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Abstract— Based on a survey on over 1400 commercial LED 

drivers and a literature review, a range of LED driver 

topologies are classified according to their applications, power 

ratings, performance and their energy storage and regulatory 

requirements. Both passive and active LED drivers are 

included in the review and their advantages and disadvantages 

are discussed. This paper also presents an overall view on the 

technical and cost aspects of the LED technology, which is 

useful to both researchers and engineers in the lighting 

industry. Some general guidelines for selecting driver 

topologies are included to aid design engineers to make 

appropriate choices. 

I. INTRODUCTION 

Light-emitting-diodes (LED) are gaining acceptance in 
the lighting market and replacing traditional lighting sources 
in a growing list of decorative, display and public lighting 
applications. [1]–[5]. The four major factors supporting the 
LED’s increasing popularity are its (i) long lifetime [6]; (ii) 
mercury-free structure, [7], [8]; (iii) energy saving property 
(i.e. high system luminous efficacy exceeding 150 lm/W) 
[9], [10] and (iv) flexibility of color mixing and control [4], 
[11]. Unlike incandescent and discharge lamps, LEDs are 
semiconductor devices that are highly sensitive to electrical, 
thermal, and photonic variations. LED systems should be 
properly designed and operated [1], [2], [6]–[8], [12]–[14], 
in order to fully utilize their potential benefits.  Several 
distinctive features of LEDs need special attention. Their 
diode-like V-I characteristic implies that a slight variation of 
the applied voltage across an LED can cause a large 
fluctuation in its current and subsequently its luminous 
outputs. Therefore, LED should be powered by a current 
source instead of a voltage source. Another important 
feature is the temperature dependent characteristics of their 
luminous efficacy and color spectra. Luminous efficacy 
generally decreases with junction temperature [13], which 
also causes color temperature shift and complicates color 
control [14]. 

 The complex interactions of the photometric, electric, 
thermal and chromatic aspects of an LED system have to be 

understood before any LED system can be optimally 
designed. The recently developed photo-electro-thermal 
(PET) theory has provided a platform for studying these 4 
aspects of the LED performance.  LED systems should be 
designed to meet the technical specifications within 
practical constraints such as costs, form factors, reliability 
and international regulations such as the Energy Star 
Program and IEC Standards [15], [16]. In this regard, an 
appropriate choice of an LED driver to suit a particular 
application is essential. Since most of the LED drivers are 
based on the switched mode power converter topologies 
previously developed as voltage sources, it is necessary to 
consider the suitable circuit topologies that can be used as 
current sources for LED applications. Based on a survey of 
about 1462 LED products conducted with the Digikey 
system [17] in September 2014 and a literature review, this 
paper aims at providing a classification and an updated 
overview of LED drivers. The major issues of concern 
covered in the paper include 

 The current status of LED drivers in existing market 
including the correlations between applications, 
electrical parameters (output voltage and current 
ratings), safety measures (e.g. isolations) and cost 
with respect to power ratings. 

 The trend and design challenge (preference) of LED 
drivers such as international regulations and 
practical concerns (e.g. factors affecting the lifetime 
and reliability of LED systems, driving/ dimming 
methods). 

 Classification of LED drivers: Factors affecting the 
lifetime of LED systems such topologies with or 
without electrolytic capacitors, current balancing for 
parallel LED strings, and voltage and current 
stresses on circuit components are highlighted. 

  Guidelines for selecting an appropriate LED driver 
for a given application. 
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TABLE I  TYPICAL POWER DISTRIBUTION FOR VARIOUS LED APPLICATIONS 

Power range 1-25 W 25-100 W >100 W 

Power Class Low Medium High 

Applications Ornament/Interior Lighting Indoor/Outdoor Lighting 
Outdoor Lighting, Street Light, 

Floodlight 

Application 

examples 

Light Strip, R-Lamp, 

Incandescent Replacement, 

Replacement of CFL Bulb, MR 
Lamp and PAR Lamp 

Down Light, L-Light, 
Flat Light, PAR Replacement, 

CFL Replacement, LFL Replacement 

HID Floodlight Replacement, 

HID Street Light Replacement 

 

 

Fig. 1. LED voltage distribution at different power ratings (a result based on 1462 commercial LED drivers).

II. CURRENT STATUS OF LED DRIVERS 

Based on the survey on existing commercial LED 
drivers, the distributions of these products according to their 
applications, output voltage ratings, galvanic isolation and 
cost are reviewed. These distributions reflect the existing 
market needs and imply different specifications for different 
applications. Such distributions are expected to continue to 
expand as LED products enter new lighting markets. 

A. Power Ratings and Applications 

Based on the commercial data collected, the power range 
of the LED drivers can be broadly divided into three groups, 
namely low power (<25W), medium power (25W–100W) 
and high power (>100W). Typical applications 
corresponding to their power ratings are tabulated in Table I. 
It is noted that the power ratings have certain correlations 
with the applications. For ornament/interior lighting 
applications, LED is good replacement for incandescent 
lamp and compact fluorescent lamps. The power ratings for 
such retrofit applications are usually low and below 25 W. 
For general indoor lighting applications (including down 
light, L-light, flat light and the replacement of several high 
power traditional lighting sources) where the required 
luminous output is much higher, the power ratings are 
typically within the medium power range of 25 W to 50 W. 
For outdoor applications such as street lighting and 
floodlight, for which very high luminous output is usually 
required, the power ratings are from 50 W up to several 
hundred watts. These applications fall in the medium power 
or high power class. The broad grouping of the applications 

in Table 1 will facilitate the discussion on the choice of 
LED drivers and regulatory requirements in the following 
sections. 

