
Citation: Bryans, J.; Liew, L.S.;

Nguyen, H.N.; Sabaliauskaite, G.;

Shaikh, S.A. Formal Template-Based

Generation of Attack–Defence Trees

for Automated Security Analysis.

Information 2023, 14, 481. https://

doi.org/10.3390/info14090481

Academic Editor: Sokratis Katsikas

Received: 14 June 2023

Revised: 21 July 2023

Accepted: 22 July 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Formal Template-Based Generation of Attack–Defence Trees for
Automated Security Analysis
Jeremy Bryans 1,*, Lin Shen Liew 2, Hoang Nga Nguyen 3, Giedre Sabaliauskaite 3 and Siraj Ahmed Shaikh 3

1 Systems Security Group, Centre for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK
2 iTrust, Singapore University of Technology and Design, Singapore 487372, Singapore; linshen0502@gmail.com
3 Systems Security Group, Department of Computer Science, Swansea University, Swansea SA1 8EN, UK;

h.n.nguyen@swansea.ac.uk (H.N.N.); g.sabaliauskaite@swansea.ac.uk (G.S.);
s.a.shaikh@swansea.ac.uk (S.A.S.)

* Correspondence: ac1126@coventry.ac.uk

Abstract: Systems that integrate cyber and physical aspects to create cyber-physical systems (CPS)
are becoming increasingly complex, but demonstrating the security of CPS is hard and security is
frequently compromised. These compromises can lead to safety failures, putting lives at risk. Attack
Defense Trees with sequential conjunction (ADS) are an approach to identifying attacks on a system
and identifying the interaction between attacks and the defenses that are present within the CPS. We
present a semantic model for ADS and propose a methodology for generating ADS automatically. The
methodology takes as input a CPS system model and a library of templates of attacks and defenses.
We demonstrate and validate the effectiveness of the ADS generation methodology using an example
from the automotive domain.

Keywords: automotive cyber security; threat modelling; attack defense tree

1. Introduction

Cyber Physical Systems (CPS) are complex systems, which integrate digital capabil-
ities (networking, data, computational systems) with physical devices and engineering
systems. Their application domains include transportation, energy, healthcare, manufac-
turing, agriculture and other sectors. They are expected to enhance performance, increase
efficiency and safety, and to improve quality of life. However, to meet these expectations,
CPS themselves must be safe and secure.

Attack Trees (AT) have been one of the most used tools for security analysis, probably
due to its graphical and tree-like notation that can succinctly describe a set of possible ways
(aka paths) of realizing a complex realization of a threat scenario (aka attack). Basically, an
AT [1] has one root node denoting the attacker’s goal; every node may have multiple child
nodes denoting its refinement into sub-goals; those without child nodes are regarded as
leaf nodes representing the attacker’s basic actions; a refinement can be disjunctive (OR) or
conjunctive (AND); such hierarchical structure of AT enables one to visualize hence easily
grasp how attacks can succeed by progressively achieving certain basic actions and sub-
goals in series and/or parallel. Besides, it also allows qualitative/quantitative analysis—for
instance, a bottom-up computation of attributes such as attack likelihood/potential and
time/cost required.

ATs can be used for determining security risk level of various threat scenarios. Recent
international standard for road vehicle cybersecurity, ISO/SAE 21434 [2], proposes to
use attack tree analysis as one of methods for deciding threat feasibility level. Then,
cybersecurity risk level is computed by combining threat feasibility and impact levels.
Depending on the computed risk level, suitable countermeasures can be selected to mitigate
the risk.

Information 2023, 14, 481. https://doi.org/10.3390/info14090481 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14090481
https://doi.org/10.3390/info14090481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-1183-7001
https://doi.org/10.3390/info14090481
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14090481?type=check_update&version=2

Information 2023, 14, 481 2 of 25

To further enhance AT’s expressiveness and capabilities, various extensions have
been proposed in the literature over the last 20 years and they may be diverse in terms of
application domain, interpretation, formalism, etc. [3,4]. One of the notable extensions
is the introduction of sequential conjunction (SAND). It’s intended primarily to express
the order in which the attack steps (i.e., child nodes of a given node) should be achieved,
which the classical AT [1] is incapable of; additionally, SAND could also be used to express
temporal dependencies between nodes [3,5]. A rigorous mathematical formalization of ATs
with SAND is given in [6]. There are other efforts that express sequential relation among
the nodes of AT without using SAND. For instance, refs. [7,8] assume that the children of
AND-node are achieved in sequential order from left to right. Besides, ref. [9] uses dotted
arrow lines to link the relevant child nodes of any parent nodes; this however may result in
multiple arrow lines intersecting/overlapping the AT, thereby deteriorating its readability.
Appropriate (and non-excessive) use of additional symbols (e.g., SAND operator) could
help improve the expressiveness on ATs without compromising their readability.

Additional processes/steps/nodes denoting mitigation measures/strategies have
been integrated into ATs to reason/model the interactions between attacker and defender,
thereby leading to various extended ATs named Defense Tree [10–12], Countermeasure
Graph [13], Bounded Decision Markov Processes [9], Attack Countermeasure Tree [14],
and Attack Defense Tree [3,15], just to name a few. Such extensions are largely moti-
vated by the pressing need for evaluating how effective are the selected measures in
detecting/preventing/mitigating the attacks or whether the potential risks are reduced to
acceptable levels.

The process of constructing attack and attack defense trees is time-consuming. Further-
more, the analysis comprehensiveness is largely dependent on how accurately/precisely
the tree (which the analyst constructs) can model the analyzed system. Simply put, it
requires the analyst to possess sufficient expertise and knowledge of the analyzed system to
produce the tree that correctly models the system to ensure effective analysis. In addition,
as the size of AT generally grows with the system architectural complexity, the detailed
ATs for modern complex systems can grow too large and thus difficult for human analysts
to follow or estimate particular attributes such as attack likelihood. Moreover, manual
construction of a large AT is likely to be labor intensive and prone to human error. Dupli-
cated nodes are not rare especially for large systems, yet the same analyst might carelessly
refine them into inconsistent combinations of child nodes. In addition, ATs constructed by
individual analysts for the same system may differ considerably in terms of structure and
size [3,16].

The aforesaid limitations of manual construction of AT have thus given rise to au-
tomated AT generation methods, such as [17–19]. This paper proposes a template-based
method for automated generation of attack defense trees with sequential conjunction to
facilitate CPS cybersecurity analysis. To the best of our knowledge, this has not been done
before. The paper brings together the following contributions:

1. a formal representation of the ADS tree (attack defense tree with sequential con-
junction), followed by a demonstration that this representation is equivalent to a
process-algebraic one;

2. an algorithm that checks the ADS tree and tells whether the attack or defense
is successful;

3. a methodology for generating ADS trees based on two inputs: (i) a simple network model
depicting the hardware components involved in the system of interest; (ii) a library
consisting of component-specific templates as well as documented/recommended/
applicable measures/defenses.

The first of these contributions is a alternative semantics for the ADS that allows the
use of model-checking to reason about the ADS. It is equivalent to the semantics from [6].
In this paper we recall the semantics from [6] and the and new, equivalent semantics
(previously presented in [20]). This positions us to develop the second contribution—the
algorithm that allows us to identify whether attacks will be or will not be successful. The

Information 2023, 14, 481 3 of 25

third point (the methodology) uses the reasoning algorithm to check for undefended attacks.
Together, these points show a way in which vehicle manufacturers can develop and keep
security cases up-to-date during the lifetime of the vehicle. Security cases are a requirement
of the new automotive security standard ISO21434 [2].

The remainder of the paper is organized as follows. Section 2 includes a review of
related literature. Background information is described in Section 3. Section 4 defines
syntax and semantics, while Section 5 explains reasoning about ADS trees. A methodology
for automated ADS tree generation is presented in Section 6. Finally, Section 7 concludes
the paper and describes directions for future work.

2. Literature Review

Attack trees (AT) and their derivatives have been widely used for handling threat
modelling and security risk assessment, as they can succinctly describe complex threat
scenarios and help their readers (e.g., analysts) to better observe and reason about the
impact of risks on the system. However, manual construction of AT is heavily dependent on
one’s expertise and experience (ATs constructed by individual analysts for the same system
can differ structurally [3,16]). Experts often use libraries of common attack patterns or reuse
parts of models. This can render reading and maintaining ATs even more challenging for
third parties. Besides, Attack Trees can also be verbose and error-prone, especially when
the size of the AT and its corresponding system complexity becomes substantial. A viable
solution to these issues, and one which we explore in this paper, is automated Attack Tree
generation. This is considered in the table (Table 1). Another theme we explore in this
literature survey is the validation of Attack Trees.

A significant survey was published by Wideł et al. [21] in 2020 and covers the period
2014–2019. It has a focus on applications in formal methods for attack tree based security
modeling, dividing the surveyed work into strict semantical work, work on the generation
of attack trees and quantitative approaches for attack trees. Our interest, and our approach
here, is the semantic basis for the generation of attack (attack defense) trees. In [21] the
authors observe that manually constructed AT are subjective and AT describing the same
system can differ widely in size, structure and even the attack vectors captured. The
authors also discuss the more expressive semantics given in [22], in which AND and
SAND operators are distinguished using a logical semantics. Audinot’s work on path
interpretation [23,24], has the goal of using the path interpretation framework to allows a
user to express and check whether an attack tree is consistent with the analyzed system,
and is the basis for the ATSyRA tool [25].

Pinchinat et al. [19] also uses the path interpretation semantics, and consider the
problem of access to physical locations, using a version of the tool ATSyRA developed
using the Eclipse Modelling Framework [25]. ATSyRA then compiles this into a symbolic
transition system. The authors observe that “naive fully automated generation is likely to
produce unexploitable trees (because they are flat)" and consequentially they synthesise
structure into their attack tree using factorisation, with the structuring rules necessary
provided by experts. In our work structure is provided through templates (patterns) built
into attack trees derived from the analysed system as the attack tree is being created.

Vigo, Neilsen and Neilsen [26,27] use attack trees to communicate security information
in a structural and succinct way to non-experts in a company. They tackle the generation
problem with a system modeled using a variant of the π calculus (a value-passing quality
calculus) and a target location or asset, and generate an attack tree showing how an attack
on the system may be carried out. In their specification, the attacker model is an adversary
process able to obtain cryptographic access to any channel. These channels may be cyber
(e.g., cryptography) or physical (e.g., reinforced gates) protection mechanisms. Additionally,
if a map from channels to costs is provided, the proposed framework can compute the
cheapest sets of channels that enable attaining a location of interest. The system used in
their paper is a communication system (NEMID—Danish for EASYID) as the target system.
The value-passing calculus allows to model scenarios beyond the standard network security

Information 2023, 14, 481 4 of 25

domain, and enables designing syntax-directed static analysis, avoiding the state space
explosion suffered by model checking algorithms. Our work differs from this in its targetted
application to automotive networks and it’s use of the process algebra CSP. Our atttacker
model is similar to [26], where the authors have the implicit assumption that the attacker
is capable of obtaining the necessary access at each step. The use of the templates assumes
the at each step the access required. The network architecture we use would be available
as part of the vehicle development process, and taking it as an input here means that our
method will be usful to the vehicle development process. [27] look at developing Attack
Trees and quantifying the protection of the system modelled. The approach uses the same
syntax-directed approach as previously, but uses a different process algebra (although from
the π-calculus family—the protection calculus [28]). They use this to consider the cost of
an attack, an area we do not touch on in this paper.

