0 - 2.5%; m. 0 + 2.5%],   and we compute the corresponding Q values   from   (6)    The
resulting Q values range from 2 4 to 4.5 units, for vi, o and m. o the value (say) qo of Q is

32. This means that varying Fl and m by 2.50% only around their expected values yields

values  of Q  in the interval  [qo - 25%, qo + 40.6%] 1  Thus,  in this example, small subjective

uncertainties yield very large uncertainties for the output
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This queuing analysis does not involve stochastic uncertainty: no random number are
used Considering stochastic uncertainty makes the analysis more difficult Indeed, for
fixed values of the inputs Fi, and m, the output of the simulation is different depending on

which set of random numbers o)  is used. Figure 32 shows the evolution over time of the
number of customers waiting for service during a day; when we use two particular,

different random streams 0)1 and 02. Notice that the behavior of the system changes

dramatically. This, however, is also true in the real system: some days show a high activity,
whereas others are not busy at all. Thus, in real life as well as in simulated life, our analysis
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Figure 32. Time series ofthe number of customers in queue for two different sets of random

numbers, 0 1 (upper part) and O)2 (lower part)
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should not rely on a few observations. In Figure 33 we plot the simulated average daily

number of customer waiting for service as a function of vi, and m for two random streams.

The curves have similar orientations, but their characteristics are completely different.

0)1 0) 2

_----                                        8
8                          -»-

---N»      77                                                                                           --

6                          ---"»»«--. ""      6

45 
--N          --                     *

».»     5 6
-\ 1                  M

4 8                               2\48

33               33
2                                          »     2

4.1 \
1 4,06 - 1

4                                      0                  3,98
4                                          +

39                   .r       .rQ     fj   T.% TeS                                         9                   J       20     16   1*s  %

·f<# .5 6
J

f<&.%    €r     ..r
0                                                     F

Figure 33. Sensitivity of daily number of customers to vi and m for two different sets of
random numbers, co i (left) and 0)2 (right)

A higher degree of complexity arises if we consider Bi and m evolving over time. We
again study a simple example for which the time between customer arrivals 011) has
seasonal variations; we keep m constant over time, namely equal to 4. We model the
seasonal variations of pi as a sinusoidal function - see Figure 34 - and we use this function
in the simulation model of the bank office Figure 35 shows the time series of Q (daily

number of customers waiting for service) The effect of the dynamic variations of Fl  is  an
increase in the variability of Q. Obviously,  the amplitude of this variation depends on the

amplitude ofthe sinusoidal function for Bi However, such variations in Q may reach levels
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Figure 34. Seasonal variations in the mean time between customer arrivals 04)
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that are not acceptable for the bank manager: to avoid this kind of unacceptable

performance, corrective actions, such as adding an office counter, may be needed
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Figure 35 Seasonal variations (in pi) and resulting daily number of customers waiting for
service: individual values and moving average (bold curve)

Thus, uncertainties should not be neglected when designing a system through simulation

Unfortunately, designing a system under uncertainty is a complex problem. The literature
often focuses on a single aspect of environmental uncertainty Therefore a collection of
techniques for dealing with specific aspects of the design problem have been developed  in

fields such as simulation, decision making, engineering, and control theory. To our
knowledge, in production control these techniques have never been integrated within a
common framework. Yet we see potential synergies in combining them Indeed we shall
see that they share common concepts, but implement them in different ways.

Traditionally stochastic uncertainties have been tackled using statistical techniques for
building confidence intervals. We give a short overview of these techniques in section 5.3
Subjective uncertainties can be handled through Uncertainty/Risk Analysis (URA), which
includes risk assessment and risk management; in section 5 4 we describe URA techniques
and give a short overview of their applications  in the literature Dynamic uncertainties are
the main concern of Taguchi's approach to robust design, in section 5 5 we review the
literature on Taguchi's robust design. We consider that URA and Taguchi's approach should
be used during the design phase; dynamic control may be used for dealing with subjective
and dynamic uncertainties during the operational phase. In section 5 6 we review
applications of dynamic control in Kanban systems Our conclusion  is that dynamic control
would   be too complex to implement in Customized pull systems In Table   18   we
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recapitulate the various sources of uncertainty involved in design through simulation and
the techniques proposed in the literature for dealing with these sources

Table 18 Sources of uncertainty and solutions proposed  in the literature

Stochastic uncertainty Subjective uncertainty Dynamic uncertainty
Cause Random number Estimates of Dynamic behavior of

generators in simulation parameters real production
simulation environment

Solutions Confidence intervals Uncertainty/Risk Taguchi's robust
in analysis design
literature Dynamic control

5.3 Confidence intervals

Stochastic uncertainty is modeled through the set(s) of random numbers m used in the
simulation. The approach for dealing with stochastic uncertainty consists in building
confidence intervals for the simulation output: replicate - that is, run simulations with

different  set(s) of random numbers 0 1, . . . , N„ - and  look at the resulting variability  in the
output   Xi,    .   . ,   XM.    In   the   following   we   present two techniques for building confidence
intervals, namely standard statistical techniques and bootstrapping When simulation is
used to compare design alternatives or perform optimization, a complementary approach
for dealing with stochastic uncertainty is to make sure that all simulations use the same
common random numbers and initial conditions

5.3.1 Standard techniques

Let Xi, ..., Xn be a sample of independent identically distributed (IID) random variables
with a common probability distribution fixed by its parameters The purpose of confidence

intervals is to quantify the accuracy of the (sample) average (say)  X(n)  as an estimate for

the (population) mean or expected value (say) B by measuring the standard error given a
certain confidence level  1  - a, we denote the standard error by serr, 1 - g Standard statistics
provides formulas for the standard error: the 100(1 - a) percent confidence interval for B is
given by  X(n) + sm. This formula means that only 100a sample means out of 100,  for
samples of size n,  will be outside the range of this confidence interval. Standard statistical
techniques for building confidence intervals in simulation are thoroughly discussed in Law

and Kelton (1991)
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General case: IlD random variables Xi

If n is sufficiently large,  then the random variable Zn defined as Z„ = [X(n) - p]/N'PiA

follows a normal distribution with mean 0.0 and variance 1.0 (central limit theorem); 2 is

the sample variance defined as   (X -X(n))2/(n - 1). Thus,  for
n sufficiently large, an

estimate of the standard error for v given a (1 - a) confidence level is zi. 42\7/A, where zi.

d2  is the a/2 point of the standard normal distribution. This formula, however,  is only an

approximationi depending on the shape ofthe probability distribution for X„ the value of n
should be more or less "large". For instance, the less symmetric the shape ofthe probability

distribution, the larger n should be.

Special case: IID, normally distributed random variables X,

If the random variables X are IID and follow a normal distribution with mean B and

variance 02, then the random variable t. defined as t. = [X(,0 - li]/\12/A follows a Student t

probability distribution with n -  1  degrees of freedom.  For n larger than 2, an exact estimate

of the standard error for v given a (1 - a) confidence level is 4.1,1.4247/k where 4.1,1 -

(*'2 is obtained from a table of t-values and is the upper a 2 point of the Student-t

distribution with n-  1  degrees of freedom.

5.3.2 Bootstrapping

The standard techniques discussed in previous section give formulas for confidence

intervals for the mean p. In practice, however, we may be interested in estimating

performance criteria (say Y)  such as a quantile - the population quantile (say)  <p of order p

satisfies  P(X 5 <p) = p.   For  such criteria, standard statistics  do not provide any simple
formula for the standard error - such formulas do not even exist in many cases. A
resampling technique called bootstrapping provides an easy and cheap way (in terms of

Simulation) to compute standard errors for any performance criterion. The only assumption

is that Xi,  . . . .X n are IID random variables. The principle of bootstrapping is as follows:

- Draw randomly with replacement a number (say b) of'bootstrap samples' of size n from
the  original  data  set  {xi,    .., x.} (Technically, this implies  that the values  xi,      ·,  xn

receive a multinomially distributed weight w, with values 0,1,   .., n such that Ew, = n)

- Compute the performance criterion Yj for each 'bootstrap sample' 0 = 1,..., b)
- Estimate the variability ofthe original Y by the observed variability in the b bootstrap Yj.
Much theoretical work undertaken by statisticians has shown the validity of the bootstrap

technique for building confidence intervals. Experiments demonstrate that in the case of
confidence intervals for the mean 00, bootstrapping provides an estimate of the standard

error that is close to the value obtained from the standard formulas. For other criteria,
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bootstrapping yields an accuracy estimate that has excellent theoretical properties; see
Efron and Tibishrani (1993) for details about bootstrapping

5.4      Uncertainty and Risk Analysis (URA)

5.4.1   Uncertainty and risk
In the decision theory literature the definitions of risk and uncertainty are rather unsettled:
there does not seem to be consensus among researchers In Knight (1971), for instance, risk
refers to probability fiinctions with unknown parameters and functional forms that can be
estimated from historical data (objective probability), whereas in uncertainty, one has to
rely on subjective probability More recently Norman and Shimer (1994) use similar
definitions: "A risk decision is defined as a stochastic optimization problem where the
parameters and the functional forms required to determine the optimal decision are known
And an uncertain decision is defined as a stochastic optimization problem where at least

one parameter or functional form must be estimated" Bayesians, however, do not make
distinctions between objective and subjective probabilities: they consider all probabilities to
be subjective (see Cyert and De Groot,  1987,  p. 13)

According to Morgan and Henrion (1990, p. 1), risk involves an 'exposure to a chance of
injury or loss' Such an exposure indeed occurs in our case Designing a system for a
specific environment does not guarantee good performance for other environments. there is
a risk associated with the design chosen; another design may lead to a lower risk Now, as
discussed in the previous sections, simulated environments involve different sources of
uncertainty Therefore we may associate a risk estimate with each set of decision variable
values (design)   In this dissertation,  we  see  risk as a consequence of uncertainties, whatever
their source. We define the risk associated with a design as the probability of poor
performance. This definition is close to the one used in Bayesian decision theory: the risk
ofa decision is the expected loss (see Cyert and De Groot,  1987, p  10).

