

Attack Defense Trees with
Sequential Conjunction
Nguyen, H. N., Bryans, J. & Shaikh, S.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Nguyen, HN, Bryans, J & Shaikh, S 2019, Attack Defense Trees with Sequential
Conjunction. in 2019 IEEE 19th International Symposium on High Assurance Systems
Engineering (HASE). Proceedings / IEEE International Symposium on High-Assurance
Systems Engineering. IEEE International Symposium on High-Assurance Systems
Engineering (IEEE, pp. 247-252, Workshop on Security issues in Cyber-Physical
System(SecCPS), In conjunction with IEEE HASE, Hangzhou, China, 3/01/19.
https://dx.doi.org/10.1109/HASE.2019.00045

DOI 10.1109/HASE.2019.00045
ISSN 1530-2059
ESSN 2640-7507

Publisher: IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228157098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Attack Defense Trees with Sequential Conjunction
Jeremy Bryans Hoang Nga Nguyen Siraj Ahmed Shaikh

Systems Security Group, Institute for Future Transport and Cities (FTC)
Coventry University, Coventry CV1 5FB, UK

{jeremy.bryans,hoang.nguyen,siraj.shaikh}@coventry.ac.uk

Abstract—Attack defense trees are used to show the interaction
between potential attacks on a system and the system defenses. In
this paper we present a formal semantic model for attack defense
trees with sequential composition, allowing for the description of
attacks that are performed as a sequence of steps. The main
contributions of our work are a formal representation of attack
defense trees with sequential conjunction, a demonstration that
this representation is equivalent to a process-algebraic one, and
an algorithm for identifying the existence of attacks. We illustrate
with an attack on over the air updates.

Index Terms—Cyber security, Attack defense trees, Formal
semantics.

I. INTRODUCTION

The security of all large, complex systems evolves, and
often comes to public attention as attacks on those systems
are demonstrated. This is exemplified within the automotive
industry, where the diverse technologies employed by vehicles
have led to a series of high-profile attacks [2], [4], [11].

Within the automotive industry, ISO 26262 [6] is the
standard for functional safety of the vehicle electrical and
electronic systems, but it does not address cybersecurity1.
J3061 [15] provides a set of high-level guiding principles for a
vehicle manufacturer seeking to take account of cybersecurity,
and provides information on tools and techniques.

One of the techniques available is an analysis based on
attack trees. Attack trees are a systematic approach to cate-
gorise and evaluate the logical paths that an attacker could take
through the system to lead to an attack. They were popularised
by Schneier in [16] and given a formal interpretation in [10].
This formal semantics was later extended with sequential
conjunction in [7], in order to allow for attacks in which the
order of execution of attack steps was significant.

A limitation with attack trees is their inability to capture the
interaction between the attacks and the defenses of a system.
This observation led to the development of attack defense trees
(ADTs), which were given a formal interpretation in [9].

In previous work [1] we presented a method for system-
atically generating tests based on attack trees. The approach,
which was inspired by model based testing, was designed for
the vehicle industry in which black box components are the
norm. It therefore allowed for the possibility that the system
under test was not fully specified.

In this paper we consider attack defense trees that include
sequential conjunction. The main contributions of this work

1Cybersecurity is an area of consideration for ISO 26262 version 2, which
is under development.

are a formal representation of attack defense trees with se-
quential conjunction, a demonstration that this representation
is equivalent to a process-algebraic one, and an algorithm for
identifying the existence of attacks.

II. PRELIMINARIES

Below we define attack trees as series-parallel graphs,
and introduce the process algebra Communicating Sequential
Processes [14] (CSP) and its trace semantics.

A. Attack Trees

Attack trees contain a set of leaf nodes, structured using the
operators conjunction (AND) and disjunction (OR). The leaf
nodes represent atomic attacker actions. The AND nodes (resp.
OR nodes) are complete when all child nodes have (resp. at
least one child node has) been carried out.

Extensions have been proposed using Sequential AND (or
SAND) [7]. We follow the formalisation of attack trees given
in [7], [10]. If A is the set of possible atomic attacker actions,
the elements of the attack tree T are A∪{OR,AND,SAND},
and an attack tree is generated by the following grammar,
where a ∈ A:

t ::= a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)

Attack tree semantics have been defined by interpreting the
attack tree as a set of series-parallel (SP) graphs [7]. The
definition of SP graphs requires first the definition of source-
sink graphs and here we use the definitions from [7].

Definition 1. A source-sink graph over A is a tuple G =
(V,E, s, z) where V is a set of vertices, E is a multiset of
edges with support E∗ ⊆ V×A×V, s ∈ V is a unique source
and z ∈ V is a unique sink, and s 6= z.