Ivanova et al. [7] use recursive policy invalidation to generate an attack tree showing
how a socio-technical system can be attacked. They generate Attack Trees based on Directed
Graphs. The methodology specifically aims to take “human factor” issues into account, and
is demonstrated with an example of a socio-technical system modelled using a (directed)
graph with nodes representing locations (e.g., rooms and computers), actors (e.g., persons),
processes (modelling information sharing or policies), and items (tangible assets like access
cards and hard-drives). It forms part of the TREsPASS approach [29]. The TREsPASS
model includes security controls such as access control policies that limit access to certain
locations and digital means of enforcing these (for example password mechanisms). The
socio-technical aspect is absent in our work, but would be a worthwhile addition.

A few papers consider the issue of validation of attack trees. In [18] the method is for
entirely new systems, rather than for existing ones. The validation focusses on usability
and focusses on issues such as Attack Tree formatting for the end-user, and the length of
the descriptive names used for Attack Tree nodes. It is designed for operational processes
rather than architectures than include communications between components.

In the automotive domain, there have been several efforts in proposing systematic
approaches to constructing attack trees. Paul’s methodology [18] for generating Attack
Trees is demonstrated with an example of automotive braking system. The methodology
she presents requires three inputs, namely the system’s logical and operation architectures
modelled via a particular architecture framework by Thales Melody, the system’s risk
assessment result, and a security knowledge database (e.g., EBIOS). Using these inputs,
a methodology to produce an Attack Tree is then given. She proposes a systematic ap-
proach based on these inputs to automate the construction and maintenance of attack
trees. Similarly, an initial work by Kacper et al has been proposed in [30] to create an
automated Machine Learning-based framework to construct attack trees with the main
motivation for application in automotive cybersecurity. The approach utilises Graphical
Neural Network to enable the automated construction with training samples are extracted
from existing vulnerability databases. In contrast to this, Mahmood et al. [31] proposed
a structural approach to construction of attack tree for automotive Over The Air Update
systems. Their work suggests to first perform a threat analysis from inputs such as structure
models of these systems. Although attack tree outputs from this approach is tracable to
elements in the input, its construction is currently manual and requires experts’ knowledge
and experience.

Security evaluation is discussed by Cheah et al. [32], but there the purpose of the
evaluation is to evaluate severity ratings with respect to discovered weaknesses. The
evaluation is specifically “from a black box perspective”, and it is assumed that components
are supplied by third-parties, and the evaluation is carried out by domain experts. Attack
trees are used to map the process of penetration testing that is automatically out. Lallie et
al. studies the question of cyber attack perception in [33] and evaluate two different attack
modelling techniques (including attack trees) with respect to their ability to communicate
attacks to different groups of people. Importantly, though, the focus is on the attack, rather
than the correctness of the illustration of the attack.

Information 2023, 14, 481 5 of 25

Hong et al. [34] attempt to construct ATs automatically while maintaining all possible
attack scenarios. They propose two logic reduction techniques that automatically gener-
ate optimally structured AT that are smaller in size yet enabling attack cost estimation
equivalent to that of their original full forms, which would usually contain repetitive or
superfluous branching. The evaluation is to confirm that the simplified ATs provide the
same security analysis compared to the full AT. An example security analysis is used as a
means for all the ATs produced.

Gadyatskaya et al. [15] present an approach to adding defenses to AT. The system
is transformed into a Directed Graph following the TREsPASS approach presented in [7].
A method using “attack-defense bundles” is proposed by making explicit in the attack
generation process the fact that the attacker needs to overcome the restrictions imposed by
security policies. The focus of the authors is on socio-technical systems. Each identified
asset (of the resultant Directed Graph) results in a (small) attack defense tree which is
derived from a template (a bundle). This template consists of 7 types of nodes—5 types for
attack and 2 types of defense. So, if multiple assets are accessed by the attacker in parallel
and/or series to reach the target location/asset, then the accessed assets’ corresponding
(small) attack defense tree are merged to form a (big) attack defense tree with OR and AND
refinement. Note that the method is not fully formal, because the “defense” nodes which are
subsequently added to the ADT are expressed in the natural language. These defense-nodes
can denote preventive, detective or corrective controls. The choice of defenses (controls) is
up to the human analyst.

In [35] Gadyatskaya et al. present another approach to generating Attack Trees. They
use the SP (series-parallel) semantics to present a theoretical framework that addresses the
problem of attack tree generation, deriving the refinement structure from an abstraction
relation on system predicates. The approach, unlike the aforementioned ones, does not
identify the attack paths (traces). Given a set of attack paths and a set of refinement
rules, the approach would output an optimized and correct AT through a greedy heuristic
based on the edge biclique problem. They aim to construct the tree such that it contains
structure—non-leaf nodes are semantically meaningful, and give a heuristic algorithm to
solve this. Validation of the proposed technique based on realistic case studies is left to
further work.

Chlup et al. [36] present an approach to automated construction of attack trees using
the notion of an anti-pattern, which is essentially a “pattern that describes a configuration
that cyber-resilient systems should not include (i.e., a vulnerability)”. Using a separate
system model and threat model, attack paths can be constructed. Ultimately, the depth and
breadth of attack trees rely on the combination of the initial set of anti-patterns (subject
to the nature of components used in the system) and attacker capabilities (subject to any
assumptions defined by the user). While the approach is well implemented—widely known
as the THREATGET tool—there is limited validation on effective and complete are the
attack trees.

Gadyatskaya and Mauw (in [37]) present an interesting change in point-of-view,
moving from a static view of single stand-alone attack trees to a time-indexed set and thus
introducing the possibility of dynamic security monitoring. The authors make the case
that dealing with the series allows the detection of trends in dynamic security scenarios on
attack trees. The model (Attack Tree Series) also allows the visualization of the evolution of
the security posture with respect to the considered threat model. Attack Tree Series also
allow quantitative threat data values to change over time, and capture the importance of
these changes in a temperature function. A temperature function is a history-dependent
attribute, meaning that it is based on the history of values of an attribute. Tracking changes
in this temperature function enables the analysis and monitoring of historical trends. The
work is validated using an example from teller machines fraud.

An alternative approach to adding time to an attack tree is taken by Ali and Gruska
in [38]. The authors allow (min,max) time constraints to be associated with attack nodes.

Information 2023, 14, 481 6 of 25

The full attack tree can then be analysed if the attack node occurs at any time within the
associated interval. The timed automata tool UPPAAL can then be used for analysis.

Jhawar et al. in [39] present a method aimed at re-use and based on annotating AT with
assumption and guarantee predicates that indicate how they may be combined. They then
build attack trees using libraries of patterns drawn from vulnerability databases. This then
provides the automated step of a semi-automatic Attack Tree curation process. The work
is validated by using a library of attack trees generated from standardised vulnerability
descriptions in the National Vulnerability Database, then using trees from this library to
augment a manually constructed annotated attack tree representing a high level attack
pattern described in Mitre’s Common Attack Pattern Enumerations and Classifications [40].

Attack Countermeasure Trees (ACT) are presented in Roy et al. [14], where coun-
termeasures including detection and mitigation are allowed at any level of the tree. The
purpose of the work is to aid in the development of a scheme to identify where in the
system security investment should be prioritized. The work relies on several probabilistic
analyses to compute the impact and cost of a successful attack as well as the system’s risk
to a particular attack scenario. The paper provides an input tool in order to evaluate an
attack countermeasure tree in terms of impact and cost.

There are further two contributions to semantics that are noteworthy. In the first [41]
Mantel et al. argued that AT are not “explicit” because the trees do not clarify the connection
between the attacks and the attacker goal of the tree explicitly. The authors present a
framework in which the relationship of the attacks to the attackers goal at the top of the
tree can be made explicit. The work is closely related to the SP semantics. The authors
observe that the success of an attack depends on (i) the actions of the attacked system,
(ii) the actions of the attacker, (iii) possibly the actions of other actors, and the interplay
between these factors. They then identify three degrees of freedom in the specification of
the success of an attack: purity (may occurrences of actions of an attack be interleaved
with occurrences of other actions and, if yes, which ones?), persistence (is it sufficient if
the attacker’s goal is satisfied at some point in time or should it be satisfied persistently?)
and causality (can we be certain that the goal is a result of the attack?). They develop a
trace-based language to describe the behaviour of attackers and attacked systems, allowing
the question “Does an attack achieve an attacker goal in a run?” to be answered using
their three-element framework. They then give various ways of answering these questions
to describe different points on the framework. Finally, they evaluate selected papers
from diverse domains with respect to the persistence, purity and causality, showing that
the attack trees from quite diverse domains can have their success criteria fitted into the
same framework.

In a similar piece of work to [41], Pinchinat et al. in [42] extend the model of an AT
with a model of the analysed system. This allows the authors to take the specific system
configuration into account, and to be precise about the path semantics of the attacks. The
use of the analysed system allows them to identify which attacks described by the attack
tree are possible in the system, arguing that generic attack trees may contain attacks which
are impossible to execute on a system of interest. In this work we take a similar approach
to [42]. We use a system model to derive attacks, and apply it also to defenses to get the
attack defense tree. We also use templates of known attacks and defenses that are specific
to the automotive world.

The previous work on which this paper is built is related to both [41] (in our use of
the SP semantics) and [42] (in our use of the system model). In [20] we set up a semantic
framework, and in [43] we derive an Attack Tree from a system model and a library of
attack patterns. In the current paper we extend this work to Attack and Defense patterns,
and a new methodology is given that generates an Attack Defense Tree (as an ADS).

Information 2023, 14, 481 7 of 25

Table 1. A survey of papers tackling automatic generation of Attack Trees. (AT: Attack Trees; AG:
Attack Graphs; ACT: Attack Countermeasure Tree; ADT: Attack Defence Tree; ADS: Attack Defence
Tree with sequential conjunction; OR/AND—standard Boolean operators; SAND—sequential AND).