URA is a general framework that consists of several components Balson et al. (1992)
see the following two main components:
(i) Risk assessment is the qualitative or quantitative evaluation of risks
(ii) Risk management is the process of determining whether an identified risk is acceptable

and what action (if any) should be taken to mitigate or control a risk that  has been identified
or assessed. It includes the following steps: determine acceptable risk, define management
alternatives, evaluate alternatives, select and implement alternatives
A possible third component of URA is risk communication. It raises such issues as: what
levels of risk are present, what is the importance of the risks,  how are risks to be managed

or controlled?
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Bodily (1992) gives a typical example  of risk analysis in finance:  " ( . . ) in evaluating  a
capital project, a company carries out a risk analysis to determine its financial risk in
making the investment. The approach might incorporate a cash flow model, and the risk

analysis might involve a Monte Carlo simulation of the uncertainty in net present value or
other financial performance measures Risk management in such a context would relate to

reducing risk of the project, if it is not acceptable, either by diversifying, risk sharing, or
contingency planing to protect against unwanted scenarios "

5.4.2 Procedure

Quantifying risk through Monte Carlot requires determining the output probability
distribution. For this purpose risk assessment proceeds as follows (see Figure 36) sample

each unknown parameter from a statistical distribution function, combine the sampled

parameter values into scenarios, and conduct a simulation experiment for each scenario

The  outcome of this procedure is an estimated probability distribution  of the performance

measures. Among the many sampling techniques, crude Monte Carlo sampling is probably

best known. Basically, the principle is to select values at random from the distribution per
input Other techniques try to yield better samples than Monte Carlo sampling. Latin

Hypercube sampling   or   LHS   (Iman and Shortencarier   1984), for instance, is stratified
sampling that divides the range of each input parameter into non-overlapping intervals of
equal probability; from each interval, one value is selected at random according to the
probability distribution in that interval A refined technique is Median Latin Hypercube
sampling, which selects systematically the middle value ofthe intervals; thus, the sample of

each input parameter depends only on the sample size "Hammersley points" are designed

using a procedure based on "low discrepancy" pseudo-random numbers, for details, we
refer to Hammersley (1960) and Kalagnanam and Diwekar (1997). We use LHS only

A- Simulation ,=>1  ACR> Sampling [=>- model IV -,Scenarios

D                                                                                              4
Output probability

distribution
Probability distributions Set of decision
of uncertain parameters variable values

Figure 36. Risk assessment through simulation

1 According to Kleijnen and Van Groenendaal (1992, pp  12): "We speak of a Monte Carlo method whenever
the solution makes use of random-numbers, which are uniformly and independently distributed over the
mterval from zero to one. We speak of simulation whenever the model has a time dimension (the model  is

called dynamic) and it is solved numerically "
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URA is popular in finance and investment problems, and compulsory for the design of

potentially dangerous systems, such as nuclear and waste isolation plants (Helton et al.

1997), and certain industrial activities, such as chemical industry (Palle 1994); also see
Brehmer et al (1994). However, to our knowledge, it has never been used to design

systems based on stochastic discrete-event models   (such as production-control systems):
actually, most ofthe models used in the URA literature are deterministic.

Risk management does not seek for an optimal solution but for a solution that yields an
acceptable risk. Bayesians, however, do search for the decision that minimizes a single
criterion: the expected loss This expected  loss is the negative of the utility function, which
is the expression of preferences of the decision-maker with respect to perceived risk and
expected return. This loss is used to compare output probability distributions, and to choose
among them Preferences, however, are individual perceptions: a preference may not be
unanimous. First- and second-order stochastic dominance tests identify probability
distributions that are unanimously preferred by all decision-makers with monotone utility
functions and monotone, strictly concave utility functions respectively; see Wolfstetter
(1996) We shall see applications of dominance tests in the next chapter.

5.5 Taguchi's robust designs

5.5.1 Parameter design problem: concepts

Taguchi's robust design consists in searching for a product design that guarantees low
variations in the performance level when the environment changes Traditional design aims
at a product that is optimal for a single specific environment (noise configuration). Thus
Taguchi emphasizes that the effect of environmental variations depends on the decision
variable values Instead of spending time and money trying to control the sources of
environmental variability (fire fighting), robust design focuses on finding a set of decision
variable values that yields good average performance and low sensitivity to environmental
variations. The product design that achieves this objective is said to be "robust" This
approach, also known as parameter design, has been stated and popularized by Taguchi
(Taguchi and Phadke 1984, Taguchi 1986)

5.5.2 Procedure

Besides the concept of robust design, Taguchi also proposed technical solutions for
designing robust products and systems. These techniques focus on (i) estimating the

sensitivity to environmental variations for a given set of decision variable values, and (ii)
selecting a good set of values Mayer and Benjamin (1992) proposes the following six-step

procedure for robust design that integrates Taguchi's techniques:
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(0 IdentifyJactors and specify targets

Distinguish between (a) design factors, say D, with 1 5 i c k, which are the parameters
with values (presumably) within the control  of the designer,  and (b) noise factors,  say N,

with 1 5,5 4 which are not within the control of the designer. Define performance

measure(s) and possible target values. Taguchi proposes robustness measures called
stgnal to noise (S/N) ratios that aggregate information on the average performance and
its variability (location and dispersion); see step iii.

Oi)  Formulate  the  design  of experiment  (DOE).  crossed arrays

Design factors are varied according to an orthogonal array (Taguchi 1959), called inner
anzy For each combination in this array, noise factors are systematically varied
according to another orthogonal array called outer array. Thus, if there are m and n
factor combinations in the design and noise arrays respectively (with m t k and n 2 0,
then m x n combinations have to be examined: see Table 19. In the following, this DOE
for robustness study is called a crossed array.

Table 19 Crossed Arrays for Robust Design

_Quter array
E-i- j n

-         Ni

1-Di Dk +        Nt
11  -      -SAV3

Inner amy      I   i                                                    yu Sm, S/N ratios

1_r  t SM™

(iii) Execute the runs and compute the performance statistics

Execute the m x n runs.  Then,  for each combination of design factors compute the  S/N

ratios, which measure the effect of systematic noise variations on the performance of the

product. The following three types of S/N ratios are standard

- The smaller Y, the better:  S/Ni = -10 log(1/n XY,j2)

- The larger Y, the better: S/Ni = -10 log(1/n El/yij2)

- And, the closer Y to target, the better:  S/Ni =  10 log( 92 /si)
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(iv) Find parameter settings that maximize S/N

Perform an analysis of variance (ANOVA) with the S/N ratios as response. Identify
design factors with a significant effect on S/N Then, set these factors at levels that
maximize S/N.

(v) Tune performance to target

Perform a second ANOVA using the performance measure(s) averaged over the n noise

combinations, as response. Identify design factors with significant effects on
performance measure(s), among the factors that have non-significant effects on S/N

(identified in step iv) Adjust these factors to improve performance

(vO Perform confirmation runs

Does the model perform as predicted? If not, assumptions are not valid (for instance,
ignoring factor interactions may be wrong)  Go back to ii

5.5.3   Critique and alternative tactical choices

Taguchi's contribution to robust design is undeniable However, his choices for robust

design implementation are not unanimously accepted For instance, Nair (1992) reports on
a thorough panel discussion that criticized the use of S/N ratios and crossed arrays. Yet,
there seems to be consensus about the fundaments of robust design: conducting

experiments in order to study the effects of controllable factors on both the location  and the
dispersion of the response. Thus, Pignatiello and Ramberg (1987) propose to distinguish

between the strategic aspect (namely, Taguchi's philosophy of robustness) and the tactical
issues (for instance, S/N ratios and DOE).

Many tactical alternatives can be found in the literature. Table 20 shows that researchers

sometimes prefer using loss functions or studying the location and dispersion of the

performance separately (instead of S/N ratios). Moreover, crossed designs (such as shown

in Table  19) may be replaced by combined designs,  that is, a single array that  does not treat

noise factors separately from design factors.
Taguchi originally proposed his technique for product design Later, a few researchers

have also applied robust design to simulated systems For instance, Wild and Pignatiello

(1991), Dooley and Mahmoodi (1992), Benjamin et W. (1995), and Sanchez et al. (1996)
propose simulation-based methodologies for the design of robust jobshop manufacturing

systems Simulation allows the use of larger samples than crossed and combined arrays  We

now discuss two recent examples of alternative experimental techniques

Moeeni et al (1997) proposes an original approach - based on simulation and

Frequency Domain Experiments (FDE) - to design robust Kanban systems FDE consists in



14                                                                      Chapter 5. Uncertain and Dynamic Environments

generating levels  xj   for each noise factor  x,   and   for each noise configuration j =  1. . .m,

according to a sinusoidal function:

4 - 1 2(u, + l,) + '*u, - 1,)cos(27T. (D,j),                                  (7)

for  i =  1,..,n and where u,  and l,  are the upper and lower bound of factor x, respectively,  ah

is the  oscillation  frequency  of x„  that  is  m = T.lm where T, is called the driving integer for

x,. Jacobson et al (1991) proposes an algorithm for determining the driving integers so that

main effects, quadratic effects, and two-factor interactions are not confounded. Moeeni et

al.  (1997) uses FDE to measure the robustness of a Kanban system design
FDE has originally been designed for sensitivity analysis (Schruben and Cogliano 1981)

the effect of each input factor is assumed to be measured by the contribution of its
characteristic frequency to the output. This contribution is determined through discrete

Table 20 Literature on tactical issues for robustness studies

Reference # Design/ Robustness measures Design of Experiments
Noise factors

Sanchez et al. 5/2 quadratic loss Comparison:

(1996) function - combined: 27-2 + two

center points
- crossed: (25-1 + center
points) x 22

Mayer and 4Jl close-to-target S/N Crossed: 24-1 x 22

Benjamin (1992)

Lim et al. (1996) 4 6 smaller-the-better S/N  Crossed: I.2  x Lg

for flowtime; larger- 27. SL    · .13.to

the-better for LB :27
throughput

Dooley and 2/4 signal-to-noise ratios    22 x 24-1

Mamoodi (1992) ofthe performance
mean and dispersion

Sanchez et al 4/1        7(x), log(S(x)) 244 X 21, replicated four

(1993) times

Moeeni et al 7/34 quadratic loss 27-1 & noise factors

(1997) function oscillations, replicated

four times (frequency
domain)
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Fourier analysis. Research prior to Schruben and Cogliano (1981) also used sinusoidal
functions to examine sensitivity to inputs, the approach is known as the Fourier Amplitude

Sensitivity Test (Cukier et W. 1973), and is used for uncertainty analyses (Morgan and
Henrion   1990,  p209).   In the latter approach factor values change  in a similar  way  as  in

FDE.

xu = E[x,] + v, sin(m.si),
(8)

where v,  is the half-range  of the variations tx) varies within  [E[x,]  - v,;  E[x,] +  v,]),  { 04}  is a
set of frequencies so that factors are not correlated, and sj is a parameter to discretize the
sinusoidal function and has equally spaced values. So (7) and (8) are equivalent indeed.

