2,448 research outputs found

    Battery Pack Cells Mon itoring for Intelligent Charging

    Get PDF
    This dissertation intends to create a system capable of cell charging, cell balancing or both at the same time for batteries with multiple cells connected in series. It also tries to understand why there is only few literature connected with cell balancing and cell charging at the same time. For that purpose, this dissertation presents a review on the state of the art of many concepts related both to balancing and charging in order to pick the right methods and equipment to achieve the objectives of this work. This dissertation includes literature review on batteries, cell balancing methods and topologies, cell charging methods and a small review on state of charge estimation methods. Later on, this document studies and explains hardware and software requirements and choices in order to understand the final developed circuit. Lastly, development difficulties, results and conclusions are presented.Esta dissertação pretende criar um sistema capaz de carregar, balancear ou ambos em simultâneo num pack com diversas células ligadas em série. Tenta ainda perceber a razão de haver tão pouca bibliografia que junte em simultâneo carregamento e balanceamento de baterias. Para alcançar estes objetivos, esta dissertação conta com uma revisão do estado da arte de vários temas relacionados tanto com balanceamento como com carregamento de forma a perceber os métodos e equipamentos mais adequados para implementar. A dissertação inclui revisão bibliográfica em baterias, métodos de balanceamento e suas topologias, métodos de carregamento de baterias e ainda alguma revisão sobre métodos de estimação de estado de carga. Posteriormente, este documento estuda e explica os requisitos de software e hardware e as escolhas feitas para o desenvolvimento do circuito. Finalmente apresentam-se as dificuldades de desenvolvimento encontradas, os resultados e ainda algumas conclusões

    MODELING AND CONTROL OF DIRECT-CONVERSION HYBRID SWITCHED-CAPACITOR DC-DC CONVERTERS

    Get PDF
    Efficient power delivery is increasingly important in modern computing, communications, consumer and other electronic systems, due to the high power demand and thermal concerns accompanied by performance advancements and tight packaging. In pursuit of high efficiency, small physical volume, and flexible regulation, hybrid switched-capacitor topologies have emerged as promising candidates for such applications. By incorporating both capacitors and inductors as energy storage elements, hybrid topologies achieve high power density while still maintaining soft charging and efficient regulation characteristics. However, challenges exist in the hybrid approach. In terms of reliability, each flying capacitor should be maintained at a nominal `balanced\u27 voltage for robust operation (especially during transients and startup), complicating the control system design. In terms of implementation, switching devices in hybrid converters often need complex gate driving circuits which add cost, area, and power consumption. This dissertation explores techniques that help to mitigate the aforementioned challenges. A discrete-time state space model is derived by treating the hybrid converter as two subsystems, the switched-capacitor stage and the output filter stage. This model is then used to design an estimator that extracts all flying capacitor voltages from the measurement of a single node. The controllability and observability of the switched-capacitor stage reveal the fundamental cause of imbalance at certain conversion ratios. A new switching sequence, the modified phase-shifted pulse width modulation, is developed to enable natural balance in originally imbalanced scenarios. Based on the model, a novel control algorithm, constant switch stress control, is proposed to achieve both output voltage regulation and active balance with fast dynamics. Finally, the design technique and test result of an integrated hybrid switched-capacitor converter are reported. A proposed gate driving strategy eliminates the need for external driving supplies and reduces the bootstrap capacitor area. On-chip mixed signal control ensures fast balancing dynamics and makes hard startup tolerable. This prototype achieves 96.9\% peak efficiency at 5V:1.2V conversion and a startup time of 12ÎĽs\mu s, which is over 100 times faster than the closest prior art. With the modeling, control, and design techniques introduced in this dissertation, the application of hybrid switched-capacitor converters may be extended to scenarios that were previously challenging for them, allowing enhanced performance compared to using traditional topologies. For problems that may require future attention, this dissertation also points to possible directions for further improvements

    The star-switched MMC (SSMMC): a hybrid VSC for HVDC applications

    Get PDF
    This paper presents a new hybrid VSC topology (the Star-Switched MMC) – suitable for HVDC applications. The basic structure and operating principles of the topology are described. Control strategies that regulate the power exchanged between the VSC, the AC network and the DC network are presented. A modulation strategy ensuring appropriate switching of the individual chain-link sub-modules and a capacitor voltage balancing algorithm that ensures the capacitor voltages are maintained within the required tolerance are discussed. Results from a simulation model are presented to validate the expected performance of the converter and the proposed control schemes

    Design Space Evaluation for Resonant and Hard-charged Switched Capacitor Converters

    Get PDF
    USB Power Delivery enables a fixed ratio converter to operate over a wider range of output voltages by varying the input voltage. Of the DC/DC step-down converters powered from this type of USB, the hard-charged Switched Capacitor circuit is of interest to industry for its potential high power density. However implementation can be limited by circuit efficiency. In fully resonant mode, the efficiency can be improved while also enabling current regulation. This expands the possible applications into battery chargers and eliminates the need for a two-stage converter.In this work, the trade-off in power loss and area between the hard-charged and fully resonant switched capacitor circuit is explored using a technique that remains agnostic to inductor technology. The loss model for each converter is presented as well as discussion on the restrained design space due to parasitics in the passive components. The results are validated experimentally using GaN-based prototype converters and the respective design spaces are analyzed

    Exploring the PowerDAC : an asymmetric multilevel approach for high-precision power amplification

    Get PDF

    Advanced control strategies for vehicle to grid systems with electric vehicles as distributed sources