B.  Output Voltage and Power Ratings 

The ratings of the output DC voltage and current are 
important factors that affect the selection of the LED driver 
topologies. These ratings are load dependent. LEDs can be 
arranged in series or parallel, or a combination of both. Each 
situation results in its own voltage/current rating. The 
scenario becomes even more diverse considering the vast 
variety of LED devices available in the market with 
different voltage and current ratings. Based on the data 
obtained in the survey, the distributions of the output 
voltage against the power ratings of the 1462 LED products 
from 3 W to 300 W are displayed with a nonlinear scale in 
Fig. 1. (Note: some data are identical and are overlapped in 
Fig. 1) Some important observations are listed as follows: 

 The output voltage and system power levels among 
LED products are diverse. Such diversities are due 
to the vast variety of LED products and also a lack 
of international standards. This situation is in stark 
contrast with traditional lighting systems such as 
incandescent and discharge lamps that have 
standardized discrete lamp voltage and system 
power levels. 

 As shown in Fig. 1, the data points cover a 
triangular area on the 2-dimensional plane of the 
output voltage versus the power rating. Those points 
lying on the upper boundary line (i.e. the 

50 V

25 W
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hypotenuse of the triangle) correspond to LED 
samples having the maximum rated current value. It 
is noted that each point has the same rated current of 
0.35 A, which happens to be the maximum rated 
current rating of many commercial LED devices. 

 The output voltage of most of the LED products in 
the low power sector is kept within 50V. According 
to Low Voltage Directive 2006/95/EC which is 
mandatory required for the CE Mark scheme [18], 
the safe operating voltage for human is below 50 V. 
Designing the output voltage at lower than 50 V can 
simplify the fixture and electronic designs of the 
LED system without the special need for electrical 
isolation. This helps to reduce system cost and size. 
For medium and high power products, the range of 
the output voltage is wider. Some medium and high 
power products also adopt an output DC voltage 
below 50 V, taking advantage of the less stringent 
safety requirements parallel-LED-string configura-
tions. For high power street lighting, a high output 
voltage with single LED string can reduce circuit 
complexity. 

C. Galvanic Isolation and Power Ratings 

Fig. 2 illustrates a typical industrial classification of the 
circuit topologies and their needs for electrical isolation for 
different power levels by one manufacturer [81]. Only some 
the products in the survey disclose all technical aspects such 
as the use of electrical isolation or not. Data of about 150 
products with such information are displayed in Fig. 3. The 
surveyed results clearly indicate that there is no consensus 
about the requirements of electrical isolation. For example, 
some manufacturers do not incorporate electrical isolation 
for their LED products with power less than 25 W as 
suggested in [81]. For switched-mode (active) LED drivers 
with power higher than 25 W, electrical isolation is usually 
preferred. However, existing street lamps based on magnetic 
(passive) ballasts and discharge lamps do not need electrical 
isolation. Therefore, passive LED drivers based on similar 
magnetic ballast structures fall into the same category. 

D. Cost and USD/Watt 

Fig. 4 shows the retail price distribution at different 
power levels. In general, the retail price increases with the 
power level in the low and medium power sectors, and tends 
to saturate at high power level. In order to study the price 
from a different angle, the US dollar per watt (USD/W) 
values are plotted in Fig. 5. It is noted that such USD/W 
decreases with increasing power level. The USD/W changes 
from 4.6 in the low power sector to 0.5 for the high power 
sector. This means that for high power applications, the cost 
per watt is not as critical as in low and medium power 
applications. The trend in USD/W also provides an 
explanation for the price saturation in the high power level. 

III. DESIGN CHALLENGES OF MODERN LED DRIVERS 

This section reviews key criteria in the implementation 
of LED lighting systems regarding to international 
regulations and practical concerns. This section focuses on 
the electrical-related performance of LED systems, with 
special concerns on reliability. 

A. International Regulations 

Similar to the traditional lighting, an LED system should 
comply with associated luminaire standards and 
international regulations. These standards and regulations 
pose basic requirements over LED systems. They could 
affect the designer’s selection of a proper circuit topology 
and control method. A survey of these standard and 
regulations (e.g. The Energy Star program and IEC 
standard are most widely adopted for solid-state lighting 
(SSL) luminaires) with respect to electrical, thermal, safety, 
warranty aspects are included in Table II. 

1) Lifetime and reliability challenges 

The lifetime of an LED is usually defined as the lumen 
maintenance life (in hours), that is, the elapsed operating 
time over which the LED light source will maintain a 
percentage p of its initial light output, with p usually being 
50% or 70% [23], [24]. The long lifetime (e.g. 50,000 
hours) of modern LED devices is a factor that puts LED 
technology ahead of other light sources. However, it is 
necessary to consider reliability of the entire LED system 
holistically, especially when the LED drivers are integrated  

 
Fig. 2. Circuit topology distribution at different power ratings (Redrawn from [81]) 
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Fig. 3. Power distribution with respect to isolation (a result based on 150 commercial LED drivers). 

 
Fig. 4. LED driver retail price distribution (a result based on 1462 commercial LED drivers).  