5.5.4 Robust optimization

As Mayer and Benjamin (1992) mentions, Taguchi's procedure focuses on performance
improvement and does not search for an optimum, namely, the most robust design. Indeed,
in practice the search is often limited to the local area defined by the inner array (for design

factors)   Thus, they suggest that optimization techniques  such  as  RSM (see section 3.6 3)
could be coupled with Taguchi' s procedure. Indeed, RSM moves  from one small   area  to

another based on estimated steepest path Wild and Pignatiello (1991) also mention this

possibility of using RSM An application can be found in Benjamin et aL  (1995),  who use
RSM for the optimization of two criteria, namely, the performance characteristic and the
sensitivity of the performance characteristic to environmental variations We shall use the

concept of robust optimization in section  5  8

5.6 Dynamic control

5.6.1 Two issues: when to act and what to do?

Robust design may  not be sufficient to keep the effects of environmental variability within
an acceptable region Actually, additional actions may be needed during the operational
phase The purpose of dynamic control is to modify the value of decision variables on-line,
in order to maintain an acceptable level of performance. In pull systems control actions

consist in adjusting the card numbers Two main issues arise when trying to implement a
dynamic control procedure, namely, when to act and what to do? Possible control actions

may be considered (i) on a real-time basis (i.e, whenever an event happens), (ii) at fixed
time intervals, or (iii) only when the system is out of control Real-time control actions
require some prior knowledge about what values should be assigned to the decision

variables as a function of the system state: action  has to be taken immediately Such prior
knowledge, however, may not be easy to obtain and can only be partial since the space of

possible system states is rather large Taking control actions at fixed intervals requires
techniques for finding the best control action to be taken Acting upon an out-of-control
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state requires additional techniques for monitoring the system and detecting such states

Next, we review four applications of dynamic control in Kanban systems,  and we detail the
techniques used to deal with the issues ofwhen to act and what to do.

5.6.2 Dynamic control of pull systems

After an extensive literature search we found four publications dealing with dynamic

control of Kanban systems; we detail these four publications in this section. Also, an
approach inspired from SPC (Statistical Process Control) for the dynamic control of
Conwip systems is discussed in Hopp and Roof (1998)
• Takahashi and Nakamura (1997)
Prerequisite. Graph ofbest card numbers at each stage as a function of the finished product
demand rate Their technique for building this graph consists in optimizing the card
numbers with the goal of achieving a required level of mean waiting time with minimum
inventory. They repeat this optimization for several values  of the mean demand interarrival
time The outcome  of the procedure  is a response surface  with the optimal card numbers  as

functions of mean demand interarrival time.
Monitoring demand. They use exponential smoothing to filter the time series data of
product demand. Exponential smoothing gives higher weight to recent data through an
exponentially weighted moving average (EWMA):

Hi= ax, + (1  -a) Hi- 1 where Hi  is  the  i-th  EWMA,  x,  is  the  i-th  real  data,  and  a  is  the

exponential smoothing constant (0  5  a 5  l)
Detecting out-€Acontrol cases. Out-of-control cases are characterized by an upper and

lower control limit - denoted by UCL and LCL respectively - for the mean interarrival time

W.

UCL =  *+  84,al(2 -  a)%,
LCL =  p-  8\|,al(2 -  a)CY,:,

8 is usually assumed to be 3. for a, Takahashi and Nakamura consider values of 0.1,  0.2,

0.3,0.4, and 0.5, ag denotes the variance of the interarrival time.
ControUing the card numbers. The card numbers must be changed when an unstable

change in product demand is detected (see 'monitoring demand'), i e,i f EWMA moves
below LCL or above UCL. The new card numbers are selected using the graph (see
'prerequisite') so that the required level of mean waiting time of product demand is assumed

to be achieved with minimal mean WIP

• Chang and Yih (1998)
Prerequisite. Fuzzy rule-based  system that gives the desired  number of kanbans for a given
set of system attribute values (demand, number of lots waiting for kanbans, average
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utilization, processing time, number of kanbans currently in the system). The fuzzy system

is trained on a set of examples

Control procedure   At each job arrival, the fuzzy system  is used to re-estimate the desired

number of kanbans, given the current system state Thus, the number of kanbans is
controlled on a real-time basis

• Liberatore et aL (1996)
Monitoring system throughput System throughput is monitored and averaged over the m

most recent observations

Searching for best control action. They consider adding or removing one kanban.  The

throughput of the two corresponding systems is estimated using perturbation analysis (Ho

and Cao, 1991)
Controlling the  card numbers.'For each possible control action, the estimated throughput of
the corresponding system is averaged over the m most recent observations. The control
action that yields the best performance is implemented This control procedure is performed
each time a given number of parts is delivered. Thus control intervals have a variable

duration.

• Rees et al. (1987)

Rees  et al.'s approach is based  on the following well-known equation for determining  the

number ofkanbans (see, e g., Monden, 1993)

n = [DL(1 + a)]                                                 (9)

where D is the average demand expressed in containers, L is the average lead-time for the

product, a is a safety factor for protection against stochastic variations and anomalies (such
as machine breakdowns), and Dr] is the smaller integer greater than or equal to x Their idea

is to compute the card numbers using 'real-time' updated information about the lead-times,
and periodically updated forecasts for the demand level

Measuring leadmne characteristics. Rees et aL consider two measuring periods needed to

(1) estimate the autocorrelation function of leadtimes, and (2) estimate the leadtime density

function based on independent observations
Forecasting demand To estimate the demand for the next period, they use standard

forecasting procedures
Determining the number of kanbans. The density function of the card number is derived
from (9)  A card number is chosen so that the sum of holding costs and shortage costs is

assumed to be minimized  Rees et al. emphasize that if shortage costs overwhelm holding

costs, then L can be replaced by Lmar, the maximal lead-time, or by Lq, the qth percentile of

the lead-time density function with a q% service target.
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Taking action  Set the number of kanbans to the value determined in the previous step.
Before repeating the whole control procedure, ensure that the system had sufficient time to
settle down

The concept of dynamic control is seducing. The review above, however, shows that its
implementation is rather difficult even for Kanban, which is among the simplest pull

system. Thus, dynamic control of more complex systems such as Hybrid or some of the
results obtained in section 0 seems hardly feasible We focus our research on robust design
and URA.

5.7 Robust design and URA
Obviously, Taguchi's approach to robust design and URA deal with different problems:

variability in the production environment versus uncertainty in the model inputs. Yet, the
main differences are at the implementation level, not at the conceptual level. Next, we
review these implementation differences, and we try to determine how robust design and

URA may be combined.

5.7.1 Physical versus Simulation Experiments

Mayer and Benjamin (1992) points out the main differences between product design and
system design. In product design, robustness is achieved through prototypes and physical
experiments; the designed products are intended for production in large quantities. In
system design, a robustness study has to be performed on a model using simulation
experiments. Moreover, only a single system is to be implemented. Thus, product design

can use only small experiments, for feasibility reasons - it may not be easy to reproduce a

specific environment - and cost reasons - prototypes usually are expensive. System design,
however, is limited only by time constraints (any type of environment can be simulated,
and the major experimental cost is computer and analysts' time).

Originally, robust design addressed product design problems: it is a method designed for
physical experimentation. Now, physical experimentation is rarely possible for systems
URA, however, is designed for simulated experiments. Thus, the second approach seems

better suited for system parameter design.

5.7.2 Sampling
Most robustness studies consider at most three levels for each environmental parameter

Next, mathematical techniques are used to choose the combinations of parameter values to
be experimented Risk analysis, on the other hand, uses a large sample size in which each

parameter has many different values. For instance, Latin Hypercube Sampling (LHS)
requires a sample    size    of    100 at least Moreover, Taguchi's designs select extreme

parameter value combinations, whereas risk analysis samples values for each parameter
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over the whole domain The parameter probability distribution functions are specified by
the analysts, possibly with the support of experts

5.7.3 Dispersion versus Risk

Robust design is based on the estimation of the performance location and its dispersion

over environmental variations Any deviation from the mean is penalized (quadratic loss

function): dispersion does not distinguish between good and bad performance Decision

makers, however, may be interested only in avoiding "bad" performance, that is,
performance below a prespecified target Furthermore, the use of signal-to-noise ratios does
not give much flexibility to the decision makers: the information about location and
dispersion of the performance is aggregated through a single criterion that is not
particularly easy to interpret (Nair, 1992) Quantifying a probability of poor performance
seems more appropriate for decision making

5.7.4 Combining robust design and URA

As  mentioned in section 5 2, dynamic uncertainties are closely related to subjective
uncertainty Therefore it is not surprising that recently studies solve the robust design

problem through URA techniques: the optimization concern of robust design is preserved,
but URA techniques are used.

Kalagnanam and Diwelar (1997) suggest an optimization procedure for the design of
robust systems based on simulation and Monte Carlo methods, which they apply to the
design of a chemical tank reactor They state the design problem as a stochastic
optimization problem in the sense that they have uncertain input variables; they do not
consider stochastic uncertainty - they use a deterministic mathematical model for
performance evaluation - nor dynamic uncertainty An interesting aspect of this paper is

that the robustness of the system  is not just studied  for a few extreme environments,  but for
a large sample of environments The focus of their research is on a new sampling technique

and its comparison with four other techniques, namely, Monte Carlo, Latin Hypercube,

Median Latin Hypercube, and Hammersley points
Next we propose a more complete procedure for designing systems under uncertainty

Our objective is to integrate the three types of uncertainty presented in section 5 2, namely,

stochastic, subjective, and dynamic uncertainties

5.8      Procedure for designing systems under uncertainty
We use the same framework as Kalagnanam and Diwelar (1997): an optimization
procedure calls URA techniques that estimate performance under uncertainties The main
difference is that we use discrete-event simulation for performance evaluation, which adds

the issue of stochastic uncertainty to the problem treated in Kalagnanam and Diwelar

(1997) We deal with this added uncertainty through several means (see Figure 37). First,
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we consider the (pseudo)random number generator seed as an environmental factor: we
change it for each environmental scenario. The difference with the other factors (processing

time, time between failure, etc.) is that there is no order for random number generators:
LHS cannot be used to define a sample. Thus we let the simulation software select different
seeds for each replication (simulated scenario). We also use the same initial conditions for
all scenarios. Second, we use common random numbers for system evaluation through
LHS, which means that all simulated systems are submitted to the same stochastic
uncertainty Third, we may use bootstrapping to build confidence intervals on probabilistic
performance measures. Indeed, traditional statistical techniques for building confidence
intervals do not apply to performance measures such as the probability of poor
performance.