The sequential composition of G and another graph G′,
denoted by G · G′ results from the disjoint union of G and
G′ and linking the sink of G with the source of G′. Thus, if
∪̇ denotes the disjoint union and E[s/z] denotes the multiset
of E where vertices z are replaced by s, then G.G′ can be
defined as G · G′ = (V \ {z}∪̇V ′,E[s′/z′]∪̇E′, s, z′). Parallel
composition, denoted by G ‖ G′ is similar (differing only
in that two sources and two sinks are identified) and can be
defined as: G ‖ G′ = (V \ {s, z}∪̇V ′,E[s′/s,z′/z]∪̇E′, s′, z′).

Definition 2. The set GSP over A is defined inductively by:
For a ∈ A, a−→ is an SP graph,
If G and G′ are SP graphs, then so are G ·G′ and G ‖ G′.

Hence, the full SP graph semantics for attack tree T can be
given by the function: J·KSP : T → ℘(GSP). This is defined
recursively. If a ∈ A, ti ∈ T, and 1 ≤ i ≤ k, then

JaKSP = { a−→}
JOR(t1, . . . , tk)KSP =

⋃k
i=1JtiKSP

JAND(t1, . . . , tk)KSP = {G1 || . . . || Gk |
(G1, . . . ,Gk) ∈ Jt1KSP × . . .× JtkKSP}

JSAND(t1, . . . , tk)KSP = {G1 · . . . · Gk |
(G1, . . . ,Gk) ∈ Jt1KSP×. . .×JtkKSP} where JtKSP =

{G1, . . . ,Gk} corresponds to a set of possible attacks Gi.
As proposed by [1], leaves on an attack tree can be

considered as events. The combination of these events can
be translated into the processes that form part of a test case.
This allows us to use a process algebra such as CSP. The
equivalence of the semantics (see Section II-B) means that we
can use synonymous operators to transform a pre-built attack
tree.

B. CSP

A brief overview of the subset of CSP that we use in this
paper is given here. A more complete introduction may be
found in [14]. Given a set of events Σ, CSP processes are
defined by the following syntax:

P ::= Stop | e→ P | P1 2 P2 | P1; P2 | P1 ‖
A

P2

where e ∈ Σ, A,B ⊆ events. For convenience, the set of CSP
processes defined via the above syntax is denoted by CSP.

The event X 6∈ Σ marks successful termination. The process
Stop is deadlocked. Skip is an abbreviation for X → Stop.
The process e → P engages in the event e then behaves as
P. The choice P1 2 P2 behaves either as P1 or as P2. The
sequential composition P1; P2 initially behaves as P1 until
P1 terminates, then continues as P2. The generalised parallel
operator P1 ‖

A
P2 requires P1 and P2 to synchronise on events

in A ∪ {X}. All other events are executed independently, and
P1 ||| P2 is an abbreviation for P1 ‖

∅
P2.

There are different semantics models for CSP pro-
cesses [14]. For the purpose of this paper, we recall the finite
trace semantics. A trace is a possibly empty sequence of
events from Σ and may terminate with X. As usual, let Σ∗

denote the set of all finite sequences of events from Σ, 〈〉
the empty sequence, and tr1 a tr2 the concatenation of two
traces tr1 and tr2; then the set of all traces is defined as
Σ∗X = {tr a en | tr ∈ Σ∗ ∧ en ∈ {〈〉, 〈X〉}}.

In general, the trace semantics of a process P is a subset
traces(P) of Σ∗X consisting of all traces which the process
may exhibit. It is formally defined recursively as follows:
• traces(Stop) = {〈〉};
• traces(e→ P) = {〈〉} ∪ {〈e〉a tr | tr ∈ traces(P)};
• traces(P1 2 P2) = traces(P1) ∪ traces(P2);
• traces(P1; P2) = traces(P1) ∩ Σ∗

∪ {tr1 a tr2 | tr1 a 〈X〉 ∈ traces(P1) ∧ tr2 ∈
traces(P2)};

• traces(P1 ‖
A

P2) =

{tr ∈ tr1 ‖
A

tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}

where tr1 ‖
A

tr2 = tr2 ‖
A

tr1 is defined as follows with

a, a′ ∈ A ∪ {X} and b, b′ /∈ A:
– 〈〉 ‖

A
〈〉 = {〈〉}; 〈〉 ‖

A
〈a〉 = ∅; 〈〉 ‖

A
〈b〉 = {〈b〉};