Algorithm Automated Generation Output Model Operators Running Example

[44,45] Yes AG - Computer system
[34] No AT OR/AND Random network system
[18,30] Yes AT OR/AND Automotive system
[31] No AT OR/AND/SAND Automotive system
[17,19] Yes AT OR/AND/SAND Military building
[7,46] Yes AT OR/AND Socio-technical system
[26,27] Yes AT OR/AND National authentication system
[15] Semi ADT OR/AND Socio-technical system
[47] No AT OR/AND Medical system
[48] Semi ACT OR/AND Computer system
[35] Yes AT OR/SAND Computer system
[39] Semi AT OR/AND Computer system
[24] No AT OR/AND/SAND Military building
[49] Yes AT OR/AND Urban surveillance system
[37] No AT OR/AND ATM system
[36] Yes AT OR/AND Automotive system
[43] Yes AT OR/AND/SAND Automotive system
Current Paper Yes ADS OR/AND/SAND Automotive system

Table 1 summarizes differences among works by assessing their algorithms with
respect to the following questions:

• Is the output model produced in the cited work automatically generated?
• What graphical model does the method output? These can be Attack Trees, Attack

Defense Trees, Attack Defence Trees with sequential conjunction; Attack Counter
Measure Trees or Attack Graphs?

• Which operators does the output model use? These are OR, AND and SAND operators.
• What domain inspired the running example provided to demonstrate the application

of the method discussed?

3. Background
3.1. Attack Trees

Attack trees contain a set of leaf nodes, structured using the operators conjunction
(AND) and disjunction (OR). The leaf nodes represent atomic attacker actions. The AND
nodes (resp. OR nodes) are complete when all child nodes have (resp. at least one child
node has) been carried out.

Extensions have been proposed using Sequential AND (or SAND) [6]. We follow the
formalisation of attack trees given in [6,16]. If A is the set of all possible atomic attacker
actions, the elements of the attack tree T are A∪ {OR, AND, SAND}, and an attack tree is
generated by the following grammar, where a ∈ A:

t ::= a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)

Attack tree semantics have been defined by interpreting the attack tree as a set of
series-parallel (SP) graphs [6]. We use the definition of SP graphs. It first requires the
definition of source-sink graphs and here we use the definitions from [6].

Definition 1. A source-sink graph over A is a tuple G = (V, E, s, z) where V is a set of vertices,
E is a multiset of edges with support E∗ ⊆ V×A×V, s ∈ V is a unique source and z ∈ V is a
unique sink, and s 6= z.

Two example source sink graphs are given in Figure 1. The sequential composition
of G and another graph G′, denoted by G ·G′ results from the disjoint union of G and G′

Information 2023, 14, 481 8 of 25

and linking the sink of G with the source of G′ (linking z with s′). Thus, if ∪̇ denotes the
disjoint union and E[s/z] denotes the multiset of E where vertices z are replaced by s, then
G.G′ can be defined as G ·G′ = (V \ {z}∪̇V′, E[s′/z′]∪̇E′, s, z′). Parallel composition, denoted
by G ‖ G′ is similar (differing only in that two sources and two sinks are identified) and can
be defined as: G ‖ G′ = (V \ {s, z}∪̇V′, E[s′/s,z′/z]∪̇E′, s′, z′). Figure 2 illustrates the parallel
composition of the two graphs given in Figure 1.

Figure 1. Two source-sink graphs, where a, b, c, d and e are drawn from the set of vertices V, and s, s′,
z, z′ are the unique sources and sinks of the two graphs.

Figure 2. A series parallel graph formed from the parallel composition of the two source sink graphs
from Figure 1, with s and s′ being merged into s and z and z′ being merged into z.

Definition 2. The set GSP over A is defined inductively by:

For a ∈ A, a−→ is an SP graph,
If G and G′ are SP graphs, then so are G ·G′ and G ‖ G′.

Hence, the full SP graph semantics for attack tree T can be given by the function:
J·KSP : T→ ℘(GSP). This is defined recursively. If a ∈ A, ti ∈ T, and 1 ≤ i ≤ k, then

JaKSP = { a−→}
JOR(t1, . . . , tk)KSP =

⋃k
i=1JtiKSP

JAND(t1, . . . , tk)KSP = {G1 || . . . || Gk |
(G1, . . . , Gk) ∈ Jt1KSP × . . .× JtkKSP}

JSAND(t1, . . . , tk)KSP = {G1 · . . . ·Gk |
(G1, . . . , Gk) ∈ Jt1KSP × . . .× JtkKSP} where JtKSP = {G1, . . . , Gk} corresponds to

a set of possible attacks Gi.

As proposed by [50], leaves on an attack tree can be considered as events. The
combination of these events can be translated into the processes that form part of a test
case. This allows us to use a process algebra such as CSP. The equivalence of the semantics
(see Section 3.2) means that we can use synonymous operators to transform a pre-built
attack tree.

Information 2023, 14, 481 9 of 25

3.2. CSP

An overview of the subset of CSP that we use is given here. A more complete intro-
duction may be found in [51]. Given a set of events Σ, CSP processes are defined by the
following syntax:

P ::= Stop | e→ P | P1 2 P2 | P1; P2 | P1 ‖
A

P2

where e ∈ Σ and A ⊆ Σ. For convenience, the set of CSP processes defined via the above
syntax is denoted by CSP.

The event X /∈ Σ marks successful termination. The process Stop is deadlocked. Skip
is an abbreviation for X → Stop. The process e → P engages in the event e then behaves
as P. The choice P1 2 P2 behaves either as P1 or as P2. The sequential composition P1; P2
initially behaves as P1 until P1 terminates, then continues as P2. The generalised parallel
operator P1 ‖

A
P2 requires P1 and P2 to synchronise on events in A∪ {X}. All other events

are executed independently, and P1 ||| P2 is an abbreviation for P1 ‖
∅

P2.

There are different semantics models for CSP processes [51]. For our purpose, we
recall the finite trace semantics. A trace is a possibly empty sequence of events from Σ and
may terminate with X. As usual, let Σ∗ denote the set of all finite sequences of events from
Σ, 〈〉 the empty sequence, and tr1

a tr2 the concatenation of two traces tr1 and tr2; then the
set of all traces is defined as Σ∗X = {tr a en | tr ∈ Σ∗ ∧ en ∈ {〈〉, 〈X〉}}.

In general, the trace semantics of a process P is a subset traces(P) of Σ∗X consisting of
all traces which the process may exhibit. It is formally defined recursively as follows:

• traces(Stop) = {〈〉};
• traces(e→ P) = {〈〉} ∪ {〈e〉a tr | tr ∈ traces(P)};
• traces(P1 2 P2) = traces(P1) ∪ traces(P2);
• traces(P1; P2) = traces(P1) ∩ Σ∗

∪ {tr1
a tr2 | tr1

a 〈X〉 ∈ traces(P1) ∧ tr2 ∈ traces(P2)};
• traces(P1 ‖

A
P2) =

{tr ∈ tr1 ‖
A

tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}

where tr1 ‖
A

tr2 = tr2 ‖
A

tr1 is defined as follows with a, a′ ∈ A∪ {X} and b, b′ /∈ A:

– 〈〉 ‖
A
〈〉 = {〈〉}; 〈〉 ‖

A
〈a〉 = ∅; 〈〉 ‖

A
〈b〉 = {〈b〉};

– 〈a〉a tr1 ‖
A
〈b〉a tr2 = {〈b〉a tr | tr ∈ 〈a〉a tr1 ‖

A
tr2};

– 〈a〉a tr1 ‖
A
〈a〉a tr2 = {〈a〉a tr | tr ∈ tr1 ‖

A
tr2}

– 〈a〉a tr1 ‖
A
〈a′〉a tr2 = ∅ where a 6= a′;

– 〈b〉a tr1 ‖
A
〈b′〉a tr2 =

{〈b〉a tr | tr ∈ tr1 ‖
A
〈b′〉a tr2} ∪

{〈b′〉a tr | tr ∈ 〈b〉a tr1 ‖
A

tr2}

As mentioned earlier, trace interleaving is defined as:

• traces(P1 ||| P2) = P1 ‖
∅

P2

For convenience, we sometimes use the notion of interleaving and concatenation
over two sets of traces. In particular, given two sets S1 and S2 of traces, S1 ||| S2 =⋃

s1∈S1,s2∈S2
s1 ||| s2 and S1

a S2 = {s1
a s2 | s1 ∈ S1, s2 ∈ S2}.

We define tracesX(P) = {tr | tr a 〈X〉 ∈ traces(P)} to denote the set of terminated traces.

Information 2023, 14, 481 10 of 25

A normal way to analyse CSP processes is via trace-refinement. A process P is said to
trace-refine a process Q (written Q vT P) if traces(P) ⊆ traces(Q). There are other flavors
of refinement, but we restrict ourselves to trace refinement below. In this paper, we use
FDR [52] for checking trace-refinements.

In [50], it is showed that each attack tree can be translated into a semantically equiva-
lent CSP process. The equivalence is based on an observation that any series parallel graph
(SPG) can be seen as a set of sequences of actions, each corresponding to a traverse from
the source node to the sink node of the graph. Formally, the set of sequences of actions of
an SP graph can be defined recursively as follows:

• serialise(a−→) = {〈a〉};
• serialise(G1 ‖ G2) = {s ∈ s1 ||| s2 | s1 ∈ serialise(G1) ∧ s2 ∈ serialise(G2)};
• serialise(G1 ·G2) = {s1

a s2 | s1 ∈ serialise(G1) ∧ s2 ∈ serialise(G2)}.
The function serialise(·) is also generalised to the case of sets of graphs as follows:

• serialise({G1, . . . , Gn}) =
⋃

i∈{1,...,n} serialise(Gi).

4. Attack Defense Trees with Sequential Conjunction

Attack defense trees (ADTs) allow us to capture the interaction between attack and
defense, and therefore the interaction between attacker and defender. Here we extend
ADTs to include sequential conjunction, meaning that we can now capture attacks (or
defenses) that have to be carried out in a particular order. This enhanced descriptive power
is captured by the operator SAND, or sequential AND. The resultant tree is called an
Attack Defense tree with Sequential conjunction and abbreviated by ADS.

4.1. Syntax

Let A and D be disjoint sets of basic attack and defense actions, respectively. Let
B = A ∪ D. The syntax of attack defense trees with sequential conjunction (ADS) is given
recursively as follows:

t ::= tp | to
tp ::= a | tp OR tp | tp AND tp | tp SAND tp | tp C to
to ::= d | to OR to | to AND to | to SAND to | to C tp

where a ∈ A and d ∈ D. In the above syntax, p stands for proponent, o for opponent, tp for
proponent(attack)-rooted ADS trees and to for opponent(defender)-rooted ADS trees. The
set of all well-defined attack-rooted ADS trees is denoted by Tp

ADS, defense-rooted by To
ADS,

and TADS = Tp
ADS ∪ To

ADS. For convenience, we sometimes refer to ADS trees simply as
trees unless unclear from the context.