URA

Sampling
of environmental

parameters

t=ber '1  Sci-tosiu,
Estimated probability

  Discrete-event distribution qf + Bootstrapping
simulation pefformance

Decision vanable_   Optimization 4 Estimated probability
values (x) procedure of poor pedormance

Figure 37. Our procedure for designing systems under uncertainty

We state the optimization problem as follows:

Min FOr, u, e),
s.t.  Gi(x, u, a,) = 0, (10)

Gl(x, u, m) 2 0,
where x is the set ofdecision variables, u is the set of uncertain parameters, and e is the

random seed. F is the main criterion, Gi and G, are constraints As demonstrated
throughout this chapter, the difficulty ofthis optimization problem is to estimate F, Gl, and
G2 fora given x, accounting for the effects of u and e The solution we propose is to
estimate the probability distribution of F, Gi, and Ch for a given x, and characterize these
distributions through appropriately chosen metrics (say) f gi, and g2 respectively. These
metrics are then functions ofx only
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5.9 Conclusion
The purpose of simulation in our context is to estimate performance measures and to find
the optimal values of the decisions parameters that optimize those measures  The main
difficulty, however, is that simulation outputs depend not only on decision parameters but
also on the way uncertainty is handled. We identified three sources of uncertainty in

simulation, namely, stochastic uncertainty (due to random numbers), subjective uncertainty
(due to input data estimation), and dynamic uncertainty (due to variations in the real
production environment) We proposed a novel approach that integrates URA and robust
design (Taguchi), to tackle uncertainty and obtain performance measures that depend only

on decision parameters
In the next chapter we apply our procedure to pull production control systems  The idea

is to design pull systems under uncertainty. Thus, we shall detail the procedure described

above



Chapter 6
Robust Customization of Pull Systems

Abstract
The objective of this chapter is to design pull systems, given the three sources of
uncertainty identified in Chapter 5. For this purpose we state the robust design problem
and specify robustness criteria in terms of service and WIP. We detail the procedure for
estimating these  robustness criteria,  and we  compare  their values for four pull  systems.  We
also investigate  the robustness ejfects of managerial decisions.  These decisions include  the
card numbers,  the  type  of probability distributions used  in  LHS,  and  various parameters
that   specify  the   managers'   attitude   towards   risk  and   characterize   their   preference.    Using
these results, we apply the robust design procedure to the production system studied in
Bonvik   et   al.    (1997)   controlled   through   Comvip.   Customization   under   uncertainty,
however, would require a computational cost that is currently not affordable.
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6.1        Introduction

Under the three sources of uncertainty identified in Chapter 5, the optimization problem (1)

(page 14) stated in the same terms as (10) (page 80) becomes:

Mjn K71'(x, u, co),
(11)

s.t. S(X, u, e) 2 4

where x is the set of card numbers in the generic pull system, u is the set of uncertain

parameters, namely, the average processing times, the variability of process times, the
average times between failures, the average times to repair, and the demand rate, e is the
random seed for stochastic simulation and T iS the service target For a four-stage

production line we have ten card numbers (see section 3  6) and 17 uncertain parameters

6.2 Robustness criteria and notation

We use the procedure defined in section 5 8 to solve this optimization problem. So we

generate a sample of n = 100 scenarios for u and e. Each scenario is simulated over a
period of one month - 22  days, two shifts (900 minutes) per day (thus, 44 shifts per month,

that is, 19800 minutes),  plus a warming-up period of three days (2700 minutes);  thus the
total simulated time is 19800 + 2700 = 22500 minutes. From this simulation we estimate

the average WIP level and the probability of the service level per shift dropping below

target.  We speak of a disaster when a shift has a service level below target. Our choice of

disaster probability as a performance criterion is motivated by the fact that service has to

remain at a high level in a short-term horizon. Indeed, managers are under pressure when
one or more shifts during a month yield poor customer service, that is, when the disaster

probability is unacceptably high. For WIP, however, the concern is not short-term

performance. Indeed, a temporary increase in WIP is acceptable, as long as WIP's long-
tenn performance remains satisfactory

We use the following notation Upper case letters denote random variables, lower case

letters denote realizations of random variables and deterministic variables, and Greek letters

represent parameters to be estimated.

ki = E(WIP): expected average WIP per month;
Y service level per shift (0 fy E l; percentage ofdemand per shift satisfied from stock);

7[ = P(Y < cy): probability of Y dropping below a prespecified manager's target (say) cy.

The performance measures 11 and Tr are estimated through
/22500

A=J WIP,dt/19800,
2700

ft -  44 Id, < cyy44,
i=1
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where WIP, is the WIP level at simulated (continuous) time t, y, is the service level realized
in shift i, and I(a) is an indicator function, that is, 1(a) is equal to one if statement a is true,
zero  otherwise (see Figure  38)

WIPe A
11,

1 month   t

YA disasters: y, <cy

1-         -
CY- - -      -

0

i (shift #)

Figure 38. Performance criteria for robust optimization

Since we repeat this simulation for different environmental scenarios (say) S, our

symbols need a subscript
R =E(wipl S = s);
YS = (}1 S = S);
KS= PCY <cy\S =s) =P(Ys <cy)
The performance measures Kis and Trs are realizations of random variables (say) M and II
respectively, and repeating the simulation over all possible scenarios yields their joint
probability distribution. Our objective is to perform robust optimization; thus we search for
the pull system with the best performance distribution Stochastic dominance theory

permits comparison of probability distributions (see section 6 3 2 for an illustration)  Its
integration within an optimization algorithm, however, is not simple. Moreover, stochastic
dominance helps only when unanimous decision can be made (see Appendix 3) Therefore,
we decide to characterize the estimated joint performance distribution through the
following two robustness measures:

n = E,s(Ms) = E,s[ECIKIPI S = s)] average monthly WW averaged over all scenarios;

p = PCLIs 2 cs) probability of Ils exceeding another managerial threshold (say) c*, under
various scenarios This probability expresses the risk of a high disaster probability over the
scenarios. Management should decide which risk p they are willing to accept in terms of
service, at which price n in terms of WIP level We denote this acceptable risk by cp.

We use URA to estimate the two robustness measures for a given input distribution of
scenarios. The resulting estimators are:
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r-1100

A = L tls/100,the average monthly WIP averaged over the 100 sampled scenarios,
s=1

r-7 100

b = L      /(fts 2 c,0/100, the fraction offts that exceeds c. among the 100 realizations.
s= 1

Our robust optimization problem is meant to guarantee an acceptable risk level p in terms

of service, while minimizing the price n in terms of WIP level.  This problem can be stated

as follows:

Min Aor),
SIt. BOO < cp,

which can be further developed as follows:
r-9 100    622500

Min J J      WIP,.,(x)dt/19800/100,XZJ 2700
s=1

(12)
vr-7100     r-744

St  f)00 = .L    /(2,    Im,00
< CA144 2 C*)/100 < cp.

i=1
s=1

This optimization problem is complex, and involves substantial computing for a given x

Therefore, we expect computing times to be rather long Designing a pull system, however,
is not an every day activity, and the financial risks may be high Thus, long computing

times may still be acceptable. We shall discuss ways of reducing this cost, at the end this

chapter.
Problem statement (12) relies on the definition of several managerial parameters, which

makes it more understandable than traditional approaches to robustness: cy is the targeted

service level per shift, c* is maximum number of disasters tolerated per month, and cp
characterizes the risk that managers are willing to take. In section 6 3 3 w e shall study the

effects of these parameters on the performance in terms of service and raise the issue of
how to select their values.

Next, we illustrate our approach by comparing the performance under uncertainty of
four pull systems, namely, Kanban, Conwip, Hybrid, and our customized system; for all
four systems we take the configurations found for the example in Bonvik et al. (1997)

6.3 Illustration: robustness of four pull systems

6.3.1     URA of pull systems

The production line in Bonvik et W. (1997) was described in detail in section 3 6 1. The
uncertain parameters are the various processing time averages and variances, the average

times between failures and times to repair,  and the demand rate; altogether 17 parameters.

Our base scenario is the set of values used for these parameters in Bonvik et al (1997)  We
choose to study a range ofi:50% around this base scenario  LHS is used to generate a sample

of n = 100 environmental scenarios from these ranges   In our academic examples  we  have
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no information on the likelihood of the various scenarios Therefore we assume that all
scenarios are equally likely; that is, we use a uniform prior distribution per parameter, and
assume independent parameters The card numbers found in Bonvik et W. (1997) for
Kanban, Conwip, and Hybrid (see Table 21), and for our customized system (see
section 3 6.3), hold for the base scenario (all uncertain parameters at their mid values). We
do not expect them to be optimal when uncertainty is considered The purpose of this
section is to compare the performance ofthese four pull control systems under uncertainty.

Table 21 Recapitulation of optimal card numbers found by Bonvik et al ; shaded cells and

remaining card numbers have infinite values

4,1 ki:l kl·2 k3,3     k4:4

con# 15 IMMIMMMIMIMMI#imim
Kanban

1111111111111111112

2    4    10

Hybrid 15   2    3     5     15

For each scenario sampled by LHS, we run a simulation corresponding to one month of
production (22 days, two shifts per day). All simulation runs use the same initial conditions,
but different random seeds and environmental parameters within URA In Bonvik et at.

(1997), the objective was to achieve a 99 9% service level target, while minimizing the
WIP level; both performance measures were estimated over a long simulation run. We use
the average WIP level estimated over a month, tls, and the monthly proportion of shifts
with a service level below target, 1rs. We choose the same target as Bonvik et al  (1997), so
cy = 99 9% URA yields the joint distribution of the two performance measures  The
distribution ofthe disaster probability 1rs has more or less a 'bath tub' shape: relatively high

probabilities either of low or high realizations, Figure 39 shows a bar chart for our

50 -

40 ill

   30 1

M                                                       

f m                            I10-_-L
o AM#m -,A"n J-1 'r l, - * rn-n:-rn ,

Of of 09 09 66 0* 04 0 ' ef' 49 4/ 4,
disaster probability

Figure 39 Distribution ofthe disaster probability le for our customized system
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customized system.
Cumulative distributions, however, give a clearer picture, and facilitate comparison of

systems. Figure 40 displays the cumulative distributions of ps for the four pull systems

Figure 41 shows the cumulative distributions of xs for these same four pull systems.

100.