– 〈a〉atr1 ‖
A
〈b〉atr2 = {〈b〉atr | tr ∈ 〈a〉atr1 ‖

A
tr2};

– 〈a〉a tr1 ‖
A
〈a〉a tr2 = {〈a〉a tr | tr ∈ tr1 ‖

A
tr2}

– 〈a〉a tr1 ‖
A
〈a′〉a tr2 = ∅ where a 6= a′;

– 〈b〉a tr1 ‖
A
〈b′〉a tr2 =

{〈b〉a tr | tr ∈ tr1 ‖
A
〈b′〉a tr2} ∪

{〈b′〉a tr | tr ∈ 〈b〉a tr1 ‖
A

tr2}

As mentioned earlier, trace interleaving is defined as:
• traces(P1 ||| P2) = P1 ‖

∅
P2

For convenience, we sometimes use the notion of inter-
leaving and concatenation over two set of traces. In par-
ticular, given two sets S1 and S2 of traces, S1 ||| S2 =⋃

s1∈S1,s2∈S2 s1 ||| s2 and S1
aS2 = {s1as2 | s1 ∈ S1, s2 ∈ S2}.

We define tracesX(P) = {tr | tr a 〈X〉 ∈ traces(P)} to
denote the set of terminated traces.

A normal way to analyse CSP processes is via trace-
refinement. A process P is said to trace-refine a process
Q (written Q vT P) if traces(P) ⊆ traces(Q). There are
other flavors of refinement, but we restrict ourselves to trace
refinement below. In this paper, we use FDR [3] for checking
trace-refinements.

In [1], it is showed that each attack tree can be translated
into a semantically equivalent CSP process. The equivalence
is based on an observation that any SP graph can be seen as a
set of sequences of actions, each corresponding to a traverse
from the source node to the sink node of the graph. Formally,
the set of sequences of actions of an SP graph can be defined
recursively as follows:
• serialise(

a−→) = {〈a〉};
• serialise(G1 ‖ G2) = {s ∈ s1 ||| s2 | s1 ∈

serialise(G1) ∧ s2 ∈ serialise(G2)};
• serialise(G1 · G2) = {s1 a s2 | s1 ∈ serialise(G1) ∧ s2 ∈

serialise(G2)}.
The function serialise(·) is also generalised to the case of sets
of graphs as follows:
• serialise({G1, . . . ,Gn}) =

⋃
i∈{1,...,n} serialise(Gi).

III. ADTS WITH SEQUENTIAL CONJUNCTION

The above attack defense trees (ADTs) allow us to capture
the interaction between attack and defense, and therefore
between attacker and defender. Now we extend ADTs to
include sequential composition, meaning that we can now
capture attacks (or defenses) that have to be carried out in a
particular order. This enhanced descriptive power is captured
by a new operator SAND, or sequential AND.

A. Syntax

Let A and D be disjoint sets of basic attack and defense
actions, respectively. Let B = A ∪ D. The syntax of attack
defense trees with sequential conjunction (ADS) is given
recursively as follows:

t ::= tp | to
tp ::= a | tp OR tp | tp AND tp | tp SAND tp | tp C to
to ::= d | to OR to | to AND to | to SAND to | to C tp

where a ∈ A and d ∈ D. In the above syntax, p stands
for proponent, o for opponent, tp for proponent(attack)-rooted
ADS trees and to for opponent(defender)-rooted ADS trees.
The set of all well-defined attack-rooted ADS trees is denoted
by Tp

ADS, defense-rooted by To
ADS, and TADS = Tp

ADS ∪ To
ADS.

For convenience, we sometimes refer to ADS trees simply as
trees unless unclear from the context.

Similar to [5], our main interest is to check if there exists
a successful attack (defense) in a given attack(defense)-rooted
tree. In this paper, it is called ADS tree checking decision
problem and formally defined as follows:

Definition 3. Given an ADS tree t, the ADS tree checking
problem is to determine if t is successful.

A more general decision problem is to constrain defense
(attack) countermeasures to a subset of the possible ones.
This might be valuable if resource constraints meant a limited
number of defenses could be employed. However, one can
construct a copy t′ of t where all defense (attack) countermea-
sures not in the subset are removed. Then, the general decision
problem for t is the same as the decision problem for t′. In
the sequel, we develop two formal semantic models for ADS
trees and show their equivalence.

B. Semantics

The first model is a natural extension of semantics for
ADS trees using Series-Parallel graphs (SPGs). SPGs have
been used to extend the multiset semantics of attack trees to
the case of attack trees with the sequential operator. While
the extension presented here is natural, it is non-trivial. The
later semantics is an elaboration of the former, however, it is
closer to the concept of system runs in Computer Science. In
particular, each item of the semantics is an interleaving run
between attacker and defender.