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This thesis focuses on the control and implementation of the vehicle to grid (V2G) system in a smart grid. Important issues like structure, principle, performance, and control of energy storage systems for electrical vehicles and power systems are discussed. In recent decades, due to rapid consumption of the earth’s oil resources, air pollution and global warming (a result of the “greenhouse effect”), the development of electrical vehicles (EVs), hybrid electrical vehicles (HEVs) and plug-in electric vehicles (PEVs) are attracting more and more attentions. In order to provide regulation services and spinning reserves (to meet sudden demands for power), V2G services have a promising prospective future for grid support. It has been proposed that in the future development, such use of V2G could buffer and support effectively the penetration of renewable sources in power systems. This PhD thesis project aims to develop novel and competitive control strategies for V2G services implementation for EVs in smart electrical car parks or Smartparks. Through a comprehensive literature review of the current EV development and energy storage systems used for EVs, several energy storage technologies are compared and a hybrid energy storage system consisting of batteries and supercapacitors is proposed. This system combines effectively the advantages of high energy density of battery banks and high power density of supercapacitor banks. Supercapacitor and battery cells are tested in the laboratory using different charging and discharging procedures. Different supercapacitor and battery models are compared, discussed, and verified using the experimental data. For the energy storage system package, a cell voltage balance circuit is developed for the supercapacitor module. The principle of this circuit is also applicable to the battery module. The proposed balancing method is simple and reliable, and presents good performance for voltage balancing to prolong the lifetime of the energy storage system. The essential technology of V2G is based on the bidirectional power flow control of the charger. Besides charging the EV batteries, it can utilize the stored energy to feed electricity back to the power grid when there is a need. Three-phase AC/DC converters have been extensively used in industrial applications and also the V2G chargers. The power converters used for the V2G services are required to operate more efficiently and effectively to maintain high power quality and dynamic stability. Then the AC/DC converter used for the bidirectional V2G charger is developed and modelled. For the control aspect of AC/DC converter, a new control approach using a model predictive control (MPC) scheme is developed for V2G applications. With the advanced control strategy, the EVs in Smartparks can exchange both active and reactive power with the grid flexibly. The MPC algorithm presents excellent steady-state and dynamic performance. When a very large number of EVs are aggregated in Smartparks, the charging and discharging power should be a significant viable contributor to the power grid. New challenges will be introduced into the power system planning and operation. While discharging, the V2G power brings more potential benefits to enhance the power quality and system reliability. Using V2G services, EVs can provide many grid services, such as regulation and spinning reserve, load levelling, serving as external storage for renewable sources. An effective approach to deal with the negligibly small impact of a single EV is to group a large number of EVs. An aggregator is a new player whose role is to collect the EVs by attracting and retaining them so as to result in a MW capacity that can beneficially impact the grid. From the aggregator’ decision, the EVs are determined by the optimal deployment. The aggregator can act as a very effective resource by helping the operator to supply both capacity and energy services to the grid. By supplying active power and reactive power from EVs, the aggregation may be used for frequency and voltage regulation to control frequency and voltage fluctuations that are caused by supply–demand imbalances. Different case studies of EVs’ support to grid are carried out; the results show that V2G services can stabilize the frequency and voltage variations and have control flexibilities to fulfil system reliability and power quality requirements. The main attractiveness of V2G to consumers is that it can produce income to the vehicle owner to maximize car use. On the other hand, the utility companies can use EVs to stabilize the frequency in the power system and improve the utility operation. It also makes the utility companies more efficient with less loss because the energy is generated locally. From this point of view, V2G is a source of revenue in both electricity and transportation system, and it can help the environment reduce pollution and global warming. Various data of V2G systems have been collected for economic analysis, such as EV battery capacities, charging time, and grid electricity price and load demands. Then for the economic issues related to V2G services, optimal charging based on different objectives is presented. Dumbing charging, maximization of the average state of charge (SOC), maximum revenue and minimum cost are compared. Economic issues are a very special aspect of the V2G technology and how a large profit from V2G services can be produced is the main point of attraction to vehicle owners. Significant conclusions based on the research findings are drawn, and possible future works for further development including commercialisation of the V2G technology are proposed

    A Survey, Classification and Critical Review of Light-Emitting Diode Drivers

    Get PDF
    Based on a survey on over 1400 commercial LED drivers and a literature review, a range of LED driver topologies are classified according to their applications, power ratings, performance and their energy storage and regulatory requirements. Both passive and active LED drivers are included in the review and their advantages and disadvantages are discussed. This paper also presents an overall view on the technical and cost aspects of the LED technology, which is useful to both researchers and engineers in the lighting industry. Some general guidelines for selecting driver topologies are included to aid design engineers to make appropriate choices.published_or_final_versio

    A Transformerless PCB Based Medium-Voltage Multilevel Power Converter with A DC Capacitor Balancing Circuit and Algorithm

    Get PDF
    This dissertation presents a new method of constructing a transformerless, voltage-sourced, medium-voltage multilevel converter using existing discrete power semiconductor devices and printed circuit board technology. While the approach is general, it is particularly well-suited for medium-voltage converters and motor-drives in the 4.16 kV, 500 - 1000 kW range. A novel way of visualizing the power stage topology is developed which allows simplified mechanical layouts while managing the commutation paths. Using so many discrete devices typically drives cost and complexity of the gate-drive system including its control and isolation; a gate-drive circuit is presented to address this problem. As with most multilevel topologies, the dc-link voltages must be balanced during operation. This is accomplished using an auxiliary circuit made up of the same power stage and an associated control algorithm. Experimental results are presented for a 4.16 kV, 746 kW, five-level power converter prototype. This dissertation also analyzes a new capacitor voltage-balancing converter along with a novel capacitor voltage balancing control algorithm. Analysis of the inverter system provides a new description of capacitor voltage stability as a function of system operating conditions

    A Single-Source Nine-Level Boost Inverter With a Low Switch Count

    Get PDF
    • …
    corecore