90 -...  -9='                                                                                                      1180.--- -+ Conwip
- Hybrid

f   70 -  . . . -i- Kmb..
3 60 -·---i.-·---···--·---·--    . ··   - ··  -   ·

------- . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 40. Cumulative distribution of gs for the four pull systems
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Figure 41. Cumulative distributions of irs for the four pull systems

6.3.2     Comparison of pull systems in terms of robustness

As we mentioned in section 6.2, there are two ways of comparing performance under

various scenarios. The first way is to use stochastic dominance theory to compare the

estimated density functions of the estimated disaster probability  ft and average  WIP M.  In
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Appendix 3  we give a short summary of stochastic dominance theory We compute
dominance tests for the disaster probability. The outcome is the following: Conwip first-
order stochastically dominates Hybrid and our Customized system, and second-order

stochastically dominates Kanban; Kanban and Hybrid both second-order stochastically
dominate our customized system, but it is not possible to choose unanimously between
them For the estimated average WIP, we find that our customized system first-order
stochastically dominates all the other systems; Hybrid and Kanban both first-order
stochastically dominate Conwip; it is not possible to choose unanimously between Hybrid
and Kanban. Thus, Conwip would be unanimously preferred for its disaster probabilities,
II, but at the cost of the worst estimated average WIP, M  Also our Customized system

would be unanimously preferred in terms of estimated average WIP, M, but at the cost of
the worst disaster probabilities, II. Therefore, Kanban and Hybrid may be the best
compromises, but managers would have to express their preference concerning the risk/cost

compromise to make a decision
The second way of comparing performance under various scenarios is to use the

robustness criteria (A,  ) proposed in section 6 2  In the computation of b we select

cy =0 999 (same service as in Bonvik et al.) and c* =0.9-s o w e look at the high disaster

probabilities. From the density functions shown in Figure 40 and Figure 41, we derive the

values in Table 22. Note that we measure b in Figure 41 by drawing a vertical line at ft = cA
and reading the corresponding cumulative probability This cumulative probability,

however, is 1 - 0, since p = P(Ks 2 c,) and the cumulative probability read on the chart is

P(TES< c,0. The values in Table 22  seem to confirm the results of the comparisons through

stochastic dominance theory: Conwip has the best performance in terms of service (b), but

the worst in terms of WIP (A), whereas our Customized system  has the best performance  in

terms of WIP,  but one ofthe worst in terms of service.

Table 22 Estimated robustness measures for the four pull systems

Kanban Conwip Hybrid Customized

* 10.4 13.3 10.0 8.9

0.54 0.47 0.52 0.53

In order to support decision making, bootstrapping (see section 5 3 2) can be used to
build confidence intervals around the values in Table 22 We resample the 100 scenario

-

outcomes b = 200 times from the estimated density functions of Il and M. For each ofthese

new samples we recompute the robustness criteria (A, b), which yields the bootstrapped

joint density function ofthese criteria. We perform the bootstrapping procedure for each of

the four pull systems The outcome ofthis procedure for Conwip is shown in Figure 42  We
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note that bootstrapping is much faster than simulating, because bootstrapping involves little
computing compared with discrete-event simulation.
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Figure 42. Bootstrapped joint density func ion of the estimated robustness criteria (A, P) for
Conwip

Using these four estimated bivariate density functions, we can build confidence
ellipsoids for the two estimated robustness criteria for each of the four pull systems. We
assume that the bootstrapped variables are bii,ariate normal. To test this assumption we
apply Johnson and Wichern (1992, pp. 158-164), as follows Denote the sample multi-

variate observations by Xj withj =  l, . . ,  b (in our case x, equals (A, f))) Define the squared

generalized distance 1)2

D  = (* - X)'Sl(XJ - X) withj =  1,2,..., b (13)

with bold letters for matrices and vectors,

X - Ibix"

S = E. ,(*- X)(X - X)'/(b -  1).
Then v-variate normality  Chere v = 2)  is not rejected  if (i) roughly half of the g are less

than z (0.50), which denotes the 50% quantile of the chi-square distribution /2   and  (ii) a1,'

plot of the b ordered distances versus the b quantiles ,2,(D - 0.5]/b) gives a straight line.

This test with v=2 gives Figure 43, which suggests that the normality assumption may
indeed be used for our Customized system. We assume that the assumption also holds for
the other three systems.
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Figure 43. Testing normality ofthe bootstrapped Band Bfortheour Customized system

Johnson and Wichern (1992, pp. 189) gives a l-a confidence region for v variates with

means (say) 4 Cin our case 4 = (11, P)):

a

b(* - 4),St(XJ - 0 Ifi. b - 22(b -  1)/(b - 2)
a

wherefi, b.2 denotes the upper a point  (or  1  - a quantile)  of the F statistic with degrees  of

freedom 2 and b - 2. We might apply this formula to each of the four pull systems with a

type-I error rate of a. However, our selection of a pull system depends on all four

confidence intervals simultaneously. Therefore we use Bonferroni's inequality: we replace

a by a /4, which keeps the overall type-I error rate below a; see Kleijnen (1987) Taking a
= 010 yields Figure 44 This figure suggests that our Customized system yields the lowest

WIP cost A, but at the highest service risk A whereas Conwip yields the lowest service risk

at the price of the highest WIP cost Between these two extremes, Hybrid and Kanban are
possible tradeoffs between service risk and WIP cost Hybrid, however, dominates Kanban

since both B and P are lower. These conclusions are consistent with those made using

stochastic dominance theory. Even though no unanimous decision can be made, managers

can use Figure 44 for decision support.
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Figure 44. Estimated 90% simultaneous confidence regions for the two criteria (ii, f)) for
the four pull systems

6.3.3 Managerial decisions

To solve the robust design problem stated in (12), managers need to decide on values for

several thresholds: which service target cy should they use, and which risk do they judge to

be acceptable (cs and cp)? Other decisions have to be made, such as which input probability

distributions should be used to define the environmental scenarios? The purpose of this
section is to investigate the possible effects ofthese managerial decisions on the robustness

measures.

6.3.3.1 Effects Of the card numbers

We have already seen (when comparing the four pull control systems in section 6.3.2) that
different pull designs do yield different responses under uncertainty. We can further study
the effects of the card numbers on the robustness measures by considering (say) Conwip

with different amounts of cards. The effect of increasing the card number on the average

WIP averaged over the scenarios A is quite straightforward. Indeed, Figure 45 illustrates

that B increases linearly with the number of cards. The service risk A however, is not a
linear function  of the card number. Besides, it seems  to  be more sensitive to environmental

disturbances than ii. Indeed,  b  should  be a decreasing function  of the card number,  but  we

observe that its value for 60 cards is higher than for 50 cards  Yet, the density functions of

7Ts in Figure 46 do show that a Conwip system with a given number of cards dominates any

other Conwip system with lower card numbers. The noise sensitivity in Figure 45 may be
due to the definition of   itself Indeed, the indicator functions /(a) in b (see formula (12))
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have the value 0 or 1 depending on statement a that involves the thresholds cy and cs. Thus,

small variations ofyi,s in (12) can have dramatic effects on b -one might say that P is not a

robust performance measure. These effects may be reduced by considering longer
simulation runs, that is, by increasing the number of simulated shifts. This solution,
however, has a high computational cost since simulation is repeated for 100 scenarios. We

also tried to characterize service through another robustness measure. We used A. the
average monthly service averaged over the scenarios. An interesting result is that the

comparison results obtained in section 6.3.2 still hold. The behavior of ft as a function of

the number of cards is smoother than that of B in Conwip Conceptually, however, an

average (ii) is less interesting as a robustness measure than the probability of poor
performance (b)

150 0.5
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0.2

0                                                           0.1

0           50 100 150         0            50 100 150

card # card #

Figure 45. Robustness measures A and b as functions ofthe number ofcards, in Conwip
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Figure 46 Effect of the number of cards c on the disaster probability in Conwip with

cy = 0 999, estimated from „ = 100 scenarios
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6.3.3.2 Choosing  a value for  the  maximum number  of disasters cx

Choosing a value for cx means drawing a vertical line in the plot of the distribution function
of the disaster probability, and reading the corresponding cumulative probability.  b is the
complement to 10 of this cumulative probability Figure 46 shows that the choice of a
value for c, is critical: for disaster probabilities between 0.1 and 0 8 the cumulative density
functions have almost the same values, whatever the number of Conwip cards.  Thus, for cs

values between 01 and 0.8 the robustness measure B is not a powerful measure for
comparing pull systems. The extreme case occurs  for cs - 0.3, Conwip systems with  15  to

80 cards yield almost the same B value; see Table 23. Yet, these systems are not equivalent

in terms of service performance - we saw in the previous section that a Conwip system

with a given number of cards dominates any other Conwip systems with lower card
numbers.

Table 23. B for Conwip with various numbers ofcards, given c, = 0.3

# cards           15           20           30           40           50           60           70           80

p 0.57 0.55 0 56 0.56 0.54 0 54 0.54 055

Selecting either low or high values of c, yields more relevant results For instance,  for

4=0-n o disaster; see the left-hand side in Figure 46 - the cumulative probability is an
increasing function of the Conwip card number and tends to a limit  of 0.43 corresponding

to p = 0.57 (= 1 - 0.43). This result makes sense: increasing the number of cards does

improve service performance, but system capacity is eventually reached.

6.3.3.3  Effects  of the  service  target cy

Obviously, the choice of a service level target influences only the service related
performance measures. Figure 47 shows the distribution functions of the disaster

probability for Conwip with 15 cards, for target values of 95%, 97%,  and 99.9% (see solid
curves in Figure 47). The lower the target, the higher the probability of no disaster:

Pors = 0  Cy = 0.95)> P(Trs = 01 cy = 0.999) (see left-hand side)
A less obvious observation is that changing the service target does not seem to affect the

ranking of different types of pull systems in terms of f) Figure 47 also shows the
distribution functions of the disaster probability for our Customized system (dashed

Curves): Conwip dominates Customized for any given service target



95

100 -

_._ .w.:-:......-----44-2..
/*-*-.-.-*-*-"f4161111-r;1014."          f80-·..........>*2......*-0.2.................................................-r .2

.fi'  70- ...-.,11.4...4................ * A-A
Z     i . A-AA·AAA2   60-:*......   ····.A.A......................................................
R    /  4444*
f 50-9

AJ
. .........

-2  40- *...........  ........./¥*-*•0 4.-·· ......·..*.···-·-···-·-···--·-··-··--.