 
Fig. 5. LED driver USD/W distribution (a result based on 1462 commercial LED drivers). Red dotted line represents an approximation of the USD/W trend. 

into the products and not designed to be replaceable. The 
minimum lifetimes of residential and commercial products 
are stipulated in the Energy Star program as shown in Table 
II. 

For the LED devices, a critical factor for their lifetime is 
heat. The light output of LED decays exponentially with an 
increase in junction temperature [5], [23], [13] and shortens 
the lifetime of the LED [5], [20]–[23]. For the LED drivers, 

the lifetime is limited by the shortest lifetime of the circuit 
components. Electrolytic capacitor (E-Cap), commonly used 
in many switched-mode LED drivers, has been identified as 
a weak link because of its relatively short lifetime [25]. 
There has been increasing research on eliminating the use of 
E-cap in lighting products. Besides component failure, other 
reliability issues include current sharing of parallel LED 
strings [69], open and short circuit fault protection, and the  

25 W



0885-8993 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPEL.2015.2417563, IEEE Transactions on Power Electronics

 
Fig. 6. Relationship between power level, associated PF requirement and expected system cost and complexity on power factor correction (PFC). 

TABLE II  SOME LED DRIVER SPECIFIC STANDARD AND AGENCY REQUIREMENTS 

Item Reference Criteria 

Power Factor (PF) 

Energy Star Program Requirements for Solid-State 

Lighting Luminaires Version 1.1 (Effective date: Feb 1, 

2009) 

Residential ≥ 0.7 
Commercial ≥ 0.9 

Energy Star Program Requirements Product 

Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

≥0.5 for ≤5 W 

Residential ≥ 0.7 for > 5 W 

Commercial ≥ 0.9 for > 5 W 

Total Harmonic 

Distortion (THD) 
EN(IEC) 61000-3-2 Class C (Lighting) 

Class C for > 25 W 
Class D for ≤ 25 W 

Operating Temperature NEMA SSL 1-2010 −40~60 °C 

Electromagnetic and 

Radio Frequency 

Interference 

Energy Star Program Requirements Product 

Specifications for Luminaires (Light Fixtures) Version 
1.0 (Effective date: Oct 1, 2011) 

Residential: Class B in FCC requirement 

Commercial: Class A in FCC 
requirement 

Minimum Efficacy 

Energy Star Program Requirements Product 

Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

Non-directional residential: ≥70 lm/W 

Directional residential: 29~70 lm/W 

Directional commercial: 29~42 lm/W 

Warranty 

Energy Star Program Requirements Product 

Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

Non-replaceable Drivers: 5 years 
Replaceable drivers: 3 years 

Operation Frequency 

Energy Star Program Requirements for Solid-State 

Lighting Luminaries Version 1.1 (Effective date: Feb 1, 

2009) 

≥ 120 Hz 

Energy Star Program Requirements Product 
Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

≥ 120 Hz (Dimming at all light outputs) 

Dimming 

Energy Star Program Requirements Product 
Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

Continuous dimming from 35% to 100% 

of total light output 

Safety 
CE mark, EN61347-2-13; UL 8750,1012; CSA C22.2 

No.107.1 -01; IEC 61347-2-13, etc. 
- 

Transient Protection 

Energy Star Program Requirements Product 

Specifications for Luminaires (Light Fixtures) Version 

1.0 (Effective date: Oct 1, 2011) 

ANSI/IEEE C62.41.1-2002 and 
ANSI/IEEE C62.41.2-2002, Class A 

CCT IES LM-79-08 - 

CRI 

Energy Star Program Requirements for Solid-State 

Lighting Luminaries Version 1.1 (Effective date: Feb 1, 

2009) 

Indoor luminaires: ≥75 

ability to withstand wide temperature variation, voltage sag 
or swell, and voltage transients arising from lightning 
strikes [26]. 

2) Flickering 

Flicker is defined in [78], [79] as a rapid and repeated 
change of brightness over time. Visible flickers (lower than 
60-90 Hz) and invisible flickers (up to 200 Hz) could cause 
retinal neurological effects [79]. In the Energy Star 
program, a minimum operating frequency of 120 Hz is 
required to avoid noticeable flickering (see Table II). 

High

PF Quality

Medium

PF Quality

Poor

PF quality

PFC COST

And Circuit 

Complexity

Power

Rating
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Besides health concerns, flicker should be avoided in 
applications where super-slow-motion images is required, or 
where rotating machinery is in use under certain 
circumstances [80]. The tolerance of flicker at a minimum 
frequency of 120 Hz has implications of the LED driver 
design. For offline LED products, the size of the buffer 
capacitor influences the LED current ripple.  For 
applications where little flicker is allowed, either a large 
capacitor or active filtering techniques [1], [4], [58], [62] 
can be used. 

B. Other Issues 

1) Form factor 

For high-power outdoor applications such as street 
lighting, space is usually less critical. However, most indoor 
applications (low and medium power classes) have limited 
space and require compact designs. The form factor in many 
retrofit applications (such as replacements of incandescent 
light bulbs and CFLs) imposes severe constraints on the 
LED driver designs. New development of LED bulbs 
without heat sink has recently been reported in [82]. If the 
price can be brought down with such technology, these new 
LED bulbs can become the dominant products in the retrofit 
market. 
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Fig. 7. Suggested cost reduction targets for a Typical A19 Replacement 

Lamp (redrawn from [19]). 