1) SPG semantics: We extend the Series-Parallel Graph
(SPG) semantics of attack trees with sequential operator.
Particularly, ADS trees are interpreted as sets of SP graphs.
Each such set captures possible attacks (defenses, resp.) and is
associated with a set of SP graphs describing possible defenses
(attacks, resp.). In the sequel, by abuse of notation, SP graphs
shall be denoted in lower case and sets of these in upper
case. Given an attack(defense)-rooted tree t, its semantics is
JtKSP = {(G1,P1), . . . , (Gn,Pn)}. Each SP graph g ∈ Gi

canonically represents a set of attacks (defenses, respectively);
similarly each SP graph p ∈ Pi canonically captures a set
of defenses (attacks) to counter against any attack (defense)
in Gi. For convenience, we upgrade sequential and parallel

compositions of SP graphs to sets of SP graphs as follows:
G1 ◦ G2 = {g1 ◦ g2 | g1 ∈ G1, g2 ∈ G2} where ◦ ∈ {·, ||}.

The SPG semantics of ADS trees is given by J·KSP : TADS →
℘(℘(SP)× ℘(SP)) which is defined recursively as follows:

• JbKSP = {({ b−→}, ∅)} for b ∈ B;
• Jt1 OR t2KSP = Jt1KSP ∪ Jt2KSP;
• Jt2 AND t2KSP = {(G1 || G2,P1 ∪ P2) |

(G1,P1) ∈ Jt1KSP, (G2,P2) ∈ Jt2KSP};
• Jt1 SAND t2KSP = {(G1 · G2,P1 ∪ P2) |

(G1,P1) ∈ Jt1KSP, (G2,P2) ∈ Jt2KSP};
• Jt1 C t2KSP =

{(G1,P1 ∪ (
⋃

(G2,P2)∈Jt2KSP
G2)) | (G1,P1) ∈ Jt1KSP} ∪

{(G1 || P2,P1 ∪ (
⋃

(G′
2,∅)∈Jt2KSP} G′2)) |

(G1,P1) ∈ Jt1KSP, (G2,P2) ∈ Jt2KSP,P2 6= ∅}.
Without loss of generality, we provide intuition behind the

semantic definition for attack-rooted trees. In the basic case,
a single leaf of an attack action b is interpreted as a single
pair ({ b−→}, ∅). The first component means that it is necessary
to attack by carrying out b, and the right component means
that the defender has no way to counter. The next three cases
(OR,AND and SAND) are self-explanatory, but the last case
(C) merits attention.

A pair (G1,P1) ∈ Jt1KSP means that each attack in t1
captured by the graph G1, can be countered by any defense
in P1.

Likewise, each defense in t2, captured by G2, can be
countered by any attack in P2. Then, in the tree t1 C t2, any
attack in t1 can be countered by any defense either in t1 or in
t2. These attacks therefore are captured in

{(G1,P1 ∪ (
⋃

(G2,P2)∈Jt2KSP

G2)) | (G1,P1) ∈ Jt1KSP}

However, each of such G2 can be countered again by the
corresponding P2, i.e., (G2,P2) ∈ Jt2KSP, if P2 6= ∅. Then
attacks in G1 are combined with those from P2. They can only
be countered by defenses without countermeasures in Jt2KSP,
i.e., those in G′2 where (G′2, ∅) ∈ Jt2KSP}. They are captured
as follows:

{(G1 || P2,P1 ∪ (
⋃

(G′
2,∅)∈Jt2KSP\{(G2,P2)}

G′2)) |

(G1,P1) ∈ Jt1KSP, (G2,P2) ∈ Jt2KSP,P2 6= ∅}

As an example of the last case, consider the ADS tree in
Fig. 1(a), containing the SAND operator, and given by the
SPG semantics {({ a1−→ · a2−→}, { d1−→,

d2−→})}. In this case the
attack a1 can be countered by defense d1, and the attack a2

by defense d2.
Now consider the defense mechanism in Fig. 1(b). It is made

up of two components: d3, and d4. There is a counter attack
against d3 (a3) but not against d4. The SPG semantics of this
graph is given by {({ d3−→}, { a3−→}), ({ d4−→}, ∅)}.

Now consider Fig. 1(c). In this, the constructed defense from
Fig. 1(b) has been added to the attack tree, and the whole at-
tack defense tree is given by (A C D). The additional defense
mechanism D is capable of defending against the sequential
attack a1 followed by a2. The SPG semantics of the overall

A

a_1

d_1

a_2

d_2

(a) Attack.

root

D

d_3

a_3

d_4

(b) Defense.

