18,122 research outputs found

    An Evolutionary Approach for Learning Attack Specifications in Network Graphs

    Get PDF
    This paper presents an evolutionary algorithm that learns attack scenarios, called attack specifications, from a network graph. This learning process aims to find attack specifications that minimise cost and maximise the value that an attacker gets from a successful attack. The attack specifications that the algorithm learns are represented using an approach based on Hoare's CSP (Communicating Sequential Processes). This new approach is able to represent several elements found in attacks, for example synchronisation. These attack specifications can be used by network administrators to find vulnerable scenarios, composed from the basic constructs Sequence, Parallel and Choice, that lead to valuable assets in the network

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    Discovering, quantifying, and displaying attacks

    Full text link
    In the design of software and cyber-physical systems, security is often perceived as a qualitative need, but can only be attained quantitatively. Especially when distributed components are involved, it is hard to predict and confront all possible attacks. A main challenge in the development of complex systems is therefore to discover attacks, quantify them to comprehend their likelihood, and communicate them to non-experts for facilitating the decision process. To address this three-sided challenge we propose a protection analysis over the Quality Calculus that (i) computes all the sets of data required by an attacker to reach a given location in a system, (ii) determines the cheapest set of such attacks for a given notion of cost, and (iii) derives an attack tree that displays the attacks graphically. The protection analysis is first developed in a qualitative setting, and then extended to quantitative settings following an approach applicable to a great many contexts. The quantitative formulation is implemented as an optimisation problem encoded into Satisfiability Modulo Theories, allowing us to deal with complex cost structures. The usefulness of the framework is demonstrated on a national-scale authentication system, studied through a Java implementation of the framework.Comment: LMCS SPECIAL ISSUE FORTE 201

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Attack Defense Trees with Sequential Conjunction

    Get PDF

    Formal Template-Based Generation of Attack–Defence Trees for Automated Security Analysis

    Get PDF
    Systems that integrate cyber and physical aspects to create cyber-physical systems (CPS) are becoming increasingly complex, but demonstrating the security of CPS is hard and security is frequently compromised. These compromises can lead to safety failures, putting lives at risk. Attack Defense Trees with sequential conjunction (ADS) are an approach to identifying attacks on a system and identifying the interaction between attacks and the defenses that are present within the CPS. We present a semantic model for ADS and propose a methodology for generating ADS automatically. The methodology takes as input a CPS system model and a library of templates of attacks and defenses. We demonstrate and validate the effectiveness of the ADS generation methodology using an example from the automotive domain

    Hackers vs. Security: Attack-Defence Trees as Asynchronous Multi-Agent Systems

    Get PDF
    Attack-Defence Trees (ADTs) are well-suited to assess possible attacks to systems and the efficiency of counter-measures. In this paper, we first enrich the available constructs with reactive patterns that cover further security scenarios, and equip all constructs with attributes such as time and cost to allow quantitative analyses. Then, ADTs are modelled as (an extension of) Asynchronous Multi-Agents Systems--EAMAS. The ADT-EAMAS transformation is performed in a systematic manner that ensures correctness. The transformation allows us to quantify the impact of different agents configurations on metrics such as attack time. Using EAMAS also permits parametric verification: we derive constraints for property satisfaction. Our approach is exercised on several case studies using the Uppaal and IMITATOR tools.Comment: This work was partially funded by the NWO project SEQUOIA (grant 15474), EU project SUCCESS (102112) and the PHC van Gogh PAMPAS. The work of Arias and Petrucci has been supported by the BQR project AMoJA
    • …
    corecore