2) Down-sprialing costs 

The U.S. Department of Energy (DOE) SSL program 
has published the projected LED luminaire cost as shown in 
Fig. 7, of which the driver constitutes 10% to 15% of the 
total manufacturing cost [19]. It is projected that the cost of 
LED systems be reduced by 70% every four years. The 
significant drop in costs will no doubt put more pressure on 
the system designs. The new LED bulb without heat sinks is 
a good response to such challenge. 

From the survey data obtained, the LED products are 
broadly classified into 6 groups as shown in Table III. They 
are divided into two categories depending on whether the 
rated power exceeds 25W or not. The regulatory and 
empirical requirements are summarized in the table. Such 
information will be linked to Table VII and the flow chart 

(Fig.16) for making an appropriate choice of circuit 
topology. 

IV. DRIVER CLASSIFICATION AND SELECTION 

In this section, circuit topologies suitable for LED 
drivers are described and classified. The topologies are first 
categorized into passive LED drivers and switched-mode 
LED drivers based on whether high-frequency switching 
operation is performed. Passive (P) drivers do not perform 
high-frequency switching operation and are thus simpler and 
more reliable. Without tight output current control, they 
usually provide a DC current with AC current ripple. They 
are reliable for outdoor applications and are cost effective 
for some retrofit low-power applications. Switched-mode 
(S) drivers operate at high frequency and can realize 
compact size, low power loss, and precise output regulation. 
These properties allow them to have a broader range of 
applications. They are usually less reliable than passive 
drivers and are vulnerable to extreme weather conditions 
such as wide temperature variation and lightning. Both the 
passive and switched-mode LED drivers are further sub-
classified into various types, according to their topological 
configurations, and their respective pros and cons are 
studied and compared. 

A. Passive LED Drivers 

Passive drivers do not contain active switches, gate 
drives, integrated circuits, controllers or auxiliary power 
supplies. They comprise only passive components (e.g. 
resistor, capacitor, magnetic components (e.g. inductor/ 
transformer) and diodes, and are operated at line or double-
line frequency. Without any means of active control, a 
passive driver must adopt some current limiting impedance 
between the AC line and the designated LED load. Such 
impedance can be lossy or (ideally) lossless. Therefore, the 
passive topologies can be further sub-classified into two 
types, namely Passive Type I (P1) which are lossy, and 
Passive Type II (P2) which are (ideally) lossless. 

P1 driver is of the lossy type. The current limiting 
impedance can be either a resistor or a linear regulator 
(linear regulators are not passive devices, but are included 
here to reflect their lossy properties). Fig. 8 illustrates a P1 
driver using a current limiting resistor Rlimit with a front-end 
low frequency transformer before the diode rectifier [27].  

Direct conversion from a high line voltage (220 VRMS) to 
the LED load without a step-down transformer would result 
in an unacceptably low system’s efficiency. The very low 
efficiency is due to conduction loss of Rlimit. Alternatively, 
the use of a step-down transformer can reduce the voltage 
across Rlimit. However, the conduction loss in Rlimit is still 
significant. Moreover, the transformer also introduces core 
losses. 

Another drawback of P1 drivers is that the filter 
capacitor Cstorage must be large enough to provide smooth 
DC power to the LED load in order to avoid flickering. 
Typically, such a capacitor is of the electrolytic type. Their 
pulsating input currents consist of substantial harmonics. 
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TABEL III  DESIGN CHALLENGES FOR DIFFERENT POWER CLASSES. 

 

 
High power (>100 W) 

Medium power (100 W~25 W) 

Low power 

(< 25 W) 

Requirement 
 

 

Criteria 

Group A Group B Group C Group D Group E Group F 

Regulatory 

requirement 

Power Factor (PF) 
Residential ≥ 0.7 

Commercial ≥ 0.9 

≥0.5 for≤5 W: 
Residential ≥ 0.7 for > 5 W 

Commercial ≥ 0.9 for > 5 W 

Total Harmonic 
Distortion (THD) 

Class C Class D 

Electromagnetic and 

Radio Frequency 
Interference 

FCC 47 CFR part 15 

Minimum Warranty 
Non-replaceable Drivers: 5 years 

Replaceable drivers: 3 years 

Other Criteria Refer to Table II 

Empirical 

requirement 

Efficiency 
Very high 

(e.g. >90%) 
High (e.g. >85%) Medium (e.g. >70%) 

Normal 
(e.g. >50%) 

Cost (USD/Watt) 
For most high power outdoor applications: Less critical 

For indoor applications: Critical 

Perform PFC? Yes No 

Size (form factor) 
For most high power outdoor applications: Less critical 

For indoor applications: Critical 
For retrofit applications: Very critical 

E-Cap preferred? Yes No Yes No Yes 

Suggested safety level 

(regarding to isolation, 
OC/SC/Over current 

protections ability) 

Very high High Medium Normal 

Ability to stand 
against lightning 

critical for outdoor applications Less critical 

 
Fig. 8. Passive Type I (P1) LED driver. 

The PF of such circuits is low and marginally satisfies the 
Class D limit [27].  

P2 drivers use ideally lossless impedance (an inductor, 
capacitor or their combinations) to limit the LED output 
current. The impedance must be placed on the AC side to 
perform the current limiting function. One such example is 
given in Fig. 9 [26], where an inductor Ls is used to 
withstand the voltage difference between the input voltage 
Vs and output voltage Vo, thereby eliminating the need for a 
less efficient, low-frequency transformer. Moreover, Ls can 
act as an input filter to smoothen the input current Is such 
that only a small non-electrolytic capacitor is required on 
the DC side. This eliminates the need to use E-cap in the 
driver, while still achieving a good PF and EMI 
performance at the input. Note that the valley-fill circuit in 

Fig. 9 can be replaced by a non-E-cap as shown in Fig. 10 
[30].  