1  30.:...-.„-,.:.:4.13.3 -Conwip, 999% • " · Customized, 99.9'4
20-..... --Conwip, 97% • ·  Cnstonii 1 97>0      -

10 -           *                                          -•-Conwip, 95% • · · Customized, 95%

0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

0 90+Of 0+0*0909 496'betef 090*09 0404490f 0909420* 49
Disaster probability

Figure 47. Effect of service target cy on estimated disaster probability, for Conwip (with  15
cards) and the customized system

6.3.3.4 Effect of LHS input distributions

Another issue is the selection of input distributions for URA As we explained in

section 5.4 2 (also see Figure 36), URA samples each unknown parameter from a statistical
distribution function. Experts should define these functions and specify their ranges and
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Figure 48 Effect of LHS input range and distribution shape on estimated disaster

probability for Conwip (15 cards) and Customized system given the service target cy = 095
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shapes. A question then arises: to which environments should the system be robust? To
answer this question, we perform a few experiments with various LHS input ranges and

distribution shapes   for   two pull systems, namely, Conwip   with 15 cards   and   our
Customized system. We study LHS input ranges of 5% and 2.5% around the base scenario,
and uniform and triangular distribution shapes Figure 48 shows that the choice of LHS
input distributions has a critical effect on the service performance Obviously, for a given
distribution shape, the larger the range of the input values, the bigger the probability of
disasters: the disaster probability for uniform input distributions with 25% ranges first-
order dominates the disaster probability for uniform input distributions with 5% ranges.

Also, for a given input range, uniform distributions yield bigger disaster probabilities than
triangular distributions: triangular distributions have lower probabilities of extreme input

values,     so less extreme scenarios are generated    by    LHS.    For the three LHS input
distributions that we consider, Conwip dominates our Customized system (solid curves
versus dashed curves). This suggests that the choice of LHS input distributions does not
have an effect on the ranking of different types of pull systems in terms of service.

6.3.3.5 Value of the risk level cp

The choice of a value for cp in (12) is also critical. Indeed, its purpose is to characterize the

managers' preference concerning the ii/f) compromise. To illustrate this issue, we use the
robustness measures of four pull systems displayed before in Table 22 (obtained for
c, = 0.9). If managers select  cp = 0.6,  then they prefer the system with lowest inventory

(because all four systems have f) < 0.6), which is our Customized system. If, however, they

choose cp= 0.525, then Conwip and Hybrid are the only systems that satisfy the constraint

on B. Hybrid would be preferred over Conwip, since Hybrid's li value is lower. An
important issue  is how to select a value for cp. The study of cs in section 6 3 3 2 provides

good  support for this selection. Indeed the analysis of Figure 46 showed that the value of  
in a Conwip system tends to a limit when the number of cards becomes large. For instance,

we saw that B tends to a value of 0.57 for c, = 0. Thus managers may choose to select cp =

0 57. More generally, the procedure consists in building a figure similar to Figure 46 (that

is,     in a Conwip system  as a function  of the number of cards) and study the value of B for
a given value of cs.

6.4       Example of robust optimization
The objective of this section is to illustrate our robust optimization procedure for an
example production system We consider the production system that we used at several

other occasions in this dissertation, namely, the system in Bonvik et al (1997) First, we
consider Conwip systems only. Second, we consider robust customization, that is,
customization under uncertainty
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For   each   set of decision parameters (namely,   the card numbers), we simulate   100

scenarios over a period of 44 shifts each (plus a warming-up of 4 days)  Thus, we use
exactly  the same experimental conditions  as in sections 6 2  and  6 3 Furthermore,  we
choose  to  use the following values  for the decision parameters:  c. - 0,  cy = 0.999,
cp = 0.5985  (= 0.57 + 5%; we choose a slightly easier target  than the asymptotic value

found in section 6 3 3 2) We selected those values according to the results obtained in
section 6.3 The statement ofthe robust optimization problem (12) becomes:

i- 100  722500Min J J             WIP„(x) dt/19800/100,X L- 2700
s=1

(14)r--7 100 -44

S.t. bOO = L     Icl     I(y, sor)
< 0.999)/44 20)/100 < 0.5985

% .1
s=1

In the case of Conwip, the set of decision parameters reduces to a single number of

cards. Thus, the robust optimization problem (14) can be solved easily through exhaustive

search We estimate b and A through bootstrapping according to the procedure detailed in

section 6 3 2 (we use the center of the ellipsoid) This estimation is rather expensive in

terms of computing time. Indeed, the estimation of the robustness measures  (A A) through

simulation, LHS, and bootstrapping requires about 40 minutes on a Pentium 90 MHz, and 7
minutes on a Pentium II 350 MHz  For the robust optimization of Conwip, this cost is
acceptable since the search space is very limited. We find that the Conwip system that

satisfies the constraint on b with minimal A has 36 cards We note that for the same
production system and under the base scenario, the best Conwip system found by Bonvik et

al   (1997)  had 15 cards  only This large difference shows that considering uncertainties

does have a major influence on the outcome. Of course, we might have found a lower
number of cards if we had taken other values for the managerial decisions (see
section 6 3 3)

Customization is much more difficult when aiming at robustness Indeed, the search

space is much larger and requires the use of a heuristic optimization technique We estimate

that using the evolutionary algorithm of section 3 5, a solution to problem (14) would be
obtained after approximately one week of computation on a Pentium II 350 MHz.  Such a
cost is unfortunately not affordable in our research Actually, this cost may seem extremely
high, in general   It is important, however, to emphasize that most of the research presented

in this thesis would not have been possible a few years ago Computer power has increased

dramatically during the last few years, and we are convinced that robust customization will
quickly become affordable. Besides, the reduction of computational costs can be
accelerated through the use of parallel evolutionary algorithms (Paris and Pierreval,  1997).
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6.5 Conclusion
In this chapter, we examined the robustness issue when customizing pull systems The
challenge was to adapt the procedure developed in Chapter 5 First we stated the robust

customization problem, and we defined rigorous notation We chose two robustness

measures, namely,  (i) the average monthly WIP averaged  over   100 LHS scenarios  and  (ii)

the proportion of disaster probabilities that exceeds a threshold c,in these scenarios.

Second, we studied these two measures for four "optimized" pull systems, already

studied in Bonvik  et  al.   (1997) and section 3.6.3. Two comparison procedures, namely,
stochastic dominance and confidence ellipsoids built through bootstrapping, yielded

consistent conclusions: our customized system yields the lowest  WIP  risk,  at the cost of the
highest service risk. Hybrid and Kanban yield a tradeoff between the two robustness

measures. Conwip has the lowest service risk, at the cost of the highest WIP risk   A type of

pull system can be selected only if managers specify their attitude towards risk and
characterize their preferences.

Third, to support managers we investigated the effects  of the various parameters within

their control, namely the numbers of cards Or), the various thresholds in statement  (12) (cy

manager's target for the service level per shift, cs: target for the proportion of disastrous

shifts per month, and cp: acceptable risk in terms of service), and the LHS input

distributions. Our conclusion is that all these parameters have major effects on the

robustness measures Furthermore, the value  of c* should be chosen  such that  b is sensitive

to variations in the numbers of cards. The value of cp should not exceed the asymptotic

value of   when the card number tends to infinity.
Fourth, we applied the robust optimization procedure to the production system studied in

Bonvik et al. (1997) controlled through Conwip. The results show that considering

uncertainties yields results completely different from those obtained for a production

environment known with certainty (base scenario) Thus, designing a pull system for a
single scenario may be extremely risky. Our procedure provides one solution for
minimizing this risk, provided managers can specify their attitude towards risk and
characterize their preferences
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Conclusions and Further Research

Throughout this dissertation we considered two design issues: which type of pull system to

choose, and how to set the various parameters of the chosen system We contributed to
these issues in several ways
• We proposed a new classification of pull systems studied in the literature, namely three
classes:   traditional,  segmented,  and joint  systems.

• We raised the problem of selecting a pull system among known pull systems and systems
not considered in the literature so far. In order to solve this complex problem, we proposed

a generic model and a selection procedure based on a single optimization We called this

procedure customization.
• We illustrated the benefits of our customization approach through an example production
system taken from the literature: we find a customized pull system that performs

significantly better than the best system so far, which was Kanban/Conwip Hybrid.
• We applied our methodology to a variety of production lines Twelve lines that we
selected using statistical techniques, yielded various new types of pull systems of quite low

complexity and high levels of performance. Three structural patterns of pull control were
highlighted through these experiments.
• We raised the issue of uncertainty in performance estimation through simulation: the
production environment is not known with certainty We identified three sources of
uncertainty and proposed a novel procedure for designing systems under such uncertainties.
The objective ofthis procedure is to minimize the risk of poor performance The procedure

combines tools such as uncertainty and risk analysis, robust design, and bootstrapping
• Next, we investigated to what extend risk considerations impact the choice of a pull
system We showed that managers might prefer systems with characteristics completely
different than those chosen for known production environments (base scenario) A
limitation of our risk-based approach, however,  is its high computational  cost.

During our research we thought about many exciting perspectives. Because of time
constraints, however, we had to restrict our research scope. Future research may include the

following topics



100 Chapter 7. Conclusions and Further Research

• Throughout the dissertation, we considered single-product flow lines. A necessary step

before application of our research in industry is to extend customization to multiple product
systems, as well as assembly and disassembly systems. For this purpose, the literature on
Kanban and Conwip  is a valuable source of inspiration.
• Some logistical aspects should also be included We considered the supply of raw
materials as perfect. This assumption is critical, so the effect of imperfect supply should be

investigated. More generally, we could study logistical chains as a whole, including raw
material ordering policies for one or several suppliers, and delivery policies (multiple
customers, delivery splitting).
• Information plays a key role in pull systems in general, and in our customized systems in

particular. However, some patterns of information flow (superposition of control loops),
may be difficult to implement. It is particularly difficult when information is materialized
through cards (as in Kanban). The use of electronic signals is one possible solution that
insures pull system integrity (cards can be lost or forgotten) and instantaneous transmission
of information. Such implementation issues should be investigated in detail.

• Because of computational limitations we could not exploit the full potential of robust

customization One perspective is to try and identify robust patterns of pull control.  For this
purpose we might use the same technique as for customization in known production

environments, that is, perform customization for a variety of production systems Since the
main challenge is to reduce computational costs, we might also use parallel computing or
find a more efficient risk assessment technique (replace LHS by another technique).

We conclude this dissertation by considering possible implications of our research in
education We see two main points that disserve a specific attention.

First, in many course books dealing with production control and inventory management,
pull control is limited to Kanban systems only. Yet, other types of pull systems yield much

higher levels of performance, for equivalent levels of complexity. We showed in this
dissertation that it is extremely difficult to  say a priori which type  of pull system  is  best  for

a given production environment. The three patterns identified in Chapter 4 give a good
basis for the design of pull systems Students in the field of production control and
inventory management should have a broader view ofpull control than Kanban only

Second, simulation is often used as a magic tool that always yields results. Yet, a
common saying among computer users is 'garbage in, garbage out', which means that the
quality of input data has the utmost influence on the outcome of simulation. In practice,

however, it is rare to know input data with certainty The three sources of uncertainty
identified in the dissertation can be identified in any simulation study. Yet, simulation often
supports critical decisions such as system design that involve major financial investments.