Similar to [53], our main interest is to check if there exists a successful attack (defense)
in a given attack(defense)-rooted tree. Here, it is called ADS tree checking decision problem
and is formally defined as follows:

Definition 3. Given an ADS tree t, the ADS tree checking problem is to determine if t is successful.

A more general decision problem is to constrain defense (attack) countermeasures to a
subset of the possible ones. This might be valuable if resource constraints meant a limited
number of defenses could be employed. However, one can construct a copy t′ of t where all
defense (attack) countermeasures not in the subset are removed. Then, the general decision
problem for t is the same as the decision problem for t′. In the sequel, we develop two
formal semantic models for ADS trees and show their equivalence.

4.2. Semantics

The first model is a natural extension of semantics for ADS trees using series parallel
(SP) graphs. SP graphs (SPG) have been used to extend the multiset semantics of attack

Information 2023, 14, 481 11 of 25

trees to the case of attack trees with the sequential operator. While the extension presented
here is natural, it is non-trivial. The later semantics is an elaboration of the former, however,
it is closer to the concept of system runs in Computer Science. In particular, each item of
the semantics is an interleaving run between attacker and defender.

4.2.1. SPG Semantics

We extend the series parallel graph (SPG) semantics of attack trees with the sequential
operator. Particularly, ADS trees are interpreted as sets of SP graphs. Each such set captures
possible attacks (resp: defenses) and is associated with a set of SP graphs describing possible
defenses (resp: attacks). In the sequel, by abuse of notation, SP graphs shall be denoted in
lower case and sets of these in upper case.

Given an attack(defense)-rooted tree t, its semantics is JtKSP = {(G1, P1), . . . , (Gn, Pn)}.
Each SP graph g ∈ Gi canonically represents a set of attacks (respectively: defenses);
similarly each SP graph p ∈ Pi canonically captures a set of defenses (attacks) to counter
against any attack (defense) in Gi. For convenience, we upgrade sequential and parallel
compositions of SP graphs to sets of SP graphs as follows: G1 ◦G2 = {g1 ◦ g2 | g1 ∈ G1, g2 ∈
G2} where ◦ ∈ {·, ||}.

The SPG semantics of ADS trees is given by J·KSP : TADS → ℘(℘(SP)× ℘(SP)) which
is defined recursively as follows:

• JbKSP = {({ b−→}, ∅)} for b ∈ B;
• Jt1 OR t2KSP = Jt1KSP ∪ Jt2KSP;
• Jt2 AND t2KSP = {(G1 || G2, P1 ∪ P2) |

(G1, P1) ∈ Jt1KSP, (G2, P2) ∈ Jt2KSP};
• Jt1 SAND t2KSP = {(G1 ·G2, P1 ∪ P2) |

(G1, P1) ∈ Jt1KSP, (G2, P2) ∈ Jt2KSP};
• Jt1 C t2KSP =

{(G1, P1 ∪ (
⋃
(G2,P2)∈Jt2KSP

G2)) | (G1, P1) ∈ Jt1KSP} ∪
{(G1 || P2, P1 ∪ (

⋃
(G′2,∅)∈Jt2KSP} G′2)) |

(G1, P1) ∈ Jt1KSP, (G2, P2) ∈ Jt2KSP, P2 6= ∅}.
Without loss of generality, we provide intuition behind the semantic definition for

attack-rooted trees. In the basic case, a single leaf of an attack action b is interpreted

as a single pair ({ b−→}, ∅). The first component means that it is necessary to attack by
carrying out b, and the right component means that the defender has no way to counter.
The next three cases (OR, AND and SAND) are self-explanatory, but the last case (C)
merits attention.

A pair (G1, P1) ∈ Jt1KSP means that each attack in t1 captured by the graph G1, can
be countered by any defense in P1. Likewise, each defense in t2, captured by G2, can be
countered by any attack in P2. Then, in the tree t1 C t2, any attack in t1 can be countered by
any defense either in t1 or in t2. These attacks therefore are captured in

{(G1, P1 ∪ (
⋃

(G2,P2)∈Jt2KSP

G2)) | (G1, P1) ∈ Jt1KSP}

However, each of such G2 can be countered again by the corresponding P2, i.e., (G2, P2) ∈
Jt2KSP, if P2 6= ∅. Then attacks in G1 are combined with those from P2. They can only be
countered by defenses without countermeasures in Jt2KSP, i.e., those in G′2 where (G′2, ∅) ∈
Jt2KSP}. They are captured as follows:

{(G1 || P2, P1 ∪ (
⋃

(G′2,∅)∈Jt2KSP\{(G2,P2)}
G′2)) |

(G1, P1) ∈ Jt1KSP, (G2, P2) ∈ Jt2KSP, P2 6= ∅}

As a simple example of the last case, consider the ADS tree in Figure 3. This contains

the SAND operator and given by the SPG semantics {({ a1−→ · a2−→}, { d1−→,
d2−→})}. In this case

Information 2023, 14, 481 12 of 25

the attack a1 can be countered by defense d1, and the attack a2 by defense d2. The SAND
operator means that both attacks a1 and a2 need to succeed in order for the overall attack A
to be successful.

A

a_1

d_1

a_2

d_2

Figure 3. An Attack Defense Tree containing the SAND operator, and given by the SPG semantics

{({ a1−→ · a2−→}, { d1−→, d2−→})}. In this case the attack a1 can be countered by defense d1, and the attack a2

by defense d2.

Now we build a representation of a defense mechanism, depicted in Figure 4, that we
wish to add to the attack tree from Figure 5. This defense mechanism is made up of two
components: d3 and d4, and is a defense against the whole attack (represented by A.) Within
it, there is a counterattack against d3 (a3) but not against d4. The SPG semantic presentation
of the whole attack defense tree uses the operator C and is given by (A C D). The SPG

semantics of this graph is given by {({ d3−→}, { a3−→}), ({ d4−→}, ∅)}. We see the graphical result
when the defense is combined with the attack in Figure 5.

root

D

d_3

a_3

d_4

Figure 4. The constructed defense is made up of two components: d3 and d4. A counterattack against
d3 exists (attack a3) but no counterattack against d4 exists.

The additional defense mechanism D is capable of defending against the combined
attack a1 followed by a2. The SPG semantics of the overall tree (given by A C D) expands

to the set of two pairs {({ a1−→ · a2−→}, { d1−→,
d2−→,

d3−→,
d4−→}), ({(a1−→ · a2−→) || a3−→}, { d1−→,

d2−→,
d4−→})}.

In this example, we can see that any of defense actions
d1−→,

d2−→ or
d4−→ is sufficient to

defend against either of the two attacking options ((a1 AND a2) OR a3) open to the attacker.
Given the semantics of ADS trees, we now formalise the analysis question of interest.

An attack (defense) on a given ADS tree is successful if and only if there exists a pair
(G, ∅) ∈ JtKSP, i.e., attacks (defenses) captured in G have no corresponding countermeasures.

Information 2023, 14, 481 13 of 25

A

a_1

d_1

a_2

d_2

D

d_3

a_3

d_4

Figure 5. The Defense combined with the Attack Tree. The defense D is a defense against the total
attack (A). The SPG semantic presentation of this Attack Defense Tree is (A C D).

4.2.2. Trace Semantics

Any SP graph can be seen as a set of sequences of actions by traversing from the source
node to the target. Therefore, we extend the function serials(·), presented in [50], to the
function serialise(·), as below.

First, recall that the purpose of the function serials(·) is to construct a serial representa-
tion of the actions from a SP graph. Parallel graph composition is considered as interleaving
and sequential composition as concatenation.

The purpose of the function serialise(·) is to construct all these combinations of actions
as follows.

Definition 4. Given G in GSP , let serials(G) denote the set of all possible ways to serialise G
as follows:

• serialise(G)) = {s ∈ serials(g) | g ∈ G};
• serialise(G, P) = (serialise(G), serialise(P)); and
• serialise({(G1, P1), . . . , (Gn, Pn)}) =

⋃
i∈{1,...,n}{serialise(Gi, Pi)}.

Therefore, another way to interpret trees is to serialise the SP graph semantics, i.e., to
interpret them as sets of pairs of the form (S, T) ∈ ℘(A+)×℘(D∗)∪℘(D+)×℘(A∗) where
S represents a set of attacks (defenses) if t is attack(defense)-rooted and T the corresponding
countermeasures. To this end, we are effectively defining a trace semantics for ADS trees.

The trace semantics of ADS trees is given by the function J·KT : TADS → ℘(℘(A+)×
℘(D∗) ∪ ℘(D+)× ℘(A∗)) which is defined recursively as follows:

• JbKT = {({〈b〉}, ∅)} for b ∈ B;
• Jt1 OR t2KT = Jt1KT ∪ Jt2KT;
• Jt1 AND t2KT = {(S1 ||| S2, T1 ∪ T2) |

(S1, S1) ∈ Jt1KT, (S2, T2) ∈ Jt2KT};
• Jt1 SAND t2KT = {(S1

a S2, T1 ∪ T2) |
(S1, T1) ∈ Jt1KT, (S2, T2) ∈ Jt2KT};

• Jt1 C t2KT =
{(S1, T1 ∪ (

⋃
(S2,T2)∈Jt2KT

S2)) | (S1, T1) ∈ Jt1KT} ∪
{(S1 ||| T2, T1 ∪ (

⋃
(S′2,∅)∈Jt2KT

S′2)) | (S1, T1) ∈ Jt1KT, (S2, T2) ∈ Jt2KT, T2 6= ∅}.
Unsurprisingly, this semantics is equivalent to the SPG semantics once we serialise all
sequences in a GP graph. We then have the following theorem.

Theorem 1. ∀ t ∈ TADS : serialise(JtKSP) = JtKT.

Information 2023, 14, 481 14 of 25

The following result is immediate.

Corollary 1. ∀ t ∈ TADS : ∃(G, ∅) ∈ JtKSP ⇔ (S, ∅) ∈ JtKT.

In summary, this means that to check if an attack depicted by a tree t is successful, it is
sufficient to check the existence of (S, ∅) ∈ JtKT.

5. Reasoning about ADS Trees

An algorithm is presented for the ADS tree checking problem. To know which are
successful attacks (or defenses) for a given ADS tree, a translation from ADS trees to CSP
processes is introduced. Then, FDR [52], CSP’s model checker, is employed to elicit a
successful attack (defense).

5.1. Checking ADS trees

Given the previous result, we propose a simple algorithm, Algorithm 1, for the ADS
tree checking problem. It is similar to the Boolean semantics of ADS trees [54] where the
difference between AND and SAND is discarded. The reason is that the checking problem
is concerned with the existence of a successful attack (defense) rather than the details of it’s
construction. Note that b is an leaf node in the tree to be checked.

Algorithm 1: Checking ADS trees.