Another example of P2 drivers is illustrated in Fig. 11 
[10]. This is a retrofit driver to replace existing fluorescent 
lamp ballast. The current limiting inductors are placed in the 
auxiliary circuit immediately at the AC output of the 
existing fluorescent ballast. Generally, retrofit designs for 
interchangeable fluorescent and LED ballasts are not 
optimal solutions. Energy efficiency is compromised due to 
the cascaded structure. 

Table IV gives a comparison of the three passive LED 
drivers. It is evident that some P2 drivers are more energy 
efficient than P1 drivers. The efficiencies of the circuits 
shown in Fig. 9 and Fig.10 are even better than that of 
switched-mode drivers. Also, both P2 drivers satisfy the low 
input current THD limit. With proper photo-electro-thermal 
designs, LED systems with P2 drivers have been 
commercialized for street lamp applications without 
noticeable flickering problems [28]. 

In order to evaluate the capacitance requirement used in 
each topology for different power levels, (i) capacitance per 
watt and (ii) maximum capacitive energy storage per watt 
are introduced in Table IV. These parameters are good 
indicators for the choices of capacitors. If they are large, E-
caps have to be used since they have the highest capacitance 
density. Otherwise, non-E-caps can be used. The topology 

LED Array

Step down Transformer

Cstorage

Rlimit

AC

220V/110V
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Fig. 9. Passive Type II (P2) LED driver example 1.    Fig. 10. Passive Type (P2) LED driver example 2. 

in Fig. 11 has the lowest overall capacitance per watt (0.33 
μF/W) and maximum energy storage per watt (0.007J/W) 
among the four passive drivers in Table IV. 

Despite their bulky size and heavy weight of the large 
inductor required in the circuit, passive LED drivers offer 
superior reliability since they comprise no active switch, 
gate drives, integrated circuits and controllers, external 
power supplies, and E-caps. These properties are highly 
desirable for outdoor applications where system reliability is 
of prime concern and space constraint is less critical. In fact, 
the patented passive driver in Fig. 10 has reached the 
production stage for street lighting applications in South 
China where lightning exceeding 10,000 times per day in 
the summer is not uncommon and in North China where 
extreme low temperature persists in the winter. Despite the 
lack of tight output current regulation (control), their power 
sensitivity with input voltage fluctuation can be reduced by 
proper passive driver design [30]. They are also compatible 
with external central dimming system, such as tap-changing 
transformers. 

B. Switched-Mode LED Drivers  

Switched-mode LED (S-type) drivers take advantage of 
high-frequency operation and active control so that good 
driver compactness and tight output current regulation can 
be achieved. Functions such as PFC, current sharing, 
dimming, isolation, circuit fault protection and thermal 
tracking can be easily incorporated into S-type drivers to 
meet different applications’ needs. These superior properties 

make S-type drivers very attractive for a wide range of 
indoor applications. Recently, a vast variety of switched-
mode LED driver topologies have been proposed. 
According to the power processing stages, these topologies 
are classified as single stage (S1), two stages (S2), and three 
stages (S3), regardless of the presence of galvanic isolation 
in the converters. As the number of power stage increases, 
circuit complexity and the associated cost increases 
simultaneously. 

1) Single-Stage Drivers 

Switched-mode single-stage (S1) drivers have only one 
power conversion stage and usually have low component 
count. However, it is often difficult for S1 drivers to ensure 
good performance in many aspects (such as high efficiency, 
good PF, and constant current output) simultaneously. 
According to Table III, S1 drivers are suitable for low and 
some medium power class applications (<50W) where size 
and cost are usually more critical than PFC and efficiency. 
High power applications, on the other hand, have more 
stringent regulations which usually disqualify the use of S1 
drivers. Depending on the location of the storage capacitor 
Cstorage, S1 driver can be further sub-classified into Type A 
and Type B (Fig. 12 and 13). 

Fig. 12 illustrates a schematic of the switched-mode 
single-stage Type A (S1A) driver, which has its storage 
capacitor Cstorage directly connected on the low frequency 
side. One merit of a S1A driver is that its output can be 
designed to exhibit small voltage and/or current ripple if the  

 
Fig. 11. Passive Type (P2) LED driver example 3.
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TABLE IV  COMPARISON BETWEEN VARIOUS TYPES OF PASSIVE (P1, P2) LED DRIVERS. 

Driver Type 

Power 

Rating 

(W) 

Efficiency 

Total 

Capacitance 

(μF) 

Inductance 

(H) 

THD 

satisfy 

Volume 

& 

weight 

Output 

current 

Cap/ 

Power 

(μF/W) 

Max Cap 

Energy Storage 

/watt (J/W) 

P1 

(Fig. 8) [27] 
10.4 50% 4700 

Transformer 

LMagnetizing=2.97 
Class D large DC 452 μF/W 0.0298 

P2 

(Fig. 9) [26] 
47 93.6% 40.3 

LS = 1.47 

Lfilter = 1.9 
Class C large DC 0.9 μF/W 0.011 

P2 
(Fig.10) [29] 

150 94% 50 
Ls=0.3 

Lfilter=0.8 
Class C large DC 0.33 μF/W 0.007 

P2 

(Fig. 11) [10] 
20 72.9% 50.3 4 × 0.5 Class C large DC 2.5 μF/W 0.0245 

 

Fig. 12. Switched-mode single-stage Type A (S1A) driver. 