Thus, underestimating uncertainty might be extremely risky Simulation practitioners
should be aware of such risks, and should be able to quantify them.  A key role of education



101

in simulation is to develop this awareness and provide the right tools for dealing with risks

and uncertainties. A possible solution could be to include systematically sensitivity and

uncertainty analyses in simulation teaching.
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Appendix 1. Demonstration of Property 2
The  idea of Property 2  is to search  for the maximal number of parts authorized  for

production by the control loops on the line portion of interest, that is, control loops that start

and  finish in that portion. This maximal number depends on the number of cards circulating
in the control loops in that portion. Thus we are looking for the control loops in the line

portion that taken together, constraint the flow of parts the  most
We denote by MAX(i, i+n) the maximal number of parts allowed in stages i to i+n by

the control loops starting and finishing between stages i and i+n. We will demonstrate by

generalized recurrence the following proposition:

(Po)  MAX(i, 0 = ki„
(Pn)   MAX(i, i+n) = Min(k,+nu, Minisi<i.,1 [MAX(i, 0 + k,+n,1+1]), Vn + 0

Demonstration

•   (Po). Only one control loop starts and finishes at stage t, namely, CL, ,. Thus the maximal

number of parts allowed in stage i by the control loops starting and finishing at stages i  is

equal to the number of cards circulating in CL,;, Therefore, Vi, MAX(i, 0 = k,;,

•   (Pi). We are considering a two-stage line portion as shown in Figure 49
The maximal number of parts allowed in stages i  and  i +  1  by the control loops starting  and

finishing between stages i and i+l i s either fixed locally by CL... and CL,+i.,+1 together or

by CL,+i;, only. The control mechanism that has the lowest number of cards yields the

strongest constraint.

Thus, MAX(i, i + 1) = Min (k,+1;„ ki,i + k,+1;,+1)
Since (Po): Vi, MAX(i, 0 = k,;i, we have ki,i + k,+1;,+1 = MAX(i, i) + k,+1;,+1
So MAX(i, i + 1)      = Min (k,+I,i, MAX(i, 0 + k,-1.,+1)

= Min (k,+1;i, Mint-, IMAX(i, 6 + k,+id+1])

= Min (k,+ i,i, Min, 51<,+ 1 [MAXO, 0 + k,+ 1.1+1])

Therefore (Pl) is true

CLUL  --  -
1 - I,1-       CL.1.'2'

Stage i Stage i+1

Figure 49. Two-stage line portion and control loops starting and finishing between

stages i and , +1

•  (Pn). We suppose that (Pm) is true for m < n, and we want to prove that (Pn) is true. By
assumption (Pn.t) is true. When adding stage i+n t o the portion of the line including stage i

to stage i+n-l,w e add the control loops starting at stage , +n t o all preceding stages; see
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the bold arrows in Figure 50 Since parts at stage i +n have cards from at least  one of the n
control loops starting at stage i + n, we know that one of these control loops contributes to
MAX(i,  i+n).  If CL,+n,+n  is this control  loop,  then  we  know that the maximal number  of
parts allowed in stage i+n b y the control loops starting and finishing between stages i and

i + n is k,+n.,+M; the contribution to MAX(i, i+n) by the remaining stages, that is, stages i to
i+n-l,i s the maximal number ofparts allowed in stages i t o, +n-l b y t h e control loops

starting and finishing between stages i  and  i+n-1:  MAX(i, i+n-1) By extension,  if
CL,+„,m is the control loop that contributes to MAX(i, i+n), then the contribution to
MAX(i, i+n) by the remaining stages (that is, stages i t o i+n-m)i s MAX(i, i+n-m-1). In
total, there are n possibilities and MAX(i, i+n) is the possibility that has the smallest
number of cards:

MAX(i, ,+n) = Min {MAX(i, *+n-1) + k,+n,i+n;   .;
MAX(i, 1+n-m-1) + k,+n:,+n.m,
MAX(i, 0 + k,+n·,,+1,
k,+n.i}

We define l=i+ n-m-1; since m varies between zero and n-1 in the preceding equality,
l varies between  i  and  i+n-1.  Then,  MAX(i, 1+n) = Min {MAX(i, 0 + k,+n;1+1;ist<t..

k,+n.,}  Since k,«, is independent of l, we obtain the same formula as (Pn) Therefore, (Pn) is
true

-- --

Stage i ...   Stage i+71-1 Stage i+n

L-YJ
MAX(i, n-2)

C                 ,
Y

MAX(i, n-1)

Figure 50. Effect of adding one stage to the line portion

Thus we demonstrated through generalized recurrence that (Pn) is true for all n  Let us

consider the  case n > 0.  Then, MAX(i, 1+n) = Min(k,+n „  Min sts,+n  [MAX(i, 0 + k,+„:1+1])
Our objective is to determine a value for the number of cards k,+n ,  in  the  control  loop

CL,In.,·  If k,+n., is strictly larger than Min
:El<I+n [MAX(i, 0 + k,+„.1+1], then the control loop

CL,+<, does not constraint the flow of parts and it does not need to be implemented

However, if k,+.;, is smaller than Min [MAX(i, 0 + k,+n:t.i],  then the control loop
15/< 1+11

does constraint the flow of parts.
During the third  part of the demonstration,  that  is (PA,  we  saw that the added stage i  +  n

can contribute only once to MAX(i, 1+n) Since MAX() is a recursive function, this
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statement holds also for each stage in the line: each stage contributes only once to MAX()
This means that two control loops considered for the computation of MAXO can not
control the same stage, they cannot overlap. Therefore,  Min. st«.+.. [MAX(i, 0 + k.«·1+1]  is
equal to the number of cards that can be found in the most constraining non-overlapping

sequence of loops controlling all stages in the line.
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Appendix 2. Central composite and Plackett-Burman designs

Design of Experiments (DOE) is the science of selecting factor combinations, among a
large number of possibilities, to be studied experimentally. The motivation for this selection
is that experimentation is often time consuming; therefore, the number of experiments to be

performed should be reduced as much as possible This reduction is only possible by
assuming particular types  of the relationships among the factors (inputs  of the experiment)
and the measured results (outputs ofthe experiment): these relationships may be expressed

as mathematical equations (for example, regression models) Depending on the
assumptions, the required number of experiments can be limited more or less. Statistical
techniques are required to check the validity of the assumptions, and to estimate the
mathematical models.

This appendix gives a few examples of two types of experimental designs, namely,

Plackett-Burman and central composite More details can be found in Kleijnen (1987), pp
312-314 and pp. 329-336 respectively. DOE and its applications are discussed thoroughly

in Kleijnen (1998)

• Plackett-Burman designs
Plackett-Burman designs minimize the number of experiments for studying first-order

(main) effects. Such designs are built through generators (Plackett and Burman, 1946) such
as shown in the following (N is the maximum number of factors that can be studied with
the design).
N= 12 ++-+++---+-
N=20 ++--++++-+-+----++-
N=24 +++++-+-++--++--+-+----
The generator corresponds to the first column  of the design.  The next columns are obtained
through cyclical permutation of the generator.  One  line of minuses is added to the design

These example generators show that the number of factors is a multiple of four; otherwise,

"dummy" factors can be introduced

• Central composite designs
Central composite designs combine a factorial design, a star design (one factor at a time
design), and a central point An example for three factors (say) X, Y, and Z is shown in the

following table, where a #l,a#0

Run #      X         Y         Z
1     +1    +1    +1

2     -1    +1    +1

3 +1 -1          +1
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2  factorial      4        -1        -1       +1
Design 5 +1 +1 -1

6     -1    +1    -1

7    +1    -1     -1

8          -1          -1          -1
9          +a          0           0
10     -a     0     0

Star       11      0     +a     0

Design 12 0 -a      0

13 0 0     +a

14         0          0         -a
Central point 15 0 00



109

Appendix 3. Stochastic dominance theory

The theory of stochastic dominance (Wolfstetter 1996) can be used to rank the four PPCSs,
as follows. Let X and Y be two random variables with x and y corresponding realizations

• Xfirst-order stochasticaUy dominates Y (X EFSD Y) if Pr{X>z} 2 Pr{Y>z}  for all z.  X is
unanimously preferred to  Y by all agents (managers for instance) with monotone increasing
utility functions if and only  if X kFDS Y.  A utilityfunction is a mathematical expression that
assigns a value to all possible choices. In investment theory the utility function is the
expression ofpreferences with respect to perceived risk and expected return. The higher the
values  of the utility function, the better

Example of first-order stochastic dominance

For the example shown in Figure 51 we clearly have G(z) 2 F(z) for all z (where F and
G are the cumulative probability functions of X and Y respectively), which is equivalent

to Pr{YEz} 2 Pr{Xsz}, for all z and to Pr{X>z} 2 Pr{Y>z}, for all z
Thus, X is unanimously preferred to Y by all agents with monotonic increasing utility
functions. We can interpret this result as follows: since the utility function is monotone
increasing, we are looking for high probabilities of realization for high values of the
random variables  Thus, the steeper the cumulative function for high values of the
random variables, the better Ideally, we would like to have Pr{ X - b} = l

We note that the preference ranking is inverted if the utility function is monotone
decreasing. Thus, in the example of Figure 51 one would prefer Y to X, because low
realization values are more interesting

F,G.

G(z)-P«YSz)----------/  \
C \\     ,\ /\/

F(z) = Pr(XSz)  - - - 7' - - - - - -%-\  / \\
a           z           b' xy

Figure    5 1 X first-order stochastically dominates Y (monotone increasing utility
function)

• X second-order  stochastically  dominates Y  (X kssD Y) if
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*11 Pr{X > x}dr k  a Pr{Y>y}dy, for allk (15)

X is unanimously preferred to Y by all agents with monotone increasing and strictly
concave utility functions if and only if X kssD Y. Y is called "stochastically more risky"
than X. The strictly concave condition on the utility function expresses the risk aversion of

the agent.

The inequation (15) can be reformulated as follows:   Pr{YS y}* 2 "II Pr{Xsx}dr, for

all k.  Thus, X ksSD Y if and only ifthe area below the cumulative probability function of Y

is larger than for X, on any [a; k] interval.

Example of second-order stochastic dominance
For the example shown in Figure 52 we clearly have Sx(k) 2 Sy(k) for all k.

Thus, Y second-order stochastically dominates X; hence Y is unanimously preferred to

X by all agents with monotone increasing and strictly concave utility functions.