1 Function check(t)
input :An ADS tree t;
output : true if t is successful, false otherwise.

2 if t = b then
3 return true;
4 else if t = t1 OR t2 then
5 return check(t1) ∨ check(t2);
6 else if t = t1 AND t2 or t = t1 SAND t2 then
7 return check(t1) ∧ check(t2);
8 else if t = t1 C t2 then
9 return check(t1) ∧ ¬check(t2);

10 end
11 end

The following correctness result is immediate.

Lemma 1. Given t ∈ TADS, check(t) = true iff ∃(S, ∅) ∈ JtKT.

Since Algorithm 1 visits all the nodes of an input ADS tree t, its complexity is O(n)
where n is the number of nodes of t.

5.2. Translation to CSP

Each ADS tree t is translated into a set of CSP process pairs where the alphabet Σt = B.
The translation function trans(·) is defined as follows:

• trans(b) = {(b→ Skip, Stop,>)}

• trans(t1 OR t2) = trans(t1) ∪ trans(t2)

• trans(t1 AND t2) = {(P1 ||| P2, Q1 2 Q2, O1 ∧ O2) |
(P1, Q1, O1) ∈ trans(t1), (P2, Q2, O2) ∈ trans(t2)}

Information 2023, 14, 481 15 of 25

• trans(t1 SAND t2){(P1; P2, Q1 2 Q2, O1 ∧ O2) |
(P1, Q1, O1) ∈ trans(t1), (P2, Q2, O2) ∈ trans(t2)}

• trans(t1 C t2) = {(P1, Q1 2 (2
(P2,Q2,O2)∈trans(t2)

P2),⊥) | (P1, Q1, O1) ∈ trans(t1)}

∪{(P1 ||| Q2, Q1 2 (2
(P3,Q3,>)∈trans(t2)

P3), O) |
(P1, Q1, O1) ∈ trans(t1), (P2, Q2, O2) ∈ trans(t2),
O = O1 ∧ ¬∃(P3, Q3,>) ∈ trans(t2)}

The translation is similar to the definition of the trace semantics for ADS tree. In-
tuitively, trans(t) aims to translate ADS trees t into triples of two CSP processes and an
outcome. The outcome is either success/true, denoted by >, or failure/false, denoted by
⊥. The following argument is applied for an attack-rooted tree t. If t is defense-rooted, the
same argument is also applied where “attack” is exchanged with “defense”.

Given such a triple (P, Q, O) ∈ trans(t), each terminated trace tr1 ∈ tracesX(P1) is
an attack while each terminated trace tr2 ∈ tracesX(Q) is a defense against tr1. When
tracesX(Q) = ∅, every attack in tracesX(P) succeeds, hence O = >. When tracesX(Q) 6= ∅,
every trace in tracesX(P) can be countered by any trace in tracesX(Q), hence O = ⊥.

In the basic case, t = b where b ∈ A, performing b will ensure success where no
countermeasure is available. For t = t1 OR t2, all triples in trans(t1) and trans(t2) are
collected by union. For t = t1 AND t2, an attack can be constructed by an interleaving of an
attack in P1 of trans(t1) with another in P2 of trans(t2). They can be countered by a defense
in either Q1 of trans(t1) or Q2 of trans(t2).

These combinations are captured by (P1 ||| P2, Q1 2 Q2, O1 ∧ O2) where (Pi, Qi, Oi) ∈
trans(ti) for i ∈ {1, 2}. The same explanation applies for t = t1 SAND t2 by replacing |||
with “; ” when combining attacks in trans(t1) and trans(t2).

Finally, for t = t1 C t2, attacks in P1 of trans(t1) can be countered by a defense in Q1
of trans(t1) itself or defenses in P1 of trans(t2). These attacks are captured by (P1, Q1 2

(2
(P2,Q2,O2)∈trans(t2)

P2),⊥) where (P1, Q1, O1) of trans(t1). However, these defenses in P2

of trans(2) can be countered by an attack in Q1 of trans(t2) if available, i.e., if tracesX(Q2) 6=
∅. This attack can be combined with that in P1. The combination can only be countered
(i) by defenses in Q1 or (ii) by defenses in P3 of trans(t2)) which are not countered by
any attack, i.e., (P3, Q3,>) ∈ trans(t2). These combined attacks are captured by (P1 |||
Q2, Q1 2 (2

(P3,Q3,>)∈trans(t2)
), O) where (P1, Q1, O1) ∈ trans(t1), (P2, Q2,⊥) ∈ trans(t2)

and O = O1 ∧ ¬∃(P3, Q3,>) ∈ trans(t2).
We define traces(trans(t)) = {({tr1 | tr1

a 〈X〉 ∈ traces(P)}, {tr2 | tr2
a 〈X〉 ∈

traces(Q)} | (P, Q, O) ∈ trans(t)}. The following result is immediate.

Lemma 2. ∀ t ∈ TADS : (P, Q,>) ∈ trans(t)⇔ tracesX(Q) = ∅.

Then, the correctness of the translation from ADS trees to CSP processes is stated below.

Theorem 2. ∀ t ∈ TADS : traces(trans(t)) = JtKT.

5.3. Automated Reasoning via CSP Refinements

In this section, we show how to use refinement on the translation of ADS trees into CSP
processes to reason about ADS trees. Our main interest is to answer the question whether
an attack(defense)-rooted tree is successful. By Lemma 2, the following is immediate.

Corollary 2. ∀ t ∈ TADS : ∃(S, ∅) ∈ JtKT ⇔ ∃(P, Q,>) ∈ trans(t).

This result means that to determine if an ADS is successful, we need to find a triple
(P, Q,>) ∈ trans(t). The set of all terminated traces without countermeasures in t then is
captured by 2

(P,Q,>)∈trans(t)
P. The set of non-terminated traces is captured by Run(A) if t

Information 2023, 14, 481 16 of 25

is attack-rooted or Run(D) if otherwise. Then, terminated traces without countermeasures
can be identified by the following refinement:

• Run(A) vT trans(t)2
(P,Q,>)∈trans(t)

P if t ∈ Tp
ADS;

• Run(D) vT trans(t)2
(P,Q,>)∈trans(t)

P if t ∈ To
ADS.

If the refinement is true, 2
(P,Q,>)∈trans(t)

P has no terminated traces, i.e., trans(t) has

no triple in (P, Q,>). Therefore, t is not successful. Conversely, if the refinement fails, i.e.,
there exists a counter example and so t is successful. By using FDR, this refinement can be
automatically checked. If it fails, a counter example will be produced which is evidence of
an attack (or defense if t is defense-rooted) without countermeasures.

6. Generating ADS Trees with SAND
6.1. Methodology

We propose a method to generate ADS trees from a system’s network model and a
library of attack defense trees. Each tree in the library is used to capture weaknesses and/or
vulnerabilities which lead to specific attacks on concrete components or sub-systems. In
this paper, they are called templates. The overall ADS tree generation process is described
in Figure 6. It comprises four stages:

• Stage 1—Construction of frame attack tree - a tree, which shows attack paths, generated
from the system’s network model.

• Stage 2—ADS tree templates are selected from the library and attached to the matching
nodes of frame tree.

• Stage 3—ADS tree is revised and any missing attacks or defenses are added.
• Stage 4 (optional)—The library is updated to include newly identified templates.

The system’s network model is used as an input to stage 1. It should include system
components and their communications links, to be considered in ADS tree. For example,
the network model of an automated vehicle comprises the following elements:

• Hardware devices (HW): Electronic Control Units (ECU), on-board computers, sensors,
actuators, network devices (switch, router), etc.

• Communication networks (CN): wired and wireless networks, such as Ethernet, Wi-Fi,
Controlled Area Network (CAN) bus, etc.

• Connections (CO): point-to-point connections between devices.
• Access points to devices and communication networks (AP): USB, Bluetooth, OBD, etc.

matching templates

new templates

Network model

Library

Frame attack tree

build
frame tree pick a node

find matching
templates

add missing attacks/
defenses

pick next node

ADS treeADS tree ADS tree

Figure 6. Methodology. Construction of frame attack tree is generated from system’s network model;
ADS tree templates are selected from library and attached to matching nodes of frame tree; ADS tree
is revised and any missing attacks or defenses are recursively added; Library is optionally updated to
include newly identified templates.

Information 2023, 14, 481 17 of 25

To construct frame attack tree, we select the network model element, whose vulnera-
bilities we want to analyse (Element X) and place it at the root of the tree. We name the root
node “Compromise Element X”. Then, we traverse to neighbouring elements (HW, CN,
CO, and AP) and add them to the frame as the child nodes. The process continues until all
reachable network model’s elements have been added to the frame tree.

In stage 2, the frame attack tree, constructed during stage 1, is expanded by adding
matching ADS tree templates from the library. Two types of templates could be used: attack
templates and defense templates. Attack templates expand the node into child attack and
defense nodes. Child attack nodes provide more details on how the security properties
of tree nodes – Confidentiality, Integrity, and Availability (C/I/A)—could be violated, for
example, the node “Compromise Element Y” could be matched with the template “Violate
C/I/A of Element Y”.

Defense template includes an attack node and corresponding defense nodes. Defenses
nodes show how an attack node can be mitigated. They could include additional informa-
tion, such as protection type (prevention, reduction, detection, correction, or monitoring of
losses or compromise, and restoring or recovery from damage) [2] and protected security
properties. The process of expanding ADS tree continues until all frame tree’s nodes have
been analysed and matching templates from the library have been assigned.

The aim of stage 3 is to review the ADS tree, generated in stage 2 and identify any
inconsistencies and/or missing information. For example, we can use the reasoning
algorithm introduced in Section 5 to check for undefended attacks. This can be done any
time the external environment changes and new attacks are discovered.

At this stage, additional attack and defense nodes could be manually added to ADS tree.
Stage 4 is optional, aimed at updating the library to include new templates from the

ADS tree, constructed through stages 1–3.
This methodology could be used during the concept phase of automotive cybersecurity

lifecycle, defined by the ISO/SAE 21434 standard, for:

• determining risk level of identified threat scenarios during Threat Analysis and Risk
Assessment (TARA) process. Risk value is calculated based on attack impact and
feasibility ratings. One of the approaches for determining threat feasibility—“attack
vector-based approach”—uses attack path analysis for estimating threat feasibility.
ADS trees provide detailed information on attack paths and available defenses. In
general, defenses are not considered during TARA. However, if the information
on defenses is available in ADS trees, it could be used for more precise feasibility
evaluation, which takes into consideration both attacks and defenses.

• verifying that the set of defenses, selected for implementation, is sufficient for protect-
ing the system, and that the residual risk has been reduced to an acceptable level. At
the end of concept phase, when safety measures have been assigned to threats, ADS
tree could be updated to include security measures, selected for implementation to
analyse attack coverage by defense. Then, threat feasibility ratings could be revised
and residual risk determined by combining revised feasibility and impact ratings.