 

Fig. 13. Switched-mode single-stage Type B (S1B) driver. 

low-frequency storage capacitor is adequate to handle the 
pulsating power between the input and output stages. 
Similar to the case of P1 drivers, however, the adoption of a 
bulky low-frequency capacitor and its pulsating input 
current (shown in Fig. 12 as Iline) are the main drawbacks of 
S1A drivers. S1A drivers are only applicable to very low 
power applications, typically below 5 W [31], [32].  

In switched-mode single-stage Type B (S1B) drivers, the 
capacitor is placed on the high-frequency side after the 
DC/DC converter, as illustrated in Fig. 13. Here, the single 
DC/DC converter provides both PFC and output current 
regulation simultaneously. Thus, the input current waveform 
of S1B drivers is better shaped than that of S1A drivers. This 
property makes S1B drivers preferable to S1A drivers in low 
power applications. However, the required capacitance 
Cstorage is not reduced as it has to handle both the high-
frequency switching ripple and the low-frequency ripple. 
Therefore, S1B drivers inevitably contain low-frequency 
output current ripple, and their required capacitance is 
similar to that of S1A. In general, a Capacitance/W value of 
1 µF/W is a very common value for DC-link capacitors in 
such PFC converters [33], [34]. 

Some S1B topologies (S1Bhybrid-PFC) share one active 
switch [35]–[37] in the two-stage power processing for 
achieving PFC and DC/DC functions. It is difficult to 
achieve both functions simultaneously at the same optimal 
state to give the highest possible power conversion 
efficiency. For topologies that are designed to work in 
critical conduction mode (CRM) or discontinuous 
conduction mode (DCM) that are known to achieve PFC 
inherently (S1Binherent-PFC), this will be less of a problem.  

An important issue associated with all S1B drivers is 
their low energy efficiency, especially when the output 
voltage is relatively low. This is due to the short duty cycle 
operation, and a longer time interval is required for the 
energy to circulate rather than to go directly to the load. 
Circulating energy causes power loss along the energy 
circulating path.  

Classical topologies including the buck [12], [36], [38], 
[39], buck-boost, SEPIC [40], [41], flyback [42], [43], half-
bridge [44], push-pull converters [45] can all be used as S1B 
drivers. PFC can also be performed passively with valley-
fill circuits [46]. Recently, many of these topologies have 
been modified to achieve high efficiency operation. For 
most non-isolated topologies, if the duty cycle can be 
enlarged while achieving the same step-down conversion 
ratio, energy efficiency can be improved. These topologies 
are usually referred to as high conversion ratio converters.  

Cascaded step-down topologies, such as quadratic buck and 
cubic buck converters can achieve a high step-down 
conversion ratio. However, they are not preferred due to the 
high component count and the requirement of multi-stage 
power processing (leading to low efficiency), even though 
they use only one active switch [47]. Other approaches, 
namely coupled-inductor modified converters [37], [38], 
[48]–[55], and valley-fill modified converters [27], [43], 
[49], offer a simple solution to the step-down ratio 
requirement without over-compromising the efficiency and 
system complexity. It is possible to further improve energy 
efficiency by re-circulating the leakage inductor energy of 
the coupled-inductor back into the circuit, using active or 
passive clamping techniques [50], [52]–[55]. Note that both 
the valley-fill circuit and coupled-inductor cell can be 
concurrently applied to the same converter to achieve an 
even higher conversion ratio [49]. 
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TABLE V  COMPARISON BETWEEN VARIOUS KINDS OF SINGLE-STAGE TYPE B (S1B) LED DRIVERS. 

Isolation 

Type 
Structures 

High Step 

Down 

Ability? 

High 

Efficiency? 
Structures 

High Step 

Down 

Ability? 

High 

Efficiency? 

Non-Isolated 

S1B 

Buck-Boost [57] × × 
Coupled-Inductor Buck 

[58] 
√ √ 

SEPIC [59] × × 
Coupled-Inductor 

SEPIC [48] 
√ √ 

Resonant-Assist Buck 

[7] 
× × 

Valley-Fill Modified 

SEPIC [41] 
√ √ 

Quasi-Active PFC 

with Buck [46] 
× × 

Quadratic and Cubic 

Buck [60] 
√ × 

   
Quadratic Buck-Boost 

[61] 
√ × 

Isolated 

S1B 

Flyback [42] √ × 
Hybrid Buck with 

Flyback [62] 
√ × 

Hybrid Buck-Boost 

with Flyback [35] 
√ × 

Hybrid Boost with 

Forward [63] 
√ × 

Hybrid Boost with 

Flyback [37] 
√ ×    

Attaining a high conversion ratio with galvanic 
(transformer) isolation is straightforward. Traditionally, 
energy in the leakage inductance of the transformer is lost 
due to hard switching. Such power loss is the main power 
loss in such circuits. Of all isolated topologies, the flyback 
converter is most widely used for AC/DC rectification 
because of its simple structure and high PF. Its efficiency 
can be improved by re-circulating the leakage energy [35] or 
using soft-switching techniques [56]. Table V summarizes 
some S1 type of drivers reported in the literature. 