A

a_1

d_1

a_2

d_2

D

d_3

a_3

d_4

(c) Defense in situ.
Fig. 1: Attack defense trees.

tree is the set of two pairs {({ a1−→ · a2−→}, { d1−→,
d2−→,

d3−→,
d4−→}),

({(a1−→ · a2−→) || a3−→}, { d1−→,
d2−→,

d4−→})}.
In this example, we can see any of defense actions d1−→,

d2−→
or d4−→ is sufficient to defend against either of the two options
open to the attacker.

Given the semantics of ADS trees, let us formalise the
analysis question of interest. Given an ADS tree t, it is
successful if and only if there exists a pair (G, ∅) ∈ JtKSP,
i.e., attacks or defenses captured in G has no corresponding
countermeasures.

2) Trace semantics: Any SP graph can be seen as a set
of sequences of actions by traversing from the source node
to the target. Therefore, let us extend the function serials(·),
presented in [1], to accommodate outcomes as follows:
• serialise(G)) = {s ∈ serials(g) | g ∈ G};
• serialise(G,P) = (serialise(G), serialise(P)); and
• serialise({(G1,P1), . . . , (Gn,Pn)}) =⋃

i∈{1,...,n}{serialise(Gi,Pi)}.
Therefore, another way to interpret trees is to serialise the SP
graph semantics, i.e., to interpret them as sets of pairs of the
form (S,T) ∈ ℘(A+) × ℘(D∗) ∪ ℘(D+) × ℘(A∗) where S
represents a set of attacks (defenses) if t is attack(defense)-
rooted and T the corresponding countermeasures. To this end,
we define a trace semantics for ADS trees.

The trace semantics of ADS trees is given by the function
J·KT : TADS → ℘(℘(A+)×℘(D∗)∪℘(D+)×℘(A∗)) which is
defined recursively as follows:
• JbKT = {({〈b〉}, ∅)} for b ∈ B;
• Jt1 OR t2KT = Jt1KT ∪ Jt2KT ;
• Jt1 AND t2KT = {(S1 ||| S2,T1 ∪ T2) |

(S1, S1) ∈ Jt1KT , (S2,T2) ∈ Jt2KT};
• Jt1 SAND t2KT = {(S1 a S2,T1 ∪ T2) |

(S1,T1) ∈ Jt1KT , (S2,T2) ∈ Jt2KT};
• Jt1 C t2KT =

{(S1,T1 ∪ (
⋃

(S2,T2)∈Jt2KT
S2)) | (S1,T1) ∈ Jt1KT} ∪

{(S1 ||| T2,T1 ∪ (
⋃

(S′2,∅)∈Jt2KT
S′2)) |

(S1,T1) ∈ Jt1KT , (S2,T2) ∈ Jt2KT ,T2 6= ∅}.
Unsurprisingly, this semantics is equivalent to the SPG seman-
tics once we serialise all sequences in a GP graph. We have
the following theorem.

Theorem 1. ∀ t ∈ TADS : serialise(JtKSP) = JtKT .

The following result is immediate.

Corollary 1. ∀ t ∈ TADS : ∃(G, ∅) ∈ JtKSP ⇔ (S, ∅) ∈ JtKT .

This means to check if a tree t is successful, it is sufficient
to check the existence of (S, ∅) ∈ JtKT .

IV. REASONING ABOUT ADS TREES

An algorithm is presented for the ADS tree checking
problem. To know which are successful attacks (or defenses)
for a given ADS tree, a translation from ADS trees to CSP
processes is introduced. Then, FDR [3], a model checker for
CSP, is employed to elicit a successful attack (defense).

A. Checking ADS trees

Given the previous result, we propose a simple algorithm,
Algorithm 1, for the ADS tree checking problem. It is similar
to the Boolean semantics of ADS trees [9] where the difference
between AND and SAND is discarded. The reason is that
the checking problem is concerned with the existence of
a successful attack (defense) rather than the details of it’s
construction. The following correctness result is immediate.

Algorithm 1: Checking ADS trees.

Function check(t)
input : An ADS tree t;
output: true if t is successful, false otherwise.
if t = b then

return true;
else if t = t1 OR t2 then

return check(t1) ∨ check(t2);
else if t = t1 AND t2 or t = t1 SAND t2 then

return check(t1) ∧ check(t2);
else if t = t1 C t2 then

return check(t1) ∧ ¬check(t2);
end

end

Lemma 1. Given t ∈ TADS, check(t) = true iff ∃(S, ∅) ∈ JtKT .