Each developer (e.g., Original Equipment Manufacturer (OEM) in automotive in-
dustry) should have its own library of attack and defense templates and reuse it across
different projects and products while building their ADS trees. The library could be useful
for continuous vulnerability monitoring as well. For example, if a new template is defined
for a certain attack node, all ADS trees that use that attack node should be updated.

6.2. ADS Tree Generation Example

A hypothetical autonomous vehicle example is used to demonstrate the ADS tree
generation. Its network model is shown in Figure 7. The main elements include on-board
computer, which uses sensor (camera, Lidar, GPS, Radar) signals as an input to compute
vehicle control signals. The control signals are then sent via CAN bus to ECU, which
transforms them into control commands and sends them for implementation to actuators
(steering, braking, and acceleration). This example includes several network types (CAN

Information 2023, 14, 481 18 of 25

bus, Ethernet), various access points (USB, Bluetooth, OBD), and a physical connection
between ECU and actuators.

CAN bus

On-board
computer

ECU

GPS Radar

OBD

Actuators

Ethernet

Camera Lidar

USB

Bluetooth

Physical

Network model

Figure 7. A hypothetical autonomous vehicle network model which will be used to demonstrate
ADS tree generation.

We build the frame attack tree manually, starting with “Compromise on-board com-
puter” as a root node (see Figure 8). Then, we add the child nodes corresponding to attacks
on the elements, connected to on-board computer, followed by attacks on the elements
connected to these elements and so on, until all reachable network model’s elements have
been included. Note that only cyberattacks are considered in Figure 8. Thus, network
model’s elements, which are not susceptible to cyberattacks (physical connections and
actuators) are not included in the frame tree.

Automotive example:
Threat: compromise on-board computer
ADS tree framework

Compromise
on-board computer

Compromise
USB

Compromise
Bluetooth

Compromise
signals on Ethernet

Compromise signals
on CAN bus

Compromise
Camera

Compromise
Lidar

Compromise
ECU

Compromise
OBD

Compromise
GPS

Compromise
RADAR

Figure 8. A frame attack tree beginning with attacks on the Onboard computer. System elements not
susceptible to cyber attacks are not included here.

Then, we search the library for ADS tree templates and add them to frame attack
tree. Five matching templates have been identified, as shown in Figure 9: two attack
templates (violate integrity on USB, and violate confidentiality and integrity on OBD) and
three defense templates (Ethernet defenses, On-board computer defenses, and CAN bus
defenses). Attack templates are shown in Figure 10, while defense templates are depicted
in Figure 11.

Information 2023, 14, 481 19 of 25

Automotive example:
Threat: compromise on-board computer
ADS tree framework

Compromise
on-board computer

Compromise
USB

Compromise
Bluetooth

Compromise
signals on Ethernet

Compromise signals
on CAN bus

Compromise
Camera

Compromise
Lidar

Compromise
ECU

Compromise
OBD

Compromise
GPS

Compromise
RADAR

Ethernet
defenses

Violate
C/I on
OBD

Violate
I on
USB

On-board
computer
defenses

Figure 9. Extending the frame attack tree with templated attacks (represented with triangles).

Violate
I on
USB

Compromise
USB

Access to
USB port

Exploit USB-based
vulnerability

Compromise
OBD

Access to
OBD port

Execute malicious
software

Violate
C/I/A on

OBD

Produce malicious
software

Download malicious
software to mobile device

Analyse CAN
bus messages

Acquire CAN
bus messages

OBD access
control

a) b)

ADS tree
templates:

Violate
I on
USB

Compromise
USB

Access to
USB port

Exploit USB-based
vulnerability

Compromise
OBD

Access to
OBD port

Execute malicious
software

Violate
C/I/A on

OBD

Produce malicious
software

Download malicious
software to mobile device

Analyse CAN
bus messages

Acquire CAN
bus messages

OBD access
control

a) b)

ADS tree
templates:

(a) (b)

Figure 10. ADS tree attack templates. (a) An attack resulting in an integrity violation on USB. (b) An
attack resulting in a confidentiality and integrity violation on USB.

a) b)

ADS tree
templates:

Ethernet
defenses

On-board
computer
defenses

CAN bus
defenses

Compromise signals
on Ethernet

Ethernet
access
control

Compromise
on-board computer

On-board computer
intrusion detection

Compromise signals
on CAN bus

CAN bus anomaly
detection

c)a) b)

ADS tree
templates:

Ethernet
defenses

On-board
computer
defenses

CAN bus
defenses

Compromise signals
on Ethernet

Ethernet
access
control

Compromise
on-board computer

On-board computer
intrusion detection

Compromise signals
on CAN bus

CAN bus anomaly
detection

c)a) b)

ADS tree
templates:

Ethernet
defenses

On-board
computer
defenses

CAN bus
defenses

Compromise signals
on Ethernet

Ethernet
access
control

Compromise
on-board computer

On-board computer
intrusion detection

Compromise signals
on CAN bus

CAN bus anomaly
detection

c)
(a) (b) (c)

Figure 11. A selection of ADS tree defence templates. (a) Ethernet defences. (b) Onboard computer
defences. (c) CAN bus defences.

6.3. Implementation and Experiment

In this section, we present the algorithm to automate the first two stages of the
generation method proposed in Section 6.1. This algorithm takes three inputs: a structural
model of a system, a library of ADS tree templates and a target component within the
system, and constructs an ADS tree where the root is to compromise to the provided target
component. The pseudo-code of the algorithm is presented in Algorithm 2.

Information 2023, 14, 481 20 of 25

Algorithm 2: Generating attack defense trees.

1 Function GenerateADST(Model, Library, Target)
2 tree← BuildFrameTree(Model, Target);
3 queue← GetNodes(tree);
4 while queue is not empty do
5 node← pop(queue);
6 subTrees← getMatchingTemplates(node, Liberary);
7 subAttackTrees← filterAttackTrees(subTrees);
8 if subAttackTrees is not empty then
9 if node is not leaf and of type AND or SAND then

10 copied subtree← copy of the subtree at node;
11 change type of node to be OR;
12 set branches of node to be the copied subtree and all trees in

subAttackTrees;
13 else
14 add all trees in subAttackTrees to be branches of node;
15 end
16 end
17 for each subtree ∈ subtrees that is not in subAttackTrees do
18 add all subtrees of subtree as branches of node;
19 end
20 add all newly added nodes below node to queue;
21 end
22 return tree;
23 end

The algorithm starts at line 2 with building a frame attack tree, as described by stage 1
of the methodology. This is based on the input model and the target component. Building
such a frame attack tree is carried out in a breadth-first search fashion through the model.
From the target component, the search keeps visiting networks and nodes that are reachable.
The implementation of this process is depicted in Algorithm 3.

Algorithm 3: Building the frame tree.

1 Function BuildFrameTree(Model, Target)
2 root← Node with label Compromise plus Target;
3 queue← all pairs of (root,network) for each network that Target connects to;
4 mark root as visited;
5 while queue is not empty do
6 (tree,net or comp)← remove the first element of queue;
7 add a new node with label Compromise net or comp as a child of tree;
8 mark net or comp as visited;
9 if net or comp is a network then

10 add all pairs (new node, component) for each non-visited component
connected to net or comp;

11 else
12 add all pairs (new node, network) for each non-visited network that

net or comp and connects to;
13 end
14 end
15 return root;
16 end

Information 2023, 14, 481 21 of 25

After building the frame tree, Algorithm 2 realises stage 2 by browsing through each
node of the tree to find out if any template from the library can be used to expand it. In
particular, line 3 simply adds all nodes of the frame tree to the queue and consider each
node in the queue one by one. For each node in the queue, all matching templates in
the library are collected at line 6. A template matches a node if its root’s label matches
the node’s label. These templates are separated into those with at least one attack node
immediately below their roots, called attack templates, and those without. The attack
templates are added as branches of the currently considered node as an alternative way to
attack. This corresponds to lines 8 to 16 of Algorithm 2.

The other templates are added as countermeasures branches to the nodes, as presented
in lines 17 to 19.

It is straightforward that Algorithm 3 terminates due to the finiteness of the input
model. Since every element of the input model is marked as visited whenever considered
at line 8, and they will never be considered twice. Eventually, all reachable elements from
the input target must be visited. Then, the queue will be empty and the condition on line 5
will return false. In this case, the algorithm will return the frame tree and terminate.

The termination of Algorithm 2 is more involved. To ensure termination, the library
of ADS tree templates is required to be finite and not to contain a looped sequence of
templates. A template is said to be the successor of another if its root matches a node
of the other template. When this matching node is considered at line 5 of Algorithm 2,
the successor template will be selected to extend the ADS tree by line 6. A sequence of
templates consists of a list of templates such that the later is the successor the former in
the list. A sequence of templates contains a loop if a template occurs more than once in
the sequence. By requiring the input library to be finite and to contain no such loop, the
termination of Algorithm 2 can be proved by contradiction. In fact, let us assume that the
algorithm does not terminate, this means it will generate an infinite ADS tree. In other
words, there exists an infinite branch along this tree which is obtained by using an infinite
sequence of templates. Since the library is finite, there must be a template that occurs
infinitely many times on this sequence, i.e., this sequence contains a loop. This contradicts
the requirement for the library.

Experiment and Evaluation

This implementation (accessible at https://tinyurl.com/genadstree, accessed on 27 July
2023) is used to generate ADS trees for the example presented in Section 6.2. For each
component in the example, we run Algorithm 2 with the input model as depicted in
Figure 7 and the library consisting of templates as provided in Figures 10 and 11. For each
execution, the algorithm produces an output ADS tree. These trees contain 25 nodes with a
height ranging between 7 and 9. Figure 12 shows the obtained ADS tree when selecting
OBCOMPUTER (i.e., onboard computer) as the target. The algorithm generates the ADS
tree as expected. The root node, labelled “Compromise OBCOMPUTER”, is expanded
according to BuildFrameTree (Algorithm 3) with all networks/interfaces connected to
the OBCOMPUTER. This network includes BLUETOOTH, USB, ETHERNET and CAN
according to the vehicle network model (see Figure 8). Once they are compromised, the next
targets by an attacker will be the components attached to these networks (excluding the
OBCOMPUTER). In particular, for ETHERNET, the next targets are Camera and Lidar; for
CAN, the next targets are OBD, RADAR, GPS and the ECM (Engine Control Module) ECU.
As no further network beyond these components is available according to the network
model, BuildFrameTree terminates, and the generation algorithm continues building the
attack tree based on available templates. In particular, the template for compromising USB
(Figure 11a) is instantiated and attached to the node “Compromise USB” of the frame tree;
the template for compromising OBD (Figure 11b) is instantiated and attached to the node
“Compromised OBD”. Furthermore, the defense templates from the input library are used to
expand the attach tree with defense nodes. In particular, the template for defending against
compromising ETHERNET (Figure 12) is attached to the node “Compromise ETHERNET”;

https://tinyurl.com/genadstree

Information 2023, 14, 481 22 of 25

the template for defending against compromising OBDCOMPUTER (Figure 12) is attached
to the node “Compromise OBDCOMPUTER”; and the template for defending against
compromising CAN (Figure 12) is attached to the node “Compromise CAN”. Overall, the
generated attack tree (Figure 12) captures all possible attacks on the input vehicle models
and makes use of all possible templates from the input library.