2) Two-Stage Drivers 

Two-stage (S2) drivers, which comprise two power 
processing stages, can offer better performance than its 
single-stage (S1) counterparts in terms of PFC and the 
reduction of low-frequency output current ripple with the 
minimum capacitance per watt value. As shown in Table III, 
these characteristics are preferred in medium and high 
power applications, where electrical performance and 
reliability are more of a concern than cost and size. 
Depending on the functions of the two stages, particularly of 
the second stage, S2 drivers can be further classified as Type 
A and Type B. 

For Type A (S2A) drivers (Fig. 14), the first stage 
performs the PFC and the second stage performs the DC/DC 

regulation. They are arranged in a cascaded structure with 
the LED load [1], [7], [12], [35], [64], [65]. The boost 
converter is mostly adopted in the PFC stage for its 
excellent input current shaping capability and low front-end 
EMI filter requirements.  The second power stage is a high 
step-down DC/DC converter. A major problem with S2A 
drivers is the requirement for a large energy storage 
capacitor Cstorage, which is usually of the electrolytic type. 

For Type B (S2B) drivers (Fig. 15), the first power stage 
performs PFC and DC/DC regulation concurrently. The 
second power stage performs an active filter function [6], 
[66], [67], and is connected in parallel with the LED load. 
The active filter is controlled to extract the double-line-
frequency power from the DC-link into the energy storage 
capacitor Cstorage. Consequently, the LED power will be 
fairly constant and contains little or no low-frequency 
ripple, thus posing no light flicker issue. Moreover, by 
decoupling the double-line frequency power from the DC- 
link and allowing voltage variations on Cstorage, a non-E- Cap 
with reduced capacitance can be used to process the 
pulsating power of the input source. 

 

 

 
Fig. 14. Switched-mode two-stage Type A (S2A) driver. 

 
Fig. 15. Switched-mode two-stage Type B (S2B) driver. 
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TABLE VI  COMPARISON BETWEEN VARIOUS KINDS OF TWO-STAGE (S2A, S2B) LED DRIVERS. 

Type Stage Component Power Rating(W) 
Max. Cap. 

Energy Storage 

per Watt (J/W) 

Cap/Power (μF/W) 

S2A 

Boost (PFC) + Flyback (DC/DC)  [1] 60 (output pulsating) 0.00568 2.5 (flickering) 

buck (PFC) + half-bridge [12] 18 0.01 1.44 (with large inductor) 

Non-cascading boost (PFC) + buck (DC/DC) [7] 100 (high voltage on cap) 0.156 91 (conventional) 

S2B 

Flyback (PFC+DC/DC) + Bidirectional 

buck/boost converter (active filter)  [66] 
33.6 0.00446 0.53 (flicker free) 

Modified Flyback [6] 13.5 0.0067 0.96 (flicker free) 

H-bridge rectifier (PFC+DC/DC)+H-bridge 
(active filter) [67] 

100 0.002646 0.0147 (flicker free) 

A few possible circuit configurations exist for S2B 
drivers. In [66], the first stage is a flyback converter which 
performs the PFC and DC/DC regulation, and the second 
stage is a bidirectional buck-boost converter which performs 
active filtering. In [67], the active filter is of inverter type 
which allows an even larger voltage variation on Cstorage, 
resulting in the use of minimal capacitance. Specifically, the 
capacitance per watt of Cstorage is only 0.0147 μF/W for the 
configuration reported in [67], compared to 0.52 μF/W for 
the configuration reported in [66], given a 600 V amplitude 
capacitor voltage variation.  

Table VI lists the capacitance per watt values for various 
S2 drivers. Compared with the values for S1 drivers shown 
in Table IV, the capacitance per watt values for S2B drivers 
are at least one order of magnitude lower than those 
required in other configurations (e.g., P1, S1 and S2A types). 
S2B drivers can therefore be realized without E-caps. The 
expected lifetime of the driver in [67] is that that of LEDs. 
This idea of active filtering is applicable to any S1B driver, 
turning it into a S2B driver.  

It is important to note from Table VI that there are some 
S2A drivers which can achieve a low value of capacitance 
per watt as S2B drivers do. This is possible because some 
degree of ac ripple is allowed in the LED current or on the 
DC bus voltage. For the former case, In order to avoid 
flickering caused by such AC current, it is necessary to limit 
the ratio of the AC current and the DC current. The use of 
larger inductors for energy storage can also reduce the value 
of capacitance per watt. As the second stages of the S2B 
drivers do not handle the full LED power, S2B drivers could 
in principle be more energy efficient than S2A ones. 
However, such gain in efficiency can only be achieved with 
proper low-loss design of the front-stages of the S2B 
drivers, which have to provide both of the PFC and output 
regulation functions.  

3) Three-Stage Drivers 

Three-stage (S3) drivers are targeted at multi-string LED 
loads for high power applications. The first two stages of an 
S3 driver are made up of regular S2 drivers, and the third 
stage is a current post-regulator that provides current 

sharing among individual LED strings. Dimming control 
can be realized via a post-current regulator. Naturally, the 
cost and component count of the post-regulator increase as 
the number of strings increases. 

There are several types of post-regulators, namely the 
linear type, the DC/DC converter type, and the switch type. 
The first two types provide DC output current regulation, 
which can be used for achieving current sharing and 
dimming (amplitude dimming), while the switch type 
produces pulsating current and is typically used for 
dimming applications (PWM or n-level PWM dimming). 