Since Algorithm 1 visits all the nodes of an input ADS tree
t, its complexity is O(n) where n is the number of nodes of t.

B. Translation to CSP

Each ADS tree t is translated into a set of CSP process pairs
where the alphabet Σt = B. The translation function trans(·)
is defined as follows:
trans(b) = {(b→ Skip, Stop,>)}
trans(t1 OR t2) = trans(t1) ∪ trans(t2);
trans(t1 AND t2) = {(P1 ||| P2,Q1 2 Q2,O1 ∧ O2) |

(P1,Q1,O1) ∈ trans(t1), (P2,Q2,O2) ∈ trans(t2)};
trans(t1 SAND t2){(P1; P2,Q1 2 Q2,O1 ∧ O2) |

(P1,Q1,O1) ∈ trans(t1), (P2,Q2,O2) ∈ trans(t2)};
trans(t1 C t2) = {(P1,Q1 2 (2

(P2,Q2,O2)∈trans(t2)
P2),⊥) |

(P1,Q1,O1) ∈ trans(t1)}

∪{(P1 ||| Q2,Q1 2 (2
(P3,Q3,>)∈trans(t2)

P3),O) |
(P1,Q1,O1) ∈ trans(t1), (P2,Q2,O2) ∈ trans(t2)
O = O1 ∧ ¬∃(P3,Q3,>) ∈ trans(t2), }

The translation is similar to the definition of the trace
semantics for ADS tree. Intuitively, trans(t) aims to trans-
late ADS trees t into triples of two CSP processes and an
outcome. The outcome is either success/true, denoted by >,
or failure/false, denoted by ⊥. The following argument is
applied for attack-rooted tree t. If t is defense-rooted, the
same argument is also applied where “attack” is exchanged
with “defense”. Given such a pair (P,Q,O) ∈ trans(t), each
terminated trace tr1 ∈ tracesX(P1) is an attack while each
terminated trace tr2 ∈ tracesX(Q) is a defense against tr1.
When tracesX(Q) = ∅, every attack in tracesX(P) succeeds,
hence O = >. When tracesX(Q) 6= ∅, every trace in in
tracesX(P) can be countered by any trace in tracesX(Q),
hence O = ⊥. In the basic case, t = b where b ∈ A,
performing b will ensure success where no countermeasure is
available. For t = t1ORt2, all triples in trans(t1) and trans(t2)
are collected by union. For t = t1 AND t2, an attack can be
constructed by an interleaving of an attack in P1 of trans(t1)
with another in P2 of trans(t2). They can be countered by a
defense in either Q1 of trans(t1) or Q2 of trans(t2). These
combinations are captured by (P1 ||| P2,Q1 2 Q2,O1 ∧ O2)
where (Pi,Qi,Oi) ∈ trans(ti) for i ∈ {1, 2}. The same
explanation applies for t = t1 SAND t2 by replacing |||
with “; ” when combining attacks in trans(t1) and trans(t2).
Finally, for t = t1 C t2, attacks in P1 of trans(t1) can be
countered by a defense in Q1 of trans(t1) itself or defenses
in P1 of trans(t2). These attacks are captured by (P1,Q1 2

(2
(P2,Q2,O2)∈trans(t2)

P2),⊥) where (P1,Q1,O1) of trans(t1).
However, these defenses in P2 of trans(2) can be countered by
an attack in Q1 of trans(t2) if available, i.e., if tracesX(Q2) 6=
∅. This attack can be combined with that in P1. The combi-
nation can only be countered (i) by defenses in Q1 or (ii) by
defenses in P3 of trans(t2)) which are not countered by any
attack, i.e., (P3,Q3,>) ∈ trans(t2). These combined attacks
are captured by (P1 ||| Q2,Q1 2 (2

(P3,Q3,>)∈trans(t2)
),O)

where (P1,Q1,O1) ∈ trans(t1), (P2,Q2,⊥) ∈ trans(t2) and
O = O1 ∧ ¬∃(P3,Q3,>) ∈ trans(t2).

We define traces(trans(t)) = {({tr1 | tr1 a 〈X〉 ∈
traces(P)}, {tr2 | tr2 a 〈X〉 ∈ traces(Q)} | (P,Q,O) ∈
trans(t)}. The following result is immediate.

Lemma 2. ∀ t ∈ TADS : (P,Q,>) ∈ trans(t)⇔ tracesX(Q) = ∅.

Then, the correctness of the translation from ADS trees to
CSP processes is stated below.

Theorem 2. ∀ t ∈ TADS : traces(trans(t)) = JtKT .