Compromise
OBCOMPUTER

Compromise
BLUETOOTH

Compromise
USB

Compromise
USB #1

AccessTo
USBport

Exploit
USBbased
Vulnerability

Compromise
ETHERNET

Compromise
LIDAR

Compromise
CAMERA

Ethernet
Access
Control

Compromise
CAN

Compromise
OBD

Compromise
OBD #1

AccessTo
OBDport

OBD
Access Control

Execute
Malicious Software

Produce
Malicious Software

Acquire CANbus
Messages

Analyse
CANbus Messages

Download Malicious
SoftwareTo Mobile Device

Compromise
RADAR

Compromise
GPS

Compromise
ECM

CAN BUS
Anomaly
Detection

Onboard Computer
Intrusion Detection

Figure 12. The final generated ADS tree targeting the Onboard Computer.

7. Conclusion and Further Work

In this paper we have given a formal ADS (Attack Defense with Sequential AND)
tree representation, a reasoning algorithm to allow checking whether attacks are defended
against, and a methodology for automated generation of ADS trees. The methodology has
been demonstrated using a simple hypothetical example inspired from the architecture of
an autonomous vehicle. The example methodology includes as well simple templates that
have been constructed to demonstrate simple attacks and defenses.

ADS trees are useful in both CPS development and post-development phases. In
the development phase, they aid in performing cybersecurity risk analysis, while in post-
development phases, such as operation and maintenance, they can be used for monitoring
and maintaining the required security level. For example, it is known that vehicle man-
ufacturers will have to support new vehicles (including updating the security case) for
many years after the vehicle has been being produced. During this time new attacks and
vulnerabilities will (likely) be discovered. This could potentially mean that the security case
will have to become a “living document”. See for example the work by Cobos et al. [55]
which describes how ADS could be combined with Goal Structuring Notation for building
the automotive cybersecurity assurance case. The methodology we present could help to
automate part of this process.

Using our template-based methodology will mean that as new attacks become identi-
fied they can be described as templates and added to the template library, together with
any relevant defenses that have been identified to date. The new ADS can then be used to
re-build and update the new security case for the updated vehicle.

Information 2023, 14, 481 23 of 25

All nodes, except those denoting defenses, of our templates (or even the generated
ADS trees) describe the actions/goals from the attacker’s perspective. This gives a clean
diagram for the analyst to focus on and comprehend the attacker’s course of actions.
However, it may fail to capture other crucial events (such as hardware component failures
that are indirectly or not necessarily caused by attacker) that can cause vulnerabilities
which the attacker can take advantage of. Such attack-contributing/triggering events are
in fact possible occurrences especially in CPS. Consider this simple example; a malware
running stealthily on the in-vehicle infotainment system would not perform anything
harmful until the (legitimate) user performs particular actions (e.g., pressing a button or
turning the radio node); note that such actions are not performed by attacker but they
unintentionally trigger or contribute to the attack. Therefore, such hazardous, accidental or
attack-contributing/triggering events (caused by parties other than attacker and defender)
should also be explicitly captured by the ADS trees or templates, making sure that they
are not missed by the analysts when devising the mitigation measures/strategies. The
resultant ADS trees or templates may be adapted from the Attack-Fault Trees [56,57] or
Exploit Trees [41].

A potential further step could also be optimization of size or structure of the generated
ADS trees via mechanisms adapted from or inspired by, for instance [34]’s logic reduction
techniques, and refinement rules of [17,19,35]. Additionally, automated quantitative anal-
ysis may also be explored considering a plethora of techniques available in the literature
(cf. Table 4 of [21]). To this end, we will investigate how ADS can help to analyse common
cyber security metrics including attack success probabilities and cost of successful attacks.
Another step is to establish libraries of templates so that the proposed method can be
applied. Existing attack pattern and vulnerability databases (such as CAPEC [40], CWE
[58], NVD [59], etc.) will be good starting points to build such libraries.

Author Contributions: Conceptualization, J.B., H.N.N. and G.S.; Methodology, J.B., G.S. and S.A.S.;
Validation, J.B., H.N.N., G.S. and S.A.S.; Formal analysis, J.B. and H.N.N.; Writing—original draft,
J.B., H.N.N., G.S. and S.A.S.; Writing—review & editing, J.B., L.S.L. and G.S.; Supervision, S.A.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schneier, B. AT: Modeling Security Threats. Available online: https://www.schneier.com/academic/archives/1999/12/attack_

trees.html (accessed on 1 July 2023).
2. BS ISO/SAE 21434:2021; Road Vehicles—Cybersecurity Engineering. International Organization of Standardization: Geneva,

Switzerland, 2021.
3. Kordy, B.; Piètre-Cambacédès, L.; Schweitzer, P. DAG-based attack and defense modeling: Don’t miss the forest for the attack

trees. Comput. Sci. Rev. 2014, 13–14, 1–38.
4. Kordy, B.; Wideł, W. On Quantitative Analysis of Attack–Defense Trees with Repeated Labels. In Principles of Security and Trust;

Bauer, L., Küsters, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10804, pp. 325–346. [CrossRef]
5. Arnold, F.; Hermanns, H.; Pulungan, R.; Stoelinga, M. Time-dependent analysis of attacks. In Proceedings of the Third

International Conference on Principles and Security of Trust, POST 2014, Grenoble, France, 5–13 April 2014; pp. 285–305.
[CrossRef]

6. Jhawar, R.; Kordy, B.; Mauw, S.; Radomirović, S.; Trujillo-Rasua, R. Attack Trees with Sequential Conjunction. In ICT Systems
Security and Privacy Protection; Springer: Berlin/Heidelberg, Germany, 2015; Volume 455, pp. 339–353. [CrossRef]

7. Ivanova, M.G.; Probst, C.W.; Hansen, R.; Kammüller, F. Transforming graphical system models to graphical attack models. In
Proceedings of the Second International Workshop, GraMSec 2015, Verona, Italy, 13 July 2015; pp. 82–96.

8. Jürgenson, A.; Willemson, J. Serial Model for Attack Tree Computations. In Proceedings of the 12th International Conference,
Seoul, Republic of Korea, 2–4 December 2009; Lee, D., Hong, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 118–128.

9. Piètre-Cambacédès, L.; Bouissou, M. Beyond Attack Trees: Dynamic Security Modeling with Boolean Logic Driven Markov
Processes (BDMP). In Proceedings of the 2010 European Dependable Computing Conference, Valencia, Spain, 28–30 April 2010;
pp. 199–208. [CrossRef]

https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://dx.doi.org/10.1007/978-3-319-89722-6_14
http://dx.doi.org/10.1007/978-3-642-54792-8_16
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1109/EDCC.2010.32

Information 2023, 14, 481 24 of 25

10. Bistarelli, S.; Fioravanti, F.; Peretti, P. Defense trees for economic evaluation of security investments. In Proceedings of the
First International Conference on Availability, Reliability and Security (ARES’06), Vienna, Austria, 20–22 April 2006; pp. 8–423.
[CrossRef]

11. Bistarelli, S.; Peretti, P.; Trubitsyna, I. Analyzing Security Scenarios Using Defence Trees and Answer Set Programming. Electron.
Notes Theor. Comput. Sci. 2008, 197, 121–129. [CrossRef]

12. Bistarelli, S.; Fioravanti, F.; Peretti, P.; Santini, F. Evaluation of complex security scenarios using defense trees and economic
indexes. J. Exp. Theor. Artif. Intell. 2012, 24, 161–192. [CrossRef]

13. Baca, D.; Petersen, K. Prioritizing Countermeasures through the Countermeasure Method for Software Security (CM-Sec). In
Proceedings of the 11th International Conference, PROFES 2010, Limerick, Ireland, 21–23 June 2010; Ali Babar, M., Vierimaa, M.,
Oivo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 176–190.

14. Roy, A.; Kim, D.S.; Trivedi, K.S. Attack Countermeasure Trees (ACT): Towards Unifying the Constructs of Attack and Defense
Trees. Sec. Commun. Netw. 2012, 5, 929–943. [CrossRef]

15. Gadyatskaya, O. How to Generate Security Cameras: Towards Defence Generation for Socio-Technical Systems. In Proceedings
of the Third International Workshop, GraMSec 2016, Lisbon, Portugal, 27 June 2016; Mauw, S., Kordy, B., Jajodia, S., Eds.; Springer:
Cham, Switzerland, 2016; pp. 50–65.

16. Mauw, S.; Oostdijk, M. Foundations of Attack Trees. In Proceedings of the Information Security and Cryptology—ICISC 2005,
Seoul, Republic of Korea, 1–2 December 2005; Won, D.H., Kim, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 186–198.

17. Pinchinat, S.; Acher, M.; Vojtisek, D. Towards Synthesis of Attack Trees for Supporting Computer-Aided Risk Analysis. In
Proceedings of the SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS, Grenoble, France,
1–2 September 2014.

18. Paul, S. Towards Automating the Construction & Maintenance of Attack Trees: A Feasibility Study. In Proceedings of the First
International Workshop on Graphical Models for Security, GraMSec 2014, Grenoble, France, 12 April 2014; Kordy, B., Mauw, S.,
Pieters, W., Eds.; Volume 148, pp. 31–46. [CrossRef]

19. Pinchinat, S.; Acher, M.; Vojtisek, D. ATSyRa: An Integrated Environment for Synthesizing Attack Trees. In Proceedings of the
Second International Workshop on Graphical Models for Security (GraMSec’15), Verona, Italy, 13 July 2015.

20. Bryans, J.; Nguyen, H.N.; Shaikh, S.A. Attack Defense Trees with Sequential Conjunction. In Proceedings of the 2019 IEEE 19th
International Symposium on High Assurance Systems Engineering (HASE), Hangzhou, China, 3–5 January 2019; pp. 247–252.
[CrossRef]

21. Wideł, W.; Audinot, M.; Fila, B.; Pinchinat, S. Beyond 2014: Formal methods for attack tree-based security modeling. ACM
Comput. Surv. 2019, 52, 75. [CrossRef]

22. Horne, R.; Mauw, S.; Tiu, A. Semantics for specialising attack trees based on linear logic. Fundam. Inform. 2017, 153, 57–86.
[CrossRef]

23. Audinot, M.; Pinchinat, S.; Kordy, B. Is My Attack Tree Correct? In Proceedings of the 22nd European Symposium on Research
in Computer Security, Oslo, Norway, 11–15 September 2017; Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Springer: Cham,
Switzerland, 2017; pp. 83–102.