F,G -

P,

I sx(k).1 Pr{X. x}dx

AMV   SY(k)=j, Pr{YEyjdy
pk

a             k                     b
' X,Y

Figure 52. Y second-order stochastically dominates X (monotone increasing and strictly
convex utility function)
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Samenvatting (summary in Dutch)
Dit proefschrift behandelt het ontwerp van puU systemen voor productielijnen met 66n
product, waarbij we ons onderzoek beperken tot productie op voorraad. Verder behandelen

we alleen de goederenstroom binnen een bedrijf We nemen dus aan dat grondstoffen en
onderdelen continu en onbeperkt aangevoerd worden.

Het proefschrift is als volgt ingedeeld. In hoofdstuk 2 geven we een overzicht van de

pull systemen die in de literatuur behandeld worden, waarbij we een nieuwe classificatie
voorstellen. Hierbij komen twee vragen naar voren, namelijk welk pull systeem men moet
kiezen en hoe de verschillende parameters van het gekozen systeem ingesteld moeten

worden. We formuleren ons ontwerpprobleem op verschillende manieren, afhankelijk van
de veronderstellingen die we bij het modelleren van de productieomgeving maken. (De
productieomgeving wordt nader gedefinieerd in hoofdstuk 3 tot en met 6). In hoofdstuk 3
en 4 nemen we de productie-omgeving als gegeven aan, in hoofdstuk 5 en 6 onderzoeken

we productieomgevingen die niet met zekerheid bekend zijn en dynamisch gedrag kunnen

vertonen. Aan het eind van hoofdstuk 2 tonen we de noodzaak van nieuwe

ontwerpbenaderingen aan
In hoofdstuk 3 tonen we aan dat de keuze van een specifiek pull systeem een complex

probleem is dat in de literatuur niet bestudeerd is. Onze bijdrage is het ontwerp van een
generiek model, waarin alle in hoofdstuk 2 beschreven modellen gerepresenteerd kunnen
worden. Om het generieke systeem toe te passen op een gegeven productiesysteem en een

gegeven productieomgeving, stellen we een methode voor die gebaseerd is op evolutionaire

berekening en simulatie; we noemen deze methode customization ofwel maatwerk. Het
resultaat geeft aan welk pull systeem moet worden geimplementeerd De voordelen van dit
maatwerk worden getoond in een productiesysteem dat aan de literatuur is ontleend. Voor

dit systeem zijn de optimale configuraties voor verschillende pull-systemen al eens bepaald.
We hebben echter een pull-systeem ontdekt dat significant betere resultaten oplevert dan
het beste tot nu toe beschreven systeem.

In hoofdstuk 4 vergroten we ons inzicht in customization en de voordelen daarvan door
onze methode op verschillende soorten productielijnen toe te passen We bepaten deze

soorten op grond van de literatuur, en gebruiken proefopzetten om een steekproef van
twaalf configuraties van productielijnen te genereren. Op elke configuratie passen we de in

hoofdstuk 3 beschreven methode toe. Uit de resultaten is een aantal conclusies te trekken

met betrekking tot het resultaat en de complexiteit van verschillende pull-structuren
In hoofdstuk 5 wijzen we drie oorzaken van onzekerheid aan die bij het ontwerp van

pull-systemen met behulp van simulatie kunnen ontstaan: (i) stochastische onzekerheid als

gevolg van het gebruik van (pseudo)toevalsgetallen in onze discrete simulatie, (ii)
subjectieve onzekerheid als gevolg van de noodzaak om stochastisch gedrag te modelleren

met behulp van kansverdelingen die op steekproeven of meningen van experts gebaseerd

zijn en (iii) dynamische onzekerheid als gevolg van veranderingen in de productieomgeving
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in de loop van de tijd. Met een aantal eenvoudige voorbeelden illustreren we de mogelijke

gevolgen van deze drie oorzaken van onzekerheid, en we leggen de nadruk op de noodzaak

om het effect van deze onzekerheden te bepalen en in het ontwerpproces op te nemen.

Hieraan leveren we een bijdrage met een nieuwe methode die gebaseerd is op
onzekerheidsanalyse (Uncertamo,/RiskAnalysis: URA) en Taguchi's robuuste ontwerp.

In hoofdstuk 6 passen we onze methode toe op het ontwerp van pull-systemen onder

onzekerheid. We geven twee criteria voor robuustheid, 66n die gebaseerd is op de service-

graad en 66n die gebaseerd is op de hoeveelheid onderhanden werk ( Work in Progress :

WIP), en we geven een exacte definitie van het robuuste maatwerk probleem. Vervolgens

bekijken we hoe de robuustheid van pull-systemen vergeleken moet worden. We

bestuderen de relatieve prestaties van vier pull-systemen met twee vergelijkingsmethoden,

namelijk stochastische dominantie en betrouwbaarheidsellipsoiden die met bootstrapping

geconstrueerd zijn. We komen tot de conclusie dat een beheersingssysteem alleen kan

worden gekozen als managers hun houding tegenover risico bekend maken en hun

voorkeuren opgeven. Om managers houvast te geven onderzoeken we het effect van de

parameters die zij kunnen beheersen (het aantal kanbans, de kansverdelingen die in URA
gebruikt worden en de parameters met betrekking tot hun houding tegenover risico en hun

voorkeuren). De volledige methode voor robuust maatwerk passen we toe op het

productiesysteem dat door Bonvik et al. (1997) bestudeerd is

Hoofdstuk 7 bevat een samenvatting van de belangrijkste conclusies van dit proefschrift

en richtlijnen voor verder onderzoek.
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L'objet de cette thtse est la conception de systtmes gestion en flux tird pour des lignes

production produisant un seul type de pilces. Nous nous intdressons plus particulitrement A
des systumes produisant pour stock. La principale hypothuse que nous faisons est de
considdrer uniquement les flux de production internes aux lignes, c'est A dire que
t'approvisionnement en matitres premitres et composants est continu et infini.

La thdse se ddcompose de la fa on suivante. Dans le Chapitre 2, nous passons en revue

les types de gestion en flux tirds ddveloppts dans la littdrature et nous proposons un
nouvelle classification. Deux probltmes se posent : quel type de gestion choisi, puis

comment r6gler les divers param res de la gestion choisie ? Cette problumatique  de
conception est au coeur de cette thase. Nous distinguons plusieurs formulation de notre

probldmatique selon les hypothtse faite quant A la moddlisation de l'environnement de
production (que nous ddfinissons plus pr6cisemment dans les Chapitres 3 A 6: dans les
Chapitres 3 et 4 nous consid6rons l'environnement de production comme etant donnd, alors

que dans les Chapitres 5 et 6 nous audions des environnements qui ne sont pas connus avec

certitude et peuvent avoir un comportement dynamique) Nous concluons le Chapitre 2 en
montrant la ndcessitt de d6velopper de nouvelles approches de conception.

Dans le Chapitre 3, nous montrons que stlectionner un systdme de gestion en flux tir6s
parmi toutes les possibilitts, est un probldme complexe qui n'a pas lt<6 6tudid dans la
litttrature. Notre contribution A ce probltme rdside dans la conception d'un mod6le

gdntrique, c'est A dire une repr6sentation commune A l'ensemble des gestions en flux tirds
identifi6s au Chapitre 2. Nous proposons un proctdure  basde sur l'algorithmique
tvolutionniste et la simulation afin de configurer notre systeme gdn&ique pour une ligne de

production et un environnement donn6s ; nous appelons cette proctdure conception sur
mesure. Le rdsultat de cette procddure quel type de gestion en flux tirds doit Btre mise en
place. Les avantages de notre conception sur mesure sont illstrds par un example tird de la

litt6rature, pour lequel les configurations optimales de plusieurs types de gestion ont dtjA
6t6  d6termin6s: nous aboutissons  A  un  systtme  dont les performances  sont
significativement meilleures que le meilleur syst6me de la littdrature

Dans le Chapitre 4, nous analysons plus en ddtail le principe de conception sur mesure et

ses avantages en appliquant notre mdthodologie A un dchantillon de lignes de production.
Nous construisons cet tchantillon A partir d'une synthtse des lignes audites dans la
litttrature et nous utilisons la technique des plan d'expdrience pour gdndrer douze

configurations de lignes de production Pour chacune de ces lignes, nous appliquons la
m6thode de conception sur mesure prdsentte au Chapitre 3. Les rdsultats fournissent  de

pr6cieuses conclusions quant A la structures des meilleurs systdmes de gestion en flux tirds,

leur performance et leur complexit6.
Dans le Chapitre 5, nous identifions trois sources d'incertitude pouvant apparaitre lors

de la conception par simulation de systdmes de gestion de production en flux tires : (i)
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incertitude stochastique, causde par l'utilisation de nombres (pseudo)aldatoires dans nos
simulations A 6v6nements discrets, (ii) incertitude subjective, qui dsulte de la ndcessitt de
mod61iser les comportements stochastiques par des distributions de probabilitts bas6e sur
des dchantillon de donn6es ou des opinions d'experts, et (iii) incertitude dynamique, due
aux fluctuations de l'environnement de production au cours du temps. Au travers
d'exemple simples, nous illustrons les effets dventuels de ces trois source d'incertitudes et
nous soulignons la necessitd d'dvaluer et d'intdgrer ces effets dds la phase de conception.
Notre contribution A ce probltme est le ddveloppement d'une proc6dure bade sur les
techniques d'analyse de risques/incertitudes et de conception robuste (Taguchi).

Dans le Chapitre 6, nous appliquons notre proddure A la conception de systames gards
en flux tirds sous incertitude. Deux crittres de robustesse sont spdcifids - l'un bas6 sur la
qualit6 de service et l'autre sur la quantit6 d'en-cours - et nous donnons une d6finition
rigoureuse du probltme de conception robuste sur mesure Nous nous attachons alors A

comparer la robustesse de quatre systtmes gdrds en flux tirds. Pour cela, nous utilisons deux
proctdure de comparaison : dominance stochastique d'une part et ellipsoides de confiance
construits par bootstrapping. Nous concluons que le choix d'un syst6me g6r6 en flux tir6s
selon des critdres de robustesse ne peut se faire que si les d6cideurs sptcifient leur attitude
vis A vis des risques et cat'act6risent leurs prdf6rence. Afin d'aider les ddcideurs dans leur
choix, nous 6tudions l'effet des divers paramares qu'ils contr61ent (les nombres de cartes,
le type de distributions de probabilitts utiliscfs dans l'analyse de risques/incertitudes, et

plusieurs paramares qui permettent de spacifier   l'attitude   des   dacideurs   vis   A   vis   des
risques et de caracturiser leurs prtfdrence). Nous appliquons la procddure de conception
robuste sur mesure compltte A un exemple de systtme de production traita dans Bonvik et
al. (1997)

Dans le Chapitre 7 nous rdsumons les principales conclusions de cette thtse et nous
donnons plusieurs perspectives de recherche.
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