C. Automated reasoning via CSP refinements

In this section, we show how to use refinement on the
translation of ADS trees into CSP processes to reason about
ADS trees. Out main interest is to answer the question whether
an attack(defense)-rooted tree is successful. By Lemma 2, the
following is immediate.

Corollary 2. ∀ t ∈ TADS : ∃(S, ∅) ∈ JtKT ⇔ ∃(P,Q,>) ∈
trans(t).

This result means that to determine if an ADS is successful,
we need to find a triple (P,Q,>) ∈ trans(t). The set of
all terminated traces without countermeasures in t then is
captured by 2

(P,Q,>)∈trans(t)
P. The set of non-termniated

traces is captured by Run(A) if t is attack-rooted or Run(A)
if otherwise. Then, terminated traces without countermeasures
can be identified by the following refinement:
• Run(A) vT trans(t)2

(P,Q,>)∈trans(t)
P if t ∈ Tp

ADS;

• Run(D) vT trans(t)2
(P,Q,>)∈trans(t)

P if t ∈ To
ADS.

If the refinement is true, 2
(P,Q,>)∈trans(t)

P has no terminated
traces, i.e., trans(t) has no triple of the (P,Q,>). Therefore, t
is not successful. Conversely, if the refinement fails, i.e., there
exists a counter example, t is successful. By using FDR, this
refinement can be automatically checked. If it fails, a counter
example will be produced which is an evidence of an attack
(or defense if t is defense-rooted) without countermeasures.

V. CASE STUDY

We extend ADTool2 [8] with ADS trees2. ADTool2 supports
graphically modelling and analysing attack trees with SAND
and attack defense trees without SAND. The extension also
accommodates the translation to CSP. To illustrate the use of
this tool extension, we introduce the following case study.

Traditional telematics capability for vehicles have evolved
to support critical functionality including firmware updates
for on-board Electronic Control Units (ECUs). Known as
Over-The-Air (OTA) updates, this is significant to remotely
address feature updates and performance flaws; indeed Tesla
demonstrated this to address problems with braking systems
on their recent model [20]. Supporting safety-critical functions
through such connectivity however brings to fore the concerns
around security of such components [13].

A key concern here is remote exploitation of vulnerabilities
on the communication units on-board vehicles. Miller and
Valasek brought attention to this [19] when they managed to
perform remote code execution due to authentication flaws in
the Uconnect System [18]. A further concern are attacks due
to infiltration of software supply chains [12]. Essentially, third
party software could carry a ‘backdoor’ to bypass authentica-
tion measures.

Traditional measures to detect intrusions over communi-
cation channels have been extended over automotive Con-
troller Area Network (CAN) [17]. Signature-based methods
are constrained by the knowledge of known exploits, whereas
anomaly detection systems pose the usual challenge of accu-
rately distinguishing between normal and abnormal activity at
an acceptable rate.

The concerns regarding OTA are depicted in a ADS tree. It
is modelled in the extension of ADTool2, depicted in Figure
2, together with identified counter measures as defenses. The

2A pre-release is downloadable from http://goo.gl/Ebkb8i.

http://goo.gl/Ebkb8i

Compromise
OTA

Exploit
Vuln's

Exploit
Known

Vuln

Retrieve
from
vuln

database

Connect
to OTA

Install
On-Board

IDS

Maintain
database of

known
exploits

Assess
comms

patterns
for known

vuln's

Exploit
Zero-Day

Vuln

Discover
Zero-Day

Vuln

Lab
research

Source
vuln
f rom

Dark Web

Connect
to OTA

Install
On-Board

IDS

Assess comms
for baseline

OTA
behaviour

Detect comms
patterns
deviating

f rom
baseline

Exploit
Backdoor

Install
Backdoor

Write
Backdoor

Embed
in code

Connect
to OTA

Install
On-Board

IDS

Assess comms
for baseline

OTA
behaviour

Detect comms
patterns
deviating

f rom
baseline

Evade
detection
as false
negative

Fig. 2: The ADS shows compromise of Over-The-Air (OTA) feature as the top objective. The route to such compromise is
either an existing or zero-day vulnerability (present in protocol or interface design or implementation), or a dedicated backdoor.
Mitigation includes On-Board IDS, either signature-based or detecting anomalies, the latter of which is open to false negatives
evading detection of true intrusion attempts. The use of the SAND operator depicts the sequential order for the relevant steps.

tool then is used to generate the CSP translation, which is fed
into FDR to check the refinement mentioned in Section IV.
FDR confirms that the refinement fails with a counter example
〈Write Backdoor, Embed in Code, Evade Detection as False
Negative, Connect to OTA〉, which turns out to be the only
possible attack in the ADS tree.