24. Audinot, M. Assisted Design and Analysis of Attack Trees. Ph.D. Thesis, University Rennes 1, Rennes, France, 2018.
25. ATSyRA Studio. Available online: http://atsyra2.irisa.fr/ (accessed on 1 July 2023).
26. Vigo, R.; Nielson, F.; Nielson, H.R. Automated Generation of Attack Trees. In Proceedings of the 2014 IEEE 27th Computer

Security Foundations Symposium, Vienna, Austria, 19–22 July 2014; pp. 337–350. [CrossRef]
27. Vigo, R. Nielson, F.; Nielson, H. Discovering, quantifying, and displaying attacks. Log. Methods Comput. Sci. 2016, 12.
28. Nielson, H.R.; Nielson, F.; Vigo, R. A Calculus for Quality. In Proceedings of the 9th International Symposium, FACS 2012,

Mountain View, CA, USA, 11–13 September 2012; Păsăreanu, C.S., Salaün, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 188–204.

29. Probst, C.W.; Willemson, J.; Pieters, W. The attack navigator. GraMSec 2015 (LNCS) 2015, 9390, 1–17.
30. Sowka, K.; Cheah, M.; Doan, T.; Nguyen, H.; Shaikh, S. Towards Generation of Attack Trees Using Machine Learning. 2021. Avail-

able online: https://pure.coventry.ac.uk/ws/portalfiles/portal/53429439/Towards_Generation_of_Attack_Trees.pdf (accessed
on 1 July 2023).

31. Mahmood, S.; Nguyen, H.N.; Shaikh, S.A. Systematic threat assessment and security testing of automotive over-the-air (OTA)
updates. Veh. Commun. 2022, 35, 100468. [CrossRef]

32. Cheah, M.; Shaikh, S.A.; Bryans, J.; Wooderson, P. Building an automotive security assurance case using systematic security
evaluations. Comput. Secur. 2018, 77, 360–379. [CrossRef]

33. Lallie, H.S.; Debattista, K.; Bal, J. An Empirical Evaluation of the Effectiveness of Attack Graphs and Fault Trees in Cyber-Attack
Perception. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1110–1122. [CrossRef]

34. Hong, J.B.; Kim, D.S.; Takaoka, T. Scalable Attack Representation Model Using Logic Reduction Techniques. In Proceedings of
the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne,
Australia, 16–18 July 2013; pp. 404–411. [CrossRef]

35. Gadyatskaya, O.; Jhawar, R.; Mauw, S.; Trujillo-Rasua, R.; Willemse, T.A.C. Refinement-Aware Generation of Attack Trees. In
Proceedings of the 13th International Workshop, STM 2017, Oslo, Norway, 14–15 September 2017; Livraga, G., Mitchell, C., Eds.;
Springer: Cham, Switzerland, 2017; pp. 164–179.

http://dx.doi.org/10.1109/ARES.2006.46
http://dx.doi.org/10.1016/j.entcs.2007.12.021
http://dx.doi.org/10.1080/13623079.2011.587206
http://dx.doi.org/10.1002/sec.299
http://dx.doi.org/10.4204/EPTCS.148.3
http://dx.doi.org/10.1109/HASE.2019.00045
http://dx.doi.org/10.1145/3331524
http://dx.doi.org/10.3233/FI-2017-1531
http://atsyra2.irisa.fr/
http://dx.doi.org/10.1109/CSF.2014.31
https://pure.coventry.ac.uk/ws/portalfiles/portal/53429439/Towards_Generation_of_Attack_Trees.pdf
http://dx.doi.org/10.1016/j.vehcom.2022.100468
http://dx.doi.org/10.1016/j.cose.2018.04.008
http://dx.doi.org/10.1109/TIFS.2017.2771238
http://dx.doi.org/10.1109/TrustCom.2013.51

Information 2023, 14, 481 25 of 25

36. Chulp, S.; Christl, K.; Schmittner, C.; Shaaban, A.M.; Schauer, S.; Latzenhofer, M. THREATGET: Towards Automated Attack Tree
Analysis for Automotive Cybersecurity. Information 2023, 14, 28.

37. Gadyatskaya, O.; Mauw, S. Attack Tree Series: A case for dynamic attack tree analysis. In Proceedings of the 6th International
Workshop, GraMSec 2019, Hoboken, NJ, USA, 24 June 2019.

38. Ali, A.T.; Gruska, D.P. Attack Trees with Time Constraints. In Proceedings of the 29th International Workshop on Concurrency,
Specification and Programming (CS&P 2021), Berlin, Germany, 27–28 September 2021.

39. Jhawar, R.; Lounis, K.; Mauw, S.; Ramírez-Cruz, Y. Semi-automatically Augmenting Attack Trees Using an Annotated Attack Tree
Library. In Security and Trust Management; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11091,
pp. 85–101. [CrossRef]

40. CAPEC—Common Attack Pattern Enumeration and Classification. Available online: https://capec.mitre.org/ (accessed on 1
July 2023).

41. Mantel, H.; Probst, C.W. On the meaning and purpose of attack trees. In Proceedings of the 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), Hoboken, NJ, USA, 25–28 June 2019; pp. 184–199. [CrossRef]

42. Pinchinat, S.; Fila, B.; Wacheux, F.; Thierry-Mieg, Y. Attack Trees: A Notion of Missing Attacks. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; Volume 11720. [CrossRef]

43. Bryans, J.; Liew, L.S.; Nguyen, H.N.; Sabaliauskaite, G.; Shaikh, S.; Zhou, F. A Template-Based Method for the Generation of
Attack Trees. In Proceedings of the 13th IFIP WG 11.2 International Conference, WISTP 2019, Paris, France, 11–12 December 2019;
Laurent, M., Giannetsos, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 155–165.

44. Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; Wing, J. Automated generation and analysis of attack graphs. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 273–284. [CrossRef]

45. Sheyner, O.; Wing, J. Tools for Generating and Analyzing Attack Graphs. In Proceedings of the Second International Symposium,
FMCO 2003, Leiden, The Netherlands, 4–7 November 2003; de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P., Eds.;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 344–371.

46. Ivanova, M.G.; Probst, C.W.; Hansen, R.R.; Kammüller, F. Attack Tree Generation by Policy Invalidation. In Proceedings of the
9th IFIP WG 11.2 International Conference, WISTP 2015, Heraklion, Greece, 24–25 August 2015; Akram, R.N., Jajodia, S., Eds.;
Springer: Cham, Switzerland, 2015; pp. 249–259.

47. Xu, J.; Venkatasubramanian, K.K.; Sfyrla, V. A methodology for systematic attack trees generation for interoperable medical
devices. In Proceedings of the 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 18–21 April 2016; pp. 1–7.
[CrossRef]

48. Santra, S. Semi-Automated Generation of Networked Vulnerability-Attack Countermeasure Trees for Security Analysis; University of
Canterbury: Christchurch, New Zealand, 2017.

49. Falco, G.; Viswanathan, A.; Caldera, C.; Shrobe, H. A Master Attack Methodology for an AI-Based Automated Attack Planner for
Smart Cities. IEEE Access 2018, 6, 48360–48373. [CrossRef]

50. Cheah, M.; Nguyen, H.; Bryans, J.; Shaikh, S.A. Formalising Systematic Security Evaluations Using Attack Trees for Automotive
Applications. In Proceedings of the 11th IFIP WG 11.2 International Conference, WISTP 2017, Heraklion, Greece, 28–29 September
2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–129. [CrossRef]

51. Roscoe, A.W. Understanding Concurrent Systems; Springer: Berlin/Heidelberg, Germany, 2010.
52. FDR4. Available online: https://www.cs.ox.ac.uk/projects/fdr/ (accessed on 5 September 2018).
53. Gadyatskaya, O.; Hansen, R.R.; Larsen, K.G.; Legay, A.; Olesen, M.C.; Poulsen, D.B. Modelling Attack-Defense Trees Using

Timed Automata. In Formal Modeling and Analysis of Timed Systems; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9884,
pp. 35–50. [CrossRef]

54. Kordy, B.; Mauw, S.; Radomirovic, S.; Schweitzer, P. Attack-Defense Trees. J. Log. Comput. 2014, 24, 55–87. [CrossRef]
55. Cobos, L.P.; Ruddle, A.R.; Sabaliauskaite, G. Cybersecurity Assurance Challenges for Future Connected and Automated Vehicles.

In Proceedings of the 31st European Safety and Reliability Conference, Angers, France, 19–23 September 2021; pp. 2038–2045.
[CrossRef]

56. Kumar, R.; Stoelinga, M. Quantitative Security and Safety Analysis with Attack-Fault Trees. In Proceedings of the 2017 IEEE 18th
International Symposium on High Assurance Systems Engineering (HASE), Singapore, 12–14 January 2017; pp. 25–32. [CrossRef]

57. André, É.; Lime, D.; Ramparison, M.; Stoelinga, M. Parametric Analyses of Attack-Fault Trees. In Proceedings of the 2019 19th
International Conference on Application of Concurrency to System Design, ACSD 2019, Aachen, Germany, 23–28 June 2019;
pp. 33–42. [CrossRef]

58. CWE—Common Weakness Enumeration. Available online: https://cwe.mitre.org/ (accessed on 1 July 2024).
59. NVD—National Vulnerability Database. Available online: https://nvd.nist.gov/ (accessed on 1 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-01141-3_6
https://capec.mitre.org/
http://dx.doi.org/10.1109/CSF.2019.00020
http://dx.doi.org/10.1007/978-3-030-36537-0_3
http://dx.doi.org/10.1109/SECPRI.2002.1004377
http://dx.doi.org/10.1109/SYSCON.2016.7490632
http://dx.doi.org/10.1109/ACCESS.2018.2867556
http://dx.doi.org/10.1007/978-3-319-93524-9_7
https://www.cs.ox.ac.uk/projects/fdr/
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.3850/978-981-18-2016-8412-cd
http://dx.doi.org/10.1109/HASE.2017.12
http://dx.doi.org/10.1109/ACSD.2019.00008
https://cwe.mitre.org/
https://nvd.nist.gov/

	Introduction
	Literature Review
	Background
	Attack Trees
	CSP

	Attack Defense Trees with Sequential Conjunction
	Syntax
	Semantics
	SPG Semantics
	Trace Semantics

	Reasoning about ADS Trees
	Checking ADS trees
	Translation to CSP
	Automated Reasoning via CSP Refinements

	Generating ADS Trees with SAND
	Methodology
	ADS Tree Generation Example
	Implementation and Experiment

	Conclusion and Further Work
	References