When used for current balancing, the use of traditional 
linear post-regulators such as BJT transistors or MOSFETs 
incurs severe power losses. This is because the regulators 
have to withstand the full voltage difference between the 
driver and the LED load. The power loss issue can be 
alleviated by using a series of current mirrors, where only 
the voltage differences between strings are compensated 
[68]–[70]. Nevertheless, the linear type post-regulators are 
of low cost and have simple circuit implementation, thus 
guaranteeing higher reliability than the DC/DC converter 
based post-regulators. For outdoor applications where 
reliability is of prime concern, DC/DC type post-regulators 
are unsuitable. The coupled inductors and the daisy-chained 
coupled inductors suggested in 1992 [71] are good passive 
options for reducing current imbalance in parallel LED 
strings. This idea was later repeated in [72]–[75]. 

To reduce system costs, one solution is to adopt the 
single-input-multiple-output topology in the second-stage 
converter, thereby eliminating the need for an additional 
post-regulator circuit in the third stage [76]. Current sharing 
is easily achieved through a common control signal. In [77], 
the mag-amp, which is a highly efficient and reliable device 
that has a simpler structure compared to the multiple-output 
converter topologies, is incorporated as the post-regulator to 
achieve current sharing. 

The switch-type post-regulators are mainly for dimming 
applications. The grouping described in Table III is linked 
to the passive driver classification (Table IV) and active 
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TABLE VII COMPARISON OF VARIOUS CURRENT POST-REGULATORS USED IN THREE-STAGE (S3) LED DRIVERS. 

Post-

Regulator 

Type 

Component of 

Post-Regulator 

LED 

Current 
Structure Cost Reliability Efficiency Dimming 

Current  

Sharing 

Open/Short 

Circuit 

Protection 

 

Linear Type 

BJT transistor 

DC Simple Low High Low 
Amplitude  

Mode 
External  
circuit 

External circuit 
MOSFET 

Current mirror 
based circuit 

Switch Type 

BJT transistor 

PWM 

pulsating 
Simple Low Low High 

PWM,  

n-level,  

or phase-shift  
PWM Mode 

External 

circuit 
External circuit 

MOSFET 

DC/DC 

Converter 

Type 

Twin-bus buck 

DC 

Complicated High Low High 
Amplitude  

Mode 

External 

circuit 
External circuit 

Multiple 

transformer (after 

a common LLC or 

buck-boost 

converter) 

Complicated High High High 
Amplitude  

Mode 
Inherent Inherent 

Coupled inductor 

(after a common 

cap isolated 
converter) 

Complicated High High High 
Amplitude 

Mode 
Inherent Inherent 

Mag-amp assisted 

rectifier 

(after a common 
forward 

converter) 

Simple High High High 
Amplitude 

Mode 
Inherent Inherent 

 

TABLE VIII CIRCUIT TOPOLOGIES SELECTION VS. DIFFERENT REQUIREMENT. 

Requirement 

 

Items 
Group A Group B Group C Group D Group E Group F 

P1 × × ×   

Retrofit 

solution with 

low cost 

P2 × 
Simple structure, high 

reliability, efficiency and 

recyclability 

×  × 
Retrofit 

solution with 

low cost 

S1A × × × 
Simple structure and 

controllers, low cost 
× 

Simple 
structure and 

controllers, 

low cost 

S1B × 

Simple structure, 
compact size, low cost, 

good PF and low THD 

but might contain flicker 
using non-E-Cap 

Simple structure, 

compact size, low 
cost, good PF and 

low THD 

Simple structure, 

compact size, low cost, 

good PF and low THD 

Simple structure, 

compact size, low 
cost, good PF and 

low THD 

× 

S2A 

High efficiency, 
good PF and low 

THD 

good PF and low THD 

but might contain flicker, 
and with compromised 

efficiency, using non-E-

Cap 

High efficiency, 
good PF and low 

THD 

 × × 

S2B × 
E-Cap free, good PF and 

low THD 
×  × × 

S3 

Dimming, current 

sharing, open/ 

short circuit/over 
temperature 

protection 

× ×  × × 
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driver classification (Table V －VII). Their relationships are 

tabulated in Table VIII. 

C. Guidelines for Topology Selection 

With the information provided in Tables II-VIII, some 
general guidelines are suggested for selecting the 
appropriate driver topology for a given application as shown 
in the flow chart of Fig.16. While there are always 
exceptions and special cases, such flow chart allows one to 
consider some appropriate topologies particularly if the 
choice of electrolytic capacitor is an issue. 

V. CONCLUSIONS 

This paper presents an updated survey of existing 
commercial LED drivers and their related technologies with 
considerations of their compliance to regulations, 
technological challenges, and application requirements. The 
data indicate the diversity of LED products in terms of 
output power and output voltage levels. Such a situation is 
in stark contrast with existing lighting systems such as 
incandescent and fluorescent lamps which have 
standardized discrete rated power levels. The surveyed data 
highlight the need for international standards. 

The LED drivers have been systematically classified into 
passive (P) types and switched-mode (S) types, and then 
sub-classified respectively into types P1, P2 and types S1, 
S2, S3 according to their topological configurations. The 
advantages and disadvantages of these topologies are 
reviewed. An important parameter, namely capacitance per 
watt, has been adopted for comparing various driver 
topologies as such information allows engineers to 
determine which topologies can avoid the use of electrolytic 
capacitors. Based on the applications and the technical 
information provided in this study, some general guidelines 
are suggested as a general tool for selecting driver 
topologies. 
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