VI. CONCLUSION AND FUTURE WORK

This work has given a formal representation of attack
defense trees with sequential conjunction, a demonstration that
this representation is equivalent to a process-algebraic one,
an algorithm for identifying the existence of attacks, and an
example featuring an attack on OTA updates. In further work
we will explore further the application to automotive security.

REFERENCES

[1] M. Cheah, HN. Nguyen, J. Bryans, and S. A. Shaikh. Formalising
Systematic Security Evaluations Using Attack Trees for Automotive
Applications. In WISTP’17, pages 113–129. Springer, 2018.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, Karl K., A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack Surfaces. System, 2011.

[3] FDR4. Available at https://www.cs.ox.ac.uk/projects/fdr/, 2018-09-05.
[4] I. Foster, A. Prudhomme, K. Koscher, and S. Savage. Fast and

Vulnerable: A Story of Telematic Failures. In WOOT’15, 2015.
[5] O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. Chr. Olesen,

and D. B. Poulsen. Modelling Attack-defense Trees Using Timed
Automata. In Formal Modeling and Analysis of Timed Systems, volume
9884, pages 35–50. Springer, 2016.

[6] ISO. ISO26262: Road Vehicles – Functional Safety, 2011.

[7] R. Jhawar, B. Kordy, S. Mauw, S. Radomirovi, and R. Trujillo-Rasua.
Attack Trees with Sequential Conjunction. In ICT Systems Security and
Privacy Protection, volume 455, pages 339–353. Springer, 2015.

[8] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer. ADTool: Security
Analysis with Attack–Defense Trees. In Quantitative Evaluation of
Systems, volume 8054, pages 173–176. Springer, 2013.

[9] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer. Attack-defense
trees. 24(1):55–87, 2014-02-01.

[10] S. Mauw and M. Oostdijk. Foundations of Attack Trees. In ICISC 2005,
volume 3935, pages 186–198. Springer, 2006.

[11] C. Miller and C. Valasek. Remote Exploitation of an Unaltered
Passenger Vehicle. Defcon 23, 2015:1–91, 2015.

[12] National Cyber Security Centre (NCSC). Example Supply Chain
Attacks: Third party software providers. Available at https://www.ncsc.
gov.uk/guidance/example-supply-chain-attacks. Accessed: 2018-10-20.

[13] D. K. Nilsson, U. E. Larson, and E. Jonsson. Creating a secure
infrastructure for wireless diagnostics and software updates in vehicles.
In Computer Safety, Reliability, and Security. Springer, 2008.

[14] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[15] SAE. J3061 – Cybersecurity Guidebook for CP Vehicle Systems, 2016.
[16] B. Schneier. AT: Modeling Security Threats. Dr. Dobb’s Journal, 1999.
[17] A. Tomlinson, J. Bryans, and S. A. Shaikh. Towards viable intrusion

detection methods for the automotive controller area network. 2nd ACM
Computer Science in Cars Symposium, Munich, Germany.

[18] US-ICS-CERT. Harman-kardon uconnect vulnerability. advisory
(icsa-15-260-01). Available at https://ics-cert.us-cert.gov/advisories/
ICSA-15-260-01. Accessed: 2018-10-20.

[19] C. Valasek and C. Miller. A survey of remote automotive attack sur-
faces. Available at https://ioactive.com/pdfs/IOActive Remote Attack
Surfaces.pdf. Accessed: 2018-10-20.

[20] WIRED. Tesla’s Quick Fix for its Braking System came
from the Ether. Available at https://www.wired.com/story/
tesla-model3-braking-software-update-consumer-reports/. Accessed:
2018-10-20.

https://www.cs.ox.ac.uk/projects/fdr/
https://www.ncsc.gov.uk/guidance/example-supply-chain-attacks
https://www.ncsc.gov.uk/guidance/example-supply-chain-attacks
https://ics-cert.us-cert.gov/advisories/ICSA-15-260-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-260-01
https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf
https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf
https://www.wired.com/story/tesla-model3-braking-software-update-consumer-reports/
https://www.wired.com/story/tesla-model3-braking-software-update-consumer-reports/

	Attack Defense Trees cs
	Attack Defense Trees pdf
	Introduction
	Preliminaries
	Attack Trees
	CSP

	ADTs with Sequential Conjunction
	Syntax
	Semantics
	SPG semantics
	Trace semantics

	Reasoning about ADS trees
	Checking ADS trees
	Translation to CSP
	Automated reasoning via CSP refinements

	Case study
	Conclusion and future work
	References

